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Full magnetoelectric response of Cr2O3 from first principles
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The linear magnetoelectric response of Cr2O3 at zero temperature is calculated from first principles by tracking
the change in magnetization under a macroscopic electric field. Both the spin and the orbital contributions to the
induced magnetization are computed, and in each case the response is decomposed into lattice and electronic
parts. We find that the transverse response is dominated by the spin-lattice and spin-electronic contributions,
whose calculated values are consistent with static and optical magnetoelectric measurements. In the case of the
longitudinal response, orbital contributions dominate over spin contributions, but the net calculated longitudinal
response remains much smaller than the experimentally measured one at low temperatures. We also discuss the
absolute sign of the magnetoelectric coupling in the two time-reversed magnetic domains of Cr2O3.
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I. INTRODUCTION

There has been a recent resurgence of interest in magneto-
electric (ME) couplings in solids.1 Of particular importance is
the linear ME effect, which can occur in insulating materials
with broken inversion and time-reversal symmetries. It can be
described by a response tensor:

αEH
ij =

(
∂Pi

∂Hj

)
E

= μ0

(
∂Mj

∂Ei

)
H

, (1)

where P is the electric polarization induced by the magnetic
field H, and conversely M is the magnetization induced by the
electric field E .

The early milestones in the long history of the linear ME
effect include the original prediction by Dzyaloshinskii that it
should occur in Cr2O3

2 and its observation shortly after, both
in M(E)3,4 and in P(H)5,6 measurements. The ME effect has
since been observed in a large variety of materials, but Cr2O3

remains one of the best-studied ME compounds. The early
literature is surveyed in the monograph by O’Dell,7 and recent
reviews are given in Refs. 1 and 8–10.

Most of the early theoretical work was phenomenological
in character, making it difficult to assess the dominant
mechanisms behind the ME response. These can be divided
into electronic (i.e., frozen-ion) vs lattice responses on the
one hand11 and spin vs orbital magnetic contributions on
the other.12 Ab initio theory is an ideal tool for unraveling
the microscopic mechanisms of the ME effect in real materials,
and the first calculations started to appear in recent years.
The initial focus was on spin-lattice contributions,13,14 in part
because investigations of related phenomena in multiferroic
materials over the last decade had indicated that spin-lattice
effects are often dominant there.15 In reality, however, very
little is known about the relative magnitudes of the various
contributions to the ME tensor in typical magnetoelectric
materials.

Evidence for a significant electronic ME response in Cr2O3

came from optical measurements at frequencies above the
lattice resonances: in a series of milestone experiments,16–18

Pisarev, Krichevtsov, and collaborators observed optical ef-
fects governed by an effective ME tensor α(ω), and found
it to be comparable to the static ME coupling. Regarding
the distinction between spin and orbital couplings (e.g., how
much of the E-field induced magnetization comes from spin
moments versus orbital currents), it is probably rather difficult
to separate them experimentally due to the weakness of the
ME effect in known ME materials. Investigation of the orbital
contribution to the ME response is however interesting in its
own right. In particular, it was recently established that Z2

topological insulators with broken time-reversal symmetry on
the surface should display a quantized electronic orbital ME
response19,20 with a relatively large quantum (α = 24.3 ps/m
in SI units). This result further suggests that large orbital
ME responses can in principle be achieved even in generic
(nontopological) insulators with strong spin-orbit coupling
without any constraint on surface preparation.21

In this paper, we carry out a thorough first-principles
investigation of the linear ME effect in the paradigmatic
system Cr2O3. We compute the full static response, including
on the same footing all four basic contributions: spin-lattice,
spin-electronic, orbital-lattice, and orbital-electronic. This
completes the program initiated in Refs. 13 and 22, where some
but not all of them were evaluated. As in those works, we shall
focus exclusively on the ME response at zero temperature,
which is determined by mechanisms involving the spin-orbit
interaction.

We find that for the response transverse to the rhombohedral
axis the spin contributions are much larger than the orbital
ones. The calculated values of the lattice and electronic
responses are in good agreement with both static and optical
ME measurements, as well as with previous calculations. In
the case of the longitudinal response the calculated orbital
contributions are larger than their spin counterparts in both the
electronic and lattice channels. However, as a result of a near
cancellation between the orbital-electronic and orbital-lattice
contributions, the total calculated longitudinal response is
negligibly small. Thus, the nonzero longitudinal response that

094430-11098-0121/2012/86(9)/094430(7) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.86.094430


MALASHEVICH, COH, SOUZA, AND VANDERBILT PHYSICAL REVIEW B 86, 094430 (2012)

FIG. 1. (Color online) Rhombohedral primitive cell of Cr2O3.
The arrows indicate the orientations of the magnetic moments on the
Cr ions (the spins on the ions point opposite to the arrows). The
center of the cell is a center of inversion symmetry coupled with time
reversal.

is measured at low temperatures remains unaccounted for.
Some possible reasons for this disagreement will be discussed.

II. PRELIMINARIES

A. Structure of Cr2O3

Chromium (III) oxide (eskolaite) crystallizes in a
corundum-type structure shown in Fig. 1, with two formula
units per primitive cell. The magnetic space group is R3̄c1′
above TN = 307 K. Below this temperature Cr2O3 turns into
an antiferromagnetic (AFM) insulator, with magnetic space
group R3̄′c′. The magnetic moments on the Cr ions align
along the rhombohedral z axis, pointing up and down in an
alternating manner (see Fig. 1). The magnetic point group
is 3

′
m′, which allows for a diagonal ME tensor α with two

independent components, α⊥ ≡ αxx = αyy (transverse) and
α‖ ≡ αzz (longitudinal).23

We note that there are two distinct possibilities for arranging
the magnetic moments in the AFM ground state, related to one
another either by time reversal (i.e., by flipping the magnetic
moments on every Cr ion) or by spatial inversion. As each
of these operations also flips the sign of α, it is important to
specify which configuration is assumed when reporting values
for α⊥ and α‖. Our calculations refer to the configuration
shown in Fig. 1.

B. Formalism and review of previous calculations

We begin by clarifying issues of units and conventions.
Equation (1), which is written in the (E,H ) frame, conforms
with the standard experimental definition of the linear ME
tensor, which has units of ps/m in SI units. Instead, from the
point of view of first-principles theory it is more convenient
to work in the (E,B) frame, where α has units of vacuum
admittance

√
ε0/μ0:

αij =
(

∂Pi

∂Bj

)
E

=
(

∂Mj

∂Ei

)
B

. (2)

The two definitions Eqs. (1) and (2) are related by αEH = μα,
where μ is the magnetic permeability. In the approximation

that μ/μ0 � 1, which is a good approximation for most
nonferromagnetic materials, the conversion is trivial, and we
shall report the calculated values of α as though we had
computed them in the (E,H ) frame. For a more detailed
discussion, see Sec. II A of Ref. 21.

Let us now discuss how to compute the various contri-
butions to the ME tensor. To recap, the full response can
be decomposed into spin and orbital parts according to the
nature of the induced magnetization in the M(E) picture.
Each of these can be further decomposed according to the
two basic mechanisms by which the field acts on the system.
The electronic part describes the ME response that the system
would have if the ions were held fixed in their equilibrium
positions. The remaining lattice part is associated with the
field-induced ionic displacements.

1. Lattice response

We consider first the calculation of lattice couplings. Here
the influence of the applied field (B or E) on the nonconjugate
moment (P or M) is mediated by internal ionic displacements
u, so that

αlatt = ∂P
∂u

∂u
∂B

=
(

∂M
∂u

∂u
∂E

)T

, (3)

where a summation over the atoms in one crystal cell is
implied, and “T” denotes the matrix transpose. (In general
there may also be a strain mediated coupling,14 but in
Cr2O3 this contribution vanishes by symmetry, and it will not
be considered further here.) Optionally, one may also take
advantage of the fact that the displacements induced by the
field are mediated by field-induced forces F. For the case of
applied electric field, Eq. (3) can be rewritten as13

(αlatt)T = ∂M
∂u

∂u
∂F

∂F
∂E = −�

∂M
∂u

(
∂2E

∂u∂u

)−1 (
∂P
∂u

)T

, (4)

where E is the total energy per unit cell and � is the
unit-cell volume. Here we have made use of the fact that the
Born effective charge tensor can be expressed equivalently
as (∂F/∂E)T = �∂P/∂u. [Alternatively, by invoking the
magnetic analog (∂F/∂B)T = �∂M/∂u we can arrive at this
same equation in a different way, starting from Eq. (3) for the
case of applied magnetic induction.] Note that the inverse of
the force-constant matrix now appears symmetrically between
the magnetic and electric Born tensors in Eq. (4).

There are several choices on how to proceed. One pos-
sibility, following Eq. (3), is to relax the structure in the
presence of a small B or E field, and then compute the
relaxation-induced change in P or M. Alternatively, Eq. (4)
expresses αlatt in terms of three basic quantities (the force-
constant matrix, the Born charges, and their magnetic analogs),
all of which can be computed as changes of various quantities
in response to atomic displacements at vanishing fields. One
can choose to compute such derivatives by finite differences
or by using linear-response techniques available in most
density-functional packages.

2. Electronic response

The calculation of the electronic response αel requires
coupling the field B or E in Eq. (2) directly to the electrons,
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and determining the induced P or M. In practice this can be
done using either finite-field approaches or linear-response
techniques.

Of the two contributions, spin-electronic and orbital-
electronic, the latter is the most challenging one to calculate. A
perturbative expression valid for periodic crystals was recently
derived,24,25 which can be implemented in the context of
density-functional perturbation theory. In the present work
we have opted to calculate the orbital-electronic response
as ∂Morb/∂E , using finite electric fields. Another possibility
would be to calculate it as ∂P/∂Borb, using a finite orbital
magnetic field. The inclusion of orbital magnetic fields in
total-energy calculations of periodic solids is, however, a
challenging problem which has not yet been fully solved, in
spite of some recent progress.25–27

3. Review of previous calculations for Cr2O3

The methods described above were recently used to
evaluate the spin-lattice and spin-electronic parts of α. For the
spin-lattice contribution, Íñiguez13 performed his pioneering
calculations following Eq. (4), while Bousquet et al.22 used
Eq. (3). More precisely, the latter authors performed structural
relaxations in the presence of a fixed Zeeman magnetic field
Bspin by adding to the Kohn-Sham energy functional a Zeeman
term describing the coupling to the spins. Furthermore, by
monitoring the linear change in the electronic polarization
Pel under a small field with fixed ions, Bousquet et al. were
also able to determine the spin-electronic response. Thus, out
of the four possible contributions to α, only the two spin
contributions (lattice and electronic) have previously been
evaluated from first principles for Cr2O3.

C. Computational approach

Let us now describe the method that we use for calculating
the lattice and electronic ME responses, including in each case
both the spin and the orbital parts of the response.

For the lattice couplings we employ a method similar to
that of Ref. 13 but including also the orbital contribution
to ∂M/∂u (we found this to be a more efficient approach
than relaxing the lattice under a finite electric field). We
first compute the Born effective charges and force-constant
matrix using linear-response techniques,28 and from these
we find the first-order field-induced displacements �u =
(∂u/∂E) · �E , where a nominal field �E of ∼ 109 V/m is
applied along the rhombohedral axis or in the perpendicular
direction. Displacing the atoms by �u, we then determine
the induced magnetization �Mspin + �Morb. The linearity of
the magnetization response was checked by both reducing the
magnitude and flipping the sign of �E .

In order to reduce the computational cost, the spin-orbit
interaction is not included in the linear-response calculations.
This procedure captures the dominant contributions to αlatt,
i.e., those that are linear in the spin-orbit coupling strength;
we have checked that it produces results which are almost
identical to a calculation in which the spin-orbit coupling is
included at every step.

For a given set of ionic displacements �u, the orbital
magnetization at E = 0 is calculated under periodic boundary

conditions as

Morb = M̃LC + M̃IC, (5)

where29–31

M̃LC = e

2h̄

∫
d3k

(2π )3
Im 〈∇̃kunk| × Hk|∇̃kunk〉, (6)

M̃IC = e

2h̄

∫
d3k

(2π )3
Im[〈unk|Hk|umk〉

× 〈∇̃kumk| × |∇̃kunk〉]. (7)

Here LC and IC stand for local circulation and itinerant
circulation, respectively, |unk〉 is the cell-periodic part of
the Bloch state |ψnk〉, and Hk = e−ik·rHeik·r, where H is
the Kohn-Sham Hamiltonian of the crystal. Summations
over occupied bands are implied for repeated band indices,
and ∇̃k ≡ (1 − |unk〉〈unk|)∇k. In practice the Brillouin-zone
integral is replaced by a summation over a uniform grid,
and ∇̃k is evaluated on that grid by finite differences.31 M̃LC

and M̃IC are separately gauge-invariant, i.e., they remain
unchanged under k-dependent unitary transformations among
the occupied states.

Let us now turn to the electronic response, which we
calculate as ∂M/∂E , taking advantage of the well-established
ab initio treatment of homogeneous electric fields in periodic
insulators.32 The magnetization Mspin + Morb is determined
with and without an electric field of intensity ∼109 V/m
(using in both cases the same crystal structure optimized at
zero field) in order to extract the spin-electronic and orbital-
electronic ME couplings. The evaluation of spin magnetization
is straightforward and here we just mention that, as an
additional check, we have recomputed the spin-electronic
coupling using the converse Zeeman-field approach, finding
good agreement between the two methods.

To compute Morb at finite E , we make use of the following
generalization of Eqs. (5)–(7).24 One part is given by the
same expression valid at zero field, Eqs. (6) and (7), upon
reinterpreting the states |unk〉 therein as field-polarized Bloch
states32 (and H as the crystal Hamiltonian calculated from the
field-polarized periodic charge density). To this, an additional
contribution of the form

MCS = − e2

2h̄
E

∫
d3k

(2π )3
Tr

[
A · ∇k × A − 2i

3
A · A × A

]
(8)

must be added in order to obtain the full orbital magnetization.
Here Anm

k ≡ i〈unk|∇k|unk〉 is the Berry connection matrix; the
integrand is a scalar known as the Chern-Simons 3-form19,20

(band indices are suppressed). Thus, at E �= 0 we have, instead
of Eq. (5),

Morb = M̃LC + M̃IC + MCS, (9)

and all three terms contribute to the orbital-electronic ME
response. The term αCS is purely isotropic and can be
calculated from the valence Bloch states at zero field. Its
numerical evaluation requires a smooth gauge in k space,
and this can be achieved by mapping the valence bands onto
localized Wannier functions.21
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D. Technical details

The total-energy and linear-response calculations were
performed using the QUANTUM-ESPRESSO33 ab initio code
package, working in a fully relativistic framework where the
spin-orbit interaction is included in the atomic pseudopo-
tentials. We employed Troullier-Martins norm-conserving
pseudopotentials,34 which in the case of Cr included the
semicore 3s and 3p states in the valence.

The wave functions in the solid were expanded in plane
waves with an energy cutoff of 250 Ry for structural relaxations
and linear-response calculations and 150 Ry for orbital
magnetization calculations. The Brillouin zone was sampled
on a 4 × 4 × 4 Monkhorst-Pack mesh for most self-consistent-
field (SCF) calculations. While this mesh density produced
converged values for the spin-lattice and spin-electronic ME
contributions, the two orbital contributions converged more
slowly with k-point sampling [this is probably related to the
finite-differences representation of the covariant derivatives
in Eqs. (6) and (7)]. After testing several grid densities, we
concluded that a 7 × 7 × 7 mesh gave sufficiently converged
values.

As noted in Ref. 13, the computation of ME couplings
demands a very tight tolerance on the convergence of the
self-consistent field loop. We therefore used rather stringent
convergence thresholds, of the order of 10−11–10−12 Ry in
the total energy. In order to reach this level of convergence
in a reasonable number of steps with QUANTUM-ESPRESSO,
we found it useful to use the Thomas-Fermi charge mixing
scheme,36 by setting the input variable “mixing mode” to
“local-TF.” We also found that the speed of convergence of
the calculations with a finite electric field was improved by
increasing the field gradually from zero in small steps.

The exchange-correlation potential was described within
the generalized-gradient approximation (GGA) using the
Perdew-Burke-Ernzerhof (PBE) parametrization.37 This
choice was made after having optimized the structure using
both the local-density approximation (LDA) and PBE, and
finding that the latter produced structural parameters in better
agreement with experiment (see Table I). In particular, LDA
underestimates the unit-cell volume by 7.3% while PBE
overestimates it by only 1.7%. We note that the authors of
Refs. 13 and 22 used LDA + U with the experimental cell
volume enforced. As for the magnetic structure, the staggered
spin moments on the Cr atoms have a value of 2.7 μB/atom, for
a sphere integration radius of 1.3 Å. This is in good agreement
with the LDA + U value reported in Ref. 13.

TABLE I. Calculated and experimental structural parameters of
Cr2O3 in the antiferromagnetic phase: rhombohedral lattice parameter
a, rhombohedral angle α, and Wyckoff positions of the Cr ions (4c

orbit) and O ions (6e orbit).

Wyckoff positions

a (Å) α (deg) Cr O

PBE (this work) 5.415 54.45 0.1541 0.0597
LDA (Ref. 21) 5.322 53.01 0.1575 0.0690
Expt. (Ref. 35) 5.358 55.0 0.1528 0.0566

TABLE II. Calculated contributions to the magnetoelectric tensor
components α⊥ and α‖ in Cr2O3. Columns (rows) show the spin
and orbital (electronic and lattice) contributions. (The results from
previous calculations are indicated in parentheses.)

α⊥ (ps/m) α‖ (ps/m)

Spin Orb. Total Spin Orb. Total

Elec. 0.26 −0.014 0.25 0.0007 −0.009 −0.008
(0.34a) (0a)

Latt. 0.77 0.025 0.80 0.0026 0.008 0.011
(1.11a) (0a)
(0.43b) (0.00b)

Total 1.03 0.011 1.04 0.003 −0.001 −0.002

aReference 22.
bReference 13.

III. RESULTS

A. Contributions to the ME response

The main results of our calculations are presented in
Table II together with results from previous theoretical works,
given in parentheses. Let us first analyze the transverse ME
response. The magnitude of the calculated static value, |α⊥| =
1.04 ps/m, agrees well with the most reliable measurements,
which range from 0.7 to 1.6 ps/m.38,39 The spin-lattice
contribution accounts for about 75% of that value, with
the remaining 25% coming mostly from the spin-electronic
response, while the two orbital contributions are negligible
(less than 2%). The values we obtain for the individual
contributions αlatt

⊥ and αel
⊥ agree well with those calculated

in Ref. 22 using the converse Zeeman-field approach.
In the case of the longitudinal response, the relative

strengths of the four contributions are very different. As in
previous calculations,13,22 we find that the spin contributions
to α‖ are very small, summing to only 0.003 ps/m in our
calculation. This can be understood as resulting from the
extreme stiffness of the magnitude of the spin moment in
a collinear band antiferromagnet, which is also reflected in
the near-vanishing of the spin magnetic susceptibility χ‖ at
T = 0.12

Experimentally, however, the low-temperature α‖ is found
to be about 0.2–0.3 ps/m.38,39 This is smaller than α⊥ by a
factor of 3 to 6, but still about two orders of magnitude larger
than our theoretical spin value, suggesting that orbital effects
might be responsible for most of the α‖ response. Indeed,
Hornreich and Shtrikman12 pointed out that a zero-temperature
longitudinal ME response could arise in Cr2O3 from an
electric-field-induced shift in the g factor of the Cr ions
(see also Ref. 11). This is an orbital effect that should be
automatically included in the present calculations. In fact,
we do find that our computed orbital-lattice and orbital-
electronic contributions to α‖ are nearly an order of magnitude
larger than the corresponding spin contributions. However, the
orbital-lattice and orbital-electronic contributions individually
are still an order of magnitude smaller than the measured
value. Moreover, these two contributions have opposite signs,
resulting in a near cancellation of the entire longitudinal
response. Our total α‖ of 0.002 ps/m thus remains about two
orders of magnitude smaller than the measured value.
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TABLE III. Decomposition of the calculated orbital ME response
of Cr2O3 (presented in Table II) into “local circulation,” “itinerant
circulation,” and “Chern-Simons” contributions coming respectively
from Eqs. (6), (7), and (8).

αorb (ps/m) αorb
⊥ αorb

‖

Electronic
Local circulation −0.0064 −0.0237
Itinerant circulation −0.0084 0.0135
Chern-Simons 0.0012 0.0012
Subtotal −0.0136 −0.0090

Lattice
Local circulation 0.0202 0.0078
Itinerant circulation 0.0051 0.0000
Subtotal 0.0253 0.0078

Total 0.0117 −0.0012

There are several possible explanations for this discrepancy.
First, the theoretical values for the orbital longitudinal response
are quite small, and thus might be especially sensitive to
numerical errors. However, we have checked k-point and
self-consistent convergence carefully, and do not believe this is
a major concern. More serious is the potential dependence on
choice of exchange-correlation potential. In particular, within
the LDA we found that the orbital-electronic and orbital-lattice
contributions are approximately a factor of 3 larger compared
to PBE, although similar cancellation of the two contributions
was observed. Future work is needed to check the sensitivity
of these calculations to the choice of GGA (adopted here) as
opposed to LDA, LDA + U or GGA + U, hybrid functionals,
or other orbital-dependent functionals. Since orbital currents
play a crucial role, the use of current-density functionals should
probably also be explored. On the experimental side, it would
probably be advisable to check the dependence of the measured
value on sample quality, in order to rule out extrinsic effects
associated with defects, surfaces, contacts, etc.

It is also possible, however, that the experimentally ob-
served response is dominated by some physics not captured by
LDA or GGA approximations to the exact density functional.
For example, the strong dependence of α‖ upon temperature
makes it clear that thermal fluctuations strongly influence the
longitudinal response. By the same token, it is possible that
quantum spin fluctuations, already present in the antiferromag-
netic state at zero temperature, may play an important role. For
the time being, we leave this as an open question.

Before closing this section, we recall that the orbital ME
response can be further decomposed into local circulation
(LC), itinerant circulation (IC), and—in the case of the orbital-
electronic response—Chern-Simons (CS) contributions, as in
Eq. (9). Table III shows the breakdown of the full orbital
response computed in the present work. In our previous study
of Cr2O3, only the isotropic CS term was calculated (using
LDA rather than GGA).21 In that work we found the CS term
to be ∼0.01 ps/m, about an order of magnitude larger than the
presently calculated value. Further work is needed to determine
how the various terms in the ME response of Cr2O3 depend
on the choice of exchange-correlation potential. It can be seen
that the CS contribution to the orbital-electronic response is
about an order of magnitude smaller than the LC and IC

contributions. Individually, the LC and IC orbital-electronic
contributions are somewhat larger for α‖ than for α⊥, but
taken together the opposite is true. As for the orbital-lattice
contributions to α⊥ and α‖, they come mainly from the LC
terms.

B. Sign of the ME response

We now discuss the overall sign of the tensor α. As already
mentioned, in Cr2O3 this sign depends on the orientation of the
magnetic moments (see Fig. 1). Experimentally, a single AFM
domain can be stabilized by cooling the sample through the
Néel temperature in the presence of parallel (or antiparallel)
electric and magnetic fields (“magnetoelectric annealing”),
and the spin structure can then be analyzed using spherical
neutron polarimetry.40,41

According to Ref. 40, the orientation of the magnetic
moments shown in Fig. 1 therein corresponds to a domain
annealed with electric and magnetic fields pointing in the op-
posite direction along the rhombohedral axis, provided that ar-
rows in that figure indeed indicate directions of spin moments
rather than magnetizations. Since the magnetoelectric tensor
appears in the free energy in the form FME = −αijEiHj , the
domain under consideration should have negative α‖ near the
Néel temperature. Experimental measurements of magneto-
electric coupling as a function of temperature38,39 show that α‖
changes sign around 100 K, while α⊥ is negative all the way to
4.2 K. Assuming that magnetic domain is determined at high
temperatures, close to the Néel temperature, and that magnetic
domains remain frozen upon cooling to 4.2 K, we can conclude
that at 4.2 K the domain shown in Fig. 1 must have α⊥ > 0
and α‖ > 0.

Our computed signs appear to agree with the experimental
work of Ref. 40, although it was not made entirely clear
whether the signs reported there refer to spins or magnetiza-
tions. Now that first-principles theory is seriously beginning to
confront experiment in the field of magnetoelectric couplings,
we urge closer attention to sign issues in future investigations,
both theoretical and experimental.

C. Comparison to optical measurements

We now turn to the comparison with existing measurements
of the optical ME tensor α(ω). As our theory only deals
with static fields, the calculated αel should be thought of
as the ω → 0 limit of the purely electronic optical response
(quasistatic limit). This is expected to approximate reasonably
well the measured response at frequencies between the lattice
and electronic resonances and sufficiently far from both.

The ME coupling influences both the transmission and
reflection of light from a magnetoelectric medium, giving
rise to characteristic optical effects which are odd under time
reversal.11,42 While the propagation of electromagnetic waves
inside a ME medium is only affected by the traceless part of
α, all tensor components can in principle be extracted from
reflectance measurements, although in that case the net effect
may also have surface-specific contributions.17 The reflection
experiments of Ref. 17 were carried out using visible light
with a wavelength of 633 nm (1.96 eV), which falls within
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the exciton absorption range of Cr2O3, thus precluding a
meaningful comparison with our quasistatic calculations.

We therefore focus on the earlier transmission
measurements,16 which used near infrared light of 1156 nm
(1.07 eV). The effect that was observed consists of a tilt away
from the crystallographic ŷ and ẑ directions of the linear
polarization of light traveling along x̂. The tilt angle φ is
related to the components of the optical ME tensor (expressed
in Gaussian units) and index of refraction by17,42

φ � −1

2

αzz − αxx

nz − nx

. (10)

While an effect which changed sign between time-reversed
samples was clearly observed, a time-even background signal
of comparable magnitude could not be eliminated. The most
reliable value, φ = 4′ � 1.2 × 10−3 rad, was measured at 220–
240 K. As the absolute value of the linear birefringence was
not reported, we use the value nz − nx = 5.8 × 10−2 quoted
in Ref. 17 for 633 nm, to arrive at αxx − αzz ∼ 0.12 ps/m.
The agreement with our calculated value of 0.26 ps/m is quite
satisfactory, given the experimental uncertainties as well as the
limitations in our theory (namely, the DFT underestimation
of the optical gap and the assumed quasistatic and low-
temperature limits in the calculation).

We emphasize that, as in the case of the static measurements
discussed earlier, the dominant type of AFM domain present
in the samples was not specified in Ref. 16. Hence the
absolute sign of the measured optical ME coefficient was not
determined. It would be interesting to carry out optical and
static ME measurements on the same single-domain sample
at low temperatures. This would allow one to extract the
relative sign between αel

⊥ and αlatt
⊥ + αel

⊥, which we predict
to be positive.

IV. CONCLUSIONS

In summary, we have performed a thorough investigation
of the zero-temperature ME response in Cr2O3 using first-
principles calculations. We analyzed the lattice and elec-
tronic parts of the response including both spin and orbital
magnetization contributions, being careful to treat all four
contributions on an equal footing. In particular, we treated
the orbital response using the modern Berry-phase theory,
without introducing muffin-tin approximations, in which
orbital currents are computed inside spheres around atoms.

We have then compared the calculated values with static and
optical measurements. Previous calculations, which focused
on the spin contributions, had found an essentially null value
for α‖, in disagreement with experiment. We therefore set
out to check whether orbital effects could account for the
observed low-temperature longitudinal response, as had been
proposed early on in the literature. Our results suggest that
this is not the case, as the calculated orbital responses are very
small, consistent with a scenario of strongly quenched orbital
moments. We hope that the present findings will stimulate
further investigations, both on the experimental and theoretical
sides.

Recently we became aware of concurrent first-principles
studies of the orbital ME response in Cr2O3

43 and LiFePO4
44

using the approximation of integrating orbital currents within
atom-centered spheres.
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