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Abstract
Using first-principles methods we explore the anisotropy of the spin relaxation and transverse
transport properties in bulk metals with respect to the real-space direction of the
spin-quantization axis in paramagnets or of the spontaneous magnetization in ferromagnets.
Owing to the presence of the spin–orbit coupling the orbital and spin character of the Bloch
states depends sensitively on the orientation of the spins relative to the crystal axes. This leads
to drastic changes in quantities which rely on interband mixing induced by the spin–orbit
interaction. The anisotropy is particularly striking for quantities which exhibit spiky and
irregular distributions in the Brillouin zone, such as the spin-mixing parameter or the Berry
curvature of the electronic states. We demonstrate this for three cases: (i) the Elliott–Yafet
spin-relaxation mechanism in paramagnets with structural inversion symmetry; (ii) the
intrinsic anomalous Hall effect in ferromagnets; and (iii) the spin Hall effect in paramagnets.
We discuss the consequences of the pronounced anisotropic behavior displayed by these
properties for spin-polarized transport applications.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Phenomena belonging to the field of spintronics are associated
with the spin of electrons, which do the job of carrying
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information across a device. In such a situation, the fact that
the spin and orbital degrees of freedom of Bloch electrons
in a solid are fundamentally related due to the presence
of spin–orbit coupling (SOC) becomes of great importance.
Normally, the spin–orbit interaction can be considered as
a small perturbation compared to the other relevant energy
scales for electrons in a crystal (such as band gaps, band
widths, or exchange splittings). Its influence is to mix in
a non-trivial fashion the spin and orbital character of the
Bloch states at each crystal momentum. If we consider
now the non-equilibrium situation of an electron moving
in one of the Bloch bands across the crystal under the
influence of an external electric field, the spin–orbit mediated
interaction with other Bloch states will determine its spin
and orbital dynamics. Consider the case of a paramagnetic
crystal. If we manage to make our initial incoming
electron spin-polarized—a typical situation in a spin-injection
experiment—this spin polarization will decrease in time due
to random scattering off impurities or phonons [1, 2], until
it completely vanishes. Its exponential decay in time is
characterized by the spin-relaxation time, which serves as
one of the most basic material parameters in spintronics [3].
In another example, the presence of the spin–orbit coupling
modifies in a subtle way the dynamics of Bloch electrons
under an applied electric field by adding a spin-dependent
transverse component to the velocity. This will result in
an anomalous Hall effect (AHE) in ferromagnets [4], and
a spin Hall effect (SHE) in paramagnets [5]. Conceptually,
the understanding of these two phenomena over the past
10–15 years has generated a number of novel concepts in
modern spintronics, and solid state physics in general. While
practically the AHE and SHE have entered the everyday
toolkit in experimental spintronics, further exciting research
in this field is still ahead of us. A lot remains to be done
concerning the microscopic understanding and first-principles
description of spin-relaxation phenomena and transverse
transport properties in real materials.

The crystal field in a solid is manifestly anisotropic
and lifts the degeneracy between states of different magnetic
quantum numbers. Together with the action of SOC, this
results in a strong dependence of the spin and orbital character
of the Bloch states on the choice of the spin-quantization
axis (SQA) or the direction of the magnetization in the
crystal, since the matrix elements of the orbital angular
momentum operator are strongly anisotropic themselves.
In ferromagnets, crystal field splitting combined with the
anisotropy of the orbital angular momentum operator leads
to a dependence of the band energy on the direction of the
magnetization, resulting in the magneto-crystalline anisotropy
energy [6–8]—one of the fundamental characteristics of
magnetic materials. In the field of transport phenomena
in metals, the anisotropy of the electronic structure with
respect to the magnetization direction leads to such
prominent phenomena as anisotropic magnetoresistance [9],
tunneling anisotropic magnetoresistance [10, 11] and ballistic
anisotropic magnetoresistance [12]. As in the case of the
magneto-crystalline anisotropy energy, these effects can
already be captured in many cases by considering only the

changes in the band topology in the Brillouin zone as the
orientation of the magnetization is varied [10, 12–14]. This
situation is in contrast to the case of the AHE and SHE,
which are often governed by band degeneracies at the Fermi
level [15]. In this case the dependence of the eigenenergies
on the global SQA or magnetization direction in real space is
either absent or can often be neglected, while the anisotropy of
the spin and orbital resolution of the wavefunctions becomes
of primary importance, and could lead to very large values of
the anisotropy of the Hall conductivities, as speculated already
by Fivaz in 1969 for the anomalous Hall effect [16].

The significant anisotropy of the spin-relaxation and
Hall effects is a valuable tool for tuning the transport
properties of spintronics devices. Since such anisotropy is
an intrinsic property of the crystalline solid, it should be
properly averaged when using polycrystalline samples, as
well as when considering the effect of temperature and
magnetization dynamics on the measured spin polarization or
transverse current [17]. Experimentally, only the anisotropy of
the anomalous Hall effect with respect to the direction of the
magnetization in the sample has been researched in the past
and in many cases a very large anisotropy was found [18–25],
while evidence of anisotropy in the spin Hall effect [26] and
spin relaxation has been presented only recently [27, 28].

Here, we review the current theoretical understanding
of the three phenomena occurring in perfect crystals: (i)
anisotropy of the spin relaxation with respect to the choice of
the real-space SQA determined by an applied magnetic field
or spin polarization of injected electrons, (ii) anisotropy of the
intrinsic anomalous Hall effect with respect to the real-space
direction of the saturation magnetization in ferromagnets, and
(iii) anisotropy of the intrinsic spin Hall effect with respect to
the choice of the SQA in real space, defined by the direction
of the spin polarization of the spin current (figure 1). We
focus on the developments which have taken place over the
past few years [17, 31–36]. We present arguments and show
from first-principles calculations that due to the sensitivity of
spin-relaxation and Hall effects to the SOC-mediated coupling
between (nearly) degenerate states in the vicinity of the Fermi
level, the anisotropy of these effects can be gigantic, and
has in principle no theoretical limit. Manifestly, for some
directions of the SQA and magnetization in the crystal the
spin-relaxation rates and Hall currents can be suppressed by
orders of magnitude, or even display a change of sign in
corresponding conductivity components. We discuss possible
applications of such large anisotropies, encourage further
experimental studies in this area, and emphasize that a wide
range of materials exhibit anisotropic transverse transport and
spin relaxation, from bulk solids to surfaces and interfaces
with essentially lowered lattice symmetry.

The review is structured as follows. The rest of
this section is dedicated to a brief introduction to the
Elliott–Yafet [1, 2] spin-relaxation mechanism and the
intrinsic anomalous and spin Hall effects in solids. In section 2
we describe the computational methods and provide the
details of first-principles calculations presented in the rest
of the review. The concept of anisotropic Elliott–Yafet spin
relaxation is introduced and discussed in detail both from
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Figure 1. Setup of the anisotropic spin-relaxation and transverse spin and anomalous Hall effects in metals. Anisotropic spin relaxation
(left): an electron with a certain direction of spin, injected into a solid which exhibits anisotropic spin relaxation, will lose the memory of its
initial spin polarization over a period of time, which depends on the direction of the spin polarization in real space (z or x, red and blue
arrows correspondingly). Anisotropic spin Hall effect (middle): the magnitude of the spin current and the direction of its spin polarization
(related to the sign and magnitude of the spin accumulation on the surfaces of the sample) measured along a certain direction in a crystal
depends on the direction of applied electric field E which generates the longitudinal electric current J0. Anisotropic anomalous Hall effect
(right): for a fixed direction of applied electric field E and corresponding longitudinal electric current J0 (pointing in the z direction out of
the plane of the figure), the direction and magnitude of the Hall current JH depend on the direction of magnetization M in the sample. Note
that for a general direction of M away from high-symmetry axes in the crystal, JH can be non-orthogonal to M.

model and ab initio viewpoints in section 3. Sections 4 and
5 are dedicated to anisotropic intrinsic spin and anomalous
Hall effects in transition metals and their alloys, respectively.
We conclude the review and provide an outlook in section 6.

Throughout the text we shall make frequent use of the
following abbreviations. AHC: anomalous Hall conductivity;
AHE: anomalous Hall effect; EYP: Elliott–Yafet parameter;
PHE: planar Hall effect; SHC: spin Hall conductivity;
SHE: spin Hall effect; SOC: spin–orbit coupling; SQA:
spin-quantization axis.

1.1. Spin relaxation in paramagnets

As a first example of a situation in which the importance
of the anisotropy of the wavefunctions with respect to the
choice of the spin-quantization axis is very pronounced we
consider the phenomenon of spin relaxation. To be concrete,
here we concentrate on the Elliott–Yafet spin-relaxation
mechanism, dominant in materials with structural bulk
inversion symmetry [1, 2], which is due to scattering of
electrons off phonons or impurities. Owing to the presence
of spin–orbit coupling in the system such scattering events
will flip the spin of the electron with a certain probability,
which depends on both the wavefunctions of the ideal crystal
and the scattering potential. However, according to the Elliott
approximation [1], a reasonable estimate of the ratio between
momentum- and spin-relaxation times, Tp and T1, can be
given by neglecting the form of the scattering potential as

follows: Tp/T1 ≈ 4b2, where b2 is the Elliott–Yafet parameter
(EYP) defined below, which is an intrinsic property of the
ideal crystal [37].

The coexistence of time-reversal and space inversion
symmetries implies that the eigenenergies of the crystal at any
given Bloch momentum k are at least two-fold degenerate.
Following Elliott, we write the corresponding states as
superpositions of the form

ψ
↑

kŝ(r) =
[
akŝ(r)|↑〉ŝ + bkŝ(r)|↓〉ŝ

]
eik·r, (1)

ψ
↓

kŝ(r) =
[
a∗
−kŝ(r)|↓〉ŝ − b∗

−kŝ(r)|↑〉ŝ
]

eik·r. (2)

The two spin states |↑〉ŝ and |↓〉ŝ are eigenstates of ŝ · S,
where ŝ is the unit vector along the chosen SQA, S = h̄

2τ

is the spin angular momentum operator, and τ are the Pauli
matrices. Here, we have adopted a notation that allows us
to vary the spin and angular momentum quantization axis ŝ,
which is useful for a description of the anisotropy, whereas
usually one meets the above equations with ŝ being implied
along the z-axis. So, for example, |↑〉z and |↓〉z are the
eigenstates of the Sz operator. More generally, the reference
frame is specified by the SQA direction ŝ, which is chosen to
coincide with the polarization direction of the initial/injected
spin population. The functions akŝ(r) and bkŝ(r) exhibit the
periodicity of the crystal lattice, and we define b2

kŝ as the
unit cell integral

∫
u.c. d

3r |bkŝ(r)|2 (similarly for a2
kŝ, which

satisfies a2
kŝ = 1− b2

kŝ).
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For fixed ŝ, the degenerate ψ
↑

kŝ and ψ
↓

kŝ states (and
the corresponding akŝ(r) and bkŝ(r)) can be chosen, via
a linear combination, such that the spin-expectation value
Skŝ = 〈ψ

↑
|Sŝ|ψ

↑
〉 is maximal. The spin-mixing parameter

is then given by b2
kŝ = 1/2 − Skŝ/h̄, and is usually small,

due to the weakness of the SOC. In this case the Bloch
states are of nearly pure spin character. (Thus, akŝ represents
the ‘large’ component of the spinor, while bkŝ is the
‘small’ component. The relation between the large or small
components of ψ↑kŝ and ψ

↓

kŝ, akŝ = a∗
−kŝ and bkŝ = b∗

−kŝ,
follows from space and time inversion symmetry.) However,
at special spin-flip hot-spot points in the band structure, e.g.
accidental degeneracies, Brillouin zone boundaries or other
high-symmetry points [37], b2

kŝ may increase significantly

up to a value of 1
2 , which corresponds to the case of

fully spin-mixed states. Generally, the distribution of the
spin-mixing parameter for a metal with a complicated Fermi
surface can be far from trivial. The Fermi-surface averaged
Elliott–Yafet parameter is given by

b2
ŝ =

1
n(EF)

1
h̄

∫
FS

b2
kŝ

|vF(k)|
d2k, (3)

where vF(k) is the Fermi velocity. The normalization
by the density of states at the Fermi level, n(EF) =

1/h̄
∫

FS |vF(k)|−1 d2k, ensures that 0 ≤ b2
ŝ ≤

1
2 .

For the ensuing discussion it will be useful to divide the
spin–orbit operator into spin-conserving and spin-flip parts,
ξ(LS↑↑) and ξ(LS↑↓), given respectively by the first and
second terms of the following expression [32]:

ξL · S = ξLŝSŝ + ξ
(
L+ŝ S−ŝ + L−ŝ S+ŝ

)
/2. (4)

Here ξ is the spin–orbit coupling strength, L is the operator
of the orbital angular momentum, Lŝ = L · ŝ, Sŝ = S · ŝ, and
L±ŝ and S±ŝ are the raising and lowering operators for orbital
and spin angular momenta in the reference frame defined by
the SQA ŝ. Acting on a state of the crystal obtained without
SOC, the spin-flip part of the SOC can flip its spin, while the
spin-conserving part will keep it intact. It is clear that the dot
product L · S is independent of ŝ, leaving the eigenenergies
of the Hamiltonian invariant if ŝ is rotated. However, the
spin-conserving and spin-flip parts, separately, depend on
the choice of the SQA. In ferromagnets, the spin-conserving
part of SOC is the one which is largely responsible for
the values of the magneto-crystalline anisotropy energy and
orbital moments [7, 8]. In paramagnets, the Elliott–Yafet
spin-relaxation mechanism is driven by the spin-flip part of
the SOC.

In an experiment, the spin polarization of the electrons
subject to spin relaxation is defined by the direction of
the external magnetic field (e.g. in conduction-electron
spin resonance experiments) or by the polarization of
ferromagnetic leads (e.g. in spin-injection experiments). In
a paramagnet, the choice of the spin-quantization axis,
determined by the direction of the spin polarization, does
not influence the band energies, and its most important
manifestation is in the changes of the orbital and spin
character of the Bloch states. Experimentally, the dependence

of the spin relaxation on the SQA was observed in supported
graphene layers [27] and in semiconductors [28], where,
however, due to the absence of inversion symmetry, the
degeneracy between the states (1) and (2) is not present.
However, no microscopic theory of anisotropic spin relaxation
which explicitly refers to the anisotropy of the Bloch states has
been given. In bulk metals with inversion symmetry, which
are at the focus of this paper, the Elliott–Yafet mechanism is
dominant. In section 3 we will demonstrate that indeed the
anisotropy of the EYP in metals can be gigantic.

To our knowledge there is yet no experimental evidence
of anisotropy in the spin relaxation of metals, possibly due
to the complex setup that would be required for its detection.
Ideally one would like to have a single-crystal sample, or at
least a sample with a preferential crystallographic orientation.
For example, an hcp metal where the c-axis direction is
constant throughout the sample should suffice. In addition,
one needs a means for creating a spin population with a
controlled, varying polarization direction.

As a first example, consider a conduction-electron spin
resonance experiment, where the electron levels are split by an
externally applied magnetic field, and electrons are resonantly
excited between the split levels by microwave radiation [2,
29]. The spin-relaxation time is then inversely proportional
to the resonance width. With this setup, the anisotropy would
manifest itself as a dependence of the resonance width on the
direction of the applied field.

A second example is an experiment of non-local spin
detection, as first introduced by Johnson and Silsbee [30].
A ferromagnetic contact is used to inject spin-polarized
electrons into a metallic sample. The spins diffuse and
are collected at some distance x by a second ferromagnet,
whose magnetization is oriented parallel or antiparallel to
the first. The difference in chemical potential between the
two orientations is read out as a voltage difference 1V(x) ∼
exp(−x/L), where L is the spin-relaxation length. If the
sample has a preferential crystallographic orientation, one can
in principle probe the anisotropy in L by varying the angle
between the magnetization direction of the two ferromagnets
used for injection with respect to the crystallographic axes in
the sample.

1.2. Anomalous Hall effect in ferromagnets

A second phenomenon, for which multiple experimental
studies of anisotropy exist [18–25], but no quantitative
theoretical argumentation for its emergence had been
presented until recently [17], is the anomalous Hall effect [38,
39]. The essence of the AHE in a ferromagnet lies in the
generation of a charge current JH transverse to the electric
field E (and corresponding ‘diagonal’ current J0), without any
applied magnetic field [15]. Phenomenologically, the relation
between the ith component of the anomalous Hall current and
the jth component of the electric field is the following:

JH,i = σijEj, (5)

where σij are the components of the anomalous Hall
conductivity (AHC) tensor. Since in a ferromagnet the
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anomalous Hall conductivity tensor is second rank anti-
symmetric, the AHC tensor can be also seen as the AHC
vector σ, whose components are related to the components of
the AHC tensor as σi =

1
2

∑
jkεijkσjk, through the Levi-Civita

tensor εijk:

JH = E× σ. (6)

In general, there can be different contributions to the
AHC in a ferromagnet. In a real material, contributions that
originate from scattering of electrons off impurities or due
to disorder are always present—this is the so-called extrinsic
AHE [35, 40, 41]. The second important part of the AHE
signal—which comes solely from the electronic structure
of the pristine crystal—is the so-called intrinsic AHE [42].
Namely, the SOC in a perfect crystal gives rise to a transverse
spin-dependent anomalous velocity of electrons propagating
along the direction of the applied electric field—thus leading
to the intrinsic anomalous Hall current [4, 43]. In the present
work we will focus exclusively on the intrinsic contribution to
the AHE.

The intrinsic anomalous Hall conductivity is determined
by the electronic structure of the pristine crystal, which
can be accurately calculated using modern first-principles
methods, see for example a recent review by Gradhand
et al [44]. Several investigations of intrinsic AHC using
first-principles methods have been done, for instance, in
SrRuO3 [45, 46], Fe [42, 47], Ni [48], Co [17, 48] and other
ferromagnets. For these materials, the calculated intrinsic
AHC agrees well with the experimental values, except for
the case of fcc Ni [48], which is most probably due to
effect of electronic correlations [35, 49]. It is therefore a
common belief that the AHE in moderately resistive samples
of itinerant ferromagnets is often dominated by the intrinsic
contribution.

The intrinsic AHC considered in this work can be
obtained via the linear response Kubo formula for the
off-diagonal components of the conductivity tensor σ :

σij = −e2h̄
∫

BZ

d3k

8π3 �ij(k),

�ij(k) = −2Im
o,e∑
n,m

〈ψnk|vi|ψmk〉〈ψmk|vj|ψnk〉

(εnk − εmk)2
,

(7)

which relates the conductivity tensor to the Brillouin zone
(BZ) integral of the k-dependent Berry curvature tensor
�. In the latter expression ψnk and ψmk are respectively
the occupied (o) and empty (e) one-electron spinor Bloch
eigenstates of the crystal, εnk and εmk are their eigenenergies,
and vi and vj are the Cartesian components of the velocity
operator v. The Berry curvature � appearing in the equation
above is the very same quantity which arises when the
adiabatic dynamics of electrons in the reciprocal space is
considered [43]. In particular, the Berry phase acquired by
a Bloch electron as it traverses a closed path in the BZ can
be calculated as an integral of the Berry curvature over the
enclosed area [43, 50]. Mathematically, the Berry curvature
is the curvature of the fiber bundle of occupied electronic
states in an insulator, and its integral over the whole torus

of allowed Bloch vectors provides the value of the quantized
transverse charge conductivity, as first demonstrated for the
case of the quantum Hall effect by Thouless et al [51].
The Berry curvature is also a key quantity in the field of
Chern and topological insulators [52, 55]. As suggested by the
topological interpretation of the Berry curvature, equation (7)
manifests the topological nature of the intrinsic anomalous
Hall effect in metals.

Let us briefly outline the concept of anisotropy as
it applies to the AHE. The definition is slightly more
complicated than for the Elliott–Yafet parameter discussed
previously, owing to the vector nature of the anomalous
Hall conductivity. The parameter with respect to which the
anisotropy of the AHE is studied is the direction of the
magnetization M in the crystal. The anisotropy of the AHC
with respect to M is two-fold: not only the magnitude of
σ depends on M, but also the direction of σ displays a
non-trivial dependence on the direction of magnetization.
For a high-symmetry direction of M the AHC vector is
aligned with the magnetization so that the Hall current is
perpendicular to it. For a general direction of M away from
high-symmetry axes in the crystal the AHC vector can deviate
from the direction of M, in which case [17, 20]:

σ(M) = σ‖(M)+ σ⊥(M), (8)

where σ‖(M) is aligned with M while σ⊥(M) is perpendicular
to it [17] (see also figure 1). The microscopic origin of the
AHE anisotropy is clear from the expression (7) for the
Berry curvature, according to which both the dependence of
wavefunctions as well as eigenenergies on the magnetization
direction leads to the anisotropy of the AHC. It is important
to realize that in contrast to the case of paramagnets
with inversion symmetry (considered in the following with
respect to the anisotropy of the SHE and EYP), for which
also the eigenspectrum does not change with the SQA,
the dependence of the wavefunctions on the magnetization
direction in a ferromagnet is far more complex, owing to
broken time-reversal symmetry. Also, the anisotropy of the
velocity matrix elements has to be taken into account in
uniaxial crystals.

A few remarks are in order concerning the symmetry of
the AHC and EYP with respect to the magnetization direction
and choice of SQA respectively (both relative to the crystal
axes).

The orientation dependence of the AHC tensor σ(M) can
be described phenomenologically through an expansion in
powers of the direction cosines {αi} of M [53, 54]:

σij(M̂) =
∑

p
aijpαp +

∑
pqr

aijpqrαpαqαr + · · · , (9)

where M̂ is the unit vector along M. Because the AHC
is odd under time reversal, σ(−M) = −σ(M), only odd
powers are present in the above expansion. Crystal symmetry
places further constraints on the terms which are allowed in
equation (9). In the case of cubic crystals the expansion starts
with the third-order term [53]. This is consistent with the small
but clearly nonzero anisotropy of the AHC that has been ob-
served in cubic ferromagnets [18–20]. The first-order term in
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equation (9) is allowed in uniaxial ferromagnets [53], whose
AHC can indeed display a significant anisotropy [17, 21].

A similar expansion can be made for the EYP, with
M̂ replaced by the unit vector along the SQA (in a spin
resonance experiment, for example, this would correspond
to the direction of the magnetic field—see section 3). Since
the spin relaxation in a paramagnetic metal is time even (the
relaxation time is the same if the initial spin polarization is
reversed), only even-order terms are allowed in the expansion
in powers of the direction cosines. For cubic crystals the
leading angular dependence is of fourth order, while quadratic
terms are allowed in uniaxial crystals.

Experimentally, the anisotropy of the anomalous Hall
effect in metals is a relatively well-studied phenomenon: see,
e.g., experimental data for bcc Fe [18], fcc Ni [19, 20],
hcp Gd [21], as well as FeCr2S4 [22], Yb14MnSb11 [23],
Y2Fe17−xCox [24] and R2Fe17 (R = Y,Tb,Gd) [25]. For
several of the compounds listed above, a strong anisotropy
of the transverse current upon changing the direction of the
magnetization in the crystal has been observed.

Two basic methods have been used to measure the
anisotropy of the AHE. One approach uses a single-crystal
sample in the shape of a cylindrical rod of constant diameter.
The sample is rotated around its polar axis in a transverse
magnetic field, and the Hall voltage is measured as a function
of the angle [18]. In the second approach several samples are
prepared by cutting plates from coarse monocrystals along
specific crystallographic orientations, and the Hall coefficient
is then measured for each sample separately [19]. The plates
can be cut using, for example, the anode contact method,
which allows one to preserve the correct crystallographic
structure.

1.3. Spin Hall effect in paramagnets

The spin Hall effect in paramagnets consists in generation
of a spin current orthogonal to the direction of an applied
electric field E. In a simple picture, the spin current in
the SHE can be seen as two anomalous Hall currents,
propagating in opposite directions for spin-up and spin-down
electrons. In contrast to the AHE, where the direction of
the Hall current is uniquely determined by the directions of
E and M, the spin Hall current propagates in all directions
orthogonal to E. For each of the directions of the spin
current, the ‘physical’ spin-quantization axis is determined
by the direction of the current’s spin polarization. First
proposed theoretically in 1971 [5], the SHE was re-discovered
in 1999 [56], and eventually experimentally observed in
2004 [57], triggering development of new directions in
spintronics [58, 59] and further research in the direction
of quantum spin Hall insulators [60–63]. In analogy to the
anomalous Hall effect, the observed SHE in metals contains
two types of contribution: one extrinsic (driven by disorder),
and the other intrinsic (disorder independent) [31, 40, 64, 65].
And while very often the spin Hall effect is associated with the
resulting spin accumulation at the boundaries of the sample,
employing inverse SHE it is possible to measure directly
the spin Hall conductivity (SHC), which is much easier to

treat theoretically with ab initio methods. As in the case of
the AHE, for transition metals the experimental SHC values
agree very often with the values obtained from first-principles
calculations for the intrinsic SHE.

In the first principles calculations presented in section 4
we consider only the intrinsic [31, 60, 64, 66, 67] contribution
to the SHC, which results from the virtual interband
transitions in the presence of an external electric field. It may
be expressed using a linear response Kubo formula analogous
to equation (7) for the AHC:

σ s
ij = −eh̄

∫
BZ

d3k

8π3 �
s
ij(k),

�s
ij(k) = −2Im

o,e∑
n,m

〈ψnk|Qs
i |ψmk〉〈ψmk|vj|ψnk〉

(εnk − εmk)2
,

(10)

where Qs
i is the spatial i- and spin s-component of the spin

velocity operator, and the tensor � is sometimes referred to
as the spin Berry curvature. If only the spin-conserving part
of the SOC is taken into account, the spin projection along
the direction of the spin polarization of the current ŝ is a
good quantum number, and the spin velocity operator may be
written as Qs

i =
h̄
2 viτs. In this case the SHC equals twice the

value of the (scaled) anomalous Hall conductivity for spin-up
electrons only for the same energy bands. Here, τs is a Pauli
matrix used to express the s-component of the spin operator.
In order to treat the spin-non-conserving part of the SOC
correctly, we use the definition of the spin current density
operator given in [68].

To our knowledge, the only experimental study of
anisotropy in the spin Hall effect is the work of Sih et al [26]
on AlGaAs quantum wells. In metals the anisotropy of the
SHE was investigated recently by Freimuth et al from first
principles [31]. In many aspects, the SHC anisotropy is
analogous to that of the anomalous Hall conductivity. It is
remarkable, however, that due to the higher symmetry of the
problem the anisotropy of the SHC in transition metals is what
we call purely geometrical. By this term we mean that it is
exactly absent in the case of a cubic crystal, while generally
the dependence of the magnitude and spin polarization of the
spin current on its direction can be reconstructed exactly from
corresponding values for high-symmetry directions in the
crystal. This is in sharp contrast to the behavior of the AHC or
EYP, which exhibit anisotropy already in cubic crystals, and
for which the dependence of the magnitude of the EYP (or
anomalous Hall current) on the direction of the SQA (or the
direction of magnetization) cannot be reconstructed from the
respective high-symmetry values. Section 4 of this review is
dedicated to the anisotropy of the spin Hall effect in transition
metals.

Experimentally, two ways can be suggested to study the
anisotropy of the SHE. The first method, employed in [26],
lies in measuring the spin accumulation (for example via
measuring the magneto-optical Kerr rotation) at the sides of
the monocrystalline sample, of e.g. cylindrical shape, or even
in an in-plane geometry when the sample has the form of a
plate or a thin film of a certain crystallographic orientation.
Since in a steady current state the spin current propagates in all
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directions perpendicular to the electric current, the anisotropy
in spin accumulation can be measured under constant electric
field in cylindrical samples, while in a two-dimensional
geometry the variation in spin accumulation should be probed
at one fixed side of the sample while varying the in-plane
current direction.

In an alternative approach, the anisotropy of the
transverse voltage can be measured and related to the
anisotropy of the spin Hall conductivity using the inverse spin
Hall effect [69, 70]. In the latter case the spin polarization
of the injected spin current can be changed by changing
the magnetization direction of the ferromagnet used for spin
current injection, which can be achieved by varying the
direction of an external magnetic field.

2. Computational methods

For calculations of the Elliott–Yafet parameter and cor-
responding Fermi surfaces we used density functional
theory in the local density approximation [71] to calculate
the underlying electronic structure. For the self-consistent
calculations we employed the Korringa–Kohn–Rostoker
(KKR) Green-function method [72] in the atomic sphere
approximation and solve the Dirac equation with angular
momentum expansion up to `max = 4. The Fermi surface is
determined by the KKR secular equation, det(M(k,EF)) =

0, which is equivalent to the condition that at least one
eigenvalue of the KKR matrix M vanishes. We search for the
k-vectors fulfilling this condition with a tetrahedron method
using linear interpolation of the complex eigenvalues of M.
We choose a grid of 200 k-points for each direction in
the full BZ, resulting in about 107 Fermi-surface points.
We followed the procedure described in [73] to maximize
the spin component Skŝ at the Fermi-surface points. The
integration equation (3) is done by evaluating the integrand
at the Fermi-surface points and interpolating linearly within
the connecting triangles.

For calculations of the intrinsic anomalous Hall and spin
Hall conductivities we employed the full-potential linearized
augmented plane-wave (FLAPW) method, as implemented in
the Jülich code FLEUR [74]. We used the generalized gradient
approximation to the DFT and experimental lattice constants
of the transition metals. The self-consistent calculations with
SOC were done in second variation with kmax between 3.7
and 4.0 a.u.−1 and about 8000–16 000k-points in the full BZ.
For ternary alloys, for instance, (Fe0.5Co0.5)Pt, the virtual
crystal approximation (VCA) was applied on the 3d atomic
sites, where the concentration averaged nuclear charge is
used instead of that of pure 3d elements and interpolated
lattice constants from the neighboring compounds [34] are
taken. For the calculations of the conductivities we applied
the Wannier interpolation technique of Wang et al [47]. We
followed the method introduced in [75, 76] to construct the
maximally localized Wannier functions (MLWFs) from the
FLAPW Bloch states ψkm:

WRn(r) =
1
N

∑
k

e−ik·R
∑

m
U(k)

mnψkm(r), (11)

where WRn denotes the nth WF centered at lattice site R,U(k)
mn

refers to the unitary transformation among the Bloch states
at k which minimizes the spread of the Wannier functions.
Using the self-consistent charge density with SOC included,
18 spinor MLWFs per transition metal atom, corresponding to
s-, p-, and d-type orbitals, were generated using wannier90
code [77].

Working in the basis of the maximally localized WFs
allows us to construct a real-space tight-binding Hamiltonian
of the crystal, which can reproduce the electronic bands
with any given accuracy at any k-point in the BZ, given
that the necessary number of k-points was used for the
generation of the WFs [47]. The real-space tight-binding
hopping parameters can be calculated as:

Hmm′(R) =
1
N

∑
kn

εkne−ik·R
(

U(k)
nm

)∗
U(k)

nm′ , (12)

where Hmm′(R) denotes the hopping parameter between
Wannier orbitals WRm′(r) and W0m(r). Based on those
parameters, the Hamiltonian, H(k), matrix elements of the
velocity operator as well as charge and spin Berry curvature
in reciprocal space can be efficiently evaluated using the
Wannier interpolation technique [47].

In the section on the anomalous Hall effect, we evaluate
the derived perturbation theory expressions for the AHC in
L10 FePt. In order to apply the perturbation theory in the basis
of Wannier functions, we use the basis of Wannier functions
constructed without SOC to calculate the matrix elements of
the spin–orbit interaction. To do this, the scalar-relativistic
Hamiltonian without SOC is set up for the majority and
minority states, and diagonalized in order to obtain the Bloch
functions ψσkn(r), with σ =↑ or ↓. The matrix elements of
SOC in the basis of Bloch states can then be calculated:

V(k)nσ,n′σ ′ =
∑
µ

µB

h̄meec2

〈
ψσkn

∣∣∣∣1r dVµ(r)

dr
Lµ · S

∣∣∣∣ψσ ′kn′

〉
,

(13)

where Lµ is the orbital angular momentum operator
associated with atom µ (with the potential Vµ). In the scalar-
relativistic approximation, the spin-dependent Hamiltonian
H̃σ

mm′(R) can be obtained as:

H̃σ
mm′(R) =

1
N

∑
kn

εknσ e−ik·R
(

U(k)
nmσ

)∗
U(k)

nm′σ . (14)

Likewise, the matrix elements V(k)nσ,n′σ ′ are transformed into
the basis set of Wannier functions:

Vσσ
′

mm′(R) =
1
N

∑
knn′

V(k)nσ,n′σ ′e
−ik·R

(
U(k)

nmσ

)∗
U(k)

n′m′σ ′ . (15)

The complete Hamiltonian with SOC in the WF-basis is then
given by

Hσσ ′

mm′(R) = H̃σ
mm′(R)δσσ ′ + Vσσ

′

mm′(R). (16)

Such a separation enables us to perform the perturbation
treatment of SOC. By calculating from first principles an

atomic shell averaged SOC parameter ξ
def
= 〈

1
r

dV(r)
dr 〉, it is
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possible to write the SOC operator approximately as ξL · S,
where L (S) is the total orbital (spin) angular momentum
operator. Calculated in such a way the SOC strength ξ for Pt
(about 0.6 eV) is one order of magnitude larger than that of 3d
elements, for instance, ξ = 0.06 eV for Fe.

3. Anisotropy of spin relaxation in metals

First, let us derive the perturbation theory expression for
the spin-mixing parameter (see equations (1)–(3)) of a
certain state ψn (we omit the explicit k-dependence in the
following line of arguments). Since we are mainly interested
in Fermi-level properties we assume that the eigenenergy
of ψn coincides with EF. Let us assume that only the
spin-conserving part of the spin–orbit interaction has been
included in the Hamiltonian, which has ψn as an eigenstate.
Since the spin-conserving SOC preserves the spin as a good
quantum number, in a paramagnet with structural inversion
symmetry the state ψn can be characterized by a certain
value of spin, e.g., ψn = ψ

↑
n . This has an exact replica, but

of opposite spin ψ↓n . Upon including into consideration the
spin-flip SOC, ψ↑n will acquire an admixture of the down
spin, which we will denote as (ψ↑n )↓, and which corresponds
to the part that includes bkŝ in equation (1). It is known
that the down-spin admixture of ψ↑n does not come from
interaction with ψ↓n at the same energy band, but comes from
the interaction with the other states in the system. Within
first-order non-degenerate perturbation theory (ψ↑n )↓ can be
calculated as:

(ψ↑n )
↓
= ξ

∑
m6=n

〈ψ
↑
m|LS↑↓|ψ↓n 〉

εn − εm
ψ↓m. (17)

Since the spin-mixing parameter b2
n is equal to |(ψ↑n )↓|2, we

readily obtain from the latter expression that

b2
n ≈ ξ

2
∑
m6=n

|〈ψ
↑
n |LS↑↓|ψ↓m〉|2

(εn − εm)2
. (18)

Therefore, the spin-mixing parameter of a certain state is just
a sum of amplitudes for SOC-mediated spin-flip transitions
from this state to other states and back. This picture of the
Elliott–Yafet parameter in solids had been suggested by Elliott
already in 1954 [1]. Later on in this work, we will apply a
similar approach in order to perform a perturbation theory
analysis of the Hall effects.

Before proceeding with ab initio calculations, we
consider a simple model which is able to capture the origin
and essential properties of the anisotropy of the spin-mixing
parameter in a solid. Namely, let us consider six p-orbitals,
pσx , pσy and pσz , with σ = (↑,↓) standing for the spin of the
orbitals. In order to consider the spin-mixing separately, we
explicitly separate the two SOC terms. We have:

H = H0 + ξ(LS)� + ξ(LS)↑↓

= diag(ε, ε + δ, ε +1)⊗ 12×2 + ξ(LS)� + ξ(LS)↑↓,

where in the on-site part the states pσx and pσy are chosen
to be almost degenerate at energy ε (separated by energy

δ : δ/1� 1), and the pσz orbitals are shifted to higher energy
ε+1 in order to mimic the crystal field splitting by a uniaxial
lattice. The SOC strength is given by ξ , with ξ/1 � 1. The
energetic levels and their orbital character without spin–orbit
coupling are shown in the left column of figure 2, in which δ
was set to zero.

Let us first consider the case when the SQA points along
the z-axis and δ = 0. When only spin-conserving SOC is
added to H0, the eigenstates are (pσx ± ipσy )/

√
2 and pσz

(σ =↑,↓), with energies as sketched in figure 2. The only
non-vanishing matrix elements of the spin-flip SOC are 〈p↑x −
ip↑y |LS↑↓|p↓z 〉 = 2 and 〈p↓x + ip↓y |LS↑↓|p↑z 〉 = −2 which come
from the states that are well separated in energy. According
to equations (17) and (18), this leads to a small admixture of
the pz-state of opposite spin in the lowest-lying eigenstate, and
corresponding spin-mixing parameter of the order of (ξ/1)2

when the spin-flip SOC is included. On the other hand, when
the SQA is chosen along the x-axis, the spin-conserving part
of SOC mixes small ξ/1-portions of pσy with pσz orbitals, see
figure 2. Now, there are four non-vanishing matrix elements
of spin-flip SOC, all of order 1, among which two transitions
are very close in energy, with a separation of ∼ξ2/1. This
results in a very strong spin-mixing between the two low-lying
orbitals when the spin-flip SOC is added, with a very large
spin-mixing parameter of the lowest-lying state of the order
of (1/ξ)2 in first-order perturbation theory, meaning that
higher-order perturbation theory is needed, since by definition
the spin-mixing parameter cannot exceed 1

2 . The resulting
orbital and spin character of the states when the Hamiltonian
with complete SOC is diagonalized is presented in the right
column of figure 2. Note that the final eigenenergies are the
same, irrespective of the SQA, while the character of the states
is different among the two directions of the SQA. Obviously,
the resulting anisotropy of the spin-mixing parameter of the
lowest-lying state with respect to the choice of the SQA is
very large if ξ/1� 1.

The model presented above allows us to make some
statements concerning the general conditions under which
a large anisotropy of the spin-mixing parameter in a metal
can be expected. First of all, crucial is the presence of
a degeneracy or near-degeneracy at EF, of Bloch states
originating from the atomic orbitals φm and φm′ , with the
orbital characters |m − m′| 6= 1, which are the eigenstates of
the Lŝ operator for some direction of the SQA (e.g. z). In this
case (|m − m′| 6= 1) no direct coupling is allowed between
the states by the spin-flip part of the SOC Hamiltonian, and
the system is ‘protected’ against large-amplitude spin-flip
transitions, since the spin-mixing occurs due to interaction
with other, energetically different, states. Correspondingly, the
further away these other states are from the Fermi energy, the
smaller the spin-mixing parameter will be. This is exemplified
for our model in figure 3 (right), where for the splitting
δ = 0 between the px and py orbitals we observe a decay
of the spin-mixing parameter of the lowest-lying state with
increasing separation 1 with the higher lying pz orbital for
the SQA along z. In this case, for a considerably large 1, also
the relative position of the states φm and φm′ with respect to
each other is not that important for the spin-mixing parameter,
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Figure 2. Eigenvalues of the spin-degenerate p-states described by the Hamiltonian diag(ε, ε, ε+1)⊗ 12×2 (12×2 is the unit matrix in spin
space) (left column), including the spin-conserving part of SOC for two different quantization axes (middle column), and including both
spin-conserving and spin-flip parts of SOC for two different quantization axes (right column). For each doubly degenerate state the orbital
and spin decomposition is annotated. Note that while the energy spectrum is identical for both SQA’s in the right column, the spin character
of the two low-lying states is different, which gives rise to the anisotropy of the spin-mixing parameter. In the labels, ‘ε’ and ‘ε′’ denote a
small admixture of the corresponding state of the order of ξ/1.

Figure 3. Dependence of the spin-mixing parameter of the
lowest-lying state in the model from figure 2 on the separation δ
between nearly degenerate px and py states at constant separation
with the pz orbital 1 = 1 (left), and on the separation 1 of
degenerate px and py states (δ = 0) with the pz orbital (right). The
SOC strength of 0.1 eV was taken for these calculations. Clearly,
the largest anisotropy of the spin-mixing parameter is acquired
when the states px and py are perfectly degenerate and are lying far
away from the pz orbital.

as is clear from figure 3 (left), in which at constant 1 of 1 eV
the parameter δ is varied, and the observed variation of the
spin-mixing parameter of the lowest-lying state is small if
δ � 1.

On the other hand, for the SQA along the x-axis, the
spin-mixing between the nearly degenerate states φm and φm′

is favored and reaches very large values, since the matrix
elements of the spin-flip SOC between these orbitals are
non-vanishing. As can be seen in figure 3, the spin-mixing
parameter is largest for small values of δ and rapidly
decreases as the separation between initially degenerate states
is increased. The fraction of spin-mixing of the nearly
degenerate states that arises from interaction with other states
is minimal, but it reduces the overall value of the spin-mixing
parameter. The suppression of the spin-mixing parameter of
the states at the Fermi energy due to interaction with the
higher-lying states is reduced, the further the latter are from
the Fermi energy, as clearly visible in figure 3, in which 1
is varied at constant δ = 0. Overall, by examining figure 3,
we conclude that the largest anisotropy of the spin-mixing
parameter will be favored when the states with |m − m′| 6= 1
at the Fermi level are perfectly degenerate, and are positioned
very far away from other states. To summarize the central
argument: the spin-flip part of SOC depends on the choice of
the SQA. If the SQA is along z, then the spin-flip SOC does
not couple states with |m − m′| 6= 1; if the SQA is along x or
y, then it does couple them.

Let us now turn to realistic material calculations from
first principles. We begin with hcp osmium, which we choose
as an example of a typical transition metal with a uniaxial
crystal structure. First, we take a look at the band structure
of Os along the 0–A path from the BZ center along the
z-axis to the center of the hexagonal BZ face, presented in
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Figure 4. Band structure of hcp osmium around the Fermi level, in
the direction 0–A (BZ center to center of hexagonal face) with
applied B-field of 40 meV. The exchange splitting of the two bands
crossing the Fermi energy (1 and 2) depends on the direction of B,
reflecting the anisotropy of the spin-mixing at the hot spot ‘H’ in
figure 5.

figure 4. The splitting of the two bands (each band is doubly
degenerate) which cross the Fermi level here (‘1’ and ‘2’, full
lines) is due to the spin–orbit interaction, as can be verified
from the fact that they fall on top of each other when scaling
down the spin–orbit coupling strength. Also, without SOC,
it is straightforward to determine the orbital character of the
bands: in this case the bands have a d+1 and d−1 character,
which are superimposed to form the dxz and dyz states. Overall,
we have all the prerequisites for a large anisotropy of the

Elliott–Yafet parameter at this point of the Fermi surface,
according to the arguments presented above, since bands ‘1’
and ‘2’ are well separated from other bands at the crossing
with the Fermi level and the associated orbitals have |m −
m′| = 2. Before proceeding with an explicit calculation of the
Elliott–Yafet parameter we perform a numerical experiment in
order to examine the anisotropy of the response of the bands
in figure 4 to a small Zeeman-like field B with a magnitude of
40 meV. The small Zeeman field, which we apply by hand,
lifts the remanent degeneracy owing to the coupling to the
Bloch states of the form B · τ, which breaks the time-reversal
symmetry and defines a spin-quantization axis in the direction
of B. In figure 4 we clearly observe a splitting of bands ‘1’
and ‘2’ for B along the c-axis in the crystal (dashed lines).
However, for B in the ab-plane, the degenerate pairs ‘1’ and
‘2’ do not split (solid lines), which marks a very anisotropic
response to a Zeeman magnetic field.

The calculated Fermi surface of Os presented in
figures 5(a)–(c) consists of two nested sheets, a surrounding
surface crossing the BZ boundary and little hole pockets
(denoted by ‘P’). The latter ones are ellipsoids in an extended
zone scheme, centered around a point on the BZ boundary.
Analyzing the distribution of the spin-mixing parameter b2

kŝ
on the Fermi surface, we observe a strong dependence on
the SQA, evident from comparing figures 5(a) and (b). For
ŝ along the c-axis of the crystal, figure 5(a), the spin-mixing is
relatively uniform (b2

kŝ ≈ 0.05) for large areas of the Fermi
surface, reaching higher values near the pockets. However,
this picture changes drastically when ŝ is in the ab-plane
(figure 5(b)). In this case, the areas with full spin-mixing
(red, b2

kŝ ≈ 0.5) are prominent, most clearly at the caps of
the two nested Fermi-surface sheets, indicated by ‘H’, which

Figure 5. Fermi surfaces of Os ((a)–(c)) and W ((d)–(e)). For an illustration of the nested sheets only half of the Fermi surface of Os is
shown. The Elliott–Yafet parameter b2

kŝ is shown with a color code on the Fermi surface with the SQA along the c-axis (a) and in the
ab-plane (b). Red arrows at the left-lower corner of (a) and (b) indicate the direction of the SQA. The difference of b2

kŝ between the two
directions of ŝ is shown in (c). Analogously, b2

kŝ for ŝ along [001] and [111] in W is shown in (d) and (e), respectively. The averaged values
of b2

ŝ over all directions of ŝ, corresponding to polycrystalline samples, are 0.0666 for Os and 0.0627 for W. Note that the color scale above
(a) refers to ((a), (b), (d), (e)) while the color scale above (c) refers only to (c). In (f) and (g), the integrated Elliott–Yafet parameter b2

ŝ is
shown as function of the SQA direction for Os and W, respectively (different color scale). Partly adapted from [36].
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are formed by bands 1 and 2 crossing the Fermi level in
figure 4. Additionally, large areas with smaller, but still strong
spin-mixing (b2

kŝ ≈ 0.3), are visible, e.g. in the region denoted
by ‘B’. Overall, for the two considered cases there is a
strong qualitative difference in the k-dependent spin-mixing
parameter b2

kŝ. We can understand now the anisotropy of the
response to the magnetic field in figure 4: employing the
perturbation theory arguments, the energy splitting of a state
due to the presence of a small Zeeman field is proportional
to b2

kŝ, which is strongly anisotropic in the vicinity of the
‘H’-point.

As for the Fermi-surface averaged values b2
ŝ , we find

b2
ŝ of 4.85 × 10−2 and 7.69 × 10−2 for ŝ along the

c-axis and the ab-plane, respectively, yielding thus a gigantic
anisotropy of the Elliott–Yafet parameter, defined as A =[
maxŝ(b

2
ŝ )−minŝ(b

2
ŝ )
]
/minŝ(b

2
ŝ ), of 59%. On the other hand,

the anisotropy with respect to rotations of the SQA within the
ab-plane is negligible. These two limiting cases are contained
in figure 5(f), in which the value of b2

ŝ is shown as a function
of ŝ for all possible directions of ŝ. The absent (or very small)
anisotropy in the ab-plane is reflected in the rotationally
invariant color scale around the c-axis, as opposed to the large
difference between the ab-plane and the c-axis. The difference
of b2

k for the two limiting cases of SQA for each point at
the Fermi surface is shown in figure 5(c). Large areas of the
Fermi surface show a small orientational dependence of b2

k
(white areas). The anisotropy at the hot spots is very large,
but the sign is different between the hot spot ‘H’ and the hot
spots near the pockets. The magnitude of the effect is strongly
enhanced by the large extension of the two near-degenerate,
parallel sheets of the Fermi surface, resulting in a spin-flip ‘hot
area’ around H instead of a single ‘hot spot’. In addition, the
reduced symmetry helps: if the crystal had cubic symmetry,
then upon a change of the SQA from z to x the effects
at rotationally equivalent parts of the Fermi surface would
mutually cancel.

The mechanism for large anisotropy of the spin-mixing
parameter described above is of course not only specific to the
d-states of Os, but it is also responsible for the large values of
A that we find for hcp Lu (200%), hcp Re (88%) and hcp Hf
(830%). Particularly in hcp metals there is a special symmetry
at the hexagonal face of the Brillouin zone that is lifted only
by the SOC. Thus, whenever the Fermi surface of an hcp
metal happens to cut through the hexagonal face, the resulting
contour can obtain full spin-mixing depending on the SQA, as
shown in [36] for Hf. These loop-like contours, or spin-flip hot
loops, are a source of extremely high anisotropy. The Fermi
surfaces of Lu, Re and Hf, for example, contain such loops,
but the one of Os does not, since it does not cut through the
hexagonal face.

Next, we analyze the hot-spot contribution to the
averaged b2

ŝ and the anisotropy A. We perform integrals
similar to Eq. (3), but restricting the integration to the part
of the Fermi surface where b2

kŝ lies in certain intervals,
xi < b2

kŝ ≤ xi+1, with xi = 0, 0.05, 0.10, . . . . This integration

results in values b̃2
ŝ which form the histogram presented in

figure 6. As we can see, for the SQA along the c-axis, b2
ŝ is

Figure 6. Contribution to the Os Fermi-surface average, b2
ŝ , as a

function of b2
kŝ. The solid (dashed) arrow denotes b2

ŝ for the SQA
along the c-axis (in the ab-plane). The values correspond to the
respective contribution of each region to the partial anisotropy Ã,
leading to a total anisotropy A of 59%. Note that while the
anisotropy of the EYP is clearly dominated by the intermediate
region of b2

kŝ, the major contribution to the EYP for both directions
of the SQA comes from the region with b2

kŝ < 0.15 (96% and 60%
for the SQA along the c-axis and in the ab-plane, respectively).

mainly determined by regions with not so high spin-mixing
parameter (b2

kŝ < 0.15), leading to the total value of 4.85 ×
10−2 (denoted by the solid arrow). For ŝ in the ab-plane
there is also a considerable contribution from regions with
b2

kŝ > 0.15, increasing the total value to 7.69× 10−2 (dashed
arrow). Comparing the two histograms for different SQA, we
can draw conclusions about the partial contribution of each
region to the anisotropy, Ã = (b̃2

ab − b̃2
c)/b

2
c . Interestingly,

the anisotropy originates not only from the hot spots with
b2

kŝ > 0.35, leading to Ã = 12%, but to a large extent from
the areas with intermediate spin-mixing 0.15 < b2

kŝ ≤ 0.35

around the hot spots and regions ‘B’, resulting in Ã = 49%.
The larger area with low spin-mixing, b2

kŝ ≤ 0.15, does not

contribute to the anisotropy significantly (Ã = −2%).
Let us now turn to tungsten, which has a bcc lattice

structure, and see whether higher symmetry of the lattice
brings qualitative changes in the anisotropy of the EYP. When
ŝ ‖ [001], b2

kŝ exhibits hot spots in directions perpendicular
to ŝ (denoted by ‘C’ in figure 5(d)), following a formation
scenario similar to that at the ‘H’-point in Os. Additionally,
many states with smaller spin-mixing (0.2 < b2

kŝ < 0.3) are
present at the Fermi surface, leading to b2

ŝ = 6.49 × 10−2.
For the SQA along another high-symmetry direction of the
lattice, ŝ ‖ [111] in figure 5(e), the intensity at the point
‘C’ is reduced, but a large area with smaller spin-mixing
is clearly present, resulting in b2

ŝ = 6.14 × 10−2. For SQA
along [110], we find b2

ŝ = 6.26 × 10−2. This leads to an
anisotropy A = 6%, which is still large but one order of
magnitude smaller than in hcp Os. This observation is similar
to the dependence of the magneto-crystalline anisotropy
energy [78] and anisotropy of the intrinsic anomalous
Hall conductivity [17] on the symmetry of the lattice in
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ferromagnetic crystals: the cubic W crystal exhibits a fourfold
rotational axis, causing SOC to contribute to A in the fourth
order. In the uniaxial hcp structure, an axis perpendicular
to the c-axis is only two-fold, and SOC enters A already
in the second order. Nevertheless, the comparatively large
anisotropy of spin relaxation in W is partly a consequence of
the d-states, which yield a strong directional anisotropy of the
Fermi surface. In contrast to this, the Fermi surface of gold,
for example, consists of s-like states and can be regarded as
almost spherical. For the Elliott–Yafet parameter in Au, we
find a value of b2

ŝ ≈ 3.25 × 10−2, which is comparable in
magnitude to that in W and Os, but the anisotropy is one order
of magnitude smaller than in W. Looking at the symmetry of
b2

kŝ in W, we recognize that it is lower than the symmetry of
the lattice. And although for a spin-quantization axis along
[001] the fourfold rotational symmetry of the lattice around
this axis is retained by b2

kŝ, figure 5(d), further symmetry
breaking will occur for an arbitrary direction of the SQA,
leaving only those point-group symmetry operations of the
lattice that map the SQA to itself, plus the inversion symmetry
k → −k. In contrast, for the integrated value b2

ŝ the full
symmetry of the lattice is obviously retained.

To conclude, we underline that the spin relaxation in
metals can strongly depend on the orientation of the spin
polarization of injected electrons due to a corresponding
anisotropy of the Elliott–Yafet coefficient [36]. The anisotropy
is expected to be largest in non-cubic crystals, in the presence
of extended, nested Fermi-surface sheets that are almost
degenerate, resulting in delocalized spin-flip hot areas instead
of singular spin-flip hot spots. Especially critical are cases
where the splitting is caused primarily by the spin–orbit
coupling. Since there is no theoretical limit on the area of the
nested sheets in this scenario, the anisotropy of the EYP can
be in principle colossal, exceeding the values calculated and
presented here for W, Os, or even Hf.

4. Anisotropy of intrinsic spin Hall effect in metals

The spin current is characterized by the velocity and the spin
polarization. Hence, the spin current density Q is a tensor in
R3
⊗ R3 spanned by the basis vectors êi ⊗ f̂k. For clarity

we use the symbols f̂x, f̂y and f̂z to denote the unit vectors
of spin polarization, while êx, êy and êz are the unit vectors
of velocity. In terms of the spin Hall conductivity tensor,
σ k

ij (which has three indices: i denotes the direction of spin
current, j the direction of applied external electric field, and k
the direction of spin polarization of the spin current), the spin
current density for a general direction of electric field is given
by

Q =
∑
ijk

σ k
ij êi ⊗ f̂k Ej. (19)

While the anisotropy of the AHE manifests itself in the
dependency of the magnitude of the conductivity vector
on the magnetization direction, in the case of the SHE in
paramagnets there is no magnetization vector M to control,
only the direction of the applied electric field can be varied.
However, the spin polarization of the induced spin current

Figure 7. (a) Spin currents in cubic systems induced by an electric
field along the z-axis. The spin s points always perpendicular to the
velocity v. (b) Hexagonal hcp structure of the transition metal Ti.
The spin current in direction n̂ = (0, cos θ, sin θ)T induced by an
electric field in the x-direction is not perpendicular to the velocity v
for a general angle θ , i.e., v and s enclose an angle α 6= 90◦.
Reprinted with permission from [31]. Copyright 2010 by the
American Physical Society.

depends on the direction in which the spin current is measured
(see figure 7(a)).

Hence, for a fixed electric field a given spin polarization
ŝ propagates in its ‘own’ direction, specified by σ k

ij . This

direction is given by the vector Qŝ
= Q · ŝ, where the

dot product implies contraction with the vectors f̂k of
equation (19). If, in analogy with equation (6), we define a
spin Hall conductivity vector σ(ŝ) as

σl(ŝ) = 1
2

∑
ijk

εijlσ
k
ijsk, (20)

then Qŝ, which is the spin current density for polarization
along ŝ, obeys (according to equation (19)) the relation

Qŝ
= E× σ(ŝ). (21)

The direction of σ(ŝ) always depends on ŝ, but the magnitude
not necessarily so. We call the SHE in a material anisotropic,
if the magnitude of |σ(ŝ)| depends on ŝ.

In cubic systems symmetry requires that σ k
ij = σ

z
xyεijk.

Thus, the SHC may be expressed in terms of one material
parameter, equation (21) simplifies to Qŝ

= σ z
xyE × ŝ, and

the conductivity vector is σ(ŝ) = σ z
xyŝ. Since the magnitude

of the conductivity vector, σ z
xy, is independent of ŝ, the

SHE is isotropic in cubic systems. The relationship between
the direction of spin current and the direction of spin
polarization in cubic systems is illustrated in figure 7(a). For
the spin-mixing parameter and the anomalous Hall effect the
dependence on the direction of the SQA and magnetization
in the sample, respectively, can be more complicated even in
cubic crystals, see e.g. figures 5(d)–(e).

Let us consider now rigorously the situation of the SHE
in transition metals with hcp structure, figure 7(b), keeping
in mind that the following results remain valid also for
general uniaxial structures. If the electric field is applied
along the x-direction, the magnitude of the spin current in the
y-direction will generally differ from that in the z-direction
since the x-axis exhibits only two-fold rotational symmetry.
The spin current density in direction n̂ = (0, cos θ, sin θ)T is

n̂ · Q = −(σ z
xy f̂z cos θ − σ y

zx f̂y sin θ)Ex. (22)
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Figure 8. (a) For the hcp metals Sc, Ti, Zn, Y, Zr, Tc, Ru, Cd, La, Hf, Re and Os and for antiferromagnetic Cr the spin Hall conductivities
σ x

yz and σ z
xy are shown as light (red) and dark (blue) bars, respectively. (b) Decomposition of the SHC of Sc into perpendicular and parallel

components following equation (23). The angle α enclosed by the direction of the spin current and the direction of the spin polarization is
also shown. At the angle θ0 = 62.2◦ the component of the spin polarization perpendicular to the spin current vanishes and α = 180◦.
Reprinted with permission from [31]. Copyright 2010 by the American Physical Society.

Note that according to equation (19) n̂ ·Q is a vector pointing
in the direction of spin polarization. We define the anisotropy
of the SHE for spin polarization in the yz-plane as1zy = σ

z
xy−

σ
y
zx. Physically, if σ z

xy and σ x
yz have the same sign, parameter

1zy quantifies the difference in the magnitude of the spin
current measured along the y and z axes, when the electric
field points along x. For a general angle θ the components of
the spin current with spin polarization parallel to n̂ (Q‖) and
spin polarization perpendicular to n̂ (Q⊥) are given by

Q‖ = n̂ · Q · n̂ = − 1
21zy sin(2θ)Ex,

Q⊥ = (σ
y
zx +1zycos2θ)Ex.

(23)

If 1zy 6= 0, the spin polarization is perpendicular to n̂
only if n̂ is along the y- or z-direction, otherwise the spin
polarization and direction of spin current enclose the angle
α = arctan(Q⊥/Q‖) 6= 90◦, as shown in figure 7(b). It follows
from equation (23) that Q⊥ is zero at the angle

θ0 = arccos
√
−σ

y
zx/1zy (24)

if σ z
xy and σ

y
zx differ in sign. At this angle θ0 the spin

polarization and the spin current are collinear. This is
an interesting constellation, which cannot occur in cubic
systems. An analogous situation can also occur for the
anomalous Hall effect, i.e. a different sign of the AHC for two
different high-symmetry directions of the magnetization in the
crystal, as we show in section 5.1. In the latter case, there
exists a direction of the magnetization in the crystal for which
the Hall current (spin current in SHE) and the magnetization
(spin polarization in SHE) are collinear. Motivated by the
rotational sense of the Hall current as the magnetization
direction is rotated, we call this effect the anti-ordinary Hall
effect, see section 5.1.

The case of spin current in the x-direction and electric
field E = (0,E cos θ,E sin θ)T in the yz-plane is simply
related to the previous one by a minus sign: the components
of the spin current with spin polarization parallel and
perpendicular to the electric field E are given by Q‖ =

1
21zy sin(2θ)E and Q⊥ = −(σ

y
zx+1zycos2θ)Ex, respectively.

At the angle θ0, equation (24), the spin polarization and the
electric field are collinear. Thus, one can achieve collinearity
of the spin polarization and electric field, or collinearity of
the spin polarization and direction of spin current if σ z

xy and
σ

y
zx differ in sign. For the anti-ordinary anomalous Hall effect

this means that we can find a direction of E such that the Hall
current is collinear to the magnetization, while the transverse
Hall current is not zero.

If the electric field is applied along the z-axis, the
same magnitude of the spin current will be measured in all
directions perpendicular to the z-axis, since the z-axis exhibits
three-fold rotational symmetry. The spin current in direction
n̂ = (cos θ, sin θ, 0)T is in this case

n̂ · Q = (σ x
yz f̂x sin θ − σ y

zx f̂y cos θ)Ez. (25)

Symmetry requires that σ
y
zx = σ x

yz. Consequently, the
magnitude of the spin current is independent of θ and the spin
polarization is perpendicular to both the electric field and n̂.

In the case of the hcp structure the conductivity vector
and the spin current density, equation (21), may be expressed
in terms of the anisotropy as

σ(ŝ) = σ x
yzŝ+ (0, 0,1zysz)

T,

Qŝ
= σ x

yzE× ŝ+1zysz(Ey,−Ex, 0)T.
(26)

Hence, only two parameters, σ x
yz and 1zy, suffice to describe

the SHE in hcp nonmagnetic metals. The fact that one
needs only two parameters to reconstruct the exact analytical
dependence of the spin polarization on the direction in
which the spin current is measured is a manifestation of
the geometrical anisotropy of the SHE. This is a major
difference from the anomalous Hall effect and spin relaxation,
for which the conductivity vector and the EYP have to be
recalculated anew for each direction of the magnetization and
SQA, since the EYP and the AHC for a general direction of
the SQA/magnetization cannot be related to the corresponding
values for the high-symmetry axes. For example, in the case
of the AHE, already four parameters are needed for an

13



J. Phys.: Condens. Matter 25 (2013) 163201 Topical Review

approximate expansion of the conductivity of hcp crystal up
to third order in the directional cosines [17].

Next, we present in figure 8 the results of first-principles
calculations of the intrinsic SHC, equation (10), for the hcp
metals Sc, Ti, Zn, Y, Zr, Tc, Ru, Cd, La, Hf, Re, Os and for
antiferromagnetic Cr (see section 2 for computational details).
In the case of Cr we neglected the spin density wave and
considered the antiferromagnetic structure with two atoms
in the unit cell and with the magnetic moments parallel and
antiparallel to the z-axis. Except for Cd, all metals studied in
this work exhibit a large anisotropy of SHE, which we expect
to be clearly visible in experiments. Of particular interest
are the hcp metals Sc, Ti and Ru, where the sign of the
conductivity changes as the spin polarization is rotated from
the z-axis into the xy-plane. As discussed before, collinearity
of the spin polarization and the electric field or the spin
polarization and the spin current may be achieved if the
electric field (the spin current) lies in the yz-plane at the angle
θ0, equation (24), from the y-axis. To illustrate this we plot
in figure 8(b) the angle α enclosed by the direction of the
spin current and the direction of the spin polarization as well
as the SHCs associated with Q‖ and Q⊥ (see equation (23))
as a function of the angle θ for Sc. The critical angles at
which the perpendicular component of the spin polarization
vanishes are θ0 = 62.2◦, θ0 = 32.1◦, and θ0 = 19.1◦ for Sc,
Ti, and Ru, respectively. Note that in case of Ru we have
the case of a colossal anisotropy of the SHE: the values
of the two calculated conductivities differ by an order of
magnitude. In the case of Cr the SHE is anisotropic, as the
cubic symmetry is broken by the staggered magnetization:
if the spin polarization of the spin current is perpendicular
to the staggered magnetization then the SHC is larger by a
factor of 1.8 compared to the case of spin polarization parallel
to the staggered magnetization. We can thus claim that in
antiferromagnets the direction of the local spins presents an
additional channel for the SHE anisotropy. Such anisotropy is
no longer geometrical, however, due to the dependence of the
electronic structure on the direction of local magnetization,
similarly to the case of the AHE in ferromagnets.

Generally, a simple analysis of the SHC and its anisotropy
in terms of a simple model becomes very difficult, since (i) the
integrand in equation (10) varies very strongly as a function of
k (see for example figure 10) and the entire Brillouin zone has
to be considered for integration in order to reproduce the SHC
quantitatively correctly; (ii) for the anisotropy of the SHC not
only the anisotropy of the wavefunctions with respect to the
SQA, discussed in section 3, has to be taken into account,
but also the anisotropy of the velocity matrix elements has to
be necessarily accounted for. This makes it hardly possible to
interpret the spin Hall conductivity in terms of a small number
of virtual interband transitions. Even the sign and order of
magnitude of the SHC are difficult to predict based on simple
arguments.

One aspect we would like to comment on is the
importance of transitions in equation (10) which are driven by
spin-flip SOC, and the difference between the AHE and SHE
as far as the anisotropy of the conductivities is concerned. Let
us consider a situation of two doubly degenerate Bloch states

Figure 9. Left column: a band degeneracy due to bands of m and m′

orbital character, |m− m′| 6= 1, in a paramagnet with structural
inversion symmetry without SOC, is lifted due to spin-conserving
SOC for SQA along z, and by spin-flip SOC for SQA along x. In a
ferromagnet the band degeneracies between the bands of the same
spin character (middle column), and of the opposite spin character
(right column) have to be considered instead. Note that in this case
the energy shifts due to SOC depend strongly on the direction of the
magnetization and the type of the crossing. The red (blue) color
stands for spin-up (-down) character of the states, while green color
marks the states which are of essentially mixed spin character.

at a certain k-point, occupied ψn and unoccupied ψm. Let us
also assume that these states are well separated in energy, i.e.,
the first-order perturbation theory, as given by equation (17),
applies. In this case, consider the contribution to the spin
Berry curvature �z

xy which comes from the products of the
type:

〈ψm|vxτz|ψn〉〈ψn|vy|ψm〉

= 〈a↑m + b↓m|vxτz|a
↑
n + b↓n 〉〈a

↑
n + b↓n |vy|a

↑
m + b↓m〉,

where the SQA is chosen along the z-axis, and a↑m =
am|↑〉, etc, according to the expansion (1). If we neglect the
relativistic correction to the velocity operator (as our ab initio
calculations show it is a very good approximation in most
of the cases), the velocity operator does not couple states of
different spin and the spin-mixing parameter enters with the
terms of the order of bmbn, which means that the spin-flip
spin–orbit appears only in contributions to the spin Berry
curvature which are proportional to ξ2 and higher even powers
of ξ (note that ξ is the SOC strength in the system). It is clear
that in this case the dominant contribution to the SHC comes
from∼ξ spin-conserving transitions. We prove a similar result
in section 5 for the anomalous Hall effect.

While in the largest part of the Brillouin zone the SHC
originates mainly from the spin-conserving SOC, in the
vicinity of a degeneracy (or crossing) point, such as depicted
in figure 9 (left, no SOC), both spin-flip and spin-conserving
SOC can provide very large contributions to the SHC.
Generally speaking, depending on the orbital character of
the states which cross, the role of the spin-conserving and
spin-flip SOC for the SHC around such points can be
interchanged by changing the SQA. Consider, for example,
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Figure 10. Band structures and distribution of the Berry curvature
along high-symmetry directions in the BZ for the magnetization
along the [001] and [110] crystallographic axes in L10 FePt and
FePd. Here �[ijk] marks the only non-vanishing component of the
Berry curvature vector along the direction of the magnetization [ijk].

a situation from section 3, where the (doubly degenerate)
bands which cross have a dominant m and m′ orbital character,
|m − m′| 6= 1, and are well separated from other states,
figure 9 (left column). In this case, for the SQA along z,
the degeneracy between the states is lifted by LS↑↑, and the
states keep their almost pure spin character. On the other
hand, by pointing the SQA along x, the degeneracy is lifted
due to LS↑↓, and the states become strongly mixed in spin.
Such anisotropy of the wavefunctions will contribute to the
anisotropy of the SHC, but what also has to be taken into
account is that while in the first case the vxτz and vy velocity
operators have to be considered in the expression above,
in the second case they have to be replaced with vyτx and
vz. One has to realize that for a k-point away from the
high-symmetry directions in the BZ and for the bands which
have mixed orbital character the mixture of LS↑↑ and LS↑↓ in
the spin–orbit Hamiltonian can be complicated and the Berry
curvature can vary in a non-trivial fashion with the SQA.
Nevertheless, by looking at the situation depicted on the left
in figure 9, it becomes intuitively clear why the anisotropy of
the SHE in paramagnets with structural inversion symmetry
is geometric: upon rotation of the SQA, the spin-conserving

part of SOC is continuously transformed into the spin-flip
part, while the energy spectrum remains unchanged and the
crystal basically remains ‘the same’ system. Indeed, none of
the ground state properties of such a crystal are sensitive to
the direction of the SQA, and it is the non-equilibrium nature
of the spin-relaxation and transport phenomena which makes
them sensitive to it. The condition for such a continuous
transformation between LS↑↑ and LS↑↓ obviously lies in the
availability of both spin-up and spin-down states for each
k-point and energy, i.e., the spin degeneracy.

In a ferromagnet, the spin degeneracy is lifted due to
the presence of the magnetization. In this case, since the
spin-up and spin-down subspaces are separated in energy, the
spin-conserving SOC does not transform continuously into
the spin-flip SOC at a given k-point and energy when the
magnetization is rotated, and two types of band crossings (or
degeneracies) without SOC should be considered: between
bands of the same and of opposite spin (see figure 9).
Depending on the orbital character of the states, the
degeneracy between them will be lifted in the first case by
LS↑↑ for one direction of the magnetization only (say, z),
while in the second case it will be lifted by LS↑↓ only for
another (say, x), see figure 9. Simply speaking, since the
position of the two types of degeneracy in energy and in
the Brillouin zone, as well as their number, is different in
a ferromagnet, effectively, for the two different directions
of the magnetization we have two different systems with
a different energy spectrum and different eigenstates. In
particular, such asymmetry is the reason for the anisotropy
of the orbital moments and total energy in ferromagnets.
Since the difference in, e.g., the eigenspectrum for the two
different magnetization directions can hardly be reconstructed
analytically due to the complexity of the Hamiltonian in
transition metals, this leads to a complicated behavior of the
AHC as a function of the direction of the magnetization in the
crystal. The same holds true for the Elliott–Yafet parameter,
considered in section 5, in which case the time-reversal
symmetry in the system is effectively broken by a certain spin
direction of the injected electrons, which is able to probe the
spin-mixing parameter of the states.

Finally, we would like to make two comments. The first
one concerns the topology of the degeneracy points in the
BZ. The type of degeneracy shown in the upper row of
figure 9 provides the so-called monopole contribution to the
Berry curvature [15], intensively discussed in the literature,
especially with respect to topological insulators [55]. Such
degeneracies arise at single (often high-symmetry) points
in the BZ, as well as along so-called ‘hot loops’ [32, 79],
introduced previously in this review for the case of spin
relaxation [36]. Another important contribution to the Berry
curvature can also be given by transitions between the pairs of
parallel bands degenerate along whole (often high-symmetry)
lines or even areas in the BZ—these are the so-called ladder
transitions [32]. In the language of spin relaxation, such
transitions would occur at the spin-flip hot areas in the vicinity
of the Fermi surface. The conclusions of the discussion
above hold true for both cases. Secondly, it is important to
underline that although, referring to the perturbation theory
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Table 1. Calculated from first principles, the anomalous Hall
conductivity as a function of the direction of magnetization in the
crystal. The data are taken from [35] for bcc Fe and hcp Co (similar
values for hcp Co were obtained in [17]), from [32, 80] for L10 FePt
and FePd, and from [34] for L10 CoPt and NiPt. All units are in
S cm−1.

bcc Fe hcp Co FePd FePt CoPt NiPt

M ‖ [001] 767 477 135 818 −119 −1165
M ‖ [100] 100
M ‖ [110] 810 276 409 107 −914
M ‖ [111] 842

arguments, the same matrix elements of SOC enter into
the expressions for energy shifts, Hall conductivities and
spin-mixing parameter, these expressions are fundamentally
different. This means that, for example, even though the band
degeneracy in figure 9 would be lifted by the spin-conserving
SOC, it can happen that the major contribution to the Berry
curvature is provided by the spin-flip SOC, and the other way
around. Concerning this issue, see also the discussion of the
second-order perturbation theory expression for the AHC in
section 5.2.

5. Anisotropy of intrinsic anomalous Hall effect in
metallic ferromagnets

5.1. Anisotropic AHE in uniaxial ferromagnets: first
principles studies

Theoretically, the first argument for a strongly anisotropic
behavior of the AHC in transition metals was provided by
Roman et al [17]. In that work it was argued that the main
reason for the observed anisotropy of the intrinsic AHC in
uniaxial hcp cobalt, which reaches as much as a factor of
four between the conductivities for the magnetization in-plane
and out-of-plane (see table 1), in agreement with experiment,
lies in the irregular and spiky behavior of the Berry curvature
in the reciprocal space. In the following, we would like
to consider the phenomenon of anisotropic AHE in more
detail using first-principles methods. One has to keep in mind
that the main conclusions we draw in the following three
subsections hold true also for the anisotropic spin Hall effect.

First, let us take a look at the distribution of the Berry
curvature along the high-symmetry lines in the Brillouin
zone for a typical uniaxial ferromagnet, FePt in the L10
structure presented in figure 10 (see figure 11(c) for a
sketch of the structure and definition of the crystallographic
directions). The characteristic spikes in the vicinity of points
of near-degeneracy across the Fermi energy can be seen,
e.g., around the M-point or in the middle of the 0Z-path.
As we shall see in section 5.2, similarly to the case of
the Elliott–Yafet parameter, the large values of the Berry
curvature in the vicinity of such points will be inevitably
related to the matrix elements of the spin–orbit interaction
between the occupied and unoccupied states, scaled by the
energy difference between them. As discussed for the case
of the EYP and SHE, those matrix elements are strongly
anisotropic with respect to the SQA, or, direction of M,

resulting in the remarkable anisotropy of the Berry curvature
in figure 10, both in magnitude (e.g. in the middle of the
0Z-path) and sign (e.g. close to M-point). When integrated
over the whole BZ, the anisotropy of the Berry curvature
leads to a factor-of-two reduction in the AHC in FePt as
the magnetization is changed from out-of-plane to in-plane
(see table 1). In general, in cubic crystals, the anisotropy
of the AHE with respect to the directional cosines of
the magnetization appears in all odd orders (owing to the
anti-symmetry of σ with respect to M) starting from the
third order, and it is normally much weaker than that for the
uniaxial crystals, for which the anisotropy is present already
in the first order [17], compare e.g. values for bcc Fe to the
ones for the uniaxial ferromagnets in table 1.

When we compare the anisotropy of the AHE to the
anisotropy of the Elliott–Yafet parameter in metals, several
comments can be made. Firstly, the anisotropy of the AHC is
a more complex quantity, which hinders analysis in terms of a
simple line of arguments, as can be done for the anisotropy of
the EYP. This is due to the fact that while for the emergence
of the EYP only the spin-flip part of SOC plays a role and
the transitions between the spin-degenerate bands can be
ignored, for the AHC both spin-conserving and spin-flip parts
of SOC have to be taken into account in transitions between
occupied and unoccupied bands according to equation (7) (see
also considerations at the end of section 4). We analyze this
in more detail in the following two subsections. Secondly,
in addition to the anisotropy of the SOC matrix elements,
similarly to the SHE also anisotropy of the velocity matrix
elements matters for the total value of the AHC anisotropy.
Finally, the Berry curvature is not confined to the Fermi
surface, but has a finite spread in energy. While it is already
clear from equation (7), in order to further clarify this point we
refer to the distribution of the Berry curvature for L10 FePd
alloy in figure 10. In this plot, the presence of wide regions in
k-space is evident for which the Berry curvature arises due to
transitions between bands which are well separated in energy.
Since in such regions the Berry curvature also displays a very
anisotropic behavior, it seems reasonable to ask whether there
is a certain threshold in energy beyond which the transitions
between bands can be neglected for the anisotropy of the
AHC.

In order to answer this question, following Roman
et al [17], we introduce the cumulative anomalous Hall
conductivity A(ω), which accumulates all transitions in
equation (7) for which εnk − εmk is larger than h̄ω. In the
limit of ω → 0 all transitions in equation (7) are accounted
for, and A(ω = 0) equals the full AHC. An inspection of
the cumulative AHC presented as a function of energy and
magnetization direction in figure 13 (left) for FePt, CoPt and
NiPt (the latter two also exhibit a very large anisotropy of the
AHC, see table 1), as well as for hcp Co in [17], shows that the
energy distribution of transitions which provide the anisotropy
of the AHC is concentrated in a narrow 1 eV window around
the Fermi energy. This is in contrast to the distribution of A(ω)
for each of the magnetization directions separately, which
decays slowly over a much larger energy scale of several eV.
We can thus conclude that for the anisotropy of the AHC the
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Figure 11. Anomalous Hall conductivity of 3dPt alloys, (a), for M along [001] (σz, open circles) and [110] (σx, open squares), and
anisotropy, (b) (1σ tot

= σz− σx, small open circles), with respect to the band filling and within the virtual crystal approximation. (c) Crystal
structure of L10 FePt alloy. Small (red) spheres stand for the Fe atoms, while large (blue) spheres for the Pt atoms. The primitive unit cell
used in the calculations is enclosed by thicker lines. In the text, z stands for the [001] axis, while x stands for the [110] direction in the
crystal. (d) Anti-ordinary Hall effect in CoPt. Red circles (blue squares) denote the σ‖ (σ⊥) component of AHC, as a function of the angle θ
of the magnetization M with the [001]-axis upon rotating it into the [110] direction. (e)–(g) depict the relative orientation of the Hall current
JH, AHC σ and magnetization M in the situation of the anti-ordinary AHE. In (c)–(e) the magnetization is confined to the (1̄10)-plane. We
note that, due to symmetry considerations, the conductivity vector stays together with the magnetization in the (1̄10)-plane. Taken from [34].

interband transitions in the close vicinity of the Fermi level,
which provide very large contribution to the Berry curvature,
are more important than for the values of the AHC themselves.
This generally agrees with the results for the EYP in Os,
figure 6. There, the contributions from the areas where the
spin-mixing parameter (Berry curvature in the case of the
AHE) was enhanced are dominant for the anisotropy, while
for the values of the EYP themselves the regions with smaller
spin-mixing parameter are more important, for each of the
directions of the SQA.

Generally, the AHC, as well as its anisotropy, displays a
strong dependence on the exact position of band degeneracies
with respect to the Fermi energy. We therefore expect a non-
trivial behavior of the AHC anisotropy for a ferromagnet with
a complex electronic structure when the Fermi energy, or other
parameters, such as the lattice constant or exchange splitting,
are smoothly varied. An example of this phenomenon can be
seen in figure 11(a), in which the AHC and its anisotropy are
plotted as a function of the band filling in L10 3dPt alloys
(see section 2 for details of the calculations). In this plot
we observe that when going from FePt to NiPt the AHC
anisotropy undergoes a change in sign and large changes
in magnitude. With the gray shaded area in figure 11(a)
the region around the CoPt alloy is highlighted, where
both AHC for M ‖ [001] (σz) and M ‖ [110] (σx) change

their sign. This sign change leads to the occurrence of two
key phenomena with respect to the anisotropic AHE. The
first one—the colossal anisotropy of the AHE—according
to calculations in figure 11, occurs for FexCo1−xPt alloy
with x ≈ 0.1 and for CoxNi1−xPt alloy with x ≈ 0.85. For
these two compounds one of the conductivities crosses zero,
which marks the complete disappearance of the intrinsic
anomalous Hall current JH for one of the magnetization
directions in the crystal. This is reminiscent of the situation
for the spin Hall effect in Ru, see figure 8. In terms of
the longitudinal transport within the setup of e.g. anisotropic
magnetoresistance experiment [13], the occurrence of the
colossal anisotropy of the diagonal conductivity would result
in a metal–insulator transition in the crystal—in the case
of the colossal AHE anisotropy observed in 3dPt alloys all
compounds remain metallic for all magnetization directions,
however, and retain their complicated electronic structure
around the Fermi energy.

For CoPt alloy the situation, depicted in figures 11(d)–(g),
is completely different. Remarkably, σ‖ crosses zero at θ0 =

70◦, which manifests the occurrence of the anti-ordinary Hall
effect in the crystal of CoPt, discussed already within the
framework of the spin Hall effect in section 5.2. At this
‘magic’ angle, the magnitude of the anomalous Hall current
JH is almost twice as large as it is for M ‖ z, however, due
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to the non-vanishing σ⊥ component of the AHC vector, JH is
aligned along the direction of the magnetization. By analyzing
figures 11(d)–(g) we observe that the rotational sense of the
anomalous Hall current is opposite to that observed in the
ordinary Hall effect of the free electron gas. For the ordinary
Hall effect, Lorentz forces ∼[H × v] are acting on electrons
with velocity v in the presence of a magnetic field H. The
resulting ordinary Hall current of free electrons is always
perpendicular to H, irrespective of its direction, opposite
to the situation of the anti-ordinary anomalous Hall effect,
observed in CoPt. Here, turning the magnetization clockwise
in the (1̄10)-plane results in an anti-clockwise rotation of JH,
with its value staying rather large all the time. On the other
hand, in analogy to the spin Hall effect, for the anti-ordinary
Hall effect, it is possible to find a direction of the electric
field E such that the Hall current is perpendicular to E and
M, which are, in turn, collinear to each other. Again, such a
situation obviously cannot occur for the ordinary Hall effect
of free electrons.

In 3dPt alloys that are, from an electronic structure point
of view, in the vicinity of L10 CoPt, the anisotropy of the AHE
manifests itself in crucial ways, suggesting new functionalities
of the AHE-based devices. In these systems, large changes
in the magnitude of the anomalous Hall current as well as
the relative orientation of the Hall current with respect to the
magnetization can be easily achieved by simple reorientation
of the sample’s magnetization. While the former could be
used, for example, to tune the relative magnitudes of the
extrinsic and intrinsic anomalous Hall signal [41, 80], among
most straightforward applications of the latter could be a
realization of the planar Hall effect (PHE) [13, 81], which
is related to the Hall effect in ferromagnetic materials with
electric field, magnetization and the Hall current sharing same
sample plane. So far, it is believed that in most cases the
PHE originates from the anisotropic magnetoresistance in
metallic ferromagnets, although a PHE mechanism stemming
from the anomalous Hall effect due to non-collinearity of
the magnetization in semiconductor-based materials has been
also suggested [82]. Within the scope of the anti-ordinary
Hall effect, described in this work, it would be possible to
observe the PHE coming solely from the anisotropic nature of
collinear ferromagnetic materials.

5.2. Perturbation theory treatment: FePt

In this section we present the perturbation treatment
of the intrinsic AHC given by the linear response
Kubo formula equation (7). According to first-order non-
degenerate perturbation theory, the perturbed wavefunction
ψσm originating from the unperturbed wavefunction ψσm,0 with
spin σ upon including the spin–orbit interaction is given by

∣∣ψσm 〉 = ∣∣ψσm,0〉+ ∑
p6=m;σ ′

〈ψσ
′

p,0|ξL · S|ψσm,0〉

εm,0 − εp,0
|ψσ

′

p,0〉, (27)

where εm,0 and εp,0 denote the unperturbed eigenenergies, and
k-point indices have been omitted for simplicity. Compared
to equation (17), here we consider the complete SOC

Hamiltonian, and not only its spin-flip part. Following
equation (7), in order to obtain an expression for σz, the key is
to evaluate the imaginary part of the following product:

1

(ε
(1)
n − ε

(1)
m )2
〈ψσ

′

n |vx|ψ
σ
m〉〈ψ

σ
m |vy|ψ

σ ′

n 〉. (28)

The energies ε(1)n and ε(1)m stand for the first-order perturbed
eigenvalues. Substituting equation (27) into (28), we can sort
out the terms which appear in different orders with respect
to the SOC strength ξ . The purpose of this is the general
analysis of simplified expressions and discussion of the orders
with respect to ξ and their energy scales, which remain valid
also when the (degenerate) perturbation theory is applied
rigorously in higher orders. In the following we assume
that the velocity operator does not contain the relativistic
correction due to spin–orbit coupling, which we generally find
to be a very good approximation.

A typical first-order contribution to equation (28)
involves a sum over additional transitions via auxiliary states
ψσ
′′

l,0 , and looks like:

ξ

(ε
(1)
n − ε

(1)
m )2
〈ψσ

′

n,0|vx|ψ
σ
m,0〉

×

∑
l 6=n;σ ′′

〈ψσ
′′

l,0 |L · S|ψσ
′

n,0〉

εn,0 − εl,0
〈ψσm,0|vy|ψ

σ ′′

l,0 〉, (29)

while the second-order contribution to the product of the
matrix elements of the velocity operators involves already two
sums of additional transitions via auxiliary states ψσ

′′′

p,0 and

ψσ
′′

l,0 , and consists of terms with the following structure:

ξ2

(ε
(1)
n − ε

(1)
m )2

∑
p6=m;σ ′′′

〈ψσ
′′′

p,0 |L · S|ψσm,0〉

εm,0 − εp,0
〈ψσ

′

n,0|vx|ψ
σ ′′′

p,0 〉

×

∑
l 6=n;σ ′′

〈ψσ
′′

l,0 |L · S|ψσ
′

n,0〉

εn,0 − εl,0
〈ψσm,0|vy|ψ

σ ′′

l,0 〉. (30)

For the first-order terms, equation (29), the initial state ψσm,0
and final stateψσ

′

n,0 must have the same spin, since the velocity
operator does not act on the spin part of the wavefunction
(if we neglect the relativistic correction to the velocity
operator). This means that the state ψσ

′′

l,0 has to be of the
same spin as states n and m. This can happen only due to the
spin-conserving part of the spin–orbit interaction LS�, as was
also found by Cooper [83], meaning that only spin-conserving
SOC contributes to the AHC in the first order with respect
to ξ . Thus, within the non-degenerate perturbation theory, we
would expect the largest contribution to the AHC from the
spin-conserving part of the spin–orbit interaction. It should
be kept in mind, however, that in materials containing heavy
atoms the SOC cannot be treated as a small perturbation.
Moreover, as follows from our previous discussion, the
important role for the AHC of near-degeneracies across
the Fermi level cannot be neglected, for which the above
arguments, based on non-degenerate perturbation theory, do
not apply (see also discussion at the end of section 4).
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Figure 12. Diagrams depicting the second order in SOC strength ξ
contributions to the AHC upon expanding the wavefunctions
according to the first-order non-degenerate perturbation theory, see
equation (30). The solid (dashed) lines stand for the matrix elements
of the velocity operator (LS↑↓-operator) between the bra- and
ket-states, marked with indices next to the dots, with the direction of
the lines from the bra- to the ket-state. The horizontal thin lines
separate the ↑-states from the ↓-states.

On the other hand, the spin-flip processes contribute
only in second- and higher-order terms. We have also come
to this conclusion for the spin Hall effect in paramagnets,
following a somewhat different argumentation. Analyzing
the second order in ξ terms which come from the
first-order perturbed wavefunctions, we find four types of
contributions to the AHC analogous to the one given by
expression (30). All four terms include two summations over
auxiliary states ψσ

′′′

p,0 and ψσ
′′

l,0 , and include two products
of the matrix elements of the SOC and components of the
velocity operator. Assuming for simplicity that the occupied
state ψσ

′

n,0 has σ ′ =↑, the four types of contributions
can be related (omitting the energy denominators for
simplicity) to the products of the velocity and SOC matrix
elements arranged in the way presented in figure 12. In
this figure, the diagram on the left side stands for the
product of 〈ψ↑n,0|vx|ψ

↑

m,0〉, 〈ψ
↑

m,0|LS↑↓|ψ↓l,0〉, 〈ψ
↓

l,0|vy|ψ
↓

p,0〉

and 〈ψ↓p,0|LS↑↓|ψ↑n,0〉, while the diagram on the right side

stands for the product of 〈ψ↑n,0|vx|ψ
↑

p,0〉, 〈ψ
↑

p,0|LS↑↓|ψ↓m,0〉,

〈ψ
↓

m,0|vy|ψ
↓

l,0〉 and 〈ψ↓l,0|LS↑↓|ψ↑n,0〉. The other two contribu-
tions to the second-order AHC come from the diagrams in
figure 12, in which the vx and vy operators are interchanged,
while all directions of the arrows are reversed. As is evident
from figure 12, all diagrams contributing to the second-order
AHC include the matrix elements of the spin-non-conserving
part of the spin–orbit interaction. Interestingly, although a
single act of LS↑↓ on a wavefunction is to flip its spin, in
addition to the contribution to the AHC from the occupied
n and unoccupied m states of different spin character (right
diagram), there can also be a non-vanishing contribution from
the second-order transition between the n and m states of the
same spin.

By calculating the spin–orbit matrix elements in the basis
of states unperturbed by SOC, as described in section 2,
we applied the non-degenerate first-order perturbation theory
in the wavefunctions with respect to SOC and computed
the corresponding orders of contributions to the AHC in
FePt. The results of these calculations are shown in table 2
for M ‖ x and M ‖ z. Here, we considered separately the
spin-conserving and spin-flip parts of our first-principles
Hamiltonian, converged the system, and applied the first-order

Table 2. Decomposition of the AHC of FePt into contributions of
different orders and their sum (6) based on a perturbative treatment
of the spin–orbit interaction, in comparison to first-principles
non-perturbative values. All values are in S cm−1. See main text for
details.

1 2 3 4 6 Non-perturbative

σ
�
z 581 0 84 0 665 577
σ
↑ ↓
z 0 84 0 −34 50 133
σ

�
x 557 0 184 0 741 585
σ
↑ ↓
x 0 −238 0 −106 −344 −184

non-degenerate perturbation theory in wavefunctions, as
described above. If we keep only LS� spin–orbit in our
calculations, we arrive at the value of the AHC, which
we denote as σ�, while by keeping exclusively the LS↑↓

SOC we arrive at the value of the conductivity σ↑↓. If σ�

and σ↑↓ are analogously calculated non-perturbatively from
first principles, see right column of table 2, then, as our
calculations show (see table 3),

σ ≈ σ�
+ σ↑↓, (31)

where σ stands for the total AHC calculated with the
complete SOC Hamiltonian. Moreover, if the first-order
perturbation theory in wavefunctions is applied to evaluate the
corresponding conductivities, the above decomposition holds
exactly. To obtain the perturbation theory values in table 2,
we used a tolerance parameter 1 of 50 meV: that is, when for
a considered unperturbed state |m〉 the difference in energy
|εm,0−εp,0|was less than1 in equation (27), the projection on
state |p〉was considered to be zero and the corresponding term
in equation (27) was neglected. Overall, by inspecting table 2
we can conclude that the agreement of the perturbation theory
results with non-perturbative results presented in tables 1 and
2 for FePt is reasonable. And while this agreement is most
probably coincidental for FePt, in which the AHC does not
seem to be dominated by singular contributions to the Berry
curvature due to transitions between the bands separated by
less than 50 meV in energy, nevertheless, certain general
features of the spin-flip and spin-conserving AHC apparent
from this analysis are universal, as discussed in section 5.3.

5.3. Spin-flip and spin-conserving transitions

As discussed in section 5.2, and confirmed by explicit
calculations within first-order non-degenerate perturbation
theory, the spin-conserving part of SOC contributes in first
and higher odd orders with respect to the spin–orbit strength,
while the spin-non-conserving part of SOC contributes in
second and higher even orders. Such oddness and evenness
of σ� and σ↑↓ with respect to ξ can also be demonstrated
in higher orders of (degenerate) perturbation theory, although
we do not provide explicit expressions here. As follows
from our calculations, this remains true even when the
anomalous Hall conductivity is treated non-perturbatively
within the first-principles methods. Here, we present explicit
calculations of the σ� and σ↑↓ in L10 FePt and NiPt as
a function of the spin–orbit strength in the system, ξ . The
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Figure 13. Total (a), spin-conserving ((b), red) and spin-flip ((b), blue) cumulative AHC as a function of energy in FePt, CoPt and NiPt for
two different magnetization directions (solid and dashed lines). (c) Scaling of the spin-conserving AHC in NiPt with respect to the strength
of spin-conserving SOC on both Ni and Pt sites. (d) Scaling of the spin-flip AHC in FePt with respect to the strength of the spin-flip SOC.
SOC on both Fe and Pt sites was scaled uniformly. The inset displays a zoom into the region of small SOC strength. Note that for the sake
of this numerical experiment we also consider the regime of negative values of the SOC strength.

Table 3. AHC in FePt for two magnetization directions resolved into spin-flip and spin-conserving contributions from the SOC on each
atomic species and compared to the corresponding total values. All values are in S cm−1. Taken from [32].

σ tot σ� σ↑ ↓ Fetot Fe� Fe↑ ↓ Pttot Pt� Pt↑ ↓

M ‖ [001] 818 577 133 14 18 −27 848 541 282
M ‖ [100] 409 585 −184 210 254 −38 65 426 −361

results of the calculations, in which the SOC strength was
scaled uniformly on 3d and Pt atoms with respect to the
unscaled values ξ0, are presented in figures 13(c) and (d),
where we include the non-physical case ξ < 0 to demonstrate
the even–odd effect. From this plot we observe that, within the
accuracy of the calculations, in NiPt the conductivity σ�(ξ)=

−σ�(−ξ), while in FePt σ↑↓(ξ) = σ↑↓(−ξ), allowing thus
for an expansion of σ�(ξ) (σ↑↓(ξ)) in odd (even) powers of
ξ . Note also that for larger values of ξ the behavior of σ�

and σ↑↓ is manifestly different from linear and quadratic,
respectively, marking thus the importance of higher-order
terms.

In general, the fact that the spin-conserving transitions
appear already in the first order with respect to ξ , while
the spin-flip transitions appear in second and higher order,
has two essential consequences. Firstly, it means that the
energetic spread of the spin-flip conductivity will be much
narrower than that of the spin-conserving AHC, due to the
higher power of the energy denominator in equation (30) of
the order of (εn − εm)

4, as compared to that of the order
of (εn − εm)

3 in equation (29). This can be clearly seen in
figure 13(b), in which the cumulative AHC for FePt, CoPt
and NiPt is decomposed, analogously to the total AHC, into
spin-conserving and spin-flip contributions:

A(ω) ≈ A�(ω)+ A↑↓(ω). (32)

Noticeably, while A�(ω) decays on the scale of the bandwidth
of several eV, the spin-flip cumulative AHC is localized
in a much narrower energy region, of the order of 1 eV.
It is important to mention that the anisotropy of the total
AHC can present a competition between the anisotropy of
the spin-conserving and spin-flip parts, depending on the
exact details of the electronic structure, see for example
figures 13(b) and 11(b)—we refer here also to the discussion
at the end of section 4.

Remarkably, the energetic scale of the spin-flip transi-
tions in figure 13 roughly corresponds to the energy scale
of the spin–orbit interaction of Pt atoms. This observation
brings us to the second conclusion that we can make
from the perturbation theory analysis: the contribution of
spin-conserving transitions to the AHC is normally dominant
over the spin-flip transitions (this can be clearly seen in
figure 13), since the latter appear only starting from the second
order in SOC strength. Correspondingly, in order to promote
the spin-flip contribution to the AHC, the spin–orbit strength
in the material has to be enhanced. Let us consider this point
in detail, and prove that the spin-flip processes in FePt are
induced mostly by the strong SOC on the Pt atoms [32]. To do
this, we selectively turn off the SOC on each atomic species
inside the crystal. The atom-resolved spin–orbit Hamiltonian

20



J. Phys.: Condens. Matter 25 (2013) 163201 Topical Review

reads

HSO = ξFeLFe
· S+ ξPtLPt

· S, (33)

where Lµ is the orbital angular momentum operator
associated with atomic species µ (Fe or Pt), and ξµ is the
spin–orbit coupling strength averaged over valence d-orbitals.
In FePt we find ξ0

Fe = 0.06 eV and ξ0
Pt = 0.54 eV, where ξ0

µ

denotes the value calculated from first principles.
Let us recalculate now the AHC after setting to zero

either ξFe or ξPt in equation (33), and then further decompose
the conductivity into the spin-flip and spin-conserving parts.
The results are presented in table 3. Although such a
decomposition is not exact, it reproduces the total values
rather well. Namely, the sum of the total conductivities
driven by SOC on Fe (Fetot in table 3) and on Pt (Pttot

in table 3) is in reasonable agreement with the values of
σ tot for both magnetization directions. Moreover, the sum of
atom-resolved AHCs into spin-conserving and spin-flip parts
is very close to the corresponding total values. Consider first
the AHC driven by ξFe. For both magnetization directions the
spin-flip contribution is very small, while the spin-conserving
part is small along [001] but large along [100]. As for the
AHC induced by ξPt, the spin-conserving part is large but
fairly isotropic, while the spin-flip part is highly anisotropic,
changing from a large positive value along [001] to a large
negative value along [100]. This confirms that the large and
strongly anisotropic σ↑↓ is governed by the SOC inside the Pt
atoms.

Let us confirm the conclusion we draw from the per-
turbation theory description via non-perturbative calculations
where we tune by hand the SOC strength ξPt on the Pt atoms.
The results for the total and spin-flip AHC are shown in
figure 14 as a function of ξPt/ξ

0
Pt. It can be seen that for ξPt less

than ξ0
Pt/2, the absolute value of the spin-flip AHC does not

exceed a modest value of 50 S cm−1. In this regime σ tot
z and

σ tot
x are dominated by spin-conserving processes. Moreover,

we note that while the decrease in σ tot
z is almost perfectly

linear, σ tot
x stays fairly constant over a wide region of ξPt

values. This can be understood from the fact that for M ‖ x
the spin-conserving and spin-flip contributions arising from Pt
largely cancel one another (see table 3), so that the total AHC
is mostly driven by the SOC on the Fe atoms. In contrast,
for M ‖ z it is the SOC on the Pt atoms which dictates the
AHC. The artificial tuning of ξPt performed above describes
rather well what happens if the Pt atoms are replaced with Pd,
to form the isoelectronic FePd alloy [80]. This can be seen
by comparing the values of σ tot and σ↑↓ of 135 (276) and
24 (62) S cm−1 for M ‖ [001] (M ‖ [100]), respectively, in
FePd with the values taken from the shaded area in figure 14,
where ξPt ≈ ξ

0
Pd = 0.19 eV. In particular, the sign of the AHC

anisotropy in FePd, which is opposite from that in FePt, is
correctly reproduced by the scaled calculations on FePt.

6. Outlook

In this review we outlined the recent progress in understanding
and predicting the anisotropy of the spin-relaxation and
intrinsic anomalous and spin Hall effect in metals from first

Figure 14. Dependence of the total (σ tot
z and σ tot

x ) and spin-flip

(σ↑↓z and σ↑↓x ) AHC in FePt alloy on the strength ξPt of the SOC
inside the Pt atoms. Reprinted with permission from [32]. Copyright
2011 by the American Physical Society.

principles. In case of the spin relaxation this anisotropy is
the consequence of the anisotropy in the wavefunctions upon
changing the spin-quantization axis in the crystal, which can
be probed via a non-equilibrium process such as an injection
of an electron with a certain direction of spin polarization
into a material exhibiting an anisotropy of the Elliott–Yafet
coefficient. In the case of the spin Hall effect, in addition to
the anisotropy of the wavefunctions with respect to the SQA,
the anisotropy of the velocity matrix elements comes into play
in non-cubic crystals, which leads to an anisotropic correlation
between the direction of an applied electric field, direction of
the spin current and its spin polarization. For ferromagnets
exhibiting the anomalous Hall effect, in addition, eigenvalues
and wavefunctions display a very non-trivial dependence on
the direction of magnetization in the crystal, which results in a
complicated relation between the orientation of magnetization
and direction of the Hall current, as well as its magnitude.
The anisotropy of the spin-relaxation and Hall currents in
perfect crystals can be so strong that it can reach colossal
values. For spin and anomalous Hall effects, the magnitude
of the Hall current can even be completely suppressed
via a suitable choice of the direction of the electric field
and/or magnetization. Such strong anisotropy should manifest
itself clearly in an experiment, and one of the purposes
of the current review is to stimulate further experimental
studies with the aim of extending the functionalities of future
spintronics devices.

The phenomena considered in this work stem from
the electronic structure of perfect idealized solids. In an
experiment, especially at finite temperatures, one inevitably
faces imperfections in the crystalline order due to impurities
or disorder, phonons, magnons etc. For the Hall effects,
disorder in the system serves as a source of additional
channels for the Hall signal due to so-called skew- and
side-jump scattering [84–87]. In the perturbation theory
picture, any sort of effects due to impurity scattering should
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Figure 15. Angle-resolved side-jump conductivity in units of
S cm−1 as a function of direction in the BZ for fcc Ni for two
different magnetization directions. Reprinted with permission
from [35]. Copyright 2011 by the American Physical Society.

involve the matrix elements of the scattering potential with
the Bloch states of the perfect crystal. And while already
the Bloch wavefunctions in the solid, as we discussed,
might display an anisotropy with respect to the SQA,
also the complicated structure of the impurity potential
should exhibit strong anisotropy, due to a possible impurity
spin polarization, an internal spin–orbit interaction and an
anisotropic crystal field. Recently, assuming a disorder due
to point-like delta-correlated defects which do not have
any internal structure of the potential, strong anisotropy of
the side-jump contribution to the anomalous Hall effect in
ferromagnets has been demonstrated from first principles [35]
(cf figure 15). In this case the calculated anisotropy is a
consequence of the anisotropic electronic structure of the
perfect crystal, and the question of the anisotropy of transverse
transport due to microscopic details of the impurity potential,
which can be treated with high accuracy ab initio, still remains
open and serves as a fruitful subject for future studies.

Finally, we would like to remark that following the
same philosophy, anisotropy of the transverse transport should
also be large and experimentally observable for other effects
driven by spin–orbit interaction, such as anomalous Nernst
effect in ferromagnets [88, 89] and spin Nernst effect in
paramagnets [90, 91]. On the other hand, in compounds
which exhibit non-collinear magnetic order, the interplay of
magnetism and spin–orbit interaction becomes very complex,
since the non-collinearity of the local spins can effectively
play the role of the spin-flip part of the spin–orbit interaction,
and the magnetic ground state itself can be very sensitive to
the matrix elements of the spin–orbit interaction. In such a
situation, strong anisotropy of the transverse effects observed
in this type of systems, such as the magnon Hall effect [92]
and the topological Hall effect [93–95], is guaranteed. We are
aware only of a single work in this direction [96], while the
phenomena mentioned above still remain largely unexplored.
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[34] Zhang H, Blügel S and Mokrousov Y 2011 Anisotropic
intrinsic anomalous Hall effect in ordered 3dPt alloys Phys.
Rev. B 84 024401

[35] Weischenberg J, Freimuth F, Sinova J, Blügel S and
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Blügel S and Mokrousov Y 2012 Anisotropy of spin
relaxation in metals Phys. Rev. Lett. 109 236603

[37] Fabian J and Das Sarma S 1998 Spin relaxation of conduction
electrons in polyvalent metals: theory and a realistic
calculation Phys. Rev. Lett. 81 5624–7

[38] Nagaosa N 2006 Anomalous Hall effect: a new perspective
J. Phys. Soc. Japan 75 042001

[39] Sinitsyn N A 2008 Semiclassical theories of the anomalous
Hall effect J. Phys.: Condens. Matter 20 023201

[40] Gradhand M, Fedorov D V, Zahn P and Mertig I 2010
Extrinsic spin Hall effect from first principles Phys. Rev.
Lett. 104 186403

[41] Lowitzer S, Ködderitzsch D and Ebert H 2010 Coherent
description of the intrinsic and extrinsic anomalous Hall
effect in disordered alloys on an ab initio level Phys. Rev.
Lett. 105 266604

[42] Yao Y, Kleinman L, MacDonald A H, Sinova J, Jungwirth T,
Wang D-S, Wang E and Niu Q 2004 First principles
calculation of anomalous Hall conductivity in
ferromagnetic bcc Fe Phys. Rev. Lett. 92 037204

[43] Xiao D, Chang M-C and Niu Q 2010 Berry phase effects on
electronic properties Rev. Mod. Phys. 82 1959–2007

[44] Gradhand M, Fedorov D, Pientka F, Zahn P, Mertig I and
Györffy B 2012 First-principle calculations of the Berry
curvature of Bloch states for charge and spin transport of
electrons J. Phys.: Condens. Matter 24 213202

[45] Fang Z, Nagaosa N, Takahashi K S, Asamitsu A, Mathieu R,
Ogasawara T, Yamada H, Kawasaki M, Tokura Y and
Terakura K 2003 The anomalous Hall effect and magnetic
monopoles in momentum space Science 302 92–5

[46] Mathieu R, Asamitsu A, Yamada H, Takahashi K S,
Kawasaki M, Fang Z, Nagaosa N and Tokura Y 2004
Scaling of the anomalous Hall effect in Sr1−xCaxRuO3
Phys. Rev. Lett. 93 016602

[47] Wang X, Yates J R, Souza I and Vanderbilt D 2006 Ab initio
calculation of the anomalous Hall conductivity by Wannier
interpolation Phys. Rev. B 74 195118

[48] Wang X, Vanderbilt D, Yates J R and Souza I 2007
Fermi-surface calculation of the anomalous Hall
conductivity Phys. Rev. B 76 195109

[49] Fuh H-R and Guo G-Y 2011 Intrinsic anomalous Hall effect in
nickel: A GGA +U study Phys. Rev. B 84 144427

[50] Mikitik G P and Sharlai Y V 1999 Manifestation of Berry’s
phase in metal physics Phys. Rev. Lett. 82 2147–50

[51] Thouless D J, Kohmoto M, Nightingale M P and
den Nijs M 1982 Quantized Hall conductance in a
two-dimensional periodic potential Phys. Rev. Lett.
49 405–8

[52] Hasan M Z and Kane C L 2010 Colloquium: topological
insulators Rev. Mod. Phys. 82 3045–67

[53] Birss R R 1964 Symmetry and Magnetism (Amsterdam:
North-Holland)

[54] Hurd C M 1974 Adv. Phys. 23 315
[55] Qi X-L and Zhang S-C 2011 Topological insulators and

superconductors Rev. Mod. Phys. 83 1057–110
[56] Hirsch J E 1999 Spin Hall effect Phys. Rev. Lett. 83 1834–7
[57] Kato Y K, Myers R C, Gossard A C and

Awschalom D D 2004 Observation of the spin Hall effect in
semiconductors Science 306 1910–3

[58] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K,
Maekawa S and Saitoh E 2008 Observation of spin Seebeck
effect Nature 455 778–81

[59] Liu L, Pai C-F, Li Y, Tseng H W, Ralph D C and
Buhrman R A 2012 Spin-torque switching with the giant
spin Hall effect of tantalum Science 336 555–8

[60] Murakami S, Nagaosa N and Zhang S-C 2003 Dissipationless
quantum spin current at room temperature Science
301 1348–51

[61] Murakami S, Nagaosa N and Zhang S-C 2004 Spin-Hall
insulator Phys. Rev. Lett. 93 156804

[62] Bernevig B A, Hughes T L and Zhang S-C 2006 Quantum
spin Hall effect and topological phase transition in HgTe
quantum wells Science 314 1757–61

[63] König M, Wiedmann S, Brüne C, Roth A, Buhmann H,
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