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Working in the crystal-momentum representation, we calculate the optical conductivity of noncentrosym-
metric insulating crystals at first order in the wave vector of light. The time-even part of this tensor describes
natural optical activity and the time-odd part describes nonreciprocal effects such as gyrotropic birefringence.
The time-odd part can be uniquely decomposed into magnetoelectriclike and purely quadrupolar contributions.
The magnetoelectriclike component reduces in the static limit to the traceless part of the frozen-ion static
magnetoelectric polarizability while at finite frequencies it acquires some quadrupolar character in order to
remain translationally invariant. The expression for the orbital contribution to the conductivity at transparent
frequencies is validated by comparing numerical tight-binding calculations for finite and periodic samples.
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I. INTRODUCTION

Electric and magnetic effects are closely coupled in mag-
netoelectric �ME� materials. These are insulators with broken
spatial-inversion �P� and time-reversal �T� symmetries, in
which an applied electric field E induces a first-order mag-
netization M, and conversely a magnetic field B induces a
first-order electric polarization P. This cross response is de-
scribed in the static limit by a single magnetoelectric polar-
izability tensor

�ab �
�Mb

�Ea
=

�Pa

�Bb
, �1�

where the equality follows from changing the order of the
mixed derivatives of the free energy.

The ME effect has been intensively studied in recent
years. While the focus has been mostly on the static re-
sponse, ME effects in the optical range have also been
observed.1 For oscillating fields the thermodynamic argu-
ment leading to the second equality in Eq. �1� does not hold
because the system is not in equilibrium, and two separate
frequency-dependent polarizabilities are needed to describe
the dynamical ME coupling

�ab
me =

�Ma

�Eb
, �ab

em =
�Pa

�Bb
. �2�

It was recognized already in the 1960s that the coupling, Eq.
�2�, leads to new optical effects in ME media, such as gyro-
tropic birefringence.2 Since the lattice-mediated response is
frozen out at optical frequencies, the purely electronic con-
tribution can be isolated. The first successful measurements,
on Cr2O3, found that the strength of the optical ME coupling
is comparable to that of the static one.3

The phenomenology of optical ME effects has been stud-
ied in detail in the literature, starting with the work of Horn-
reich and Shtrikman on gyrotropic birefringence.4 These au-
thors showed that this effect is a consequence of spatial
dispersion, appearing at first order in the expansion of the
effective optical conductivity tensor �defined by Eq. �6� be-
low� in powers of the wave vector q of light

�ab�q,�� = �ab
�0���� + �abc���qc + ¯ �3�

It is well known that the phenomenon of natural optical ac-
tivity is also a manifestation of spatial dispersion.5 While
natural optical activity is associated with the T-even part of
�abc���, optical ME effects arise from the T-odd part, which
can be nonzero only in magnetically ordered systems, where
T symmetry is spontaneously broken. A careful consideration
of all response tensors which contribute to the conductivity
at linear order in q shows that these include, in addition to
the dynamic ME polarizabilities, Eq. �2�, the electric-
quadrupole response of the medium.

Regarding the microscopic theories needed for quantita-
tive calculations, there are well-established molecular theo-
ries of spatial dispersion6,7 but the corresponding theory for
crystals is not equally developed. A band theory of natural
optical activity was put forth by Natori8 but has not been
used in first-principles calculations. To our knowledge, only
one group has reported calculations of natural optical activity
in solids at optical wavelengths, based on a somewhat differ-
ent formulation.9,10 As for the optical ME effects, quantita-
tive estimates of their magnitude have so far relied on cluster
models to mimic the crystalline environment.11,12

In this work, we develop a formalism for calculating
spatial-dispersion effects in the framework of band theory.
One difference with respect to previous works is that we give
a unified treatment of both T-even and T-odd parts of this
tensor. More importantly, we express the transition matrix
elements in the crystal momentum representation.13 This
choice has both practical and formal advantages. The practi-
cal advantage is that it leads to expressions which can be
easily implemented using localized Wannier orbitals. On the
theoretical side, the crystal-momentum representation is the
language in which the modern theories of electric
polarization,14,15 orbital magnetization,16–19 and orbital mag-
netoelectric response20,21 are formulated. As we shall see, our
expression for the orbital contribution to the T-odd part of
�abc��� generalizes to finite frequencies the traceless part of
the orbital ME polarizability formula of Refs. 20 and 21.

The manuscript is organized as follows. In Sec. II we give
a self-contained account of the phenomenology of spatial-
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dispersion optics. The effective conductivity is defined and
related to the magnetoelectric and quadrupolar polarizabil-
ities. We then reformulate the phenomenological relations,
originally obtained for finite systems, in terms of translation-
ally invariant quantities which remain well defined in the
thermodynamic limit. The main results of the paper are con-
tained in Sec. III, where we obtain a microscopic expression
for �abc��� in periodic insulators. We then consider the �
→0 limit of that expression, and discuss its relation to the
theory of static ME response. In Sec. IV we implement the
bulk �abc��� expression for a tight-binding model and com-
pare the results with calculations on finite samples cut from
the bulk crystal. We conclude in Sec. V with a brief summary
and outlook.

II. PHENOMENOLOGY OF SPATIAL DISPERSION

In this section we discuss spatial dispersion from a phe-
nomenological perspective. Besides introducing basic defini-
tions and setting the notation, the main purpose here is to
arrive at Eqs. �25�–�29� relating the spatially dispersive op-
tical conductivity to translationally invariant renormalized
multipole polarizabilities. Those relations will allow us to
identify the magnetoelectriclike and purely quadrupolar parts
of the optical response of crystals, to be calculated in Sec.
III.

A. Effective conductivity tensor

Consider a crystal with broken P and possibly broken T
symmetries. We are mainly interested in materials where
those symmetries are broken spontaneously, rather than by
static electric and magnetic fields, and wish to study their
current response J�q ,�� to an electromagnetic plane wave

E�r,t� = E�q,��ei�q·r−�t�, �4�

B�r,t� =
c

�
�q � E�q,���ei�q·r−�t�. �5�

Because the oscillating electric and magnetic fields E and B
are interdependent, the linear �in the field strengths� response
can be described by a single effective conductivity tensor4,22

Ja�q,�� = �ab�q,��Eb�q,�� . �6�

Alternatively, one may choose to work with the dielectric
function �ab�q ,��.5,22 To first order in q the two are related
�in Gaussian cgs units� by

�ab�q,�� = �ab +
4	i

�
�ab�q,�� . �7�

The leading term in the expansion of �ab�q ,�� in powers
of q, Eq. �3�, is the optical conductivity in the electric-dipole
approximation. We shall focus on the next term in the expan-
sion, �abc, which is chiefly responsible for spatial dispersion.
Because spatial inversion takes q into −q, the tensor �abc���
necessarily vanishes in centrosymmetric systems. Its sym-
metric ��abc

S � and antisymmetric ��abc
A � parts under the inter-

change of the first two indices are, respectively, odd and even

under T.23 The T–even piece describes natural optical activ-
ity, and the T–odd piece describes non-reciprocal optical ef-
fects. These include, in addition to gyrotropic birefringence,
directional dichroism,1 and magnetochiral effects in chiral
ferromagnets.24

Unlike the spontaneous magneto-optical effects coming
from the T-odd part of �ab

�0� �magnetic circular dichroism and
birefringence�, which require ferromagnetic or ferrimagnetic
order, gyrotropic birefringence can also occur in antiferro-
magnets such as Cr2O3. This is a well-known magnetoelec-
tric material, and indeed the physical basis for spatial disper-
sion rests in part on the magnetoelectric effect.

B. Multipole theory for finite systems

The connection between spatial dispersion and the mag-
netoelectric effect can be readily established by expressing
J�q ,�� in terms of the multipole moments of the charge and
current distributions. We begin by taking the spatial Fourier
transform of the current density,

J�q,t� =
1

V
� dre−iq·rJ�r,t� �8�

and expanding in powers of q,

J�q,t� = J�0��t� + J�1��q,t� + O�q2� . �9�

Standard multipole-expansion manipulations22 involving the
continuity equation and integrations by parts show that
Ja

�0��t�=�tPa�t� and

Ja
�1��q,t� = −

iqb

2
�tQab�t� + i�abccqbMc�t� , �10�

where �abc is the antisymmetric tensor of rank three and P,
Q, and M are the electric dipole, electric quadrupole, and
magnetic dipole moments of the sample divided by its vol-
ume

Pa�t� =
1

V
� drra
�t,r� , �11�

Qab�t� =
1

V
� drrarb
�t,r� , �12�

Ma�t� =
1

2cV
�abc� drrbJc�t,r� . �13�

Fourier transforming in time we arrive at

Ja�q,�� = − i�Pa��� −
�

2
qbQab��� + i�abccqbMc��� + O�q2� .

�14�

The current induced by the monochromatic wave, Eqs. �4�
and �5�, can now be calculated from the oscillating induced
moments, which are the real parts of the following
expressions:6,7

Pa = �ab
e Eb +

1

2
�abc

q �cEb + ¯ + �ab
emBb + ¯ , �15�
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Qab = �q̃
abcEc + ¯ , �16�

Ma = �ab
meEb + ¯ , �17�

where the fields and their gradients are evaluated at the lo-
cation of the sample. �e is the electric polarizability per unit
volume, and quantum-mechanical expressions for the re-
maining response tensors are listed in Appendix A. �em and
�me are the dynamic ME polarizabilities introduced in Eq.
�2�; they involve matrix elements of the electric-dipole �E1�
and magnetic-dipole �M1� operators, and for this reason are

known as the E1.M1 terms. �q and �q̃ are the E1.E2 terms,
as they mix electric-dipole and electric-quadrupole transi-
tions.

In Eqs. �15�–�17� only those terms which contribute to the
effective conductivity up to the first order in q were kept.
Combining Eqs. �14�–�17� with Eqs. �4� and �5� and compar-
ing with Eqs. �6� and �3� we find, upon collecting terms
linear in q,

�abc = ic��ad
em�dbc + �acd�db

me� +
�

2
��abc

q − �q̃
acb� . �18�

Spatial dispersion is thus governed by the magnetoelectric
and quadrupolar responses of the medium.4 The need to in-
clude the quadrupolar terms in order to properly describe the
optical activity of oriented molecules and uniaxial crystals
was emphasized in Ref. 25.

Dividing Eq. �18� into symmetric �magnetic� and antisym-
metric �natural� parts under a↔b yields

�abc
S = ic��bcd�ad + �acd�bd� + ��abc, �19�

�abc
A = ic��bcd�ad − �acd�bd� + �abc, �20�

where we have defined

�ab =
�ab

em + �ba
me

2
� Re �ab

em, �21�

which reduces to Eq. �1� in the static limit, and

�ab =
�ab

em − �ba
me

2
� i Im �ab

em, �22�

�abc =
�abc

q + �bac
q − �q̃

acb − �q̃
bca

4
�

i

2
Im��abc

q + �bac
q � ,

�23�

abc =
�abc

q − �bac
q − �q̃

acb + �q̃
bca

4
�

1

2
Re��abc

q − �bac
q � .

�24�

In each of these equations the second equality, denoted by
the symbol =̇, only holds at nonabsorbing frequencies, for

which �ab
em=̇��ba

me�� and �q̃
abc=̇��cab

q �� �see Appendix A�. In
this lossless regime �abc becomes anti-Hermitian in the first
two indices.

The above multipole formulation leads to a practical
scheme for calculating spatial dispersion effects, by comput-

ing the polarizabilities �em, �me, �q, and �q̃ from Eqs.
�A1�–�A4�, and assembling them in Eq. �18�. This approach
can be used for molecules and other finite systems but not for
bulk crystals, because the quantum-mechanical expressions
in Appendix A become ill-defined under periodic boundary
conditions.

The problem can be traced back to the integrations by
parts carried out around Eq. �10�, where the boundary terms
were discarded. Such procedure is allowed for finite systems,
as the boundary can always be placed outside the sample. It
cannot, however, be rigorously justified for periodic crystals
with delocalized electrons. This is a subtle but by now well-
understood problem. For example, the macroscopic electric
polarization and orbital magnetization of crystals cannot be
calculated under periodic boundary conditions as the first
moments of the charge and orbital current distributions in
one crystalline cell because the result depends on the choice
of cell.15 The correct band-theory expressions for P and or-
bital M have been derived in Ref. 14 and Refs. 16–19, re-
spectively.

C. Translationally invariant polarizabilities

Already for finite systems the description based on Eqs.
�15�–�17� is highly redundant, as the individual polarizabil-
ities are origin dependent.6,7 The combination of polarizabil-
ities on the right-hand side of Eqs. �19� and �20� is of course
translationally invariant �the conductivity is a physical ob-
servable� but we shall go one step further and redefine the
polarizability tensors so that they become individually origin
independent, and hence well defined for periodic crystals.

To begin, we note that the trace of � drops out from Eq.
�19�, leaving eight magnetoelectric quantities. These fully
specify �abc

S in the static limit while at finite frequencies the
quadrupolar tensor �abc=�bac contributes 18 additional quan-
tities. This brings the total number to 26 while �abc

S itself,
being symmetric in the first two indices, only contains 18
independent quantities. The source of this discrepancy lies in
the origin-dependence of the tensors � and �, and it can be
removed by suitably redefining them. To that end we note
that any third-rank tensor �abc

S symmetric under a↔b can be
uniquely expanded as

�abc
S = ic��bcd�̃ad + �acd�̃bd� + ��̃abc, �25�

where

�̃da =
1

3ic
�dbc

S �bca = �da −
1

3
Tr����ad +

�

3ic
�dbc�bca

�26�

�here �ad is the Kronecker delta� and

�̃abc =
1

3�
��abc

S + �cab
S + �bca

S � =
1

3
��abc + �cab + �bca� .

�27�

Replacing Eq. �19� with Eq. �25� removes the above-
mentioned discrepancy, because the totally symmetric tensor
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�̃abc has only ten independent quantities, compared to 18 in
�abc. As for the tensor �̃, it reduces in the static limit to the
traceless part of the magnetoelectric tensor �. But while �
becomes origin dependent at finite frequencies,7 �̃ remains
origin independent by admixing some quadrupolar character.
It seems appropriate to interpret the renormalized property
tensor �̃ as the traceless optical magnetoelectric tensor, and
�̃ as the purely quadrupolar part of �abc

S .
We now turn briefly to �abc

A . A third-rank tensor antisym-
metric in two indices has nine independent components,
however, there are 18 quantities on the right-hand side of Eq.
�20�. We therefore replace it with

�abc
A = ic��bcd�̃ad − �acd�̃bd� , �28�

where

�̃ab =
1

4ic
�bcd�2�acd

A − �cda
A � = �ab +

�

4ic
�bcd�2acd − cda� .

�29�

Hence natural optical activity, just like gyrotropic birefrin-
gence, is governed by an origin-independent combination of
magnetoelectric ��� and quadrupolar �� terms.25 Alterna-

tively, �̃ can be interpreted as a renormalized magnetoelec-
triclike tensor, in the same way as �̃.

Equations �25� and �28� for �abc
S and �abc

A correspond to
Eqs. �21� and �30� of Ref. 4 while Eqs. �26�, �27�, and �29�
express the translationally invariant property tensors �̃, �̃,
and �̃ as combinations of origin-dependent multipole polar-
izabilities.

III. EVALUATION OF THE CONDUCTIVITY

In this section we derive, working in the independent-
particle approximation, a quantum-mechanical expression
for �abc���. The expression, valid for band insulators, is con-
veniently written as a sum of two terms, which we shall
denote by the superscripts �m� and �e�. They arise, respec-
tively, from the q dependence of the transition matrix ele-
ments and of the transition energies.8

At nonabsorbing frequencies �abc��� is an anti-hermitian
tensor in the first two indices. The imaginary �symmetric�
part is given, at T=0, by the sum of

Im �S,abc
�m� ��� =

2e2

�
� �dk��

n,l

o,e
�ln

�ln
2 − �2

�Im�Aln,bBnl,ac + Aln,aBnl,bc� �30�

and

Im �S,abc
�e� ��� =

2e2

�2 � �dk��
n,l

o,e
�ln

3

��ln
2 − �2�2

��c�El + En�Re�Aln,aAnl,b� , �31�

and the real �antisymmetric� part of the sum of

Re �A,abc
�m� ��� =

2e2

�
� �dk��

n,l

o,e
�

�ln
2 − �2

�Re�Aln,bBnl,ac − Aln,aBnl,bc� �32�

and

Re �A,abc
�e� ��� = −

e2

�2� �dk��
n,l

o,e �3�ln
2 − �2��

��ln
2 − �2�2

��c�El + En�Im�Anl,aAln,b� . �33�

In these expressions the indices n and l run over occupied
�o� and empty �e� bands, respectively, �dk� stands for
d3k / �2	�3 ,�c=� /�kc

, and q�ln=El−En. All quantities in the
integrands are labeled by the index k, which has been omit-
ted for brevity. The matrix Anl,a=Aln,a

� , known as the Berry
connection, is defined as

Anl,a = i�un	�aul
 �34�

and the matrix Bnl,ac=−Bln,ac
� has both orbital and spin con-

tributions,

Bnl,ac = Bnl,ac
�orb� + Bnl,ac

�spin�, �35�

given by

Bnl,ac
�orb� =

1

2�
��un	��aH�	�cul
 − ��cun	��aH�	ul
� . �36�

and

Bnl,ac
�spin� = −

i

me
�abc�un	Sb	ul
 , �37�

where unk is a cell-periodic Bloch state, Hk is related to the
crystal Hamiltonian H by e−ik·rHeik·r, and me is the electron
mass.

The energy �e� terms have purely orbital character, while
the matrix element �m� terms have both orbital and spin
components. It can be verified that the spin part of Eq. �30�
does not contribute to Eq. �27�, consistent with the fact that
�̃abc is a purely orbital �electric-quadrupolar� quantity.

A. Derivation

The derivation of the equations given above proceeds as
follows. We first evaluate the absorptive �Hermitian� part of
�abc, and then insert its symmetric and antisymmetric parts
into the Kramers-Krönig relations

Im �abc��0� = −
1

	
P�

−�

� Re �abc���
� − �0

d� �38�

and

Re �abc��0� =
1

	
P�

−�

� Im �abc���
� − �0

d� , �39�

respectively.
The Kubo-Greenwood formula for the absorptive part of

the conductivity at finite � and q reads
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�ab
H �q,�� =

	e2

��
� �dk��

nl

�fn,k−q/2 − f l,k+q/2�

���n,k−q/2	Ia
†�q�	�l,k+q/2
��l,k+q/2	Ib�q�	�n,k−q/2


� ��� − �lnk�q�� , �40�

where fnk�q/2 is the occupation factor of the Bloch state
�nk�q/2 with eigenenergy Enk�q/2,

��lnk�q� = El,k+q/2 − En,k−q/2, �41�

and I�q� is related to the velocity and spin operators by

I�q� =
eiq·rv + veiq·r

2
+

i

me
�S � q�eiq·r. �42�

Equation �40� reduces in the limit q→0 to the familiar ex-
pression for the optical conductivity in the electric-dipole
approximation.26 It can be derived starting from the interac-
tion Hamiltonian

HI =
e

2c
�A · v + v · A� +

e

mec
�� � A� · S . �43�

Up to terms linear in q, the optical matrix element
��n,k−q/2	Ia

†�q�	�l,k+q/2
 may be replaced by

Bnlk,a�q� � �un,k−q/2	va�k� −
i

me
�S � q�a	ul,k+q/2


= Bnl,a
�0� + Bnl,acqc + ¯ �44�

where v�k�=e−ik·rveik·r Using the relation13 �v�k�=�aHk to-
gether with Eq. �34�, the expansion coefficients in the second
line are found to be

Bnl,a
�0� = �un	va	ul
 = i�nlAnl,a +

1

�
�ln�aEl �45�

and Eqs. �35�–�37� for Bnl,ac.
We are now ready to calculate �abc

H by differentiating Eq.
�40� with respect to qc. Because we assume an insulator at
T=0,27 the derivative acts only on the transition matrix ele-
ments and on the � function selecting the transition energies,
not on the occupation factors. Using Eq. �44� for the matrix
elements �note that the second, intraband, term in Eq. �45�
does not contribute to �abc in insulators�, together with

�

�qc

��� − �lnk�q��	q=0 = −
1

2�
���� − �lnk�0���c�Elk + Enk�

�46�

and inserting the result for the symmetric and antisymmetric
parts of �abc

H into Eq. �38� and Eq. �39�, respectively, one
easily obtains Eqs. �30�–�33�.

B. Static limit

In the limit �→0 the ME tensors �ab
em and �ba

me become
identical, and as a result �abc

A �Eq. �20�� vanishes. As for
�abc

S , we noted in Sec. II C that its dc limit is governed by
�̃�0�, the traceless part of the static ME polarizability tensor

��0�. Since our calculation of �abc
S only included the purely

electronic response to the optical fields, we should recover in
that limit the frozen-ion part of �̃�0�.

We will focus here on the orbital contribution to �abc
S , and

compare it with the band-theory expression obtained in Refs.
20 and 21 for the frozen-ion orbital ME tensor. The corre-
sponding proof for the spin contribution is elementary.

We begin by recasting the orbital part of Eqs. �30� and
�31� at �=0 in a form where empty states do not appear
explicitly. This is done in Appendix B, where we obtain

Im �S,abc
�orb� �0� =

e2

�
� �dk��

nm

o

Re���aun	�cum
�um	�bun


+ ��bun	�cum
�um	�aun
�

+
e

�
� �dk��

n

o

��Im��cun	�a�H + En�	�̃Eb
un


− a ↔ c� + b ↔ a� , �47�

where the covariant field derivative 	�̃Eb
un
 is given by Eq.

�B5�. Equation �47� can now be compared with Eq. �C.2� of
Ref. 20 for the static ME tensor, which reads

�da
�orb��0� =

e2

2�c
�abc� �dk��

nm

o

Re���bun	�cum
�um	�dun
�

−
e

�c
�abc� �dk��

n

o

Im��bun	�c�H + En�	�̃Ed
un
 .

�48�

It is easily verified that inserting Eq. �48� into Eq. �19� at
�=0 yields Eq. �47�, which proves the result.

IV. NUMERICAL RESULTS

In order to check the expression derived in the previous
section, we have carried out numerical tests comparing cal-
culations done under periodic boundary conditions against
reference calculations on finite crystallites. We chose for our
tests the tight-binding model of Ref. 20. This is a spinless
model on a 2�2�2 cubic lattice, where P symmetry is
broken by assigning random on-site energies and T symme-
try is broken by complex first-neighbor hoppings. The model
parameters in Table A.1 of Ref. 20 were used �one of the
complex hopping phases, labeled � therein, shall be used as
a control parameter�, and the two lowest bands were treated
as occupied.

The tensor components Im �xxy
S and Re �xyz

A were evalu-
ated at nonabsorbing frequencies. The calculations on peri-
odic samples were done on a 30�30�30 mesh of k points
using Eqs. �30�–�36�, together with the sum-over-states for-
mula for �k	unk
.20 For the calculations on finite samples we
used Eqs. �19� and �20�,

Im �xxy
S = 2c Re �xz + � Im �xxy � 2c�xz − i��xxy �49�

and
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Re �xyz
A = − cIm ��xx + �yy� + � Re xyz

� ic��xx + �yy� + �xyz, �50�

together with Eqs. �21�–�24� and �A1�–�A4� for the magne-
toelectric �� ,�� and quadrupolar �� ,� tensors. We chose
cubic samples containing L�L�L unit cells, with
L=1,2 ,3 ,4, and then extrapolated the calculated values to
L→�.20

Figure 1 shows as solid �dashed� lines the frequency de-
pendence of Im �xxy

S and Re �xyz
A for finite �periodic�

samples, with the parameter � set to 	. The natural optical
activity spectrum starts off at zero and increases with fre-
quency, exhibiting a resonant behavior as the minimum di-
rect gap, denoted by the vertical dashed line, is approached.
The ME optical spectrum displays a similar behavior, except
that it remains finite as � goes to zero. The excellent agree-
ment between solid and dashed lines demonstrates the cor-
rectness of the k-space formulas.

Next we discuss a number of additional numerical tests
where we investigate in more detail the behavior of Im �xxy

S .
In these tests the frequency was kept fixed, and the parameter
� was scanned over the range �0,2	�.

In Figure 2 we plot Im �xxy
S versus � for two frequencies,

�=0 and ��=1. As before, solid and dashed lines represent
calculations on finite and periodic samples respectively. In
addition, we show as dotted lines the result of a periodic-
sample calculation using only the matrix element �m� term,
Eq. �30�, i.e., omitting the energy �e� term, Eq. �31�. We see
that the energy term gives a small but visible contribution,
which must be included in order to find an agreement with
finite-sample calculation.

We now turn to the decomposition of Im �xxy
S according to

Eq. �49�, into magnetoelectric and quadrupolar parts. They
are plotted separately in Fig. 3 for ��=1 and
L=4. We chose a specific L because � and �� are origin-
dependent quantities, and it is therefore not meaningful to
extrapolate them separately to L→�. The dashed lines show
how each of them changes when the position of the sample is
shifted. The change in �zz is exactly compensated by the
change in ��xxy, so that the resulting Im �xxy

S remained the
same to machine precision, demonstrating its translational
invariance.

An alternative decomposition of Im �xxy
S is given by

Eq. �25�

FIG. 1. �Color online� The xxy component of the gyrotropic
birefringence tensor Im�abc

S , and the xyz component of the natural
optical activity tensor Re�abc

A , calculated for the tight-binding
model described in the text as a function of frequency. Solid lines:
extrapolation from calculations on finite crystallites. Dashed lines:
calculations on periodic crystals using the k-space formulas derived
in this work. The vertical dotted line indicates the frequency corre-
sponding to the direct band gap.

FIG. 2. �Color online� The xxy component of Im�abc
S ���, calcu-

lated for the tight-binding model described in the text as a function
of the parameter �. Solid lines: extrapolation from calculations on
finite crystallites using Eq. �49�. Dashed lines: calculations on pe-
riodic crystals using Eqs. �30� and �31�. Dotted lines: same as the
dashed lines, but omitting the contribution coming from Eq. �31�.

FIG. 3. Origin-dependence of the bare magnetoelectric �upper
panel� and quadrupolar �lower panel� polarizabilities appearing on
the right-hand side of Eq. �49�, calculated at ��=1 for a finite
sample �L=4� of the model used in Fig. 2. Solid lines: the center of
the sample is placed at the origin. Dashed lines: the sample is dis-
placed by r= �1,1 ,1�, in units of the lattice constant of the 2�2
�2 cubic cell.
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Im �xxy
S � 2c�̃xz − i��̃xxy . �51�

Unlike the bare property tensors � and �� appearing in Eq.
�49�, the renormalized magnetoelectriclike and purely qua-
drupolar tensors �̃ and ��̃ are origin-independent and hence
separately well defined for periodic samples. Figure 4 shows
as dashed �solid� lines their values calculated for periodic
�finite� samples from the first �second� equality in Eqs. �26�
and �27�. Because �̃ reduces to the traceless part of � as �
→0, we can directly compare the curve for �̃xz�0� with a
k-space calculation of �xz�0� using the formula derived in
Refs. 20 and 21 �open circles�. The precise agreement con-
firms numerically the analysis of Sec. III B.

V. SUMMARY AND OUTLOOK

In this work we investigated spatial-dispersion optical ef-
fects in insulators. The main result is a band-theory expres-
sion for �abc���, the spatially dispersive optical conductivity.
Special attention was given to the T-odd part of this tensor,
which is nonzero in magnetoelectrics crystals, and comprises
magnetoelectriclike ��̃ab� and purely quadrupolar ��̃abc� con-
tributions. We showed that each of them consists of a trans-
lationally invariant combination of separately origin depen-
dent molecular polarizability tensors.

The magnetoelectriclike tensor �̃ab has both spin and or-
bital contributions, and the expression for the orbital part
generalizes to finite frequencies the recently developed band
theory of orbital magnetoelectric response.20,21 The generali-
zation is, however, not complete, as the tensor �̃ab��� is
traceless, and therefore does not include the isotropic ME
coupling. The reason why the latter is not recovered from the
present formalism is that our starting point is the current
response of an infinite medium to an electromagnetic wave
while the trace of the ME tensor, known as the axion contri-
bution, only affects electrodynamics at boundaries.4,21 The
calculation of the axion piece at finite frequencies remains an
open problem.

The bulk expression for �abc��� at transparent frequencies
was validated by performing numerical calculations on a
tight-binding model, and comparing against reference calcu-
lations done on finite samples. The quantities needed to
evaluate that expression are the occupied and empty energy
eigenvalues and their k-space gradients, the off-diagonal
Berry connection matrix Eq. �34�, and the orbital and spin
matrices Eqs. �36� and �37�. The evaluation of all these ob-
jects in a first-principles context can be done efficiently by
mapping the electronic structure onto localized Wannier or-
bitals, and then using the technique of Wannier
interpolation.28 This approach has already been used to com-
pute the magnetic circular dichroism spectrum of
ferromagnets.29

First-principles calculations of the optical spectrum of
solids beyond the electric-dipole approximation are still in
their infancy. We hope that the formalism introduced in this
work will be useful for carrying out realistic calculations of
spatial-dispersion phenomena in the optical range, including
natural optical activity, gyrotropic birefringence, and direc-
tional dichroism.
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APPENDIX A: QUANTUM-MECHANICAL EXPRESSIONS
FOR THE POLARIZABILITY TENSORS

In this appendix we list the quantum-mechanical expres-
sions for the frequency-dependent polarizability tensors �em,

�me, �q, and �q̃ of bounded samples. They have been used to
produce the reference results �solid lines� in Figs. 2–4.

We provide the single-particle version of the formulas in
the lossless regime, which is the form used in Sec. IV. A
many-body derivation can be found in Ref. 7, and the modi-
fications needed to describe absorption are discussed in Refs.
6 and 7.

Defining Zln= �V� /2e2���ln
2 −�2�, where V is the system

volume, the orbital contribution to the magnetoelectric tensor
reads

Re �ab
em �

1

2c
�
n,l

o,e
�ln

Zln
Re��n	ra	l
�l	�r � v�b	n
� � Re �ba

me,

�A1�

FIG. 4. �Color online� Translationally invariant decomposition
�Eq. �51�� of the curves in Fig. 2 into magnetoelectriclike �upper
panel� and purely quadrupolar �lower panel� contributions. Solid
lines: extrapolation from calculations on finite crystallites. Dashed
lines: k-space calculations on periodic crystals. In the static limit the
tensor �̃ reduces to the traceless part of the magnetoelectric polar-
izability �, and the open circles show �xz�0� calculated in k space
according to Refs. 20 and 21.
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Im �ab
em �

1

2c
�
n,l

o,e
�

Zln
Im��n	ra	l
�l	�r � v�b	n
� � − Im �ba

me

�A2�

and the quadrupolar polarizability reads

Re �abc
q � �

n,l

o,e
�ln

Zln
Re��n	ra	l
�l	rbrc	n
� � Re �q̃

cba,

�A3�

Im �abc
q � �

n,l

o,e
�

Zln
Im��n	ra	l
�l	rbrc	n
� � − Im �q̃

cba.

�A4�

APPENDIX B: DERIVATION OF Eq. (47)

In order to derive Eq. �47�, we drop the spin contribution,
Eq. �37�, from Eqs. �30� and �31� and rewrite the orbital
contribution at �=0 as

Im �S,abc
�orb� �0� =

e2

�
� �dk���Cabc + Dabc� + �Cbac + Dbac�� ,

�B1�

where

Cabc = �
n,l

o,e

Re �ul	�bun

El − En

��un	��aH�	�cul
 − ��cun	��aH�	ul
��
�B2�

and

Dabc = �
n,l

o,e
�c�El + En�

El − En
Re���aun	ul
�ul	�bun
� . �B3�

We will use repeatedly the identity20

�c�H − El�	ul
 = �El − H�	�cul
 , �B4�

as well as the following expression for the field derivative of
a valience-band state projected onto the conduction bands20

	�̃Eb
un
 = − ie�

l

e 	ul
�ul	
El − En

	�bun
 . �B5�

We start by using Eq. �B4� to eliminate �cEl from Eq. �B3�,

Dabc = �
n,l

o,e

Re ��aun	��cH�	ul
�ul	�bun

El − En

+
��aun	H − El	�cul
�ul	�bun


El − En
+

�cEn

El − En
��aun	ul


��ul	�bun
� �B6�

and then use Eq. �B5� twice to find

Dabc = −
1

e
�

n

o

Im��aun	�c�H + En�	�̃Eb
un


+ �
n,l

o,e

Re ��aun	H − El	�cul
�ul	�bun

El − En

� . �B7�

Now write H−El as �H−En�+ �En−El� and use Eq. �B4�,

Dabc = Tabc −
1

e
�

n

o

Im��aun	�c�H + En�	�̃Eb
un


+ �
n,l

o,e

Re �un	�a�En − H�	�cul
�ul	�bun

El − En

� , �B8�

where we defined

Tabc = − �
n,l

o,e

Re��aun	�cul
�ul	�bun
 . �B9�

One term in Eq. �B8� exactly cancels the first term in Eq.
�B2�. For the remainder we use �un 	�cul
=−��cun 	ul
 once
and then Eq. �B5� twice, yielding

Cabc + Dabc = Tabc

+
1

e
�

n

o

Im���cun	�a�H + En�	�̃Eb
un
 − a ↔ c� .

�B10�

In order to eliminate the sum over empty states in Tabc we
need to combine Cabc+Dabc with Cbac+Dbac, as in Eq. �B1�.
We therefore consider

Tabc + Tbac = − �
n,l

o,e

Re���aun	�cul
�ul	�bun
 + a ↔ b�

= − �
n

o

Re���aun	��cQ�	�bun
�

= �
nm

o

Re���aun	�cum
�um	�bun


+ ��bun	�cum
�um	�aun
� , �B11�

where Q=�l
e	ul
�ul	=1−�m

o 	um
�um	. Collecting terms, we ar-
rive at Eq. �47�.
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