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Current-density functional theory of the response of solids
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The response of an extended periodic system to a homogeneousofieidve-vectorq=0) cannot be
obtained from agq=0 time-dependent density functional thedfyDDFT) calculation, because the Runge-
Gross theorem does not apply. Time-dependentent-density functional theory is needed and demonstrates
that one key ingredient missing from TDDFT is the macroscopic current. In the low-frequency limit, in certain
cases, density polarization functional theory is recovered and a formally exact expression for the polarization
functional is given.
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Density functional theory? is a standard approach for correspondence between the time-varying periodic density
calculating ground-state properties of sofidad moleculed.  and the applied potential. Instead, TDCDFT is needed for a
Time-dependent density functional thedfDDFT) is an ex- complete description. The time-dependent potential and all
tension of the ground-state formalism based on the Rungeesponse properties anet functionals of the time-dependent
Gross theoremhis establishes a one-to-one correspondenceeriodic density, but ratheare functionals of the time-
between time-dependent densities and time-dependent ongependent periodic current density. In the limit of low fre-
body potentials. When a time-dependent electric field is apguencies our analysis recovers the well-known GGG
plied to a system, this formalism provides a route to its optheorem’ if microscopic transverse currents can be ne-
tical respons&.The response equations of TDDFT have beerglected; TDCDFT then recoverstatio density polarization
encoded in standard quantum chemical packdges] re- functional theory." 8

sults for molecules are appearifgee Ref. 8 for many ex- Modern solid-state calculations model extended periodic
amples. As in the ground-state case, the accuracy dependsystems and extract bulk properties by using periodic bound-
on the quality of the approximate functional used. ary conditions. Our first point is that the Runge-GriR&)

There is great interest in applying the same technique ttheorem does not apply when a homogeneous electric field is
extended systems. While these can be treated well withiapplied to a periodic system. RG states that, given an initial
existing wave function technology, using, e.g., the GW ap-state, there is a one-to-one correspondence between time-
proximation and then solving the Bethe-Salpeter equation fodependent densities and time-dependent scalar potentials for
the optical responsethe allure of a TDDFT approach is its a given interaction and statistics. The first step of the RG
far lower computational cost. Calculations already show thaproof establishes a one-to-one correspondence between po-
excitonic effects appear to be treatable by going beyond thtentials andcurrents? In the second step, continuity is then
usual local and semilocal approximations of standard DFTused to relate currents to densities, and a one-to-one mapping

calculations:®1! between densities and potentials results provided a certain
There is also a version of the time-dependent theorysurface integral involving the density and the potential van-
called time-dependent current-density functional thé®y-  ishes. For finite physical systems the condition for requiring

CDFT), that uses the current-density as the basic variable: Athis surface term to be zero can be given rigorously for sys-
the choice of variablécharge density versus current density tems in which the density vanishes at the surfdcEor a
appears a matter of convenience, TDCDFT and TDDFT apperiodic system, one might try to choose a surface around
pear to be equivalerfor nonmagnetic systemsThe time-  which the density and potential are periodic but for a uni-
dependent exchange-correlation potential has been arguedftorm field the linearity of the potential prevents this, and
be more amenable to local and semilocal approximation ifDDFT does not apply.
terms of the current-densfyand this framework has been Another way to see this is in modeling the periodic sys-
used in recent response calculations of sdfidand conju- tem in an electric field by a large ring of lengthof the
gated polymers$? Initial work towards a matrix formulation material, through which is threaded a time-varying solenoi-
of the current-density response equations has been presentdal magnetic field® This field produces a uniform vector
in Ref. 16. potential on the systenfA(t), that corresponds to a macro-
In this paper, we demonstrate a differerioeprinciple  scopic electric field along the ring. The beauty of this ap-
between the two approaches when applied to bulk solids. Theroach is that the Hamiltonian remains spatially periodic,
basic theorems of DFT, ground-state or time-dependent, athough it becomes time-dependent. TDDFT was however
proven for finite electronic system@.e., systems with a derived with only scalar potentials in mind, and does not
boundary. We consider the response of periodic systemsonsider such transverse vector potentials; such uniform
(such as the bulk of an insulator or met&b time-varying  electric fields cannot be generated by a charge distribution.
electric fields which have a spatially uniform component. WeThe first part of RG still holds in this case however, showing
show that TDDFT fails in this case: there is no one-to-onethe potential is a unique functional of the current-density.
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Thus the density in the interior of any system is insuffi- tonian is periodic around this surface, and the integrand of
cient information to deduce the external electric field, but thehe surface term is the same at the two points. Thus the
current-density is sufficient. This is a time-dependent genersurface term vanishes and the RG theorem holds. This is
alization of the original GGG theorefWe shall come back consistent with the ground-state cd8ayhere the macro-
to the static case shortly. scopic polarization is only an independent variable when the

A simple example demonstrating the non-uniqueness oéxternal field has a homogeneous component. In our simple
the potential-density mapping is a noninteracting free elecexample, consider applying a perturbative electric field
tron gas on a ring, subjected to a constant, uniform electri€ cos@x) around the ring, where a finite number of wave-
field, &, turned on at timé=0. Representing the field by a lengths fits into the ring sq is an integer multiple of Z/L.
vector potentiaA= —c&t, each orbital in the Slater determi- The density picks up a spatial modulation, which, in the limit
nant state satisfies the time-dependent Stihger equation thatq—0, becomes, to first order i,

(P=&)2pn/2=1 . (1) |

(We use atomic units throughout this papéfrthe electrons n(xt)—N| 1+ &q 2 (x+knt)3/3] /L. (4
are initially in an eigenstatef,,(x,0)=e2"™L/ /L, wherex m=1

is the coordinate around the ring, and the conjugate momen-

tum is k,=27m/L, with m an integer between 0 and,
different for each orbital, then the solution at tirnis readily
found to be

Different fields yield different densities except whger-0,
consistent with the 1-1 mapping between densities and po-
tentials at finite wavelengths. One can then imagine attempt-
(Rt ki 8212+ £ 26306) i 2mmXIL ing to find the uniform-field value of certain response
bm(xt)=e"'n &2 L. 2 fynctiong® by taking theq—O0 limit of a series of finiteg
Since the electric field only affects the phase of this orbital,] PPFT calculations, although the larger supercell required

its density, and that of the noninteracting gas(x,t) migh_t render this procedure impractic(a#lthough_, see_dis-
=SN_ |én(x.1)|2 remains spatially uniform forever. In cussion of Ref. 10 below The same issue arises in the

particular, two different electric fields give rise to exactly theground-state case, where it was shown in Refs. 26 and 27

same timedn)dependent density. Thus the external |ootentialhOW carefgl use of a sawtooth potgnﬂgl on a supercell can
is not uniquely determined by the density he(&@his argu- resolye this problem. The apprpmmatlon for the density-
ment holds for any numbe of electrons functional must be ultranonlocal in space in order to capture

The first part of RG remains vafifiand applies to arbi- the exchange-correlation fields generated from the charge

trary vector potentials, not just those describing an eIeCtrirfj.'S‘m.bUtlon mpdulated. by th_e long vyavelengt_h. Th_e f'.rSt ex
citonic peak in the dielectric function of silicofmissing

field. Choosing a gauge in which the scalar potential van- . . A
ishes, one can show there is a one-to-one corresponden\@@en using any local or semilocal approximation in TDDFT

betweenA(rt) andj(rt) for a given initial stat¥~2*and this &S captured in Retf. 1|1 in a lTDD|IT(T Ealculat/iog hat finite
provides the formal basis for TDCDFT. In this gauge all\vave \{ehctolr), using an ytrl?ngn ocal eé tha.qh ovlv-.
electric fields are represented by vector potentials but th§VEr Witha being empirically determined, and with applying

one-to-one correspondence is of course gauge-independeftt GV Shift to the spectrum. In Ref. 10 an exact exchange

In our simple example, the physical current density is givencz‘;ilculation was performed, reproducing the excitonic peak of

by | (t)=2,’}‘]km+N5t/L. In two different electric fields, two silicon, without having to battle through a monstrously large

different currents arise. More generally, for a periodic po,[en_numerlcal computation. The authors were able to analytically

il on a one-dmensinairng, when a uniom elecic CECL U 10N Uhanonocs, ot fon e,
field is turned on, the density, current, etc., remain periodic Y y

and each can be written a%jeexp(Gx), where G bnly the remaining matrix elements, well-behaved as a func-

20, and i an teger Al components of e uren. 1%L DeS%US e o1 e0e beaior e heeh e
density atG+#0 are determined by the periodic density by ' P 9 pidly

the continuity equation with the numb_er ok—po?nts. o . .
' However, like density-polarization functional theory in

; _ the ground-state case, TDCDFT allows one to obtain the ho-

Je(0)=wng(v)/G,  (G#0). ® mogeneous field result directly from a singje=0 calcula-
When a uniform electric field is present, t=0 compo- tion; this cannot be done in TDDFT.
nent(the macroscopic currenis undetermined by the time- Having established that the current is needed when calcu-
dependent periodic density. lating bulk response properties in solids in uniform fields, we

When the wavelength of the external field is finite, RGnext review how such a calculation is performed for any

does apply to the periodic system; the macroscopic current iglectronic system. The one-to-one correspondence between
a functional of the periodic densitiglthough cannot be de- A(rt) andj(rt) can be used to establish a set of KS equa-
termined by Eq(3)]. Examining the second step in the RG tions in which noninteracting electrons move in a KS vector
proof in one-dimension, one may choose the surface to bpotential Ag(rt) and reproduce the exact current-density
two points separated by an integral multiple of the latticej(rt). Assume the exact KS ground-state has been found and
constant and the wavelength of the external field: the Hamilis nondegenerate. The TDCDFT KS equations are
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2 _dei(rt) wheren=0, turns the field on adiabatically fro= — o to

+Us(r)] di(ry=i—— (5 0. If the current does not grow indefinite(go that Fourier
transforms exist all additions to the external potential in Eq.

wherev g(r) is the periodic ground-state KS potential and all (7) can be written to first order in the perturbation,

time-dependence is in the KS vector potenéig]j](rt). The

orbitals begin as the occupied ground-state KS orbitals. The o J' 'y

i 1
>|PF EAS[J](”)

KS vector potential is defined to produce the exact physical Vi w),

: [r—r’|
current density

explio(|r—r'|[/c)j(r' o)

1 1 ,
i(r)=32, ¢! (rOVei(ry) = Cn(rHALr).  (6) AT<fw>=gf o ]

Departing from convention, we write _
Axc(rw):f A Fye[nol(rr ') -j(r'w),  (10)
As(rt) =Aex(rt) + Apm(rt) +Axc(rt). (7

Here Agy(rt) =Ay(rt) +A4(rt) is the full electromagnetic
potential, satisfying Maxwell's equation,

where ?XC is a nonlocal exchange-correlation tensor func-
tional of the ground-state density, analogous to the scalar
exchange-correlation kernel of TDDFT.

1 52 A We return now to solids in time-varying electric fields,
v2— 5 Aem—V-(V-Agn)=— Tj. (8) and consider.the macrpscopic response, using the_ ring geom-
ce dt etry as described earlier. L& be the reciprocal lattice vec-

The longitudinal componena,,, is the vector equivalent of tor. The density change when the external field is turned on

the Hartree potential, while the transverse componant,

arises from the transverse component of the current, sn(rt)= >, dng(w)expiG-r—iwt) (11
G#0
_ E 3 ,jT(r,t—|r—r’|/c) has no macroscopi@.e., G=0) component due to charge
Aq(rt) d°r ) (9 ) JPNE .
c [r—r'] conservation. This implies that the Hartree response remains

i ) always periodic and has no macroscopic component. Per-
In previous formulations of TDCDFTe.g., Refs. 12 and 27 forming a spatial Fourier transform on the transverse poten-
this term does not appear explicitly. Sindg is a nonlocal g yields
classical electromagnetic contribution of any moving charge

density, it isnot an exchange-correlation effect, and should 47C
be includedexactlyin any time-dependent calculation. Un- Arc(w)=————jte(w). (12
like the Hartree contribution, it is not adiabatic, i.e., it de- w=Cc°G

pends on the retarded current, not the instantaneous densi{y, distinguish the microscopicG0) transverse current
Consider the one-dimensional example above cast in thregym the macroscopicG=0) current, which is a spatially
dimensions: we fatten the ring in the radial and cylindrical ,niform current traveling around the ,ring. As—0. the mi-
directions, imposing either hard wall or periodic boundarycroscopic contribution vanishes relative to Hartree, because

co_nditions in these_ two direction_s. The current flows only ¢ the factor ofw? in Eq. (10). The macroscopic component,
azimuthally and uniformly on the ring and so is purely trans-,,\vever. does not yielding

verse in the sense that it has nonzero curl and zero diver-
gence. At the same time, we call it macroscopic, since it is

uniform along the ring. The classical response appears purely AT w)= — Sic=0(®),

from Ay rather than from Hartree. We have checked that the (iw)

VK approximation for the exchange-correlation vector ]

potentiat? is unaffected by the addition @ . (We note that AR(w)= 2@" FxcoclNol(®) -je(w). 13

the addition ofA to static current-density functional theory

has been discussed for example in Ref) 28. Thus, from the ring perspective, the origin of the electromag-
We pause to make a connection with TDDFT. The TDnetic responsétraditionally considered a Hartree effecs

density is given exactly in TDCDFT, via continuity(rt) = the transversepotential generated by the ring current. In the

—V-j(rt) but a TDDFT calculation is only guaranteed to limit when L—oe, the distinction between transverse and
reproduce the longitudinal component of the current. If therdongitudinal breaks down, but for any real calculation with
does exist a TDDFT KS potentiak(rt) that reproduces the discretek-points in the Brillouin zone, this distinction is im-
interacting current as well as the dendithen the TDCDFT  portant. For anyL, AT?{w), being the classical macro-
potential isAg(rt)=cf'dt' Vug(rt’). But there exist special scopic response, cannot be neglected in considering solids in
geometries, like the ring, to which TDDFT cannot be appliedelectric fields.
at all when macroscopic fields are present. For insulators and metals at finite frequencies, after the
Next we consider the special case of linear response to adiabatic turn-on of the field, the system settles into a steady
uniform electric field, Agy(rt) =c&(w)expiwt+ nt)/io, state, thanks to the damping factgr Because we are using
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TDCDFT, the macroscopic current in this KS calculation isto the XC field from the polarization charge density on the
the physical one at all times. Thus the macroscopic polarizasurfaces. In the static limit, this ifoften) essentially the

tion GGG effect discussed above, where in addition to the bulk
. periodic density, the functional depends on the bulk macro-
pmagt) = — t i’ t'), P )= je=o(®) scopic polarization. For example, for a large rectangular slab
R Jo=olt'), w)= i with translation symmetry, the exchange-correlation electric
(14) fieldis
equals the physical one. Multiplying the vector potential by E — —igf (1) 1
i w/c yields the KS electric field, xc(Q, @) =—iqfxc(q,w)n'(q, ), (16)
2 where the TDDFT kernel in the long wavelength limit may
ENaw)=— w_f’xcoo(w)pma%w) be expressed in terms of the component of the TDCDFT
c kernel  parallel to the field: liglofxc(w)=
i Gong(o) — w?fycoq(@)/(c?). The ultranonlocal H? dependence
+ 23 Feeg(@) ] 28 (o)t multiplies the response densitp(®): this has a lattice-
C é+o G? periodic part in the bulk as well as a part proportional to the

(15) polarization charge density on tiserface The fact that one
needs to look only at a unit cell in the bulk and integrate up
where we have used continuity. If the microscopic transverséhe current that has flowed through it to obtaP@{t),
currents vanish or can be neglected, thgrcan be written  shows how local approximations in terms of the current cap-
solely in terms ofng, meaning that the entire corrections to ture the essential physics, while local density approximations
the external field can be given in terms of the macroscopicannot. Since orbitals depend ultranonlocally on space, or-
polarization and the periodic density change. Now considebital functionals in TDDFT(Ref. 34 may capture polariza-
the final state of the system after the field has been adiabatiion effects. However, since polarization can be obtained
cally switched on. Then in the limit that— 0, this second from the current-density, these more complex functionals are
point is precisely the GGG assertion made in density polarnot necessary to describe these effects if the current-density
ization functional theory: that the exchange-correlation fieldis used as the basic variable.
depends on both the periodic density and the macroscopic TDCDFT calculations for the optical response of solids
polarization'”*® That result arises here out of TDCDFT, have already been reporféd* that explicitly include the
even at finite frequencies, and E45) then provides an ex- macroscopic transverse componenigf, on top of the VK
act expression for the polarization functional. However ifapproximation. In adding the VK correction to their
microscopic transverse currents cannot be neglected, then foalculation? the microscopic contributions in E¢15) are
the GGG result to hold, these currents themselves wouldot included Eqg. (16) of Ref. 14]. This may be related to the
need to be functionals of the periodic density and macroneed to divide the beyond-ALDA contribution by a factor of
scopic polarization; this remains to be investigated. 2.5. Similarly, the simple approximation in density polariza-
During the turning-on of the electric field, in the—0  tion functional theory of Ref. 35, in whiclEyc= yP™¢
limit the system remains always in its adiabatic ground-statewherey is a constant, does not include such contributions.
Thus minimization of the energgincluding the exchange- We conclude by noting that while the present work has
correlation electric field term®ver periodic functiond®3%3!  focussed on the special case of the interior of a bulk insulator
within the Berry-phase formalisft;*! will yield the same or metal, the underlying logic was motivated by the need to
result as the TDCDFT calculation in the low-frequency limit. construct an approximately local theory of exchange-
This work also shows that polarization is an infinite correlation for any system in an electric field. Two examples
memory effect within TDCDFi.e., after the electric field make this clear. In tunnelling through a quantum wire,
has reached a finite value, the system “remembers” forevepresent calculations usground-stateDFT KS orbitals as
the current that flowed in turning it oiflt does not depend their starting point. This leads to resonances at the positions
on the procedure in reaching the steady-state, rather it def bare KS orbitals. For finite systems without currents, regu-
pends just on the time-integrated currgn8imilarly, in  lar DFT tells us there are significant exchange-correlation
pumping a finite system from the ground-state to a givercorrections. The only way to calculate such corrections for a
excited state, the current provides a natural way for the sysgguantum wire is using TDCDFT, in order to handle currents.
tem to remember indefinitely which state it is in. Thus TD- In another area, electron and energy transfer in biological
CDFT may provide a natural solution to some of the paraimolecules, attempts are being made to estimate matrix ele-
doxes generated by a pure time-dependent BFT. ments in a TDDFT calculatio?f Such calculations, using
Lastly, we discuss existing approximations and calcula-adiabatic local and gradient-corrected approximations,
tions. Just like the Hartree term, adgnsityfunctional ap-  clearly miss any contributions from macroscopic currents.
proximation, e.g., ALDA or AGGA, misses entirely the mac-  This work was inspired by that of Professors Kohn and
roscopic contributions discussed héteEven if we regard Tolkien, and supported by the Office of Naval Research un-
the bulk insulator as a large but finite slab, so that TDDFTder Grant No. NOOOO14-01-1-1061. We thank David
does in principle apply, we would need an ultranonlocalVanderbilt, Ralph Gebauer, Roberto Car, Hardy Gross, and
functional of the density in order to capture the contributionGiovanni Vignale for useful discussions.
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