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Ab initio transport properties of nanostructures from maximally localized Wannier functions
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We present a comprehensive first-principles study of the ballistic transport properties of low-dimensional
nanostructures such as linear chains of atéAls C) and carbon nanotubes in the presence of defects. An
approach is introduced where quantum conductance is computed from the combination of accurate plane-wave
electronic structure calculations, the evaluation of the corresponding maximally localized Wannier functions,
and the calculation of transport properties by a real-space Green’s function method based on the Landauer
formalism. This approach is computationally very efficient, can be straightforwardly implemented as a post-
processing step in a standard electronic-structure calculation, and allows us to directly link the electronic
transport properties of a device to the nature of the chemical bonds, providing insight onto the mechanisms that
govern electron flow at the nanoscale.
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. INTRODUCTION tures can be simply described in the Landauer formafisth.
The Landauer relation connects the quantum conducténce
The field of nanotechnology has undergone remarkablevith the transmission functioi{E): its evaluation requires
growth in the last few years. This development has beethe knowledge of the electronic structure of the system under
fueled by the expectation that unusual properties oftonsideration and the inclusion of scattering at contacts. This
matter:— which become evident as the dimensions of theapproach relies on the evaluation of lattice Green’s functions
structural components of a device shrink underof the system. Several approaches have been developed to
~10-100 nm, may be exploited. Indeed, the challenges fogalculate the quantum conductance in nanostructures, based
future developments involve continuous shrinking of theon semiempiricaltight-binding, Hickel) models?3-28 more
physical dimensions of devices and attainment of highefecently, a variety of first-principles formulations have
speeds. The drive to produce smaller device; hag Ied.tl”@ppeareg9—3%b initio approaches have also been exten-
current research towards new forms of electronics, in whichsjyely used to characterize the electrical properties of nano-
nanoscale objects and molecular devices replace the transi$iierials and biomateria?&*® and to study the effects of

3 g _7 .
tors of today’s silicon technolody.” Experiments have been icroscopic structural relaxation and of electrode/conductor
performed to directly measure charge transport properties ?rEnctions“l

; : 8-14 _
hybrid metal¢bioymolecular systenfs and carbon In this paper, we present an original approach to the cal-

8
basgd aggregatt_as such as fullerenes and nanq‘tﬁﬁ%sl. culation of coherent transport properties of nanostructures
Particular attention has been devoted to atomic-scale deg-

vices, since they represent the limit towards one-dimension Jom f_|rs_t principles. Our m_ethodology comblne_s an accurate
electronics, and thus the transport properties of wirelike escription of the electronic ground state provided by well-

chains of atomgespecially Au, Al, and G connected with developed first-pr_inciples_ calculations based on plane-wave
metal electrodes have been widely investigafed?Despite  (PW) representations, with the Landauer approach to de-
their simple structures, atomic-sized chains display peculiafCribe transport properties of extended systéhf3The es-
quantum properties due to their low dimensionality; in par-S€ntial connection is provided by the use of the maximally
ticular, the electronic properties are strongly affected by thdocalized Wannier function representatithat allows us to
nature of single chemical bonds and coordination numbershaturally introduce the ground-state electronic structure into
The ongoing rapid advances in the measurements of ele¢he lattice Green’s function approach that will be our basis
trical conductance in individual molecular- and atomic-sizedfor the evaluation of the Landauer quantum conductance.
devices require commensurate advances in the theoretical The paper is organized as follows. In Sec. Il we describe
understanding of the detailed microscopic mechanisms thahe main features of the method. In Sec. Il we will study the
control charge mobility. Modeling of single nanoelementsbulk electronic and conduction properties of linear chains of
and coupled arrays of nanodevices is needed to provide irAl and C atoms. Section IV deals with the conduction prop-
terpretation and feedback to experimental measurements, @ties of a carbon nanotube with a substitutional defect. This
predict device characteristics, and to provide a basis for thexample is used to elaborate on the formulation of the two-
functional progress of these new devices. terminal conductance problem in our approach. The paper
In general, the electron transport properties of nanostrucends with Sec. V where our conclusions are presented.
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mmendoo N Ge=(e—Hc—3.—3p) (©)]
bulk \ supercell /_ bulk
Fm=il, Jr-al @
O ad T(E) ‘%) whereH is the Hamiltonian matrix of the conductor, calcu-

: lated with respect to a localized real-space basis set; in our
conductor approach all these operators will be represented in the basis
'ey & set of the maximally localized ground-state Wannier func-
tions (WF's) for the system examined. This will allow a
mapping for the first-principles Hamiltonian onto an exact
FIG. 1. Geometry of a typical conductance calculation. Chargeygnd-structure tight-binding model, for which we then fol-
carriers can be transmitted throughout the contact regivay) low the detailed Landauer formulation of Ref. 25.
from the left to the right lead. Dotted lines separate the device in the The key assumption is the description of the original sys-
three regiongleft lead/conductor/right leadhat enter the conduc- tem as a sequence of principal Iayé'?sa,long which we cal-
tance calculation. While the leads can be easily described with Qulate the transport properties and where the interaction be-

primitive Per'Od'C unit cell, the .CondUCt.or region has to be .de'tween adjacent layers is accounted for by transfer matrices
scribed with a supercell calculation that includes—along the direc-

tion of electron transmission—both the conductor and the lead¥t,r @ndT, . Within this approach the self-energies due to
conductor contact regiofsee Sec. IV. the semi-infinite leads afe

Il. METHOD S =H/c(e—H5—(H5)TT) " *H ¢,
A. .Electronlc transport in extended systems Se=Hoglem H§o— HngR) _IHI:Ra )
Calculations of the quantum conductance are based on a
recently developed efficient method for evaluating quantunwhere H ¢, Hcr are the coupling matrices for the
transport in extended systed?243This method is appli- conductor-lead assembly, aitf; are the matrix elements
cable to any Hamiltonian that can be expanded within af the Hamiltonian for the infinitébulklike) leads. For in-
localized-orbital basis and can be used as a general theorettance,Hg;® describes the intralayer interactions ad§;®
ical scheme for the computation and analysis of the electricahe interlayer coupling between two adjacent layers. If the
properties of nanostructures. orbitals are sufficiently localized, the residual coupling with
Let us consider a system composed of a conductor corlayers farther apart will be negligible; conversely, the local-
nected to two semi-infinite leads, as in Fig. 1. The quantunization properties of the orbitals spanning the desired energy
description of the electronic conductance is a complex nonwindow determine the minimal thickness for a principal
equilibrium problem. We begin the study of conduction prop-|ayer. The transfer matricég_r andT, g are also computed
erties focusing on the coherent electron transport. This agrom the Hamiltonian matrix elements via an iterative
proach leaves out nonequilibrium effects due, e.g., tqyrocedure®
dissipative scattering or to an external bias. _ The only required inputs then are the matrix elements of
Quantum conductanced) is the microscopic quantity the HamiltonianH ,, expanded in a localized-orbital basis;
that characterizes the transport properties of a conductor angl; choosing the maximally localized WF’s representation,

may be calculated using the Landauer expres3ion we provide essentially an exact mapping of the ground state
) onto a minimal basié’ The accuracy of the results directly
G(E)= ziﬂE) 1) depends on having principal layers that do not couple beyond
h ' next neighbors, i.e., on having a well-localized basis.

where7(E) is the transmission function, i.e., the probability
that an electron injected at one end of the conductor with
energyE will be transmitted to the other end. In the Green’s  The starting point for our procedure is the first-principles
function formalism the transmission functidhis expressed calculation of the electronic structure of the nanostructure,
ag? eventually coupled to the leads. We adopt a standard
electronic-structure method based on self-consistent total en-
T=Tr(I' GLI'rGY), (20  ergy and force minimization, which allows us to optimize
simultaneously the atomic positions and the corresponding
WhereG{cr’a} are the retarded and advanced Green’s functionglectronic wave functions. The electronic structure is de-
of the conductor and’; g, represent the coupling of the scribed within density functional theorDFT).*® The ex-
conductor to the leads. amples presented in the following section are obtained in the
The effect of the semi-infinite leads on the conductor carlocal density approximationd_DAs),*® but more sophisti-
be described by means of finite-dimension operators knownated corrections at the exchange-correlation functi@gl,
as the self-energies, z. The Green’s functiol¢ and the  generalized gradient approximatjocan obviously be used.
coupling functionsl’y_ g, of Eq. (2) are explicitly obtained The electron-ion interaction is described via norm-
from the self-energies as conserving pseudopotentidlsn the form of Kleinman and

B. Ab initio electronic structure
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Bylander’® We use periodic boundary conditiof®BC’'s)  whereV is the volume of the unit cell and the integration is
along the three directions of direct space and the electroniperformed over the entire Brillouin zone. It is easy to show
wave functions are expanded in a plane-wave basis set corthat the WF’s defined as above form an orthonormal basis
patible with the chosen PBC’s. While the translational invari-set, and that any two of them, for a given indeand dif-
ance makes the plane waves a very natural choice to descrifierentR andR’, are just translational images of each other.
the wave functions of a periodic system, the drawback is thalote that, as theV" WF’s form a(continuous$ linear combi-
they are truly delocalized. Brillouin zon@Z) summation nations of Bloch functions with different energies, they do
are performed with homogeneous Monkhorst-Pack gfids  not represent stationary states, but still span exactly the same
k points in the first Brillouin zone. original Hilbert space. Theb initio eigenstates are well-
This approach to electronic-structure calculations isdefined, modulus an arbitrakydependent phase factor; thus,
widely used, provides a faithful description of the electronicthe definition above does not lead to a unique set of Wannier
properties of the systems of interest, and in the present corfnctions>® since the electronic structure problem is invari-
text it has been successfully applied to the investigation ofint for the transformationy,~e*®y,., . In addition to
both solid-state and molecular assembiie¥. The results of this freedom in the choice of phases,(k) for the Bloch
such calculations are, at eaklpoint, the Kohn-Sham energy functions, there is a more comprehensive gauge freedom
eigenvalues and their corresponding eigenvect@®ch  stemming from the fact that the many-body wave function is
stateg, expanded in plane waves. It is worth noting that theactually a Slater determinant: a unitary transformation be-
present methodology to compute quantum transport fromween orbitals will not change the manifold, and will not
first principles will apply to any electronic-structure ap- change the total energy and the charge density of the system.
proach, since it can construct and employ orbitals that argn all generality, starting with a set of Bloch functions
maximally localized, and that represent a minimal basis sewith periodic partsu,,, we can construct infinite sets of
under the single assumption that eigenstates are in the BloalF’s displaying different spatial characteristics
not minima) the localization procedure will allow us to re-
cover exact results with smaller systems. In particular, our Wpr(r)=
molecular dynamics simulations, opening the way to com-The unitary matricet)) include also the gauge freedom on
pute quantum conductance in large-scale systems, and agphase factors afore mention&d.

e Rd%k. (7)

form. Even if the basis set used is already localizaitheit
5 JBZ[; U S mid1)
procedure can be applied in combination with Car-Parrinello (2m)

function of temperature, completely from first-principf@s. For our purposes, we need to transform the Bloch eigen-
states in WF's with the narrowest spatial distribution. We
C. Maximally localized WF’s construct maximally localized WF’s using the algorithm pro-

posed by Marzari and Vanderbft.We define a spread op-

‘erator (1) as the sum of the second moments of the Wannier

functions corresponding to one choice of translational lattice
ector

Bloch orbitals cannot be used directly to evaluate elec
tronic transport with the method outlined in Sec. Il A. As we
have pointed out, the quantum conductance is comput
starting from the knowledge of the lattice Green’s function,
whose calculation relies on a localized orbital representation
of the electronic states in real space. Bloch orbitals, that are Q=2 [(Wnol 2| Wno) = (Wiolr [Wno)?], (8)
intrinsically delocalized, have to be transformed itdoal- "
ized functions in order to construct the sparse, short-rangewhere the sum is over the group of bands which spans the
matrix elements of the Hamiltonian. The core of our pro-Hilbert space. The value of the spre&d depends on the
posed methodology is to use maximally localized WF’s forchoice of unitary matriced)(¥; thus it is possible to evolve
the system considered. These are the most natural choice fany arbitrary set otJ¥) until the minimum condition
a set of localized orbitals that still span the same Hilbert
space of the Hamiltonian eigenfunctions, and they allow to o0,
bridge plane-wave electronic structure and lattice Green’s SU® =0 ©
function calculations in a coherent fashion. In the case of an
isolated system the maximally localized WF’'s become Boyds satisfied. At the minimum, we obtain the matrices
localized orbitals® therefore, our procedure is not tied to an (U®)Mt that transform the first-principle&ﬁ,f(r) into the
extended-systems formulation, but can equally well represenhaximally localized WF’SNLY'F%(r):
isolated moleculegln addition, the localization procedure is
greatly simplified for the case of large unit cells, whEn
sampling only is used)

A Wannier functionw,g(r), labeled by the Bravais lattice
vectorR, is usually defined via a unitary transformation of

%“ft(r):; (UIOML R (1),

. Y, .
the Bloch functionsy,(r) of the nth band whE(r)= (2—)2J Y (rye " Rdk. (10)
s BZ
Wor(r)= LJ Go(r)e < Rd3k, (6) A useful feature of the method is that the only ingredients
(2m)3 )82 needed to calculate the spread functidilaand to evolve the
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unitary matricedJ® are the overlap matrii Eﬁhb) between In order to calculate the conductance according to the
the periodic part of the Bloch states at neighboringoints ~ Prescriptions outlined in Sec. Il A, we need as an input the
matrix elements of the Hamiltonian calculated on a localized
M = (Ul Un kab)s (11  basis: in our case, it is the minimal basis of the maximally
o localized WF's. The advantages of this choice are twofold:
whereb is the vector that links neighborinig points in the ~ first, in addition to being a minimal basis, the Wsactly
discretized BZ integral’ span the Hilbert space of an insulator and, with arbitrary
It is important to notice that whenever a Born—von Kar-accuracy, of an entangled metallic system. Secondly, their
man discretization of the Brillouin zone is introduced, evenlocalization assures the choice of the system with the small-
the abovementioned WF's are not truly localized, but will beest number of atomic layers. The Hamiltonian matrices
periodic in real space, with a superperiodicity determined by(Han'f], Hc, Hic, Hcr) can be formally obtained from the
the BZ discretization. The truly isolated limit is recovered on site Hyg) and coupling Hy,) matrices between principal
only in the case of continuous BZ integrations. This is easilylayers. In our formalism, and assuming a BZ sampling fine
seen remembering that, (1) =u,(r)e'*", andu,(r) has enough to eliminate the interaction with the periodic images,
the periodicity of the direct lattice; thus the phase factorswe can simply compute these matrices from the unitary ma-
ek’ determine the superperiodicity of the,, themselves. trix U™ obtained in the localization procedufeBy defini-

In the standard language of electronic-structure calculationsion of energy eigenvaluesef,), the Hamiltonian matrix

if the ¢, have k's that are restricte(_j to a uniform A (k) :;mkém’n' is diagonal in the basis of the Bloch
Monkhorst-Pack mesh, they will all be periodic with a wave- gigenstates. We can calculate the Hamiltonian matrix in the
length inversely proportional to the spacing of the mesh; thisiated pasis

periodicity is consequently inherited by the WF's. Fgrk

points along a direction of the BZ, the WF’s will repeat along H (k) = (U®)TH (k)u®. (12

the corresponding direction every cells; therefore a mesh ) (oL .

of k points needs to be dense enough to assure that adjacéWgxt we Fourier transforrdl "%(k) into a set ofN, Bravais

replicas of the WF’s do not overlap. lattice vectorsR within a Wigner-Seitz supercell centered
The method described above works properly in the cas@roundR=0:

of isolated groups of band8.0n the other hand, to study 1

quantum confjuctance in extended systems we often need to HIO(R) = N e KR ) = (o A [ Wir),

compute WF’s for a subset of energy bands that are en- kp K

tangled or mixed with other bands. Most often we are inter- (13

ested in the states that lie in the vicinity of the Fermi level OfwhereNk derives from the folding of the uniform mesh lof
a conductor in a restricted energy range. Since the umtar%oints inpthe BZ. The term witlR=0 provides the on site
transformationdJ® mix energy bands at eadhpoint, any trig Hooe 0 d the termR=1 ides th
arbitrary choice of states inside a prescribed window willma r|>.< 00 <Wm°| [Wno) and the ter provides _e
affect the localization properties of WF’s unless energy gap§0UPling matrixHg;= (Wl H|wy,1): These are the only in-
effectively separate the manifold of interest from higher anddredients required for the evaluation of the quantum conduc-
lower bands. This problem has been solved by Souzdance.
Marzari, and Vanderbilt, introducing an additional disen-
tanglement procedutkthat automatically extracts the best ll. BULKLIKE CONDUCTANCE
possible manifold of a given dimension from the states fall- As a first application of our method, we consider a case in
ing in a predefined energy window. This is the generalization hich leads and conductdas sketchea in Fig.)lare made
to entangled or metallic cases OT the maxi_mally .Iocalized WF\(I)Vf the same material, and we compute the coﬁductance of the
fSc;r;r;léladtliggér'ls'::)en F:;gr%esiu:ﬁereBhrﬁfoSig ;nc:':;m'::g et?chfi?/gl id_eal and .infinite nanostructuréalulklike. conductance In

) I Yhis case, it is not necessary to distinguish between conductor
extracts the bands of interest from the overall band structurea.nd lead terms and the single layég, and the couplingH
In practice, first we select a desired number of bands in an atrices are the only necessary inBut o1
energy window; then we determine the optimally connected" We will focus on one—dimensiondllb) linear chains of
subspace that can be extracted from that band structure; an

finally we proceed with a standard localization procedure2CMS: The systems that have been studied most are chains of
y P P 20-22,26,63-6% 6667 and C%8-"1|n the following, we will

inside the selected subspace, using the same kind of spregd’ :
functional Q and of unitary matricet)®. The resulting aicuss results for AfSec. Il A) and C(Sec. Il B) chains.
orbitals have the same good localization properties, and al-
low us to apply our formalism to arbitrary systems, indepen-
dently of the insulating or metallic nature of the band mani- An ideal and infinite Al chain is simulated using periodic
fold. It should be stressed that the WF'’s obtained in the latteboundary conditions and a unit cell containing two alumi-
case are not the WF’s of the occupied subspé#tat would  num atoms. A large vacuum region-(L0 A) in the direction
exhibit poor localization propertigsbut are those of a well perpendicular to the chain prevents the interaction with ad-
connected, continuous subspace that in general will contaijacent replicas. A (11X 1) grid of k points and 18 Ry
both occupied and unoccupied Bloch functions. energy cutoff for the wave function expansion assure the

A. Aluminum chain
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— Al— Al — This Hamiltonian can now be Fourier transformed in recip-

a) rocal spaceH®)(R) [Eq. (13)] for any arbitraryk point

Hg';o(k'):}R‘, e " RHIN(R); (14)

the resulting Hamiltonian matrices can then be diagonalized

to find energy eigenvalues. Comparing the original Ry

dotg with the interpolatedblack lineg band structuré¢Fig.

2(c)] we see an excellent agreement. This is an expected but

important validation, since it proves that the intermediate

transformations do not affect the accuracy of the first-

principles PW calculations. All the information on the elec-

tronic structure of the system is transferred to the matrix

elements of the Hamiltonian expressed in the localized WF's

basis.

-4 A closer inspection to Fig. () shows some unmatched

] electronic states at energies lower than the highest interpo-

-6 lated band(in this case, in the vicinity of th& point). This

4 is the effect of the band-space minimizatfdrwhich singles
G(2e2/h) out the best-connected manifold from an entangled group of

states. The upper edge of the outer winddig. 2(c)] inter-

FIG. 2. (Color onling Linear Al chain. Isosurface ¢B) ac and  sects states having comparable energy but different symme-
(b) two 7 WF’s. (c) Comparison betweeariginal first-principles  tries, relevant to higher parts of the spectrum. The inclusion
(gray dotg and interpolatedblack lines band structures. Dotted of these contributioné.e., the states arouddat ~4 -5 eV)
lines represent the Fermi level. Note that some bdnés at the  would affect significantly the localization properties of the
Fermi leve) are double degeneratel) Quantum conductance plots. WF basis. The minimization of the dispersion for the ex-
The solid line is relative to the whole energy rangB<(  tracted manifold(the disentanglement of the bands thus
[—7.6] eV);. the shaded area identifie_s the quantum conductancgn essential step in the WF’s calculation.
calculated in the narrow energy windowE €[—4.5,1.9 eV) The disentanglement procedure can be used to probe dif-
bounded by the dashed lines. ferent energy windows; this allows us to single out the most

relevant bands, linking conductance properties to the nature
convergence of the electronic structure of the system. Thef the chemical bonds. As an example, if we restrict the
optimized Al-Al distance §=2.42 A) is in very good agree- energy window to a few eV around the Fermi leyeashed
ment with previous DFT investigatioi&®’ lines in Figs. 2Zc), 2(d)], we can describe quantum conduc-

Following the procedure described above, we calculate@@nce using the only smaller set of baritfereg included in
the electronic structure and quantum conductance of this sy§0€ narrow window. In this restricted range, e conduc-
tem. To construct the WF’s we selected an energy windovf@nce spectrgshaded area in Fig.(@] is indistinguishable
with Ec[—7,6] eV around the Fermi leveltaken as the [TOM the original ongblack ling. _ _
reference zeno This energy window contains all the occu- _The linear chain (_)f Al atoms d|spla_ys metal_llc behavior
pied bands and the first empty states. We chose to extract £|E'|gs. 4c), 2d)], in agreement with previous DFT

: : : . . . _ calculation®® Due to the reduced coordination number of
eight-dimensional manifold from this energy window: Aﬁer.the Al atoms in the chainn(y,,,=2) compared with the fcc-

the disentanglement and localization procedure, we obta|B K ph —12) thi tallic ch i t obvi
eight WF's which span the eight-dimensional Hilbert mani- - P1as€ Qo= 12), this metallic character was not obvi-

. . . ousa priori. It is important to note that, in general, metallic
fold and rep'resent an orthonormal m|n|ma}l basis for it. Th,ussystems are not well represented in a WF framework. So far,
th_e calculation of quantum_ condu_ctance myqlves Operatlon8nly transition metals have been the subject of WF’s studies,
with very small (8<8) matrices, with a negligible computa- qye to the localized character of theirorbitals’? and only
tional effort, exactly comparable to a tight-binditiGB) cal-  recently localized wave functions in reciprocal space have
culation with two sites and four orbital per site. However, peen proposed for simple metdlsa and A).”® However, in
our results provide more information on the electronic structhe disentanglement procedure we are not required to restrict
ture than the TB approach. The calculated WF&s. 2a),  ourselves to the occupied subspace, but we can mix filled
2(b)] are well characterized and are consistent with the estiand empty states, allowing us to extract well-connected
mated chemical bonds present in the systena(d = orbit-  manifolds that have the same localization properties of the
als). The o states are centered in the middle of the Al-Al manifolds for insulators and semiconductors.
bond, while ther states are localized around single atoms.  To better understand the conductance properties of Al

As a test of the accuracy of the WF transformation, wechains, we have also calculated the eigenvectors of the trans-
have computed back the band structure of the Al chain, starmission functionZ(E), generally known as eigenchannéls.
ing from the Wannier-function Hamiltonian in real space. The eigenchannels completely characterize transmission, and

&

Energy (eV)
Energy (eV)

I T
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at each energy, describe the single modes of the electronic =C=C=C =
transport. Our results show that the eigenchannels at the a) '

Fermi energy are barely the linear combination of théke W)H
WF’s of Fig. 2b). The two quanta of conductanceg?2h) at

the Fermi levelFig. 2(d)] correspond to two degenerate b) —

states, which constitute the channels for charge mobility. The “P=P==

metallic behavior is in qualitative agreement with the geo-
metrical properties of WF's. As mentioned before, beth

andm WF'’s are well localized. While the statedFig. 2(a)] ©) ] d)
are centered in the middle of the Al-Al bond, in a bonding 4 - E 4
configuration, ther orbitals[Fig. 2(b)], responsible for the _0E Ho0
chain metallicity, are centered on the single atoms. 2 1 =
Finally, in the absence of external leads, there is a one-to- B 3 E s
one correspondence between the quantum conductance spec- % -8[- 1-s %
trum [Fig. 2(d)] and the band structure: at a given valudeof S F 1 &
the quantum conductanggq. (1)] is a constant proportional “12E E ke
to the number of transmitting channels available for charge Ty .16
mobility, which are equalin a periodic systemto the num- = : :'; n 5
ber of bands at the same energy. The perfect agreement be- G(2e2/h)

tween band structure and quantum conductance represents a

further validation for the ability of our method to calculate  FIG. 3. (Color onling Cumulene. Isosurface @&) two o and

transport properties. (b) two = WF’s. First-principles band structulg) and calculated
guantum conductancéd) in the selected energy window. Dotted

lines represent the Fermi level of the system.
B. Carbon chains

As a second application, we have studied two differentseparated bydgingle= 1.51 A and dyiple=1.22 A, in agree-
species of carbon chains. Nanodevices where C chains act afent with previous theoretical calculatioffsincidentally,
conductors bridging metal electrodes are not only ideal propolyyne is energetically slightly more stable than cumulene
totypes for studying conduction in reduced-dimensionalityby 12 meV per uni{C-C).
systems, but are also fundamental constituents of low- Figures 3 and 4 show our results. Cumul¢Rags. 3a),
pressure carbon assemblies, such as those found in engib)] is characterized by symmetrsp bonds, uniformly dis-
capped molecules or in the interstellar medium. Theoreticafributed along the chainr states are localized in the middle
models proposed so far have dealt with wires of equidistangf C-C bonds whiler states are centered around single C

C atoms trapped between metallic leads of Au of&In  atoms. In polyyndFigs. 4a), 4(b)], o orbitals are localized
those cases, the conduction properties of the system are

strongly dependent on the numkedd or eveh of atoms in _c—c=¢
the chain. sSwT =W —

Here, we focus on the effects of structural relaxation on Qﬂg) POP=P=
the electronic and transport properties of infinite carbon
chains, known as carbyne. The name carbiyfédenotes an
allotrope based on a linear chain sfp-hybridized carbon

atoms: isomeric polyethynylene diylideiggolycumulene or
cumuleng or polyethynylengpolyyne. The cumulene form

||
i

is characterized by an equidistant arrangement of C atoms c) d)
with doublespbonds &C=C=),, while the polyyne form
is a dimerized linear chain with alternating single-triple S | A Jdo _
bonds (~-C=C-),,. The experimental evidence for carbyne = > - I 1 3
chains is controversial and its properties not completely = ElS 14 <
known %78 We studied the effects of the two allotropsi- 2 sk 4k 18
mulene vs polyyngto the electronic and conduction proper- 5 >- :| 1 S
ties of carbyne. -12F AF --12
We used four C atoms in a periodically repeated cell, and AR >: :I _ B
an (8x1x1) grid of k points for BZ summation. The elec- L L L |
tronic wave functions are expanded in a plane-wave basis set r A G2(2e23/h) 45

up to 40 Ry. We first optimized the lattice constant of the
cumulene structure, and then, in the same unit cell, we re- F|G. 4. (Color online Polyyne. Isosurface af) two o and (b)
laxed the carbon-carbon distances in the polyyne phase. ko 7= WF's. First-principles band structute) and calculated quan-
the cumulene form the C atoms are separated@ene  tum conductancéd) in the selected energy window. Dotted lines
=1.37 A, while the polyyne form dimerizes with C atoms represent the Fermi level of the system.

035108-6



AB INITIO TRANSPORT PROPERTIES . . . PHYSICAL REVIEW B 69, 035108 (2004

both on single C-C and on triple=€C bonds, with ar state
in the middle of each bond. The orbitals are localized on
the C=C bonds: there are two of thege orbitals in the
middle of each triple bond, related by a 90° rotation around
the axis.

The electronic structures and quantum conductances of
cumulene and polyyne are shown in Fig&)33(d) and Figs.
4(c), 4(d) respectively. The symmetric chain displays metal- b) 6 — - C(5,0) buk-like g
lic behavior, in agreement with previous theoretical — C(50)/8i single defect ]
calculations’! Polyyne is instead semiconducting: the relax- B |
ation of the carbon-carbon distances induces a Peierls-type :
distortion, which stabilizes the structure and opens energy
gaps at the edges of the Brillouin zone. The metallicity of
cumulene is an effect related to the homogeneous distribu-
tion of the atoms, and not to the dimensionality of the chain:
polyyne, which has the same dimensionality of cumulene, is
not a metal. As mentioned in the previous section, the elec-
trical (metallic or semiconductingbehavior is tightly re-
flected in the geometrical properties of WF’s. The eigenchan-
nels of both systems, near the Fermi energy, are made by
linear combination of ther-like WF'’s of Figs. 3 and &). As
was the case for the aluminum chain, theorbitals of cu- Energy (eV)
mulene are located on the atoms, and the system is metallic.
On the contrary, in polyyne ther states are centered in
the middle of the triple C bonds, and the system is semicon
ducting.

SO
T
I
|
1
)
|
-

[ — C(5,0)/Si bulk-like

G (2e2/h)

O =4 N W Hh U1 OO = N W

]
w

|
[X)

1
-
o
-
N

FIG. 5. (Color onling (a) Isosurface of twar WF's in a (5,0
carbon nanotube in presence of a substitutional Si defdatk
atom). The polarization of ther states is due to the effect of the Si
defect.(b) Quantum conductance plots for tki®0) nanotube with
and without the Si defedttop panel; same nanotube with a peri-
IV. TWO TERMINAL CONDUCTANCE odic arrangement of Si defects in a bulklike configuratibonttom

. . . pane). Vertical dotted lines represent the Fermi level of the sys-
As a prototypical example of a two terminal device we oo

have computed the quantum conductance for a small zigzag
(5,0 carbon nanotube in the presence of an isolated substitetermining the amount of conductor includechit the de-
tutional silicon defect. Topological and substitutional defectscay length of the density matrix of the met#ng-ranged,
in carbon nanotubes have been widely studfed and  and algebraig but the characteristic length of the WF's dis-
our results can be directly compared with available theoretientangled from the metal, and whose localization properties
cal data. on these well-connected manifold are comparable to those of
Using Fig. 1 as reference, we choose in the present case semiconductor or an insulator. The properties of unique-
as the conductor region a finite segment of nanotube whichess and localization of the WF’s ensure effortless continuity
contains the defect, while the leads are modeled by tweicross the interface into the bulk leads. Note that a similar
semi-infinite nanotubes. To compute the two terminal condefinition of the geometry of the simulation cell is needed
ductance we need, in principle, three sets of calculationgalso when using other real-space methods to compute quan-
(two only if the leads are of the same matexidlulk calcu-  tum conductancé®*® Since our supercell contains both the
lations for the two infinite leads and a supercell calculationconductor and a portion of the leads large enough to take into
for the conductor and the contag¢tee Fig. 1 The supercell account the presence of the contacts, the Wannier transfor-
needs to be chosen large enough so that the influence of tigation produces a set of WF’s covering the whole coupled
conductor wave functions on the leads becomes negligible atgion. However, since the WF’s are strongly localized, it is
the boundaries, assuring seamless matching between the legaightforward to distinguish those centered on the conduc-
WF’s determined in the supercell and in the bulk calcula-tor and those on the leads, and to see the matrix elements of
tions. The matching condition can also be expressed by sayhe Hamiltonian seamless turn away from the conductor into
ing that the on-site and hopping integralm the tight-  bulklike lead terms. This approach brings another advantage:
binding language of the individual WF's have to be the since the conductor and the conductor-lead interfaces are
identical on both sides of the interface boundary. The matrisimulated in the same supercell, we have a consigterd
cesHg g andHg'y for the infinite leads are obtained from the fully relaxed microscopic picture of the contacts.
bulk calculations[in this case, the ideal5,0) nanotubg, The (5,0) carbon nanotubgsee Fig. %a)], has been simu-
while the other coupling matrices are derived from the sudated in a (4.25%10.0x10.0) A® supercell, with eightk
percell calculation. We stress the need to include a suffipoints and a 40 Ry cutoff for the wave function expansion.
ciently large portion of the contacts in the supercell calculaDue to the highly localized nature of the WF's, only four
tion so that, far from the interface and into the leads, theatomic layers are needed to reproduce the bulklike behavior
system recovers its bulk properties. The characteristic lengtbf the nanotube far away from the Si defect. The presence of
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the defect does not induce significant structural relaxations, V. CONCLUSIONS
but affects the electronic and conduction properties of the
tube. Figure &) shows the isosurfaces of two calculated . .

WF's with o character. Far away from the defect, WF's alred.uctance in extended systems in the coherent transport re-
symmetic and centered in e midde of he C.C bond9TE. O etotenay sorunee e sccurme, sof
Closer to the defect, the different electronegativity of silicon 9

and carbon atoms induces a polarization of the Si-C bonétructure via first-principles calculations, the determination

that modifies the conduction properties of the system. Figurglc the maximally localized WF's corresponding to manifold

5(b) (top panel displays the quantum conductance of theof bands spanning the energy range relevant for conduction,
nanotube in the presence of a defle@t5,0)/Si, solid ling] or and the calculation of the quantum conductance using a real-
in the ideal clean casgC(5,0 dasheé |in§:’ respectively. space Gret_an’s function formalism based on the _Landauer ap-
The conductance of the ide’éﬂ,O) nanotube shows the typi- proach. This procedure opens the way to selectively describe
cal steplike shape and a metallic behavior, which is the resufthe quantum conductance in terms of the relevant one-

of the high curvature of such a small radius nanofiigg. electron states that contribute directly to the transport pro-

Once a single Si defect is introduced, the system mamtam%et?isn.s:élwaﬁrt'geos ?r?ec r;:?ltle?;]igglletl)%%t&or;ﬁdcori]\?eusCtiﬁgiceh':c;r;[thoe
its metallic character but the overall spectrum changes dras; : . ’ 9 9
X : he essential mechanisms that govern the electron flow at the
tically. We observe a general reduction of the conductance i . .
. ) nanoscale. Moreover, it is computationally very efficient and

along the whole energy range, and the distortion of the step- . ) .
. _"can be straightforwardly implemented as a post-processing
like shape of the pure nanotube. The appearance of dips, . . .
, ; C o Step in any standard electronic structure calculdfiteading
corresponding to the discontinuities in the original step func-

tion, is a characteristic feature of nanotubes Withtoaﬁrst-prlnmples, highly accurate computation of electron

0,78,80 - transport properties.
defects, where the backscattering of electrons reduces As a first illustration of the potential of this methodology,

the quantum conductance. ; LT ;
we have studied quantum conductance in linear chains of
As a consequence of the external leads the quantum con;~ . ; .
aluminum and carbon atoms and in defective carbon nano-

ductance is not directly related to the band structure of th?ubes In all cases. we have underlined the effects of the
supercell. We show this in Fig (5 (bottom panel where reduced coordination and of the atomic relaxation on the

the bulk conductance of the(&0)/Si system is presented. : d h blished a cl lai
The general trend af(E) is different than both curves in the tra_nsport properties an we have esta_ IShed a clear re at!on-
ship between the electrical characteristics and the chemical

upper panel. The whole (8,0)/Si system is periodically re- ;

peated, and the conductance assumes the typical steplike btéqnds in the system.
havior. However, with respect to the pure nanotube, we ob-
serve both an overall increase of the quantum conductance
and the presence of features, such as the marked peak due toWe would like to thank Dr. Paolo Giannozzi and Dr. Carlo
the silicon states, just below the Fermi level. The periodicCavazzoni for invaluable help and illuminating discussions.
distribution of the Si atoms leads to the formation of addi-This work was supported in part by MIURtaly) through
tional channels available for the charge transport along th&rant “FIRB-Nomade”, EC through Project 1ST-2001-
tube. On the other hand, these features disappear in the ca38951, INFM through Progetto calcolo parallelb (A.C.),

of the single defect, where the breaking of the translationaDNR Grant No. N00014-01-1-106N.M.), the Mathemati-
symmetry does not allow the formation of delocalized orbit-cal, Information and Computational Sciences Division, Of-
als. In conclusion, while the doping with a regular pattern office of Advanced Scientific Computing Research of the U.S.
Si atoms increases the conductance, the scattering dephasingpartment of Energy under Contract No. DE-ACO05-
of a single defect reduces the global transport properties d00OR22725 with UT-Battelle and the Petroleum Research

We have presented an approach to calculate quantum con-
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