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Current-density functional theory of the response of solids
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The response of an extended periodic system to a homogeneous field~of wave-vectorq50) cannot be
obtained from aq50 time-dependent density functional theory~TDDFT! calculation, because the Runge-
Gross theorem does not apply. Time-dependentcurrent–density functional theory is needed and demonstrates
that one key ingredient missing from TDDFT is the macroscopic current. In the low-frequency limit, in certain
cases, density polarization functional theory is recovered and a formally exact expression for the polarization
functional is given.
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Density functional theory1,2 is a standard approach fo
calculating ground-state properties of solids3 and molecules.4

Time-dependent density functional theory~TDDFT! is an ex-
tension of the ground-state formalism based on the Run
Gross theorem;5 this establishes a one-to-one corresponde
between time-dependent densities and time-dependent
body potentials. When a time-dependent electric field is
plied to a system, this formalism provides a route to its o
tical response.6 The response equations of TDDFT have be
encoded in standard quantum chemical packages,7 and re-
sults for molecules are appearing~see Ref. 8 for many ex
amples!. As in the ground-state case, the accuracy depe
on the quality of the approximate functional used.

There is great interest in applying the same technique
extended systems. While these can be treated well wi
existing wave function technology, using, e.g., the GW a
proximation and then solving the Bethe-Salpeter equation
the optical response,9 the allure of a TDDFT approach is it
far lower computational cost. Calculations already show t
excitonic effects appear to be treatable by going beyond
usual local and semilocal approximations of standard D
calculations.10,11

There is also a version of the time-dependent theo
called time-dependent current-density functional theory~TD-
CDFT!, that uses the current-density as the basic variable
the choice of variable~charge density versus current densi!
appears a matter of convenience, TDCDFT and TDDFT
pear to be equivalent~for nonmagnetic systems!. The time-
dependent exchange-correlation potential has been argu
be more amenable to local and semilocal approximation
terms of the current-density12 and this framework has bee
used in recent response calculations of solids13,14 and conju-
gated polymers.15 Initial work towards a matrix formulation
of the current-density response equations has been pres
in Ref. 16.

In this paper, we demonstrate a differencein principle
between the two approaches when applied to bulk solids.
basic theorems of DFT, ground-state or time-dependent,
proven for finite electronic systems~i.e., systems with a
boundary!. We consider the response of periodic syste
~such as the bulk of an insulator or metal! to time-varying
electric fields which have a spatially uniform component. W
show that TDDFT fails in this case: there is no one-to-o
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correspondence between the time-varying periodic den
and the applied potential. Instead, TDCDFT is needed fo
complete description. The time-dependent potential and
response properties arenot functionals of the time-dependen
periodic density, but ratherare functionals of the time-
dependent periodic current density. In the limit of low fr
quencies our analysis recovers the well-known GG
theorem,17 if microscopic transverse currents can be n
glected; TDCDFT then recovers~static! density polarization
functional theory.17,18

Modern solid-state calculations model extended perio
systems and extract bulk properties by using periodic bou
ary conditions. Our first point is that the Runge-Gross~RG!
theorem does not apply when a homogeneous electric fie
applied to a periodic system. RG states that, given an in
state, there is a one-to-one correspondence between t
dependent densities and time-dependent scalar potential
a given interaction and statistics. The first step of the R
proof establishes a one-to-one correspondence between
tentials andcurrents.20 In the second step, continuity is the
used to relate currents to densities, and a one-to-one map
between densities and potentials results provided a ce
surface integral involving the density and the potential va
ishes. For finite physical systems the condition for requir
this surface term to be zero can be given rigorously for s
tems in which the density vanishes at the surface.21 For a
periodic system, one might try to choose a surface aro
which the density and potential are periodic but for a u
form field the linearity of the potential prevents this, an
TDDFT does not apply.

Another way to see this is in modeling the periodic sy
tem in an electric field by a large ring of lengthL of the
material, through which is threaded a time-varying solen
dal magnetic field.19 This field produces a uniform vecto
potential on the system,A(t), that corresponds to a macro
scopic electric field along the ring. The beauty of this a
proach is that the Hamiltonian remains spatially period
although it becomes time-dependent. TDDFT was howe
derived with only scalar potentials in mind, and does n
consider such transverse vector potentials; such unif
electric fields cannot be generated by a charge distribut
The first part of RG still holds in this case however, showi
the potential is a unique functional of the current-density
©2003 The American Physical Society09-1
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Thus the density in the interior of any system is insu
cient information to deduce the external electric field, but
current-density is sufficient. This is a time-dependent gen
alization of the original GGG theorem.17 We shall come back
to the static case shortly.

A simple example demonstrating the non-uniqueness
the potential-density mapping is a noninteracting free e
tron gas on a ring, subjected to a constant, uniform elec
field, E, turned on at timet50. Representing the field by
vector potentialA52cEt, each orbital in the Slater determ
nant state satisfies the time-dependent Schro¨dinger equation

~ p̂2Et !2fm/25 i ḟm . ~1!

~We use atomic units throughout this paper.! If the electrons
are initially in an eigenstate,fm(x,0)5ei2pmx/L/AL, wherex
is the coordinate around the ring, and the conjugate mom
tum is km52pm/L, with m an integer between 0 andL,
different for each orbital, then the solution at timet is readily
found to be

fm~xt!5e2 i (km
2 t/22kmEt2/21E 2t3/6)ei2pmx/L/AL. ~2!

Since the electric field only affects the phase of this orbi
its density, and that of the noninteracting gas,n(x,t)
5(m51

N ufm(x,t)u2, remains spatially uniform forever. In
particular, two different electric fields give rise to exactly t
same time-~in!dependent density. Thus the external poten
is not uniquely determined by the density here.~This argu-
ment holds for any numberN of electrons.!

The first part of RG remains valid20 and applies to arbi-
trary vector potentials, not just those describing an elec
field. Choosing a gauge in which the scalar potential v
ishes, one can show there is a one-to-one correspond
betweenA(r t) andj (r t) for a given initial state22–24and this
provides the formal basis for TDCDFT. In this gauge
electric fields are represented by vector potentials but
one-to-one correspondence is of course gauge-indepen
In our simple example, the physical current density is giv
by j (t)5(m

Nkm1NEt/L. In two different electric fields, two
different currents arise. More generally, for a periodic pot
tial on a ~one-dimensional! ring, when a uniform electric
field is turned on, the density, current, etc., remain perio
and each can be written as( j G exp(iGx), where G
52np/a, andn is an integer. All components of the curren
density atGÞ0 are determined by the periodic density
the continuity equation,

j G~v!5vnG~v!/G, ~GÞ0!. ~3!

When a uniform electric field is present, theG50 compo-
nent ~the macroscopic current! is undetermined by the time
dependent periodic density.

When the wavelength of the external field is finite, R
does apply to the periodic system; the macroscopic curre
a functional of the periodic density~although cannot be de
termined by Eq.~3!#. Examining the second step in the R
proof in one-dimension, one may choose the surface to
two points separated by an integral multiple of the latt
constant and the wavelength of the external field: the Ham
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tonian is periodic around this surface, and the integrand
the surface term is the same at the two points. Thus
surface term vanishes and the RG theorem holds. Thi
consistent with the ground-state case,18 where the macro-
scopic polarization is only an independent variable when
external field has a homogeneous component. In our sim
example, consider applying a perturbative electric fie
E cos(qx) around the ring, where a finite number of wav
lengths fits into the ring soq is an integer multiple of 2p/L.
The density picks up a spatial modulation, which, in the lim
that q→0, becomes, to first order inE,

n~xt!→NS 11Eq (
m51

N

~x1kmt !3/3D /L. ~4!

Different fields yield different densities except whenq50,
consistent with the 1–1 mapping between densities and
tentials at finite wavelengths. One can then imagine attem
ing to find the uniform-field value of certain respon
functions25 by taking theq→0 limit of a series of finite-q
TDDFT calculations, although the larger supercell requir
might render this procedure impractical~although, see dis-
cussion of Ref. 10 below!. The same issue arises in th
ground-state case, where it was shown in Refs. 26 and
how careful use of a sawtooth potential on a supercell
resolve this problem. The approximation for the densi
functional must be ultranonlocal in space in order to capt
the exchange-correlation fields generated from the cha
distribution modulated by the long wavelength. The first e
citonic peak in the dielectric function of silicon~missing
when using any local or semilocal approximation in TDDF!
was captured in Ref. 11 in a TDDFT calculation at fini
wave vector, using an ultranonlocal kernelf XC;a/q2 how-
ever witha being empirically determined, and with applyin
a GW shift to the spectrum. In Ref. 10 an exact exchan
calculation was performed, reproducing the excitonic peak
silicon, without having to battle through a monstrously lar
numerical computation. The authors were able to analytic
extract the diverging ultranonlocal factor 1/q2 from the
exact-exchange kernel and so needed to numerically eva
only the remaining matrix elements, well-behaved as a fu
tion of q: because the long-range behavior had been alre
factored out, the numerical computation converged rapi
with the number ofk-points.

However, like density-polarization functional theory
the ground-state case, TDCDFT allows one to obtain the
mogeneous field result directly from a singleq50 calcula-
tion; this cannot be done in TDDFT.

Having established that the current is needed when ca
lating bulk response properties in solids in uniform fields,
next review how such a calculation is performed for a
electronic system. The one-to-one correspondence betw
A(r t) and j (r t) can be used to establish a set of KS equ
tions in which noninteracting electrons move in a KS vec
potential As(r t) and reproduce the exact current-dens
j (r t). Assume the exact KS ground-state has been found
is nondegenerate. The TDCDFT KS equations are
9-2
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H 1

2 Fp1
1

c
AS@ j #~r t !G2

1vS~r !J f i~r t !5 i
]f i~r t !

]t
, ~5!

wherevS(r ) is the periodic ground-state KS potential and
time-dependence is in the KS vector potentialAS@ j #(r t). The
orbitals begin as the occupied ground-state KS orbitals.
KS vector potential is defined to produce the exact phys
current density

j ~r t !5I(
i occ

f i* ~r t !¹f i~r t !2
1

c
n~r t !AS~r t !. ~6!

Departing from convention, we write

AS~r t !5Aext~r t !1AEM~r t !1AXC~r t !. ~7!

Here AEM(r t)5AH(r t)1AT(r t) is the full electromagnetic
potential, satisfying Maxwell’s equation,

H ¹22
1

c2

]2

]t2J AEM2¹•~¹•AEM!52
4p

c
j . ~8!

The longitudinal component,AH , is the vector equivalent o
the Hartree potential, while the transverse component,AT ,
arises from the transverse component of the current,

AT~r t !5
1

cE d3r 8
jT~r ,t2ur2r 8u/c!

ur2r 8u
. ~9!

In previous formulations of TDCDFT~e.g., Refs. 12 and 27!,
this term does not appear explicitly. SinceAT is a nonlocal
classical electromagnetic contribution of any moving cha
density, it isnot an exchange-correlation effect, and shou
be includedexactly in any time-dependent calculation. Un
like the Hartree contribution, it is not adiabatic, i.e., it d
pends on the retarded current, not the instantaneous de
Consider the one-dimensional example above cast in t
dimensions: we fatten the ring in the radial and cylindric
directions, imposing either hard wall or periodic bounda
conditions in these two directions. The current flows on
azimuthally and uniformly on the ring and so is purely tran
verse in the sense that it has nonzero curl and zero di
gence. At the same time, we call it macroscopic, since i
uniform along the ring. The classical response appears pu
from AT rather than from Hartree. We have checked that
VK approximation for the exchange-correlation vect
potential12 is unaffected by the addition ofAT . ~We note that
the addition ofAT to static current-density functional theor
has been discussed for example in Ref. 28.!

We pause to make a connection with TDDFT. The T
density is given exactly in TDCDFT, via continuityṅ(r t)5
2¹• j (r t) but a TDDFT calculation is only guaranteed
reproduce the longitudinal component of the current. If th
does exist a TDDFT KS potentialvS(r t) that reproduces the
interacting current as well as the density,8 then the TDCDFT
potential isAS(r t)5c* tdt8¹vS(r t8). But there exist specia
geometries, like the ring, to which TDDFT cannot be appl
at all when macroscopic fields are present.

Next we consider the special case of linear response
uniform electric field, Aext(r t)5cE(v)exp(2ivt1ht)/iv,
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whereh501 turns the field on adiabatically fromt52` to
0. If the current does not grow indefinitely~so that Fourier
transforms exist!, all additions to the external potential in Eq
~7! can be written to first order in the perturbation,

AH~rv!5
c

~ iv!2E d3r 8¹
1

ur2r 8u
¹8• j ~r 8v!,

AT~rv!5
1

cE d3r 8
exp~ iv~ ur2r 8u/c!!jT~r 8v!

ur2r 8u
,

AXC~rv!5E d3r 8 fJXC@n0#~rr 8v!• j ~r 8v!, ~10!

where fJXC is a nonlocal exchange-correlation tensor fun
tional of the ground-state density, analogous to the sc
exchange-correlation kernel of TDDFT.

We return now to solids in time-varying electric field
and consider the macroscopic response, using the ring ge
etry as described earlier. LetG be the reciprocal lattice vec
tor. The density change when the external field is turned

dn~r t !5 (
GÞ0

dnG~v!exp~ iG•r2 ivt ! ~11!

has no macroscopic~i.e., G50) component due to charg
conservation. This implies that the Hartree response rem
always periodic and has no macroscopic component.
forming a spatial Fourier transform on the transverse pot
tial yields

ATG~v!52
4pc

v22c2G2
jTG~v!. ~12!

We distinguish the microscopic (GÞ0) transverse curren
from the macroscopic (G50) current, which is a spatially
uniform current traveling around the ring. Asv→0, the mi-
croscopic contribution vanishes relative to Hartree, beca
of the factor ofv2 in Eq. ~10!. The macroscopic componen
however, does not, yielding

AT
mac~v!5

4pc

~ iv!2
jG50~v!,

AXC
mac~v!5(

G
fJXC0G@n0#~v!• jG~v!. ~13!

Thus, from the ring perspective, the origin of the electrom
netic response~traditionally considered a Hartree effect! is
the transversepotential generated by the ring current. In th
limit when L→`, the distinction between transverse a
longitudinal breaks down, but for any real calculation wi
discretek-points in the Brillouin zone, this distinction is im
portant. For anyL, AT

mac(v), being the classical macro
scopic response, cannot be neglected in considering solid
electric fields.

For insulators and metals at finite frequencies, after
adiabatic turn-on of the field, the system settles into a ste
state, thanks to the damping factorh. Because we are usin
9-3
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TDCDFT, the macroscopic current in this KS calculation
the physical one at all times. Thus the macroscopic polar
tion

Pmac~ t !52E
2`

t

dt8jG50~ t8!, Pmac~v!5
jG50~v!

iv
~14!

equals the physical one. Multiplying the vector potential
iv/c yields the KS electric field,

EXC
mac~v!52

v2

c
fJXC00~v!Pmac~v!

1
iv

c (
GÞ0

fJXC0G~v!•H GvnG~v!

G2
1 jTG~v!J ,

~15!

where we have used continuity. If the microscopic transve
currents vanish or can be neglected, thenjG can be written
solely in terms ofnG , meaning that the entire corrections
the external field can be given in terms of the macrosco
polarization and the periodic density change. Now consi
the final state of the system after the field has been adia
cally switched on. Then in the limit thatv→0, this second
point is precisely the GGG assertion made in density po
ization functional theory: that the exchange-correlation fi
depends on both the periodic density and the macrosc
polarization.17,18 That result arises here out of TDCDF
even at finite frequencies, and Eq.~15! then provides an ex
act expression for the polarization functional. However
microscopic transverse currents cannot be neglected, the
the GGG result to hold, these currents themselves wo
need to be functionals of the periodic density and mac
scopic polarization; this remains to be investigated.

During the turning-on of the electric field, in thev→0
limit the system remains always in its adiabatic ground-st
Thus minimization of the energy~including the exchange
correlation electric field terms! over periodic functions,18,30,31

within the Berry-phase formalism,29,31 will yield the same
result as the TDCDFT calculation in the low-frequency lim

This work also shows that polarization is an infini
memory effect within TDCDFT,32 i.e., after the electric field
has reached a finite value, the system ‘‘remembers’’ fore
the current that flowed in turning it on.~It does not depend
on the procedure in reaching the steady-state, rather it
pends just on the time-integrated current.! Similarly, in
pumping a finite system from the ground-state to a giv
excited state, the current provides a natural way for the s
tem to remember indefinitely which state it is in. Thus T
CDFT may provide a natural solution to some of the pa
doxes generated by a pure time-dependent DFT.32

Lastly, we discuss existing approximations and calcu
tions. Just like the Hartree term, anydensityfunctional ap-
proximation, e.g., ALDA or AGGA, misses entirely the ma
roscopic contributions discussed here.33 Even if we regard
the bulk insulator as a large but finite slab, so that TDD
does in principle apply, we would need an ultranonlo
functional of the density in order to capture the contributi
04510
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to the XC field from the polarization charge density on t
surfaces. In the static limit, this is~often! essentially the
GGG effect discussed above, where in addition to the b
periodic density, the functional depends on the bulk mac
scopic polarization. For example, for a large rectangular s
with translation symmetry, the exchange-correlation elec
field is

EXC~q,v!52 iqf XC~q,v!n(1)~q,v!, ~16!

where the TDDFT kernel in the long wavelength limit ma
be expressed in terms of the component of the TDCD
kernel parallel to the field: limq→0 f XC(v)5

2v2fJXC00i(v)/(cq2). The ultranonlocal 1/q2 dependence
multiplies the response density,n(1): this has a lattice-
periodic part in the bulk as well as a part proportional to t
polarization charge density on thesurface. The fact that one
needs to look only at a unit cell in the bulk and integrate
the current that has flowed through it to obtainPmac(t),
shows how local approximations in terms of the current c
ture the essential physics, while local density approximati
cannot. Since orbitals depend ultranonlocally on space,
bital functionals in TDDFT~Ref. 34! may capture polariza-
tion effects. However, since polarization can be obtain
from the current-density, these more complex functionals
not necessary to describe these effects if the current-den
is used as the basic variable.

TDCDFT calculations for the optical response of soli
have already been reported13,14 that explicitly include the
macroscopic transverse component ofAEM on top of the VK
approximation. In adding the VK correction to the
calculation,12 the microscopic contributions in Eq.~15! are
not included@Eq. ~16! of Ref. 14#. This may be related to the
need to divide the beyond-ALDA contribution by a factor
2.5. Similarly, the simple approximation in density polariz
tion functional theory of Ref. 35, in whichEXC5gPmac,
whereg is a constant, does not include such contribution

We conclude by noting that while the present work h
focussed on the special case of the interior of a bulk insula
or metal, the underlying logic was motivated by the need
construct an approximately local theory of exchang
correlation for any system in an electric field. Two examp
make this clear. In tunnelling through a quantum wi
present calculations useground-stateDFT KS orbitals as
their starting point. This leads to resonances at the posit
of bare KS orbitals. For finite systems without currents, re
lar DFT tells us there are significant exchange-correlat
corrections. The only way to calculate such corrections fo
quantum wire is using TDCDFT, in order to handle curren
In another area, electron and energy transfer in biolog
molecules, attempts are being made to estimate matrix
ments in a TDDFT calculation.36 Such calculations, using
adiabatic local and gradient-corrected approximatio
clearly miss any contributions from macroscopic currents

This work was inspired by that of Professors Kohn a
Tolkien, and supported by the Office of Naval Research
der Grant No. NOOOO14-01-1-1061. We thank Dav
Vanderbilt, Ralph Gebauer, Roberto Car, Hardy Gross,
Giovanni Vignale for useful discussions.
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