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Ab initio transport properties of nanostructures from maximally localized Wannier functions
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We present a comprehensive first-principles study of the ballistic transport properties of low-dimensional
nanostructures such as linear chains of atoms~Al, C! and carbon nanotubes in the presence of defects. An
approach is introduced where quantum conductance is computed from the combination of accurate plane-wave
electronic structure calculations, the evaluation of the corresponding maximally localized Wannier functions,
and the calculation of transport properties by a real-space Green’s function method based on the Landauer
formalism. This approach is computationally very efficient, can be straightforwardly implemented as a post-
processing step in a standard electronic-structure calculation, and allows us to directly link the electronic
transport properties of a device to the nature of the chemical bonds, providing insight onto the mechanisms that
govern electron flow at the nanoscale.
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I. INTRODUCTION

The field of nanotechnology has undergone remarka
growth in the last few years. This development has b
fueled by the expectation that unusual properties
matter,1–3 which become evident as the dimensions of
structural components of a device shrink und
;10–100 nm, may be exploited. Indeed, the challenges
future developments involve continuous shrinking of t
physical dimensions of devices and attainment of hig
speeds. The drive to produce smaller devices has led
current research towards new forms of electronics, in wh
nanoscale objects and molecular devices replace the tra
tors of today’s silicon technology.4–7 Experiments have bee
performed to directly measure charge transport propertie
hybrid metal-~bio!molecular systems4,5,8–14 and carbon-
based aggregates such as fullerenes and nanotubes.1,6,15–18

Particular attention has been devoted to atomic-scale
vices, since they represent the limit towards one-dimensio
electronics, and thus the transport properties of wirel
chains of atoms~especially Au, Al, and C!, connected with
metal electrodes have been widely investigated.19–22Despite
their simple structures, atomic-sized chains display pecu
quantum properties due to their low dimensionality; in p
ticular, the electronic properties are strongly affected by
nature of single chemical bonds and coordination numbe

The ongoing rapid advances in the measurements of e
trical conductance in individual molecular- and atomic-siz
devices require commensurate advances in the theore
understanding of the detailed microscopic mechanisms
control charge mobility. Modeling of single nanoelemen
and coupled arrays of nanodevices is needed to provide
terpretation and feedback to experimental measurement
predict device characteristics, and to provide a basis for
functional progress of these new devices.

In general, the electron transport properties of nanost
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tures can be simply described in the Landauer formalism.23,24

The Landauer relation connects the quantum conductanG
with the transmission functionT(E): its evaluation requires
the knowledge of the electronic structure of the system un
consideration and the inclusion of scattering at contacts. T
approach relies on the evaluation of lattice Green’s functi
of the system. Several approaches have been develope
calculate the quantum conductance in nanostructures, b
on semiempirical~tight-binding, Hückel! models;25–28 more
recently, a variety of first-principles formulations hav
appeared.29–38Ab initio approaches have also been exte
sively used to characterize the electrical properties of na
materials and biomaterials,39,40 and to study the effects o
microscopic structural relaxation and of electrode/conduc
junctions.41

In this paper, we present an original approach to the c
culation of coherent transport properties of nanostructu
from first principles. Our methodology combines an accur
description of the electronic ground state provided by we
developed first-principles calculations based on plane-w
~PW! representations, with the Landauer approach to
scribe transport properties of extended systems.42,43 The es-
sential connection is provided by the use of the maxima
localized Wannier function representation44 that allows us to
naturally introduce the ground-state electronic structure i
the lattice Green’s function approach that will be our ba
for the evaluation of the Landauer quantum conductance

The paper is organized as follows. In Sec. II we descr
the main features of the method. In Sec. III we will study t
bulk electronic and conduction properties of linear chains
Al and C atoms. Section IV deals with the conduction pro
erties of a carbon nanotube with a substitutional defect. T
example is used to elaborate on the formulation of the tw
terminal conductance problem in our approach. The pa
ends with Sec. V where our conclusions are presented.
©2004 The American Physical Society08-1
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II. METHOD

A. Electronic transport in extended systems

Calculations of the quantum conductance are based
recently developed efficient method for evaluating quant
transport in extended systems.25,42,43 This method is appli-
cable to any Hamiltonian that can be expanded within
localized-orbital basis and can be used as a general the
ical scheme for the computation and analysis of the electr
properties of nanostructures.

Let us consider a system composed of a conductor c
nected to two semi-infinite leads, as in Fig. 1. The quant
description of the electronic conductance is a complex n
equilibrium problem. We begin the study of conduction pro
erties focusing on the coherent electron transport. This
proach leaves out nonequilibrium effects due, e.g.,
dissipative scattering or to an external bias.

Quantum conductance (G) is the microscopic quantity
that characterizes the transport properties of a conductor
may be calculated using the Landauer expression23

G~E!5
2e2

h
T~E!, ~1!

whereT~E! is the transmission function, i.e., the probabili
that an electron injected at one end of the conductor w
energyE will be transmitted to the other end. In the Green
function formalism the transmission functionT is expressed
as24

T5Tr~GLGC
r GRGC

a !, ~2!

whereGC
$r ,a% are the retarded and advanced Green’s functi

of the conductor andG$L,R% represent the coupling of th
conductor to the leads.

The effect of the semi-infinite leads on the conductor c
be described by means of finite-dimension operators kno
as the self-energiesSL,R . The Green’s functionGC and the
coupling functionsG$L,R% of Eq. ~2! are explicitly obtained
from the self-energies as

FIG. 1. Geometry of a typical conductance calculation. Cha
carriers can be transmitted throughout the contact region~gray!
from the left to the right lead. Dotted lines separate the device in
three regions~left lead/conductor/right lead! that enter the conduc
tance calculation. While the leads can be easily described wi
primitive periodic unit cell, the conductor region has to be d
scribed with a supercell calculation that includes—along the dir
tion of electron transmission—both the conductor and the le
conductor contact region~see Sec. IV!.
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GC5~e2HC2SL2SR!21, ~3!

G$L,R%5 i@S
$L,R

%r 2S$L,R%
a ], ~4!

whereHC is the Hamiltonian matrix of the conductor, calcu
lated with respect to a localized real-space basis set; in
approach all these operators will be represented in the b
set of the maximally localized ground-state Wannier fun
tions ~WF’s! for the system examined. This will allow
mapping for the first-principles Hamiltonian onto an exa
band-structure tight-binding model, for which we then fo
low the detailed Landauer formulation of Ref. 25.

The key assumption is the description of the original s
tem as a sequence of principal layers,45 along which we cal-
culate the transport properties and where the interaction
tween adjacent layers is accounted for by transfer matr
TL,R andT̄L,R . Within this approach the self-energies due
the semi-infinite leads are25

SL5HLC
† ~e2H00

L 2~H01
L !†T̄L!21HLC ,

SR5HCR~e2H00
R 2H01

R TR!21HCR
† , ~5!

where HLC , HCR are the coupling matrices for th
conductor-lead assembly, andHnm

L,R are the matrix elements
of the Hamiltonian for the infinite~bulklike! leads. For in-
stance,H00

L,R describes the intralayer interactions andH01
L,R

the interlayer coupling between two adjacent layers. If
orbitals are sufficiently localized, the residual coupling w
layers farther apart will be negligible; conversely, the loc
ization properties of the orbitals spanning the desired ene
window determine the minimal thickness for a princip
layer. The transfer matricesT̄L,R andTL,R are also computed
from the Hamiltonian matrix elements via an iterativ
procedure.46

The only required inputs then are the matrix elements
the HamiltonianHmn expanded in a localized-orbital basi
by choosing the maximally localized WF’s representatio
we provide essentially an exact mapping of the ground s
onto a minimal basis.47 The accuracy of the results directl
depends on having principal layers that do not couple bey
next neighbors, i.e., on having a well-localized basis.

B. Ab initio electronic structure

The starting point for our procedure is the first-principl
calculation of the electronic structure of the nanostructu
eventually coupled to the leads. We adopt a stand
electronic-structure method based on self-consistent tota
ergy and force minimization, which allows us to optimiz
simultaneously the atomic positions and the correspond
electronic wave functions. The electronic structure is d
scribed within density functional theory~DFT!.48 The ex-
amples presented in the following section are obtained in
local density approximations~LDA’s !,49 but more sophisti-
cated corrections at the exchange-correlation functional~e.g.,
generalized gradient approximation! can obviously be used
The electron-ion interaction is described via norm
conserving pseudopotentials50 in the form of Kleinman and

e

e

a
-
-
-

8-2



on
o
ri
cr
th

i
ic

co
o

y

he
o
p-
a
se
lo

-
ou
ll
m
a

ec
e
t
n

tio
a

ge
o
fo
e
er
t
n

f a
y
n
e

is

of

is
w
sis

er.

do
ame
-
s,
nier
ri-

om
is

be-
ot
tem.

n

en-
e

o-
-
ier
ice

the

es

nts
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Bylander.51 We use periodic boundary conditions~PBC’s!
along the three directions of direct space and the electr
wave functions are expanded in a plane-wave basis set c
patible with the chosen PBC’s. While the translational inva
ance makes the plane waves a very natural choice to des
the wave functions of a periodic system, the drawback is
they are truly delocalized. Brillouin zone~BZ! summation
are performed with homogeneous Monkhorst-Pack grids52 of
k points in the first Brillouin zone.

This approach to electronic-structure calculations
widely used, provides a faithful description of the electron
properties of the systems of interest, and in the present
text it has been successfully applied to the investigation
both solid-state and molecular assemblies.53,54The results of
such calculations are, at eachk point, the Kohn-Sham energ
eigenvalues and their corresponding eigenvectors~Bloch
states!, expanded in plane waves. It is worth noting that t
present methodology to compute quantum transport fr
first principles will apply to any electronic-structure a
proach, since it can construct and employ orbitals that
maximally localized, and that represent a minimal basis
under the single assumption that eigenstates are in the B
form. Even if the basis set used is already localized~albeit
not minimal! the localization procedure will allow us to re
cover exact results with smaller systems. In particular,
procedure can be applied in combination with Car-Parrine
molecular dynamics simulations, opening the way to co
pute quantum conductance in large-scale systems, and
function of temperature, completely from first-principles.55

C. Maximally localized WF’s

Bloch orbitals cannot be used directly to evaluate el
tronic transport with the method outlined in Sec. II A. As w
have pointed out, the quantum conductance is compu
starting from the knowledge of the lattice Green’s functio
whose calculation relies on a localized orbital representa
of the electronic states in real space. Bloch orbitals, that
intrinsically delocalized, have to be transformed intolocal-
ized functions in order to construct the sparse, short-ran
matrix elements of the Hamiltonian. The core of our pr
posed methodology is to use maximally localized WF’s
the system considered. These are the most natural choic
a set of localized orbitals that still span the same Hilb
space of the Hamiltonian eigenfunctions, and they allow
bridge plane-wave electronic structure and lattice Gree
function calculations in a coherent fashion. In the case o
isolated system the maximally localized WF’s become Bo
localized orbitals;56 therefore, our procedure is not tied to a
extended-systems formulation, but can equally well repres
isolated molecules.~In addition, the localization procedure
greatly simplified for the case of large unit cells, whenG
sampling only is used.57!

A Wannier functionwnR(r ), labeled by the Bravais lattice
vector R, is usually defined via a unitary transformation
the Bloch functionscnk(r ) of the nth band

wnR~r !5
V

~2p!3EBZ
cnk~r !e2 ik•Rd3k, ~6!
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whereV is the volume of the unit cell and the integration
performed over the entire Brillouin zone. It is easy to sho
that the WF’s defined as above form an orthonormal ba
set, and that any two of them, for a given indexn and dif-
ferentR andR8, are just translational images of each oth
Note that, as theN WF’s form a ~continuous! linear combi-
nations of Bloch functions with different energies, they
not represent stationary states, but still span exactly the s
original Hilbert space. Theab initio eigenstates are well
defined, modulus an arbitraryk-dependent phase factor; thu
the definition above does not lead to a unique set of Wan
functions,58 since the electronic structure problem is inva
ant for the transformationcnk efn(k)cnk . In addition to
this freedom in the choice of phasesfn(k) for the Bloch
functions, there is a more comprehensive gauge freed
stemming from the fact that the many-body wave function
actually a Slater determinant: a unitary transformation
tween orbitals will not change the manifold, and will n
change the total energy and the charge density of the sys
In all generality, starting with a set ofN Bloch functions
with periodic partsunk , we can construct infinite sets ofN
WF’s displaying different spatial characteristics

wnR~r !5
V

~2p!3EBZ
F(

m
Umn

(k)cmk~r !Ge2 ik•Rd3k. ~7!

The unitary matricesU (k) include also the gauge freedom o
phase factors afore mentioned.44

For our purposes, we need to transform the Bloch eig
states in WF’s with the narrowest spatial distribution. W
construct maximally localized WF’s using the algorithm pr
posed by Marzari and Vanderbilt.44 We define a spread op
erator (V) as the sum of the second moments of the Wann
functions corresponding to one choice of translational latt
vector

V5(
n

@^wn0ur 2uwn0&2^wn0ur uwn0&
2#, ~8!

where the sum is over the group of bands which spans
Hilbert space. The value of the spreadV depends on the
choice of unitary matricesU (k); thus it is possible to evolve
any arbitrary set ofU (k) until the minimum condition

dVk

dU (k)
50 ~9!

is satisfied. At the minimum, we obtain the matric
(U (k))ML that transform the first-principlescnk

FP(r ) into the
maximally localized WF’swnR

ML(r ):

cnk
ML~r !5(

m
~Umn

(k)!MLcmk
FP~r !,

wnR
ML~r !5

V

~2p!2EBZ
cnk

ML~r !e2 ik•Rdk. ~10!

A useful feature of the method is that the only ingredie
needed to calculate the spread functionalV and to evolve the
8-3
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unitary matricesU (k) are the overlap matrixMmn
(k,b) between

the periodic part of the Bloch states at neighboringk points

Mmn
(k,b)5^um,kuun,k¿b&, ~11!

whereb is the vector that links neighboringk points in the
discretized BZ integrals.59

It is important to notice that whenever a Born–von Ka
man discretization of the Brillouin zone is introduced, ev
the abovementioned WF’s are not truly localized, but will
periodic in real space, with a superperiodicity determined
the BZ discretization. The truly isolated limit is recovere
only in the case of continuous BZ integrations. This is eas
seen remembering thatcnk(r )5unk(r )eik•r, andunk(r ) has
the periodicity of the direct lattice; thus the phase fact
eik•r determine the superperiodicity of thecnk themselves.
In the standard language of electronic-structure calculatio
if the cnk have k’s that are restricted to a uniform
Monkhorst-Pack mesh, they will all be periodic with a wav
length inversely proportional to the spacing of the mesh;
periodicity is consequently inherited by the WF’s. ForN k
points along a direction of the BZ, the WF’s will repeat alo
the corresponding direction everyN cells; therefore a mesh
of k points needs to be dense enough to assure that adja
replicas of the WF’s do not overlap.

The method described above works properly in the c
of isolated groups of bands.60 On the other hand, to stud
quantum conductance in extended systems we often nee
compute WF’s for a subset of energy bands that are
tangled or mixed with other bands. Most often we are int
ested in the states that lie in the vicinity of the Fermi level
a conductor in a restricted energy range. Since the uni
transformationsU (k) mix energy bands at eachk point, any
arbitrary choice of states inside a prescribed window w
affect the localization properties of WF’s unless energy g
effectively separate the manifold of interest from higher a
lower bands. This problem has been solved by Sou
Marzari, and Vanderbilt, introducing an additional dise
tanglement procedure61 that automatically extracts the be
possible manifold of a given dimension from the states f
ing in a predefined energy window. This is the generalizat
to entangled or metallic cases of the maximally localized W
formulation. The procedure relies on minimizing the su
space dispersion across the Brillouin zone, and effectiv
extracts the bands of interest from the overall band struct
In practice, first we select a desired number of bands in
energy window; then we determine the optimally connec
subspace that can be extracted from that band structure
finally we proceed with a standard localization proced
inside the selected subspace, using the same kind of sp
functional V and of unitary matricesUmn

(k) . The resulting
orbitals have the same good localization properties, and
low us to apply our formalism to arbitrary systems, indepe
dently of the insulating or metallic nature of the band ma
fold. It should be stressed that the WF’s obtained in the la
case are not the WF’s of the occupied subspace~that would
exhibit poor localization properties!, but are those of a wel
connected, continuous subspace that in general will con
both occupied and unoccupied Bloch functions.
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In order to calculate the conductance according to
prescriptions outlined in Sec. II A, we need as an input
matrix elements of the Hamiltonian calculated on a localiz
basis: in our case, it is the minimal basis of the maxima
localized WF’s. The advantages of this choice are twofo
first, in addition to being a minimal basis, the WF’sexactly
span the Hilbert space of an insulator and, with arbitra
accuracy, of an entangled metallic system. Secondly, t
localization assures the choice of the system with the sm
est number of atomic layers. The Hamiltonian matric
(Hmn

LR , HC , HLC , HCR) can be formally obtained from the
on site (H00) and coupling (H01) matrices between principa
layers. In our formalism, and assuming a BZ sampling fi
enough to eliminate the interaction with the periodic imag
we can simply compute these matrices from the unitary m
trix U (k) obtained in the localization procedure.62 By defini-
tion of energy eigenvalues (ẽmk), the Hamiltonian matrix
H̃mn(k)5 ẽmkdm,n , is diagonal in the basis of the Bloc
eigenstates. We can calculate the Hamiltonian matrix in
rotated basis

H (rot)~k!5~U (k)!†H̃~k!U (k). ~12!

Next we Fourier transformH (rot)(k) into a set ofNkp Bravais
lattice vectorsR within a Wigner-Seitz supercell centere
aroundR50:

Hmn
(rot)~R!5

1

Nkp
(

k
e2 ik•RHmn

(rot)~k!5^wm0uĤuwnR&,

~13!

whereNkp derives from the folding of the uniform mesh ofk
points in the BZ. The term withR50 provides the on site
matrix H005^wm0uĤuwn0&, and the termR51 provides the
coupling matrixH015^wm0uĤuwn1&: These are the only in-
gredients required for the evaluation of the quantum cond
tance.

III. BULKLIKE CONDUCTANCE

As a first application of our method, we consider a case
which leads and conductor~as sketched in Fig. 1! are made
of the same material, and we compute the conductance o
ideal and infinite nanostructure~bulklike conductance!. In
this case, it is not necessary to distinguish between condu
and lead terms and the single layerH00 and the couplingH01
matrices are the only necessary input.

We will focus on one-dimensional~1D! linear chains of
atoms. The systems that have been studied most are cha
Au,20–22,26,63–65Al,66,67 and C.68–71 In the following, we will
discuss results for Al~Sec. III A! and C~Sec. III B! chains.

A. Aluminum chain

An ideal and infinite Al chain is simulated using period
boundary conditions and a unit cell containing two alum
num atoms. A large vacuum region (;10 Å) in the direction
perpendicular to the chain prevents the interaction with
jacent replicas. A (123131) grid of k points and 18 Ry
energy cutoff for the wave function expansion assure
8-4
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convergence of the electronic structure of the system.
optimized Al-Al distance (d52.42 Å) is in very good agree
ment with previous DFT investigations.66,67

Following the procedure described above, we calcula
the electronic structure and quantum conductance of this
tem. To construct the WF’s we selected an energy wind
with EP@27,6# eV around the Fermi level~taken as the
reference zero!. This energy window contains all the occu
pied bands and the first empty states. We chose to extra
eight-dimensional manifold from this energy window: Aft
the disentanglement and localization procedure, we ob
eight WF’s which span the eight-dimensional Hilbert ma
fold and represent an orthonormal minimal basis for it. Th
the calculation of quantum conductance involves operati
with very small (838) matrices, with a negligible computa
tional effort, exactly comparable to a tight-binding~TB! cal-
culation with two sites and four orbital per site. Howev
our results provide more information on the electronic str
ture than the TB approach. The calculated WF’s@Figs. 2~a!,
2~b!# are well characterized and are consistent with the e
mated chemical bonds present in the system (s andp orbit-
als!. The s states are centered in the middle of the Al-
bond, while thep states are localized around single atom

As a test of the accuracy of the WF transformation,
have computed back the band structure of the Al chain, s
ing from the Wannier-function Hamiltonian in real spac

FIG. 2. ~Color online! Linear Al chain. Isosurface of~a! a s and
~b! two p WF’s. ~c! Comparison betweenoriginal first-principles
~gray dots! and interpolated~black lines! band structures. Dotted
lines represent the Fermi level. Note that some bands~i.e., at the
Fermi level! are double degenerate.~d! Quantum conductance plots
The solid line is relative to the whole energy range (EP
@27,6# eV); the shaded area identifies the quantum conducta
calculated in the narrow energy window (EP@24.5,1.5# eV)
bounded by the dashed lines.
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This Hamiltonian can now be Fourier transformed in rec
rocal spaceHmn

(rot)(R) @Eq. ~13!# for any arbitraryk point

Hmn
(rot)~k8!5(

R
e1 ik8•RHmn

(rot)~R!; ~14!

the resulting Hamiltonian matrices can then be diagonali
to find energy eigenvalues. Comparing the original PW~gray
dots! with the interpolated~black lines! band structure@Fig.
2~c!# we see an excellent agreement. This is an expected
important validation, since it proves that the intermedia
transformations do not affect the accuracy of the fir
principles PW calculations. All the information on the ele
tronic structure of the system is transferred to the ma
elements of the Hamiltonian expressed in the localized W
basis.

A closer inspection to Fig. 2~c! shows some unmatche
electronic states at energies lower than the highest inte
lated band~in this case, in the vicinity of theG point!. This
is the effect of the band-space minimization,61 which singles
out the best-connected manifold from an entangled group
states. The upper edge of the outer window@Fig. 2~c!# inter-
sects states having comparable energy but different sym
tries, relevant to higher parts of the spectrum. The inclus
of these contributions~i.e., the states aroundG at ;4 –5 eV)
would affect significantly the localization properties of th
WF basis. The minimization of the dispersion for the e
tracted manifold~the disentanglement of the bands! is thus
an essential step in the WF’s calculation.

The disentanglement procedure can be used to probe
ferent energy windows; this allows us to single out the m
relevant bands, linking conductance properties to the na
of the chemical bonds. As an example, if we restrict t
energy window to a few eV around the Fermi level@dashed
lines in Figs. 2~c!, 2~d!#, we can describe quantum condu
tance using the only smaller set of bands~three! included in
the narrow window. In this restricted range, thenewconduc-
tance spectra@shaded area in Fig. 2~d!# is indistinguishable
from the original one~black line!.

The linear chain of Al atoms displays metallic behavi
@Figs. 2~c!, 2~d!#, in agreement with previous DFT
calculations.66 Due to the reduced coordination number
the Al atoms in the chain (nchain52) compared with the fcc-
bulk phase (nbulk512), this metallic character was not obv
ousa priori. It is important to note that, in general, metall
systems are not well represented in a WF framework. So
only transition metals have been the subject of WF’s stud
due to the localized character of theird orbitals,72 and only
recently localized wave functions in reciprocal space ha
been proposed for simple metals~Na and Al!.73 However, in
the disentanglement procedure we are not required to res
ourselves to the occupied subspace, but we can mix fi
and empty states, allowing us to extract well-connec
manifolds that have the same localization properties of
manifolds for insulators and semiconductors.

To better understand the conductance properties of
chains, we have also calculated the eigenvectors of the tr
mission functionT(E), generally known as eigenchannels74

The eigenchannels completely characterize transmission,

ce
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at each energy, describe the single modes of the electr
transport. Our results show that the eigenchannels at
Fermi energy are barely the linear combination of thep-like
WF’s of Fig. 2~b!. The two quanta of conductance (2e2/h) at
the Fermi level@Fig. 2~d!# correspond to two degeneratep
states, which constitute the channels for charge mobility.
metallic behavior is in qualitative agreement with the ge
metrical properties of WF’s. As mentioned before, boths
andp WF’s are well localized. While thes states@Fig. 2~a!#
are centered in the middle of the Al-Al bond, in a bondi
configuration, thep orbitals @Fig. 2~b!#, responsible for the
chain metallicity, are centered on the single atoms.

Finally, in the absence of external leads, there is a one
one correspondence between the quantum conductance
trum @Fig. 2~d!# and the band structure: at a given value ofE,
the quantum conductance@Eq. ~1!# is a constant proportiona
to the number of transmitting channels available for cha
mobility, which are equal~in a periodic system! to the num-
ber of bands at the same energy. The perfect agreemen
tween band structure and quantum conductance represe
further validation for the ability of our method to calcula
transport properties.

B. Carbon chains

As a second application, we have studied two differ
species of carbon chains. Nanodevices where C chains a
conductors bridging metal electrodes are not only ideal p
totypes for studying conduction in reduced-dimensiona
systems, but are also fundamental constituents of l
pressure carbon assemblies, such as those found in
capped molecules or in the interstellar medium. Theoret
models proposed so far have dealt with wires of equidis
C atoms trapped between metallic leads of Au or Al.36,69 In
those cases, the conduction properties of the system
strongly dependent on the number~odd or even! of atoms in
the chain.

Here, we focus on the effects of structural relaxation
the electronic and transport properties of infinite carb
chains, known as carbyne. The name carbyne75–77denotes an
allotrope based on a linear chain ofsp-hybridized carbon
atoms: isomeric polyethynylene diylidene~polycumulene or
cumulene! or polyethynylene~polyyne!. The cumulene form
is characterized by an equidistant arrangement of C at
with doublespbonds (5C5C5)n , while the polyyne form
is a dimerized linear chain with alternating single-trip
bonds (2C[C2)n . The experimental evidence for carbyn
chains is controversial and its properties not complet
known.68,76 We studied the effects of the two allotropes~cu-
mulene vs polyyne! to the electronic and conduction prope
ties of carbyne.

We used four C atoms in a periodically repeated cell, a
an (83131) grid of k points for BZ summation. The elec
tronic wave functions are expanded in a plane-wave basis
up to 40 Ry. We first optimized the lattice constant of t
cumulene structure, and then, in the same unit cell, we
laxed the carbon-carbon distances in the polyyne phase
the cumulene form the C atoms are separated bydcumulene
51.37 Å, while the polyyne form dimerizes with C atom
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separated bydsingle51.51 Å and dtriple51.22 Å, in agree-
ment with previous theoretical calculations.71 Incidentally,
polyyne is energetically slightly more stable than cumule
by 12 meV per unit~C-C!.

Figures 3 and 4 show our results. Cumulene@Figs. 3~a!,
3~b!# is characterized by symmetricspbonds, uniformly dis-
tributed along the chain.s states are localized in the middl
of C-C bonds whilep states are centered around single
atoms. In polyyne@Figs. 4~a!, 4~b!#, s orbitals are localized

FIG. 3. ~Color online! Cumulene. Isosurface of~a! two s and
~b! two p WF’s. First-principles band structure~c! and calculated
quantum conductance~d! in the selected energy window. Dotte
lines represent the Fermi level of the system.

FIG. 4. ~Color online! Polyyne. Isosurface of~a! two s and~b!
two p WF’s. First-principles band structure~c! and calculated quan
tum conductance~d! in the selected energy window. Dotted line
represent the Fermi level of the system.
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both on single C-C and on triple C[C bonds, with as state
in the middle of each bond. Thep orbitals are localized on
the C[C bonds: there are two of thesep orbitals in the
middle of each triple bond, related by a 90° rotation arou
the axis.

The electronic structures and quantum conductance
cumulene and polyyne are shown in Figs. 3~c!, 3~d! and Figs.
4~c!, 4~d! respectively. The symmetric chain displays met
lic behavior, in agreement with previous theoretic
calculations.71 Polyyne is instead semiconducting: the rela
ation of the carbon-carbon distances induces a Peierls-
distortion, which stabilizes the structure and opens ene
gaps at the edges of the Brillouin zone. The metallicity
cumulene is an effect related to the homogeneous distr
tion of the atoms, and not to the dimensionality of the cha
polyyne, which has the same dimensionality of cumulene
not a metal. As mentioned in the previous section, the e
trical ~metallic or semiconducting! behavior is tightly re-
flected in the geometrical properties of WF’s. The eigench
nels of both systems, near the Fermi energy, are made
linear combination of thep-like WF’s of Figs. 3 and 4~b!. As
was the case for the aluminum chain, thep orbitals of cu-
mulene are located on the atoms, and the system is met
On the contrary, in polyyne thep states are centered i
the middle of the triple C bonds, and the system is semic
ducting.

IV. TWO TERMINAL CONDUCTANCE

As a prototypical example of a two terminal device w
have computed the quantum conductance for a small zig
~5,0! carbon nanotube in the presence of an isolated su
tutional silicon defect. Topological and substitutional defe
in carbon nanotubes have been widely studied,30,78–80 and
our results can be directly compared with available theor
cal data.

Using Fig. 1 as reference, we choose in the present
as the conductor region a finite segment of nanotube wh
contains the defect, while the leads are modeled by
semi-infinite nanotubes. To compute the two terminal c
ductance we need, in principle, three sets of calculati
~two only if the leads are of the same material!: bulk calcu-
lations for the two infinite leads and a supercell calculat
for the conductor and the contacts~see Fig. 1!. The supercell
needs to be chosen large enough so that the influence o
conductor wave functions on the leads becomes negligib
the boundaries, assuring seamless matching between the
WF’s determined in the supercell and in the bulk calcu
tions. The matching condition can also be expressed by
ing that the on-site and hopping integrals~in the tight-
binding language! of the individual WF’s have to be the
identical on both sides of the interface boundary. The ma
cesH0,0

L,R andH0,1
L,R for the infinite leads are obtained from th

bulk calculations@in this case, the ideal~5,0! nanotube#,
while the other coupling matrices are derived from the
percell calculation. We stress the need to include a su
ciently large portion of the contacts in the supercell calcu
tion so that, far from the interface and into the leads,
system recovers its bulk properties. The characteristic len
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determining the amount of conductor included isnot the de-
cay length of the density matrix of the metal~long-ranged,
and algebraic!, but the characteristic length of the WF’s di
entangled from the metal, and whose localization proper
on these well-connected manifold are comparable to thos
a semiconductor or an insulator. The properties of uniq
ness and localization of the WF’s ensure effortless continu
across the interface into the bulk leads. Note that a sim
definition of the geometry of the simulation cell is need
also when using other real-space methods to compute q
tum conductance.36,43 Since our supercell contains both th
conductor and a portion of the leads large enough to take
account the presence of the contacts, the Wannier tran
mation produces a set of WF’s covering the whole coup
region. However, since the WF’s are strongly localized, it
straightforward to distinguish those centered on the cond
tor and those on the leads, and to see the matrix elemen
the Hamiltonian seamless turn away from the conductor i
bulklike lead terms. This approach brings another advanta
since the conductor and the conductor-lead interfaces
simulated in the same supercell, we have a consistent~and
fully relaxed! microscopic picture of the contacts.

The ~5,0! carbon nanotube@see Fig. 5~a!#, has been simu-
lated in a (4.25310.0310.0) Å3 supercell, with eightk
points and a 40 Ry cutoff for the wave function expansio
Due to the highly localized nature of the WF’s, only fou
atomic layers are needed to reproduce the bulklike beha
of the nanotube far away from the Si defect. The presenc

FIG. 5. ~Color online! ~a! Isosurface of twos WF’s in a ~5,0!
carbon nanotube in presence of a substitutional Si defect~black
atom!. The polarization of thes states is due to the effect of the S
defect.~b! Quantum conductance plots for the~5,0! nanotube with
and without the Si defect~top panel!; same nanotube with a peri
odic arrangement of Si defects in a bulklike configuration~bottom
panel!. Vertical dotted lines represent the Fermi level of the s
tems.
8-7
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the defect does not induce significant structural relaxatio
but affects the electronic and conduction properties of
tube. Figure 5~a! shows the isosurfaces of two calculat
WF’s with s character. Far away from the defect, WF’s a
symmetric and centered in the middle of the C-C bo
Closer to the defect, the different electronegativity of silic
and carbon atoms induces a polarization of the Si-C b
that modifies the conduction properties of the system. Fig
5~b! ~top panel! displays the quantum conductance of t
nanotube in the presence of a defect@C~5,0!/Si, solid line# or
in the ideal clean case@C~5,0!, dashed line#, respectively.
The conductance of the ideal~5,0! nanotube shows the typi
cal steplike shape and a metallic behavior, which is the re
of the high curvature of such a small radius nanotube.81,82

Once a single Si defect is introduced, the system maint
its metallic character but the overall spectrum changes d
tically. We observe a general reduction of the conducta
along the whole energy range, and the distortion of the s
like shape of the pure nanotube. The appearance of d
corresponding to the discontinuities in the original step fu
tion, is a characteristic feature of nanotubes w
defects,30,78,80where the backscattering of electrons redu
the quantum conductance.

As a consequence of the external leads the quantum
ductance is not directly related to the band structure of
supercell. We show this in Fig. 5~b! ~bottom panel!, where
the bulk conductance of the C~5,0!/Si system is presented
The general trend ofG(E) is different than both curves in th
upper panel. The whole C~5,0!/Si system is periodically re
peated, and the conductance assumes the typical steplik
havior. However, with respect to the pure nanotube, we
serve both an overall increase of the quantum conducta
and the presence of features, such as the marked peak d
the silicon states, just below the Fermi level. The perio
distribution of the Si atoms leads to the formation of ad
tional channels available for the charge transport along
tube. On the other hand, these features disappear in the
of the single defect, where the breaking of the translatio
symmetry does not allow the formation of delocalized orb
als. In conclusion, while the doping with a regular pattern
Si atoms increases the conductance, the scattering deph
of a single defect reduces the global transport propertie
the small carbon nanotube.
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V. CONCLUSIONS

We have presented an approach to calculate quantum
ductance in extended systems in the coherent transpor
gime. Our methodology combines the accurate s
consistent minimization of the ground-state electro
structure via first-principles calculations, the determinat
of the maximally localized WF’s corresponding to manifo
of bands spanning the energy range relevant for conduct
and the calculation of the quantum conductance using a r
space Green’s function formalism based on the Landauer
proach. This procedure opens the way to selectively desc
the quantum conductance in terms of the relevant o
electron states that contribute directly to the transport p
cess. It links the description of electronic conductance to
intrinsic nature of the chemical bond, and gives insight in
the essential mechanisms that govern the electron flow a
nanoscale. Moreover, it is computationally very efficient a
can be straightforwardly implemented as a post-proces
step in any standard electronic structure calculation83 leading
to a first-principles, highly accurate computation of electr
transport properties.

As a first illustration of the potential of this methodolog
we have studied quantum conductance in linear chains
aluminum and carbon atoms and in defective carbon na
tubes. In all cases, we have underlined the effects of
reduced coordination and of the atomic relaxation on
transport properties and we have established a clear rela
ship between the electrical characteristics and the chem
bonds in the system.
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