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We present a first-principles technique for investigating the electron-phonon interaction with millions
of k points in the Brillouin zone, which exploits the spatial localization of electronic and lattice Wannier
functions. We demonstrate the effectiveness of our technique by elucidating the phonon mechanism
responsible for superconductivity in boron-doped diamond. Our calculated phonon self-energy and
Eliashberg spectral function show that superconductivity cannot be explained without taking into account
the finite-wave-vector Fourier components of the vibrational modes introduced by boron, as well as the
breaking of the diamond crystal periodicity induced by doping.
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The electron-phonon (e-ph) interaction is ubiquitous and
plays a central role in a variety of physical phenomena,
including finite-temperature electron and spin transport,
conventional superconductivity, Peierls instabilities, and
polaronic transport in organic materials. Recent advances
in synchrotron light sources and electron spectrometers
have fostered renewed interest in the e-ph problem.
Angle-resolved photoemission spectroscopy [1] nowadays
provides information about the momentum and energy
dependence of quasiparticle spectra with 2 meV energy
resolution and less than 0:01 �A�1 momentum resolution.
These recent advances in experimental capabilities define
new challenges for theory. However, first-principles calcu-
lations of the e-ph coupling are still computationally de-
manding for simple systems, and far beyond present
capabilities for most complex systems [2,3].

The recently discovered superconductivity in boron-
doped diamond [4] provides a striking example of a system
for which present theoretical methods face severe limita-
tions. Previous investigations on the origin of supercon-
ductivity in diamond share the conclusion that pairing is
driven by a phonon exchange mechanism [5–9]. However,
reported values for the e-ph coupling strength � show
serious inconsistencies, ranging from 0.25 [7] to 0.55 [5],
and resulting in transition temperatures spanning 3 orders
of magnitude. Most importantly, there remains an unre-
solved controversy about the very nature of the phonon
mechanism involved. One theory argues that the role of the
B atoms is to shift the Fermi level in the valence bands of
diamond, thereby softening the bulk optical phonons and
enabling the e-ph interaction [5–7]. A competing theory
supports the notion that the B atoms introduce localized
vibrational modes exhibiting anomalously large coupling
to electronic states at the Fermi surface [8,9]. Moreover,
there exist indications of a possible role of acoustic pho-
nons in the pairing mechanism [9].

In this work, we introduce a first-principles methodol-
ogy for carrying out robust calculations of the e-ph inter-

action by sampling the Brillouin zone (BZ) with millions of
k points. This extremely fine sampling, which is necessary
in many cases, is achieved by first computing the e-ph
vertex in a Wannier representation and then using this
result to obtain the matrix elements for arbitrary electron
and phonon momenta in the Bloch representation. We
demonstrate our technique by investigating the e-ph cou-
pling in superconducting diamond within both a virtual
crystal (VC) and a supercell (SC) model with a million
points in the BZ. We solve the controversy about the origin
of superconductivity by explicitly showing that vibrational
modes associated with the B atoms, and particularly the
corresponding Fourier components with finite wave vec-
tors, provide an essential contribution to the e-ph coupling
strength. On the other hand, the contribution of zone-center
phonons is found to be suppressed by the energy conser-
vation selection rule.

The self-energy �q��!� of a phonon with wave vector
q, branch index �, and frequency !q� provides the renor-
malization and the damping of that phonon due to the
interaction with other elementary excitations. Following
the Migdal argument, we evaluate the e-ph contribution to
the self-energy by replacing the dressed e-ph vertex ��1; 2�
and electron propagator G�1� by their corresponding bare
counterparts g�1; 2� and G0�1�, with 1, 2 the quadrimo-
menta in compressed notation [10]:

 ��2� 1� � �2i
Z d1

�2��4
jg�1; 2�j2G0�1�G0�2�: (1)

Direct analytical evaluation of Eq. (1) yields [11]

 �q��!�� 2
X
mn

Z dk
�BZ
jg�mn�k;q�j2

fnk�q�fmk

�nk�q��mk�!� i�
;

(2)

�mk being the energy of an electronic state jmki with
crystal momentum k and band index m, fmk the corre-
sponding Fermi occupation, and � a positive infinitesimal.
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The e-ph vertex in Eq. (2) is given by

 gmn;��k;q� � hmk� qj�Vq�jnki; (3)

where �Vq� is the variation of the self-consistent potential
induced by a collective ionic displacement corresponding
to the vibrational eigenmode jq�i. Within the isotropic
Eliashberg theory, the spectral function �2F�!� can be
expressed through the imaginary part �00 of the phonon
self-energy in the zero-temperature limit [11,12]:

 �2F�!���
1

�NF

X
�

Z dq
�BZ

�00
q��!q��

!q�
��!�!q��; (4)

NF being the density of states at the Fermi level.
Equation (4) establishes the connection between �q� and
the e-ph coupling strength � � 2

R
d!!�1�2F�!� [11].

At zero temperature, the imaginary part of the phonon
self-energy Eq. (2) results in the double delta function
���nk����mk�q �!�. While it is customary to neglect the
frequency dependence in the second delta function [12],
this approximation is not justified in the case of B-doped
diamond, as it leads to an artificial divergence of �q� at the
zone center [2,3]. In order to incorporate the energy de-
pendence in Eq. (2), � must be chosen smaller than the
relevant phonon frequencies, typically �� 5 meV. Corre-
spondingly, the e-ph vertex must be evaluated for millions
of inequivalent k points to ensure convergence [3]. While
this is beyond existing computational capabilities, such a
fine BZ sampling can be achieved by exploiting the local-
ization of electron and phonon Wannier functions.

The maximally localized electronic Wannier functions
jmRi located in the Wigner-Seitz cell R are obtained from
the Bloch eigenstates jnki through jmRi �P
nke

�ik�RUnm;kjnki. The rotation U is found by minimiz-
ing the spatial extent of the Wannier states [13]. After
evaluating the e-ph vertex gmn;��k;q� on a coarse BZ
grid with Eq. (3), we transform it into the Wannier repre-
sentation through

 hm0j�Vq�jnRi �
X
k

e�ik�R�Uyk�qg��k;q�Uk	mn: (5)

Since the Wannier functions are strongly localized and
the self-consistent potential is local, the quantities
hm0j�Vq�jnRi in Eq. (5) decay rapidly with R. This
condition ensures the smoothness of the e-ph vertex in
the rotated Bloch basis Uk0 jk0i. This allows us to calculate
the vertex on a significantly finer mesh of points k0 in the
original Bloch space by inverting Eq. (5) [14]. The rota-
tions Uk0 needed for the inversion are determined by
diagonalizing the Hamiltonian of the system, obtained on
the points k0 by similar steps [15].

The procedure here described for the electron momen-
tum k can be extended with some modifications to the
phonon momentum q. For this purpose we consider the
squared e-ph vertex formed by the tensor product of
gmn;��k;q� [Eq. (3)] in the phonon branch index:

 g?��k;q�g��k;q� � hq�jĝ2
kjq�i: (6)

The equality in Eq. (6) is obtained by factoring out the
vibrational eigenmodes, while grouping the remainder in
the operator ĝ2

k. After evaluating the matrix element
hq�jĝ2

kjq�i, we transform it in the phonon Wannier rep-
resentation by using lattice Wannier functions j�Ri cen-
tered in the Wigner-Seitz cell R:

 h�0jĝ2
kj�Ri �

X
q
e�iq�RVyqg2

k�q�Vq: (7)

In this case, the rotation Vq is obtained by diagonalizing
the dynamical matrix, and the maximally localized lattice
Wannier functions simply correspond to the displacement
of individual atoms [16]. In most cases, the nonlocality of
the operator ĝ2 in real space is short ranged; hence the
matrix elements h�0jĝ2j�Ri decay rapidly with R, and the
same procedure adopted for the electronic momentum
applies [17]. In some cases, however, such nonlocality
may happen to be significant due to the presence of Kohn
anomalies, and a denser initial sampling of the vibrational
BZ may be required accordingly.

We applied our method to diamond with a boron content
of 1.85%, close to the original experimental value [4]. The
calculations were performed within the local density ap-
proximation to density functional theory [18]. The valence
electronic wave functions were expanded in a plane wave
basis with a kinetic energy cutoff of 60 Ry, and the core-
valence interaction was described by means of norm-
conserving pseudopotentials [19,20]. The lattice dynamics
was treated within density functional perturbation theory
[21], and maximally localized electronic Wannier func-
tions were obtained by minimizing the Berry-phase spatial
spread [13,15].

We performed the calculations twice: first for a model
VC [6] obtained by generating a BxC1�x pseudopotential
with x � 1=54 � 0:0185; second for a 3
 3
 3 diamond
SC containing 53 C atoms and 1 substitutional B atom [8].
This configuration was chosen since boron-vacancy com-
plexes and boron dimers are either less stable or elec-
trically inactive [22,23]. One possible exception is the
4-boron plus C-vacancy complex which is energetically
favored over substitutional boron and acts as a shallow
acceptor [22]. This defect, however, has a large activation
energy and its study is beyond the scope of this work. The
relaxed lattice parameter of the SC model 3.52 Å was
employed in all calculations. Electronic and vibrational
states were computed by sampling the BZ on 18
 18

18 and 9
 9
 9 grids, respectively [24]. These parame-
ters allowed us to reproduce previous results [6,8], thereby
validating our setup. By applying our electron and phonon
Wannier interpolation, we obtained electronic and vibra-
tional states, as well as e-ph matrix elements, on grids with
100
 100
 100 and 30
 30
 30 inequivalent electron
and phonon crystal momenta, respectively [25]. This sam-
pling ensured the convergence of the phonon self-energy to
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within 0.3 meV, with � set to 5 meV and the electronic
temperature to 300 K [26].

Figure 1 shows the calculated phonon dispersions cor-
responding to the VC and to the SC models of B-doped
diamond. In the supercell case, we unfolded the small
Brillouin zone into its bulk counterpart by projecting the
vibrational states on the corresponding bulk eigenmodes
with the same wave vector. The VC and the SC phonon
dispersions differ most significantly from those of pristine
diamond, as well as from each other, for wave vectors
smaller than the average Fermi surface diameter 2kF �
0:93 �A�1 in the first BZ. The VC model exhibits a smooth
softening of the optical branches around the zone center
with respect to pristine diamond. The largest softening
takes place at the � point and amounts to 29 meV (from
165 to 136 meV). Despite the agreement with previous
calculations [6,7], these VC values are in sharp contrast
with the results of inelastic x-ray scattering on samples
with similar doping, reporting a maximum softening of
only 7 meV [27]. At variance with the VC model, the SC
model shows a milder softening of 14 meV at the zone
center (from 165 to 151 meV), in much better agreement
with x-ray data, accompanied by the formation of impurity
bands at�125 meV (cf. Fig. 1). The flat bands at 151 meV
and the impurity bands at 125 meV are in very good
agreement with the Raman signals observed in B-doped
diamond at 151 and 121 meV, respectively [28].

Figure 2 shows the intensity map of the calculated
imaginary part of the phonon self-energy, yielding the
phonon full width �q� � �2�00

q�. In the VC model, only
the vibrational modes with wave vector q < 2kF exhibit
significant linewidths, with values of 13.4 meV close to the
zone center. The calculated linewidths of the SC model
show smaller values of 9.3 meV around �, as well as
considerable structure at finite phonon wave vectors, with
a maximum of 3.4 meV close to the L point (Fig. 2).
Electron-phonon interaction with large momentum transfer

(q > 2kF) is actually possible in the SC model. Indeed, the
BZ folding reduces the reciprocal space separation be-
tween the Fermi surfaces in adjacent zones, thereby allow-
ing umklapp processes. This effect relates to the breaking
of the diamond lattice periodicity induced by the doping
and is expected to be even more pronounced in a model
with a truly random distribution of dopants [29]. Our
results are consistent with x-ray data reporting a maximum
spectral broadening of 17 meV upon doping [27]. Our
calculations also reveal a peculiar suppression of the line-
widths and the associated coupling strengths at the zone
center: for the optical phonons at � we obtained widths of
3.2 and 2.1 meV in the VC and SC models, respectively.
The reduced coupling of the electrons to zone-center pho-
nons results from the energy conservation in the scattering
process: electronic transitions with no momentum transfer
require a minimum energy of �200 meV exceeding the
largest phonon frequency of 136 meV. In the present
system, this effect is confined within a small BZ spot
around the � point, which cannot be accessed by x-ray
probes. However, a similar mechanism has recently been
discussed in relation to the Raman linewidths of MgB2 [3].

Figure 3 shows the Eliashberg spectral functions calcu-
lated from Eq. (4). Both the VC and SC models exhibit
peaks in �2F�!� corresponding to van Hove singularities
in the optical region of the vibrational spectrum. For the
purpose of comparison with previous work [8], we also
show in Fig. 3 the Eliashberg function calculated for the
supercell model, with the vibrational BZ sampled through
the � point only (SC�). From the Eliashberg functions we
obtained the average e-ph coupling strengths �SC � 0:336,
�VC � 0:237, and �SC�

� 0:087 [30]. The calculated cou-
pling strengths can be used to estimate the superconducting
transition temperature through the McMillan equation
[11]. In order to make a direct comparison among the
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FIG. 1 (color online). Phonon dispersions along the high-
symmetry directions of the diamond BZ: VC model (red dashed
line) and SC model (blue solid line, from the local maxima of the
spectrum in the inset). The modes with q < 2kF are shaded.
Inset: intensity map obtained by unfolding the SC vibrational
eigenmodes in the BZ of bulk diamond.
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FIG. 2 (color online). Intensity map ��q; !� of the phonon full
widths calculated as ��q; !� �

P
��q���!�!q��. Top: two-

dimensional map of the vibrational eigenmodes with full widths
>1 meV (blue disks; the red lines are the phonon dispersions
from Fig. 1). Bottom: three-dimensional view of ��q; !� vs q
and ! (Gaussian broadening of 1 meV). The left (right) panels
refer to the VC (SC) model.
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considered models, we fixed the unknown Coulomb
pseudopotential by assigning the experimental transition
temperature of 4 K [4] to the SC model. With this choice,
we obtained transition temperatures of 0.3 and 0 K for the
VC and SC� models, respectively. This result clearly in-
dicates that the VC model and the SC� model are both
incompatible with the experimentally observed supercon-
ductivity in B-doped diamond. The inadequacy of the VC
model [5,6] stems from its inability to account for scatter-
ing processes involving large phonon momenta. On the
other hand, the SC� model [8] misses the dominant con-
tribution to � arising from the finite-wave-vector Fourier
components of the impurity modes.

According to our findings, superconductivity in B-doped
diamond cannot be explained without invoking the finite-
wave-vector Fourier components of the vibrational modes
associated with boron, as well as the breaking of the crystal
periodicity induced by doping. More generally, the appli-
cations presented here, and especially the large supercell
calculation, demonstrate that our new approach to the e-ph
interaction is extremely powerful and opens the way to the
investigation of many complex problems which are beyond
the reach of present computational methods.
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FIG. 3 (color online). Eliashberg function calculated for the
SC model (blue solid line), the SC� model (red dashed line), and
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