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Abstract. We extend the recently developed theory of bulk orbital magneti-
zation to finite electric fields, and use it to calculate the orbital magnetoelectric
(ME) response of periodic insulators. Working in the independent-particle frame-
work, we find that the finite-field orbital magnetization can be written as a sum
of three gauge-invariant contributions, one of which has no counterpart at zero
field. The extra contribution is collinear with and explicitly dependent on the
electric field. The expression for the orbital magnetization is suitable for first-
principles implementations, allowing one to calculate the ME response coeffi-
cients by numerical differentiation. Alternatively, perturbation-theory techniques
may be used, and for that purpose we derive an expression directly for the linear
ME tensor by taking the first field-derivative analytically. Two types of terms are
obtained. One, the ‘Chern–Simons’ term, depends only on the unperturbed oc-
cupied orbitals and is purely isotropic. The other, ‘Kubo’ terms, involve the first-
order change in the orbitals and give isotropic as well as anisotropic contributions
to the response. In ordinary ME insulators all terms are generally present, while
in strong Z2 topological insulators only the Chern–Simons term is allowed, and
is quantized. In order to validate the theory, we have calculated under periodic
boundary conditions the linear ME susceptibility for a 3D tight-binding model
of an ordinary ME insulator, using both the finite-field and perturbation-theory
expressions. The results are in excellent agreement with calculations on bounded
samples.
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1. Introduction

In insulating materials in which both spatial inversion and time-reversal symmetries are broken,
a magnetic field B can induce a first-order electric polarization P , and conversely an electric
field E can induce a first-order magnetization M [1, 2]. This linear magnetoelectric (ME) effect
is described by the susceptibility tensor

αda =
∂Pd

∂Ba

∣∣∣∣
B=0

=
∂Ma

∂Ed

∣∣∣∣
E=0

, (1)

where indices label spatial directions. This tensor can be divided into a ‘frozen-ion’ contribution
that occurs even when the ionic coordinates are fixed, and a ‘lattice-mediated’ contribution
corresponding to the remainder. Each of these two contributions can be decomposed further
according to whether the magnetic interaction is associated with spins or orbital currents, giving
four contributions to α in total.

All of these contributions, except the frozen-ion orbital one, are relatively straightforward
to evaluate, at least in principle, and ab initio calculations have started to appear. For example,
the lattice-mediated spin-magnetization response was calculated in [3] for Cr2O3 and in [4] for
BiFeO3 (including the strain deformation effects that are present in the latter), and calculations
based on the converse approach (polarization response to a Zeeman field) were recently
reported [5]. One generally expects the lattice-mediated couplings to be larger than the frozen-
ion ones, and insofar as the spin–orbit interaction can be treated perturbatively, interactions
involving spin magnetization are typically larger than the orbital ones. However, we shall see
that there are situations in which the spin–orbit interaction cannot be treated perturbatively, and
in which the frozen-ion orbital contribution is expected to be dominant. Therefore, it is desirable
to have a complete description that accounts for all four contributions.

The frozen-ion orbital contribution is, in fact, the one part of ME susceptibility for which
there is at present no satisfactory theoretical or computational framework, although some
progress towards that goal was made in two recent works [6, 7]. Following Essin et al [7],
we refer to it as the ‘orbital magnetoelectric polarizability’ (OMP). For the remainder of
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this paper, we will focus exclusively on this contribution to (1), and shall denote it simply
by α. Accordingly, the symbol M will be used henceforth for the orbital component of the
magnetization.

The question we pose to ourselves is the following: what is the quantum-mechanical
expression for the tensor α of a generic three-dimensional (3D) band insulator? We note that
the conventional perturbation-theory expression for α [8, 9] does not apply to Bloch electrons,
as it involves matrix elements of unbounded operators. The proper expressions for P [10]
and M [11]–[14] in periodic crystals have been derived, but so far only at B = 0 and E = 0,
respectively. The evaluation of equation (1) therefore remains an open problem.

Phenomenologically, the most general form of α is a 3 × 3 matrix where all nine
components are independent. Dividing it into traceless and isotropic parts, the latter is
conveniently expressed in terms of a single dimensionless parameter θ as

αθda =
θe2

2πhc
δda. (2)

The presence of an isotropic ME coupling is equivalent to the addition of a term proportional to
θE · B to the electromagnetic Lagrangian. Such a term describes ‘axion electrodynamics’ [15]
and (2) may therefore also be referred to as the ‘axion OMP’. The electrodynamic effects of the
axion field are elusive (in fact, the very existence of αθ was debated until recently: see [16, 17]
and references therein). For example, in a finite, static sample cut from a uniform ME medium,
those effects are only felt at the surface [15, 18]. In particular, αθ gives rise to a surface Hall
effect [19].

An essential feature of the axion theory is that a change of θ by 2π leaves the
electrodynamics invariant [15]. The profound implications for the ME response of materials
were recognized by Qi et al [6], and discussed further by Essin et al [7]. These authors showed
that there is a part of the isotropic OMP that remains ambiguous up to integer multiples of 2π
in the corresponding θ until the surface termination of the sample is specified. For example,
a change by 2πn occurs if the surface is modified by adsorbing a quantum anomalous Hall
layer. Hence this particular contribution to θ can be formulated as a bulk quantity only modulo
a quantum of indeterminacy, in much the same way as the electric polarization P [10, 20].
A microscopic expression for it was derived in the framework of single-particle band theory
by the above authors. It is given by the Brillouin-zone integral of the Chern–Simons form [21]
in k-space, which is a multivalued global geometric invariant reminiscent of the Berry-phase
expression for P [10]. We denote henceforth this ‘geometric’ contribution to the OMP as the
Chern–Simons OMP (CSOMP).

A remarkable outcome of this analysis is the prediction [6] of a purely isotropic
‘topological ME effect’, associated with the CSOMP, in a newly discovered class of time-
reversal invariant insulators known as Z2 topological insulators [22]–[24]. As a result of the
multivaluedness of θ , the presence of time-reversal symmetry in the bulk, which takes θ into
−θ , is consistent with two solutions: θ = 0, corresponding to ordinary insulators, and θ = π ,
corresponding to strong Z2 topological insulators4. The latter case is non-perturbative in the
spin–orbit interaction, and θ = π amounts to a rather large ME susceptibility (in Gaussian units

4 An analogous situation occurs in the theory of polarization: inversion symmetry, which takes P into −P , allows
for a nontrivial solution, which does not include P = 0 in the ‘lattice’ of values [20]. An important difference is that
while θ is a directly measurable response, only changes in P are detectable, so that the experimental implications
of the nontrivial solution are less clear in this case.
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it is 1/4π times the fine structure constant, or ∼6 × 10−4, to be compared with ∼1 × 10−4 for
the total ME response of Cr2O3 at low temperature [25]).

It is not clear from these recent works, however, whether the isotropic CSOMP constitutes
the full OMP response of a generic insulator. It does appear to do so for the tight-binding model
studied in [7], whose ME response was correctly reproduced by the Chern–Simons expression
even when the parameters were tuned to break time-reversal and inversion symmetries (i.e.
for generic θ not equal to 0 or π ). On the other hand, other considerations seem to demand
additional contributions. For example, it is not difficult to construct tight-binding models of
molecular crystals in which it is clear that the OMP cannot be purely isotropic.

In this work we derive, using rigorous quantum-mechanical arguments, an expression for
the OMP tensor α of band insulators, written solely in terms of bulk quantities (the periodic
Hamiltonian and ground state Bloch wavefunctions, and their first-order change in an electric
field). We restrict our derivation to non-interacting Hamiltonians, as the essential physics we
wish to describe occurs already at the single-particle level. We find that in crystals with broken
time-reversal and inversion symmetries there are, in addition to the CSOMP term discussed
in [6, 7], extra terms that generally contribute to both the trace and the traceless parts of α.

Our theoretical approach closely mimics one type of ME response experiment: a finite
electric field E is applied to a bounded sample, and the (orbital) magnetization is calculated in
the presence of the field. Then the thermodynamic limit is taken at fixed field. This key step
in the derivation must be done carefully, so that crucial surface contributions are not lost in
the process, and here we follow the Wannier-based approach of references [12, 13], adapted to
E 6= 0. Finally, the linear response coefficient αda = ∂Ma/∂Ed is extracted in the limit that E
goes to zero.

In a concurrent work by Essin et al and one of us [26], an alternative approach was taken,
which is closer in spirit to the calculation in [10] of the change in polarization as an integrated
current: the adiabatic current induced in an infinite crystal by a change in its Hamiltonian in
the presence of a magnetic field is computed, and then expressed as a total time derivative. The
two approaches are complementary and lead to the same expression for α, illuminating it from
different angles.

The paper is organized as follows. In section 2, we derive the bulk expression for M(E),
and reorganize it into three gauge-invariant contributions, one of which yields directly the
CSOMP response. The gauge-invariant decomposition of M(E) is done at first in k-space for
periodic crystals, and then also for bounded samples working in real space. In section 3, we
derive a k-space formula for the OMP tensor α by taking analytically the field derivative of
M(E). Numerical tests on a tight-binding model of a ME insulator are presented at appropriate
places throughout the paper in order to validate the bulk expressions for M(E) and α. In
appendix A, we describe the tight-binding model, as well as technical details on how the various
formulas are implemented on a k-point grid. Appendices B and C contain derivations of certain
results given in the main text.

2. Orbital magnetization in finite electric field

2.1. Preliminaries

The orbital magnetization M is defined as the orbital moment per unit volume,

M = −
e

2cV

∑
i

〈ψi |r × v|ψi〉. (3)
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Here e > 0 is the magnitude of the electron charge, V is the sample volume and |ψi〉 are the
occupied eigenstates. While this expression can be directly implemented when using open
boundary conditions, the electronic structure of crystals is more conveniently calculated and
interpreted using periodic boundary conditions, in order to take advantage of Bloch’s theorem.
This poses, however, serious difficulties in dealing with the circulation operator r × v, because
of the unbounded and nonperiodic nature of the position operator r . These subtle issues were
fully resolved only recently, with the derivation of a bulk expression for M directly in terms of
the extended Bloch states [11]–[14].

In previous derivations, the crystal was taken to be under shorted electrical boundary
conditions. We shall extend the derivation given in [12, 13] to the case where a static
homogeneous electric field E is present, so that the full Hamiltonian reads

H=H0 + eE · r. (4)

The derivation, carried out for an insulator with N valence bands within the independent-particle
approximation, involves transforming the set of occupied eigenstates |ψi〉 of H into a set of
Wannier-type (i.e. localized and orthonormal) orbitals |wi〉 and expressing M(E) in the Wannier
representation. This is done at first for a finite sample cut from a periodic crystal, and eventually
the thermodynamic limit is taken at fixed field.

Before continuing, two remarks are in order. Firstly, the assumption that it is possible to
construct well-localized Wannier functions (WFs) spanning the valence bands is only valid if
the Chern invariants of the valence bandstructure vanish identically [27]. This requirement is
satisfied by normal band insulators as well as by Z2 topological insulators, but not by quantum
anomalous Hall insulators [28], which thus far remain hypothetical. Secondly, because of Zener
tunnelling, an insulating crystal does not have a well-defined ground state in a finite electric
field. Nonetheless, upon slowly ramping up the field to the desired value, the electron system
remains in a quasistationary state that is, for all practical purposes, indistinguishable from a
truly stationary state. This is the state we shall consider in the ensuing derivation. As discussed
in [29, 30], it is Wannier- and Bloch-representable, even though the Hamiltonian (4) is not
lattice-periodic.

2.2. k-space expression

Our derivation of a k-space (bulk) expression for M(E) is carried out mostly in real space,
using a Wannier representation. It is only in the last step that we switch to reciprocal space, by
expressing the crystalline WFs |Rn〉 in terms of the cell-periodic Bloch functions |unk〉 via [31]

|Rn〉 = Vc

∫
[dk]eik·(r−R)

|unk〉, (5)

where R is a lattice vector, Vc is the unit-cell volume, [dk] ≡ d3k/(2π)3 and the integral is over
the first Brillouin zone.

We begin with a finite sample immersed in a field E , divide it up into an interior region and
a surface region, and assign each WF to either one. The boundary between the two regions is
chosen in such a way that the fractional volume of the surface region goes to zero as V → ∞,
but deep enough that WFs near the boundary are bulk-like. Following [12, 13], equation (3)
for the orbital magnetization can then be rewritten as an interior contribution plus a surface
contribution, denoted respectively as the ‘local circulation’ (LC) and the ‘itinerant circulation’
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(IC). Remarkably, in the thermodynamic limit both can be expressed solely in terms of the
interior-region crystalline WFs or, equivalently, in terms of the bulk Bloch functions, as shown
in the above references at E = 0 and below for E 6= 0. Specifically, we shall show that

M = MLC + M IC,0 + M IC,E, (6a)

where

MLC
a = −γ εabc Im

N∑
n

∫
[dk]〈∂bunk|H

0
k |∂cunk〉 (6b)

is the contribution from the interior WFs,

M IC,0
a = −γ εabc Im

N∑
nm

∫
[dk]〈∂bunk|∂cumk〉H 0

mnk (6c)

is the part of the surface contribution coming from the zero-field Hamiltonian, and

M IC,E
a = −γ εabc Im

N∑
nm

∫
[dk]〈∂bunk|∂cumk〉eE · Amnk (6d)

is the part of the surface contribution coming from the electric field term in the Hamiltonian (4).
In the above expressions γ = −e/(2h̄c),

H 0
k = e−ik·rH0eik·r, (7)

H 0
mnk = 〈umk|H

0
k |unk〉 (8)

and Amnk is the Berry connection matrix defined in equation (14) below.
Having stated the result, we now present the derivation, starting with the interior

contribution MLC. Using [r i , r j ] = 0, the velocity operator v = (i/h̄)[H, r] becomes
(i/h̄)[H0, r], so that the circulation operator r × v is unaffected by the electric field. It
immediately follows that the local circulation part MLC is given in terms of the field-polarized
states |unk〉 by the same expression, equation (6b), as was derived in [13] for the zero-field case.

Consider now the contribution M IC
= M IC,0 + M IC,E from the surface WFs |ws〉. For large

samples it takes the form [13]

M IC
= −

e

2cNcVc

surf∑
s

r s × vs, (9)

where Nc is the number of crystal cells of volume Vc, r s = 〈ws|r|ws〉 and

vs = 〈ws|v|ws〉 =
2

h̄
Im〈ws|rH|ws〉. (10)

Note that H|ws〉 already belongs to the occupied manifold spanned by P =
∑occ

j |w j〉〈w j |,
since we assume a (quasi)stationary state. Thus, we can insert a P between r and H above, and
using (4) we obtain

vs =

occ∑
j

(
v0

〈 js〉 + vE
〈 js〉

)
, (11)

where v0
〈 js〉 = (2/h̄) Im[r s jH0

js] is the same as in [12, 13] and vE
〈 js〉 = (2e/h̄) Im[r s j(r js ·E)] is

a new term.
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The reasoning [12, 13] by which M IC can be recast in terms of the bulk WFs |Rn〉 relies on
the exponential localization of the WFs and on certain properties of v0

〈 js〉 (antisymmetry under
j ↔ s and invariance under lattice translations deep inside the crystallite) which are shared by
vE

〈 js〉. Hence we can follow similar steps as in those works, arriving at

M IC,E
a =

e

4cVc
εabc

∑
R

N∑
mn

vE
〈0m,Rn〉,b Rc, (12)

and similarly for M IC,0
a with v0 substituting for vE . The latter is identical to the expression for

M IC
a valid at E = 0 [12, 13], and upon converting to k-space becomes (6c).

Let us now turn to M IC,E
a and write (12) as (e2/2ch̄Vc)εabcEd Im Wbd,c where

Wbd,c =

∑
R

N∑
mn

〈Rn|rb|0m〉〈0m|rd |Rn〉Rc. (13)

In order to recast this expression as a k-space integral, it is useful to introduce the N × N Berry
connection matrix

Amnk,b = i〈umk|∂bunk〉 = A∗

nmk,b, (14)

where ∂b ≡ ∂/∂kb. It satisfies the relation [31, 32]

〈Rn|rb|0m〉 = Vc

∫
[dk]Anmk,beik·R. (15)

We also need

Rc〈Rn|rd |0m〉 = iVc

∫
[dk](∂c Anmk,d)e

ik·R, (16)

which follows from (15). Using these two relations, (13) becomes

Wbd,c = iVc

N∑
mn

∫
[dk]Amnk,d∂c Anmk,b, (17)

and we arrive at (6d).
The sum of equations (6b)–(6d) gives the desired k-space expression for M(E). In the limit

E→ 0, the term M IC,E vanishes, and equation (31) of [13] is recovered.
We have implemented (6b)–(6d) for the tight-binding model of appendix A. Since for small

electric fields M(E) differs only slightly from M(0), in order to observe the effect of the electric
field we consider differences in magnetization rather than the absolute magnetization. Therefore,
in all our numerical tests we evaluated the OMP tensor αda. With the help of (6b)–(6d) we
calculated it as 1Ma/1Ed , using small fields Ed = ±0.01. We then repeated the calculation on
finite samples cut from the bulk crystal, using (3) in place of (6b)–(6d). Figure 1 shows the value
of the zz and zy components of α plotted as a function of the parameter ϕ, the phase of one of the
complex hopping amplitudes (see appendix A for details). The very precise agreement between
the solid and dashed lines confirms the correctness of the k-space formula. The same level of
agreement was found for the other components of α.
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Figure 1. The zz and zy components of the OMP tensor α of the tight-binding
model described in appendix A, as a function of the parameter ϕ. The two lower
bands are treated as occupied. Solid line: extrapolation from finite-size samples
using numerical differentiation of the finite-field magnetization calculated
from (3). Dashed line: numerical differentiation of the finite-field magnetization
calculated using (6b)–(6d) discretized on a k-space grid. Open circles: linear-
response calculation in k-space using discretized versions of (47a)–(47c).

2.3. Gauge-invariant decomposition

2.3.1. Periodic crystals. Equation (6a) for M(E) is valid in an arbitrary gauge, that is, the sum
of its three terms given by (6b)–(6d)—but not each term individually—remains invariant under
a unitary transformation

|unk〉 →

N∑
m

|umk〉Umnk (18)

among the valence-band states at each k. In order to make the gauge invariance of (6a) manifest,
it is convenient to first manipulate it into a different form, given in terms of certain canonical
objects, which we now define. We begin by introducing the covariant k-derivative of a valence
state [30],

|∂̃bunk〉 = Qk |∂bunk〉, (19)

where Qk = 1 − Pk and

Pk =

N∑
j=1

|u j k〉〈u j k|. (20)

The covariant and ordinary derivatives are related by

|∂bunk〉 = |∂̃bunk〉 − i
N∑
m

Amnk,b|umk〉. (21)
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The generalized metric-curvature tensor is [31]

Fnmk,bc = 〈∂̃bunk|∂̃cumk〉 = F∗

mnk,cb. (22)

Viewed as an N × N matrix over the band indices, F is gauge-covariant, changing as

Fnmk,bc → (U †
k Fk,bcUk)nm (23)

under the transformation (18). We also note the relation

〈∂bunk|∂cumk〉 = Fnmk,bc + (Ak,b Ak,c)nm. (24)

We shall make use of two more gauge-covariant objects,

H 0
nmk,b = i〈unk|H

0
k |∂̃bumk〉 (25)

and

H 0
nmk,bc = 〈∂̃bunk|H

0
k |∂̃cumk〉, (26)

which enter the relation

〈∂bunk|H
0
k ∂cumk〉 = H 0

nmk,bc +
[

Ak,b H 0
k,c +

(
H 0

k,b

)†
Ak,c + Ak,b H 0

k Ak,c

]
nm
. (27)

Coming back to equations (6a)–(6d), for MLC
a we use (27) and for M IC

a we use (24),
leading to

Ma = −γ εabc

∫
[dk] Im tr

[
H 0

bc + 2Ab H 0
c + H 0 Fbc + eEd Ad Fbc + eEd Ad Ab Ac

]
, (28)

where ‘tr’ denotes the electronic trace over the occupied valence bands and we have dropped
the subscript k. The second term can be rewritten using

H 0
nm,c = −eEd Fnm,dc. (29)

(To obtain this relation start from the generalized Schrödinger equation satisfied by the valence
states at E 6= 0 [33],

H 0
|un〉 =

N∑
m

(H 0
mn + eE · Amn)|um〉 − ieEd |∂dun〉, (30)

and multiply through by 〈∂̃cum|.)
Let us define the quantities

M̃LC
a = −γ εabc

∫
[dk] Im tr

[
H 0

bc

]
, (31)

M̃ IC
a = −γ εabc

∫
[dk] Im tr

[
H 0 Fbc

]
(32)

and

MCS
a = −eγ εabcEd

∫
[dk] Im tr

[
2Ab Fcd + Fbc Ad + Ab Ac Ad

]
. (33)
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The total magnetization is given by their sum

Ma = M̃LC
a + M̃ IC

a + MCS
a . (34a)

Referring to (22) and (26) the first two terms read, in a more conventional notation,

M̃LC
a = −γ εabc

∫
[dk]

N∑
n

Im〈∂̃bunk|H
0
k |∂̃cunk〉 (34b)

and

M̃ IC
a = −γ εabc

∫
[dk]

N∑
nm

Im
(

H 0
nmk〈∂̃bumk|∂̃cunk〉

)
. (34c)

These are the only terms that remain in the limit E→ 0, in agreement with equation (43)
of [13]. At finite field they depend on E implicitly via the wavefunctions.

We now show that the term MCS, which gathers all the contributions with an explicit
dependence on E , can be recast as

MCS
a = eγ Ea

∫
[dk]εi jk tr

[
Ai∂ j Ak −

2i

3
Ai A j Ak

]
. (34d)

To do so it is convenient to introduce the Berry curvature tensor

�nm,ab = iFnm,ab − iFnm,ba = −�nm,ba, (35)

where Fnm,ab was defined in (22). A few lines of algebra show that

�nm,ab = ∂a Anm,b − ∂b Anm,a − i[Aa, Ab]nm. (36)

In order to go from (33) to (34d), use (35) to write Im tr[Fbc Ad] as −
1
2 tr[Ad�bc] and

−2 Im tr[Ab Fdc] as tr[Ab�dc], and then replace �nm,bc in these expressions with εabc�nm,a,
where�nm,a =

1
2εabc�nm,bc is the Berry curvature tensor written in axial-vector form. This leads

to

MCS
a = eγ

∫
[dk](Ea tr[Ω · A] − Edεabc Im tr[Ab Ac Ad]). (37)

The first term is parallel to the field, and can be rewritten with the help of (36):

tr[Ω · A] = εi jk tr[Ai∂ j Ak − iAi A j Ak]. (38)

While not immediately apparent, the second term in (37) also points along the field. To see this,
write∑
bcd

Edεabc Im tr[Ab Ac Ad] = Ea

∑
bc

εabc Im tr[Aa Ab Ac] +
∑
d 6=a

∑
bc

εabc Im tr[Ab Ac Ad], (39)

where we suspended momentarily the implied summation convention. The last term
vanishes because the factor εabc forces d 6= a to equal either b or c, producing
terms such as Im tr[Ab Ab Ac] which vanish identically as Ab is Hermitian. Rewriting
Ea
∑

bc εabc Im tr[Aa Ab Ac] as (Ea/3)
∑

i jk εi jk Im tr[Ai A j Ak] and restoring the summation
convention, we arrive at (34d).

Equations (34b)–(34d), which constitute the main result of this section, are separately
gauge invariant. For M̃

LC
and M̃

IC
this is apparent already from (31) and (32), whose integrands

are gauge-invariant, being traces over gauge-covariant matrices. In contrast, equation (34d) for
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Figure 2. Decomposition of the αzz curve in figure 1 into the gauge-invariant
contributions α̃LC

zz (solid lines), α̃IC
zz (dashed line) and αCS

zz (dotted line) calculated
in k-space using finite differences in E . Symbols denote the same contributions
evaluated for bounded samples, also using finite differences.

MCS only becomes invariant after taking the integral on the right-hand side over the entire
Brillouin zone (the integrand being familiar from differential geometry as the Chern–Simons
3-form [21, 34]).

The Chern–Simons contribution (34d) has several remarkable features: (i) as already noted,
it is perfectly isotropic, remaining parallel to E for arbitrary orientations of E relative to the
crystal axes; (ii) being isotropic, it vanishes in less than three dimensions, which intuitively can
be understood because already in two dimensions polarization must be in the plane of the system
and magnetization must be out of the plane; (iii) for N > 1 valence bands it is a multivalued bulk
quantity with a quantum of arbitrariness (e2/hc)Ea, a fact that is connected with the possibility
of a cyclic adiabatic evolution that would change (47a) below for θ by 2π [6].

We have repeated the calculation of the OMP presented in figure 1 using (34b)–(34d)
instead of (6b)–(6d), finding excellent agreement between them. The electric field derivative of
the decomposition (34a) gives the corresponding decomposition of the OMP tensor (1),

α = α̃LC + α̃IC +αCS, (40)

where each term is also gauge-invariant. The zz components of these terms are plotted separately
in figure 2.

2.3.2. Finite samples. It is natural to ask whether the gauge-invariant decomposition of the
orbital magnetization given in equation (34a) can be made already for finite samples, before
taking the thermodynamic limit and switching to periodic boundary conditions. This has
previously been done in the case E = 0, where MCS

= 0 and M̃
LC

and M̃
IC

take the form [35]

M̃LC
a =

e

2h̄cV
εabc Im Tr [Prb QH0 Qrc] (41a)

and

M̃ IC
a =

e

2h̄cV
εabc Im Tr [PH0 Prb Qrc]. (41b)

New Journal of Physics 12 (2010) 053032 (http://www.njp.org/)

http://www.njp.org/


12

Here P and Q = 1 − P are the projection operators onto the occupied and empty subspaces,
respectively, and ‘Tr’ denotes the electronic trace over the entire Hilbert space. These two
expressions, which are manifestly gauge-invariant, remain valid at finite field, reducing to (34b)
and (34c) in the thermodynamic limit.

We now complete this picture for E 6= 0 by showing that the remaining contribution
MCS

= M − M̃
LC

− M̃
IC

can also be written in trace form, as

MCS
a = −

e2

3h̄cV
Eaεi jk Im Tr [Pri Pr j Prk]. (41c)

We first recast the orbital magnetization (3) as

Ma = −
e

2cV
εabcTr [Prbvc] =

e

2h̄cV
εabc Im Tr

[
PrbH0rc

]
(42)

and then subtract (41a) and (41b) from it to find, after some manipulations,

MCS
a = −

e

h̄cV
εabc Im Tr [QH0 Prb Prc]. (43)

Replacing H0 with H− eEdrd and using QHP = 0,

MCS
a = −

e2

h̄cV
εabcEd Im Tr [Prd Prb Prc]. (44)

The imaginary part of the trace vanishes if any two of the indices b, c or d are the same, and
therefore d must be equal to a. Using the cyclic property we conclude that all non-vanishing
terms in the sum over b and c are identical, leading to (41c). This part of the field-induced
magnetization is clearly isotropic, with a coupling strength (see equation (2)) given by

θCS
= −

4π 2

3V
εi jk Im Tr[Pri Pr j Prk]. (45)

This expression can assume nonzero values because the Cartesian components of the projected
position operator P r P do not commute [31].

We have used (41a)–(41c) to evaluate the OMP contributions α̃LC, α̃IC and αCS for finite
samples, finding excellent agreement with the k-space calculations using (34b)–(34d). As an
example, the finite-sample results for the zz component are plotted as the symbols in figure 2.

3. Linear-response expression for the OMP tensor

In sections 2.2 and 2.3.1, expressions were given for evaluating M(E) under periodic bound-
ary conditions. Used in conjunction with finite-field ab initio methods for periodic insulators
[29, 36], they allow one to calculate the OMP tensor by finite differences. Alternatively, the elec-
tric field may be treated perturbatively [33]. With this approach in mind, we shall now take the
E-field derivative in (1) analytically and obtain an expression for the OMP tensor that is
amenable to density-functional perturbation-theory implementation [37]. It should be kept in
mind that in the context of self-consistent-field (SCF) calculations the ‘zero-field’ part of the
Hamiltonian (4),

H0
= −

h̄2

2m
∇

2 + VSCF(r) (46)

does depend on E implicitly, through the charge density. As we will see, this dependence gives
rise to additional local-field screening terms in the expression for the OMP.
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We shall only consider the case where the OMP is calculated for a reference state at zero
field, which we indicate by a superscript ‘0’. Upon inserting (34a) into (1), we obtain the three
gauge-invariant OMP terms in (40). The term αCS is clearly of the isotropic form (2), with

θCS
= −

1

4π

∫
d3k εi jk tr

[
A0

i ∂ j A0
k −

2i

3
A0

i A0
j A0

k

]
. (47a)

This is the same expression as obtained previously by heuristic methods [6, 7]5. The other two
terms were not considered in the previous works. They are

α̃LC
da = γ εabc

∫
[dk]

N∑
n

Im(2〈∂̃bu0
nk|(∂c H 0

k )|∂̃Du0
nk〉 − 〈∂̃bu0

nk|(∂D H 0
k )|∂̃cu

0
nk〉) (47b)

and

α̃IC
da = γ εabc

∫
[dk]

N∑
mn

Im(2〈∂̃bu0
nk|∂̃Du0

mk〉〈u
0
mk|(∂c H 0

k )|u
0
nk〉 − 〈∂̃bu0

n|∂̃cu
0
m〉〈u0

m|(∂D H 0
k )|u

0
n〉),

(47c)

where ∂D denotes the field-derivative ∂/∂Ed and

|∂̃Du0
nk〉 ≡ Qk |∂Dunk〉|E=0 (48)

are the first-order field-polarized states projected onto the unoccupied manifold. The terms
containing ∂D H 0

k describe the screening by local fields. They vanish for tight-binding models
such as the one in this work, but should be included in self-consistent calculations, in the way
described in [37]. We shall sometimes refer to α̃LC and α̃IC as ‘Kubo’ contributions because,
unlike the Chern–Simons term, they involve first-order changes in the occupied orbitals and
Hamiltonian, in a manner reminiscent of conventional linear-response theory6.

Equations (47a)–(47c) are the main result of this section. The derivation of (47b) and (47c)
is somewhat laborious and is sketched in appendix B. We emphasize that the Kubo-like terms,
besides endowing the tensor α with off-diagonal elements, also generally contribute to its trace,
which therefore is not purely geometric. Writing the isotropic part of the OMP response in the
form (2), we then have

θ = θCS + θKubo. (49)

The two contributions are plotted for our model in figure 3. Moreover, the open circles in figure 1
show the zz and zy components of the OMP tensor computed from (47a)–(47c), confirming that
the analytic field derivative of the magnetization was taken correctly.

In the case of an insulator with a single valence band, the partition (40) of the OMP
tensor acquires some interesting features. The terms α̃IC and αCS become purely itinerant, i.e.
they vanish in the limit of a crystal composed of non-overlapping molecular units, with one
electron per molecule. Also, the first term in expression (47c) for α̃IC—the only term for tight-
binding models—becomes traceless, as can be readily verified in a Hamiltonian gauge (where
H 0

k |u0
nk〉 = E0

nk|u
0
nk〉) with the help of the perturbation theory formula [33]

|∂̃Du0
nk〉 = ie

∑
m>N

|u0
mk〉〈u

0
mk|

E0
n − E0

m

|∂du0
nk〉. (50)

5 An inconsistency in the published literature regarding the numerical prefactor in (47a) has been resolved;
see [38].
6 The terminology ‘Kubo terms’ for α̃LC and α̃IC is only meant to be suggestive. A Kubo-type linear-response
calculation of the OMP should produce all three terms, including αCS.
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Figure 3. Contributions to the isotropic OMP from the Chern–Simons term
αCS and from the Kubo-like terms α̃LC and α̃IC, expressed in terms of the
dimensionless coupling strength θ in (2). Model parameters are the same as for
figure 1.

In order to verify these features numerically, we calculated the various contributions treating
only the lowest band of our tight-binding model as occupied. The molecular limit was taken by
setting to zero the hoppings between neighbouring eight-site cubic ‘molecules.’

It could have been anticipated from the outset that the Chern–Simons term (47a) could
not be the entire expression for the OMP, based on the following argument [26]. Consider an
insulator with N > 1 valence bands, all of which are isolated from one another. By looking at
αda as ∂Pd/∂Ba, one can argue that since each band carries a certain amount of polarization
P (n), the total OMP should satisfy the relation

α =

N∑
n

α(n), (51)

where α(n) is the OMP one would obtain by filling band n while keeping all other bands
empty. We shall refer to this property as the ‘band-sum-consistency’ of the OMP. It only holds
exactly for models without charge self-consistency (see the analytic proof in appendix C), but
that suffices for the purpose of the argument. We note that the Chern–Simons contribution
(47a) alone is not band-sum-consistent, because the second term therein vanishes for a single
occupied band. Hence an additional contribution, also band-sum-inconsistent, must necessarily
exist. Indeed, both α̃LC and α̃IC are band-sum-inconsistent, in such a way that the total OMP
satisfies (51). This is illustrated in figure 4 for our tight-binding model.

4. Summary and outlook

In summary, we have developed a theoretical framework for calculating the frozen-ion orbital-
magnetization response (OMP) to a static electric field. This development fills an important
gap in the microscopic theory of the magnetoelectric effect, paving the way to first-principles
calculations of the full response. While the OMP is often assumed to be small compared to the
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Figure 4. Comparison between αzz calculated treating the two lowest bands as
occupied (crosses) and the sum α(1)zz +α(2)zz (thick solid line), where α(n)zz (thin solid
lines) correspond to treating only the lowest band (n = 1, upper line) or the
second-lowest band (n = 2, lower line) as occupied. Model parameters are the
same as for figure 1, except that the second-lowest on-site energy in table A.1 is
raised from −6.0 to −5.0 in order to keep the two lowest bands well separated.

lattice-mediated and spin-magnetization parts of the ME response, there is no a priori reason
why it should always be so. In fact, in strong Z2 topological insulators it is the only contribution
that survives, and the predicted value is large compared to that of prototypical magnetoelectrics.
Although the measurement of the θ = π ME effect in topological insulators is challenging, as
time-reversal symmetry must be broken to gap the surfaces [6, 7, 23], there may be other related
materials where those symmetries are broken already in the bulk. The present formalism should
be helpful in the ongoing computational search for such materials with a large and robust OMP.

A key result of this work is a k-space expression for the orbital magnetization of a periodic
insulator under a finite electric field E (equations (6a)–(6d) or, equivalently, (34a)–(34d). In
addition to the terms (34b) and (34c) already present at zero field [13], in three dimensions the
field-dependent magnetization comprises an additional purely isotropic ‘Chern–Simons’ term,
given by (34d). This new term depends explicitly on E and only implicitly on H 0

k , while the
converse is true for the other terms. Moreover, it is a multivalued quantity, with a quantum of
arbitrariness M0 = Ee2/hc along E . Thus, the analogy with the Berry-phase theory of electric
polarization [10, 20], where a similar quantum arises, becomes even more profound at finite
electric field.

The Chern–Simons term MCS is responsible for the geometric part of the OMP response
discussed in [6, 7] in connection with topological insulators. We have clarified that in materials
with broken time-reversal and inversion symmetries in the bulk, the CSOMP does not generally
constitute the full response, as the remaining orbital magnetization terms, M̃

LC
and M̃

IC
, can

also depend linearly on E . Their contribution to the OMP, given by (47b) and (47c), is twofold:
(i) to modify the isotropic coupling strength θ and (ii) to introduce an anisotropic component of
the response.

Another noteworthy result is equation (45) for the Chern–Simons OMP of finite systems.
One appealing feature of this expression is that it allows one to calculate the CSOMP without
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the need to choose a particular gauge. Instead, its k-space counterpart, equation (47a), requires
for its numerical evaluation a smoothly varying gauge for the Bloch states across the Brillouin
zone. Equation (45) is also the more general of the two, as it can be applied to noncrystalline or
otherwise disordered systems.

We conclude by enumerating a few questions that are raised by the present work. Do
the individual gauge-invariant OMP terms identified here in a one-electron picture remain
meaningful for interacting systems, and can they be separated experimentally? (This appears
to be the case for M̃

LC
and M̃

IC
at E = 0 [35].) How does the expression (47a)–(47c) for the

linear OMP response change when the reference state is under a finite electric field E? Finally,
we note that equation (41c) for the CSOMP of finite systems has a striking resemblance to a
formula given by Kitaev [39] for the 2D Chern invariant characterizing the integer quantum
Hall effect. Can this connection be made more precise, in view of the fact that the quantum of
indeterminacy in θCS is associated with the possibility of changing the Chern invariant of the
surface layers? These questions are left for future studies.
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Appendix A. Tight-binding model and technical details

A.1. Tight-binding model

We have chosen for our tests a model of an ordinary (that is, non-topological) insulator. The
prerequisites were the following. It should break both time-reversal and inversion symmetries,
as the OMP tensor otherwise vanishes identically. It should be 3D, as the geometric part of
the response vanishes otherwise. Its symmetry should be sufficiently low to render all nine
components of the OMP tensor nonzero. Finally, it should have multiple valence bands, for
generality.

We opted for a spinless model on a cubic lattice. It can be obtained starting with a one-
site simple cubic model, doubling the cell in each direction, and assigning random on-site
energies E i and complex first-neighbour hoppings t j→i = teiφ j→i of fixed magnitude t = 1. The
Hamiltonian reads

H0
=

∑
i

E i c
†
i ci +

∑
〈i j〉

eiφ j→i c†
i c j , (A.1)

where i = (x, y, z) labels the sites and 〈i j〉 denotes pairs of nearest-neighbour sites. The values
of E i on two of the eight sites were adjusted to ensure a finite gap everywhere in the Brillouin
zone between the two lowest bands (chosen as the valence bands) and the remaining six. We also
made sure that nonzero phases φ j→i were not restricted to 2D square-lattice planes; otherwise
those are mirror symmetry planes, whose existence is sufficient to make the diagonal elements
of the OMP tensor vanish. In our calculations, all the model parameters were kept fixed except
for one phase, which was scanned over the range [0, 2π ], and the results are plotted as a function
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Table A.1. Parameters of the tight-binding model. Columns I–III give the site
coordinates i = (x, y, z), in units of the lattice constant a = 1 of the 2 × 2 × 2
primitive cubic cell. Column IV contains the on-site energies E i , and the last
three columns contain the phases of the complex nearest-neighbour hopping
amplitudes along bonds in the negative x̂, ŷ and ẑ directions.

x y z E i φ(i+x̂/2)→i φ(i+ ŷ/2)→i φ(i+ ẑ/2)→i

0.0 0.0 0.0 −6.5 ϕ ∈ [0, 2π ] 0.5π 1.7π
0.5 0.0 0.0 0.9 1.3π 0.2π 0.5π
0.5 0.5 0.0 1.4 0.8π 1.4π 0.6π
0.0 0.5 0.0 1.2 0.3π 1.9π 1.0π
0.0 0.0 0.5 −6.0a 1.4π 0.8π 0.3π
0.5 0.0 0.5 1.5 0.6π 1.7π 0.7π
0.5 0.5 0.5 0.8 0.8π 0.6π 1.2π
0.0 0.5 0.5 1.2 1.9π 0.3π 1.4π

a In figure 4 the value −5.0 was used instead.

Figure A.1. Band structure of the cubic-lattice tight-binding model given by
(A.1), for the choice of parameters in table A.1 and ϕ = 0.

of this phase ϕ. For reference, the on-site energies and the phases of the hopping amplitudes are
listed in table A.1. The energy bands are shown in figure A.1 for ϕ = 0.

In order to couple the system to the electric field and to be able to define its orbital
magnetization, the position operator r must be specified along with H0. We have chosen the
simplest representation where r is diagonal in the tight-binding basis.

A.2. Technical details

The calculations employing periodic boundary conditions were carried out on an 80 × 80 × 80
k-point mesh, and the k-space implementation of finite electric fields was done using the method
discussed in section V of [30]. The open boundary condition calculations used cubic samples
containing L × L × L eight-site unit cells, that is, 2L + 1 sites along each edge. For large L , we

New Journal of Physics 12 (2010) 053032 (http://www.njp.org/)

http://www.njp.org/


18

expect the magnetization to scale as

M(L)= M +
a
L

+
b

L2
+

c
L3
, (A.2)

where a, b and c account for face, edge and corner corrections, respectively [13]. Calculations
of M(L) under small fields were done using L = 4, 5, 6, 7, and then fitted to (A.2) in order to
extract the value M of the magnetization in the L → ∞ limit. The differences between OMP
values calculated in various ways as shown in figures 1 and 2 were of the order of 10−7 e2/h̄c
or less.

Before evaluating the k-space expressions for M(E) ((6a)–(6d) and (34b)–(34d)) and α
((47a)–(47c)) on a grid, they need to be properly discretized. The presence of the gauge-
dependent Berry connection in (6d) demands the use of a ‘smooth gauge’ for its evaluation,
where the valence Bloch states given by (18) are smoothly varying functions of k. This is
achieved by projecting a set of trial orbitals onto the set of occupied Bloch eigenstates according
to the prescription in equations (62)–(64) of [31]. (For the tight-binding model discussed below,
when treating the two lowest bands as occupied, the two trial orbitals are chosen as delta
functions located at the two sites with lowest on-site energy.) If needed, this one-shot projection
procedure can be improved upon by finding an optimally smooth gauge using methods based
on minimizing the real-space spread of the WFs [31], but we found our results to change
negligibly when performing this extra step. In a smooth gauge the needed k-derivatives of the
Bloch states and of the Berry connection matrix are then evaluated by straightforward numerical
differentiation. Note that (6b) and (6c) should be evaluated in the same smooth gauge as (6d),
as these three equations are not separately gauge-invariant. A smooth gauge must also be used
for (34d) and (47a), because, as discussed in section 2.3.1, the Chern–Simons 3-form is locally
gauge-dependent.

The same strategy can be used to discretize (34b) and (34c). However, since the
k-derivatives appearing in those equations are covariant, the discretized form of the covariant
derivative (19) given in [13, 30] may be used instead, circumventing the need to work in a
smooth gauge. We have implemented both approaches, finding excellent agreement between
them.

Finally, we come to equations (47b) and (47c). In addition to the k-derivative of the valence
Bloch states, we need their (covariant) field-derivative (48), as well as the k-derivative of H 0

k .
The latter quantity is easily calculated within the tight-binding method, and for the former
we used the linear-response expression (50). Note that this requires choosing the unperturbed
states to be in the Hamiltonian gauge. This choice precludes calculating the k-derivative on
the right-hand side of (50) by straightforward finite differences, which can only be done
in a smooth gauge. But because 〈u0

mk|∂du0
nk〉 equals 〈u0

mk|∂̃du0
nk〉 for m > N , the discretized

covariant derivative approach may be used instead. Alternatively, one can evaluate the ordinary
k-derivative by summation over states as

|∂du0
nk〉 =

∑
m 6=n

|u0
mk〉

〈u0
mk|(∂d H 0

k )|u
0
nk〉

E0
nk − E0

mk

. (A.3)

We note that this formula may not be used to calculate the geometric term (47a), because it
induces locally a parallel transport gauge (A0

nn = 0), which cannot be enforced globally since
the Brillouin zone is a closed space.
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Appendix B. Derivation of equations (47b) and (47c)

For notational simplicity we drop the crystal momentum index k. So, for example, |unk〉 shall
be denoted by |un〉. In order to calculate the OMP terms

α̃LC
da = ∂D M̃ (LC)

a

∣∣
E=0

(B.1)

and

α̃IC
da = ∂D M̃ (IC)

a

∣∣
E=0

(B.2)

starting from (31) and (32), we shall first examine the field- and k-derivatives of certain basic
quantities.

We begin by noting that the field-derivative ∂D P = −∂D Q of the projection operator (20)
can be written as

∂D P =

N∑
n

(
|∂̃Dun〉〈un| + |un〉〈∂̃Dun|

)
≡ ∂̃D P, (B.3)

in terms of the covariant field-derivative (48) (a similar expression holds for the k-derivative).
This follows from a relation analogous to (21):

|∂Dun〉 = |∂̃Dun〉 − i
N∑
l

Aln,D|ul〉, (B.4)

where

Aln,D = i〈ul |∂Dun〉 = A∗

nl,D (B.5)

is the Berry connection matrix along the parametric direction Ed . With the help of (B.3) the field
derivative of (22) becomes

∂D Fnm,bc = 〈∂2
Dbun|Q|∂cum〉 + 〈∂bun|Q|∂2

Dcum〉 + i(FbD Ac)nm − i(Ab FDc)nm, (B.6)

where FbD is obtained from Fbd by replacing ∂d with ∂D. We shall also need the field- and
k-derivatives of the matrix H 0

nm defined by (8):

∂D(H
0
nm)
∣∣
E=0

= i
[
A0

D, H 0
]

nm
+ (∂D H 0

op)nm

∣∣
E=0

, (B.7)

∂c(H
0
nm)
∣∣
E=0

= i
[
A0

c, H 0
]

nm
+ (∂c H 0

op)nm

∣∣
E=0

, (B.8)

where we introduced the notation (∂D,c H 0
op)nm ≡ 〈un|∂D,c H 0

|um〉, where ‘op’ indicates that the
derivative is taken on the operator itself, not its matrix representation. These two relations follow
directly from (B.4) and (21). We will also make use of identities such as

Re tr[X Fbc] = Re tr
[
X † Fcb

]
. (B.9)

In particular, if X and Y are Hermitian,

Re tr[XY Fbc] = Re tr[Y X Fcb] . (B.10)

We are now ready to evaluate (B.2):

α̃IC
da = −γ εabc

∫
[dk] Im tr

[
Fbc∂D H 0 + H 0∂D Fbc

]∣∣
E=0

. (B.11)

New Journal of Physics 12 (2010) 053032 (http://www.njp.org/)

http://www.njp.org/


20

Inserting (B.6) and (B.7) on the right-hand side generates a number of terms. Some can be
combined upon interchanging dummy indices b ↔ c and invoking (B.10), leading to

α̃IC
da = −γ εabc

∫
[dk](2Re tr

[
AD H 0 Fbc + H 0 FbD Ac

]
+ Im tr

[
Fbc∂D H 0

op

]
+2Im

N∑
mn

H 0
mn〈∂

2
Dbun|Q|∂cum〉)

∣∣∣
E=0
. (B.12)

Integrating the last term by parts in kb and using (B.3) and (B.8) again produces a number of
terms, most of which cancel out. The end result reads

α̃IC
da = γ εabc

∫
[dk] Im tr

[
2FbD∂c H 0

op − Fbc∂D H 0
op

]∣∣
E=0

. (B.13)

Similarly, (B.1) can be evaluated by repeatedly using (B.3) and integrating by parts the terms
with mixed field- and k-derivatives, yielding

α̃LC
da = γ εabc

∫
[dk] Im tr

[
2(∂c H 0)bD − (∂D H 0)bc

]∣∣
E=0

, (B.14)

where (∂c H 0)bD and (∂D H 0)bc are defined in analogy with (26), e.g.

(∂c H 0)nmk,bD = 〈∂̃bunk|(∂c H 0
k )|∂̃Dumk〉. (B.15)

Equations (B.14) and (B.13) are respectively equivalent to (47b) and (47c) in the main text.
The gauge invariance of these equations follows from the fact that they are written as traces
over gauge-covariant objects. (We also note that the covariant derivative transforms according
to (18) regardless of the parameter with respect to which the differentiation is carried out.)

Appendix C. Band-sum consistency of the OMP

Here we show analytically that the OMP tensor α satisfies the band-additivity relation (51) in
models without charge self-consistency. In order to isolate the contribution α(n) coming from
valence band n (assumed to be well separated in energy from all other bands), we choose the
Hamiltonian matrix to be diagonal at zero field, i.e. H 0

mnk(E = 0)= E0
nkδmn. If in addition we

use a parallel-transport gauge for the linear electric field perturbation [33] (this is achieved by
setting to zero the matrix AD defined in (B.5)), we find, using (B.7), ∂D H 0

mnk|E=0 = 0. With the
help of these two relations, the field-derivative ∂D Ma|E=0 of (6a) is easily taken. From the first
two terms therein, we obtain (dropping index k)

2γ εabc

∫
[dk]

N∑
n

Im〈∂bun|∂c(H
0 + En)|∂Dun〉

∣∣∣∣∣
E=0

. (C.1)

In the parallel-transport gauge, |∂Dun〉 is given by (50), and combining the resulting expression
with the field derivative of the third term in (6a) yields

αda = 2eγ εabc

∫
[dk]

N∑
n

Re〈∂bu0
n|∂c(H

0 + E0
n)

(∑
l>N

|u0
l 〉〈u

0
l |

E0
n − E0

l

)
|∂du0

n〉

−eγ εabc

∫
[dk]

N∑
mn

Re(〈u0
m|∂du0

n〉〈∂bu0
n|∂cu

0
m〉). (C.2)
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To find α(n)da we replace
∑

l>N with
∑

l 6=n and reduce sums
∑N

mn and
∑N

n to single terms.

Inserting these expressions into (51) and splitting
∑

l 6=n into
∑

l>N and
∑N

l 6=n, some terms cancel
and others can be combined, leading to

εabc

∫
[dk]

N∑
n

N∑
m 6=n

Re

[
〈u0

m|∂du0
n〉

(
〈∂bu0

n|∂c(H 0 + E0
n)|u

0
m〉

E0
n − E0

m

+
1

2
〈∂bu0

n|∂cu
0
m〉

)]
= 0. (C.3)

The lhs is proportional to the difference between αda and
∑N

n α
(n)
da , and vanishes as a result of

an exact cancellation between the terms (n,m) and (m, n) in the double sum. The integrand of
the (n,m) term is

εabc Re

[
〈u0

m|∂du0
n〉

(
〈∂bu0

n|∂c(H 0 + E0
n)|u

0
m〉

E0
n − E0

m

+
1

2
〈∂bu0

n|∂cu
0
m〉

)]
, (C.4)

and after some manipulations the integrand of the (m, n) term becomes

εabc Re

[
〈u0

m|∂du0
n〉

(
〈u0

n|∂c(H 0 + E0
m)|∂bu0

m〉

E0
n − E0

m

+
1

2
〈∂bu0

n|∂cu
0
m〉

)]
. (C.5)

The final step is to use the identity

〈∂bu0
n|∂c(H 0 + E0

n)|u
0
m〉

E0
n − E0

m

=
〈∂bu0

n|E
0
m − H 0

|∂cu0
m〉

E0
n − E0

m

− ∂c(E
0
n + E0

m)
〈u0

n|∂bu0
m〉

E0
n − E0

m

. (C.6)

(This identity follows from the relation

(H 0
− E0

m)|∂cu
0
m〉 = −(∂c H 0

− ∂c E0
m)|u

0
m〉, (C.7)

which in turn can be obtained by expanding H 0
|u0

m〉 = E0
m|u0

m〉 to first order in the change in
wavevector k.) The quantity (C.4) + (C.5) then becomes

εabc Re

[
〈u0

m|∂du0
n〉

(
〈∂bu0

n|E
0
m − H 0

|∂cu0
m〉

E0
n − E0

m

+
〈∂cu0

n|E
0
n − H 0

|∂bu0
m〉

E0
n − E0

m

+ 〈∂bu0
n|∂cu

0
m〉

)]
. (C.8)

Interchanging b ↔ c in the second term and combining with the first yields minus the third term,
which concludes the proof.
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