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We carry out first-principles calculations of the dependence of the intrinsic anomalous Hall conduc-

tivity of hcp Co on the spin magnetization direction. The Hall conductivity drops from 481 to 116 S=cm as

the magnetization is tilted from the easy axis (c axis) to the ab plane. These values agree reasonably well

with measurements on single crystals, while the angular average of 226 S=cm is in excellent agreement

with the value of 205 S=cm measured in polycrystalline films. The strong intrinsic anisotropy is shown to

arise from quasidegeneracies near the Fermi level.
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The Hall effect in ferromagnets has two parts: an ordi-
nary Lorentz-force part proportional to the magnetic field
and an ‘‘anomalous’’ part which instead depends on the
magnetization. In collinear ferromagnets the anomalous
Hall effect (AHE) results from the interplay between spin
polarization (exchange splitting) and spin-orbit interaction,
and has several contributions. Karplus and Luttinger (KL)
[1] showed that, as a consequence of virtual interband
transitions, electrons moving in the spin-orbit-coupled
bands acquire an anomalous velocity transverse to the
electric field whose sum over all occupied bands is nonzero
in ferromagnets. Another contribution comes from the
spin-orbit-induced asymmetry in the impurity scattering
of the spin-polarized charge carriers; the anomalous Hall
resistivity �a

yx ¼ Ey=Jx arising from this skew-scattering

process scales linearly with the longitudinal resistivity �xx.
An additional scattering process, side jump (SJ), yields a
quadratic scaling, the same as for the KL contribution. For
a review, see Ref. [2].

The development of a predictive theory of the AHE has
been hampered by the difficulty in evaluating the scattering
(extrinsic) contributions for real materials. On the other
hand, progress was made recently in calculating the intrin-
sic contribution [3–6]. The KL anomalous Hall conductiv-
ity (AHC) �a

ij ¼ ��a
ji depends only on the band structure

of the perfect crystal, and is given by

� a ¼ � e2

@

Z
BZ

d3k

ð2�Þ3 �k: (1)

Here �a is the AHC vector, with components �a
k ¼

ð1=2Þ�ijk�a
ij, and �k ¼ P

nfnk�nk, where fnk is the

Fermi-Dirac distribution and �nk is the Berry curvature
vector of each Bloch state. First-principles calculations for
Fe, Co, Ni [4–6], SrRuO3 [3], and Mn5Ge3 [7] have con-
sistently found agreement in sign and magnitude—often to
within better than 30%—with room-temperature experi-
ments, establishing the importance of the KL contribution
in moderately conducting samples of itinerant ferromag-

nets (skew scattering tends to dominate in high-purity
samples at low temperatures).
One of the key experimental challenges is to isolate the

various contributions to the AHE. Often, skew scattering
can be separated from the other two terms by fitting the
anomalous Hall resistivity to the form

�a
yx ¼ a�xx þ b�2

xx; (2)

where b ¼ �a
xy þ bSJ. The coefficients a (skew scattering)

and b (intrinsic plus side jump) can be read off a plot of
�a
yx=�xx versus �xx, where �xx is varied through doping or

temperature changes. This analysis does not distinguish
between the KL and SJ contributions, and efforts to sepa-
rate them are ongoing [2,8]. At present it is common
practice to rely on first-principles calculations for that
purpose: when reasonable agreement is found between
Eq. (1) and the measured coefficient b, it is taken as an
indication that the KL contribution dominates. That con-
clusion is strengthened if the calculations are able to
account for the observed dependence on some well-
controlled parameter, such as the temperature-dependent
magnetization [3,7]. Searching for additional experimental
signatures of the intrinsic AHE is therefore an important
goal for ab initio theory.
In this Letter, we show that the AHC of hcp Co single

crystals displays a strong dependence on the magnetization
direction relative to the crystal axes, in agreement with the
pioneering experiment of Volkenshtein et al. [9] (anisot-
ropy in the AHE has also been observed in hcp Gd, fcc Ni,
and bcc Fe, as well as several magnetic compounds
[10,11]). The theoretical description of anisotropy has so
far been mostly phenomenological; to our knowledge, the
only attempt at a microscopic model has been the tight-
binding study of Ref. [11]. Because the AHC is sensitive to
fine details in the band structure [3–6], a quantitative
ab initio study is highly desirable. It is also not obvious
that the phenomenological description of magnetocrystal-
line anisotropy [12] applies to the AHC given by Eq. (1).
The total Berry curvature�k of the occupied states under-
goes strong and rapid variations in k space, with sharp
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peaks and valleys from avoided crossings near the Fermi
level [3–5]. It has been argued that such features cannot be
described perturbatively [4], and there is numerical evi-
dence that they give rise to a complex or even irregular
behavior of the AHC as a function of exchange splitting
and Fermi level position [3]. This raises the possibility that
the orientation dependence of �a may also not be smooth.
We find instead that in hcp Co it is remarkably smooth, and
can be described by a phenomenological expression.

We begin by reviewing the phenomenology [12].
Electrical conduction in ferromagnets is described by a
magnetization-dependent conductivity tensor: Ji ¼
�ijðMsÞEj, with i; j Cartesian indices. The Onsager rela-

tion implies that the symmetric (�s
ij) and antisymmetric

(�a
ij) parts of �ij are, respectively, even and odd functions

of the (spin) magnetization Ms. The current density J is
therefore comprised of an even (Ohmic) part Js ¼ �s � E,
and an odd (Hall) part Ja ¼ E � �a. Note that Ja is
perpendicular to the electric field E but not necessarily to
Ms, as �

a andMs may not be parallel. Such noncollinear-
ity is the signature of the anisotropic AHE.

It seems plausible that the actual degree of anisotropy
will vary significantly among the various mechanisms [13].
Standard treatments of skew scattering lead to an isotropic
Hall current Ja ? Ms [14,15], but the inclusion of band
structure effects [16] may introduce anisotropy. The intrin-
sic AHE, on the other hand, is purely a band structure
effect, and thus inherently anisotropic. It was noted by
Fivaz [15] that its anisotropy can be resonantly enhanced
by quasidegeneracies near the Fermi level, a feature which
is borne out by our calculations.

To characterize the anisotropy we express the AHC
vector �a in a Cartesian frame aligned with Ms ¼ Mm̂s:

� a ¼ �mm̂s þ ���̂ þ �’’̂; (3)

where � and ’ are, respectively, the polar and azimuthal
angles ofMs relative to the c and a axis. In systems with a
net magnetization but otherwise macroscopically isotropic
(e.g., ferromagnetic polycrystals) �a k m̂s, while in single
crystals that is only guaranteed for Ms pointing along
certain high-symmetry directions. The orientation depen-
dence in hcp crystals is given to third order in a spherical-
harmonic expansion by [17]

�a
1 ¼ c11 �Y11 þ c31 �Y31

�a
2 ¼ c11 �Y1;�1 þ c31 �Y3;�1

�a
3 ¼ c10 �Y10 þ c30 �Y30;

(4)

where �Ylmð�; ’Þ are real spherical harmonics, and �a
1 and

�a
3 point along the a and c axis. Since �a

3 is independent of

’ while �a
1 and �a

2 have, respectively, cosine and sine
dependencies, �a andMs share the same azimuthal angle,
and their polar-angle mismatch is independent of ’. Thus
in Eq. (3) �m;� ¼ �m;�ð�Þ and �’ ¼ 0.

Using the methods described in Ref. [17], the AHC of
hcp Co was calculated for several orientations of the
magnetization in the ac plane (’ ¼ 0). The tilting angle
� was increased from 0 (Ms k c axis) to �=2 (Ms k a axis)
in steps of �=32, and for each step the vector �að�; ’Þ was
calculated. Figure 1 contains the numerical results:
�mð�; 0Þ and �mð�; 0Þ are shown in the main panels, while
the insets contain additional data which confirm the ab-
sence of (or very weak) basal-plane anisotropy. The vectors
�a andMs start out parallel, but asMs tilts away from the
c axis �a lags behind (�� < 0), and they become parallel
again upon reaching the ab plane. The angular dependence
is smooth, and can be described by Eq. (4). A least-squares
fitting to the data yields, in S=cm, c10 ¼ 951:5, c11 ¼
�204:1, c30 ¼ 1:2, and c31 ¼ 38:4, producing the solid-
line curves in Fig. 1.
The calculated AHC is strongly anisotropic, decreasing

by a factor of 4.1 between � ¼ 0 and � ¼ �=2. In Ref. [9]
a ratio of 2.93 was found between the c axis and ab plane
Hall resistivities of single crystals at 290 K. This translates
into an AHC ratio of ð�zz=�xxÞ2:93 ¼ 5:43, close to our
calculated value (the prefactor �zz=�xx ¼ 1:854 accounts
for the anisotropy in the Ohmic resistivity [17]).
We now turn to the comparison with the measurements

on polycrystalline films magnetized along the growth di-
rection [18]. At saturation the absolute magnetization di-
rection is the same in every crystallite, while its orientation
relative to the crystal axes varies from one crystallite to
another. It is difficult to calculate rigorously the effective
conductivity of a composite medium, and we shall estimate
the effective AHC by stipulating that (i) the crystallites are
randomly oriented, (ii) each possesses a bulklike Hall
conductivity �að�; ’Þ which depends only on its orienta-
tion, and (iii) every crystallite feels the same electric field
E. The net Hall current density in the films is then given by
the orientational average hJai ¼ E � h�ai. It is clear from
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FIG. 1 (color online). Evolution of the components of the
anomalous Hall conductivity parallel (�m) and perpendicular
(��) to the spin magnetization [Eq. (3)] asMs is tilted by � from
the c axis towards the a axis. The solid lines are fits to the first-
principles data, as described in the text. The left and right insets
show, respectively, �mð�=2; ’Þ and �’ð�; 0Þ.
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Fig. 1 and Eq. (3) that h�ai points along Ms; its value is

�a
av ¼

R�=2
0 �mð�Þ sin�d� ¼ 226 S=cm, close to the value

b ¼ 205 S=cm obtained in Ref. [18] by fitting the Hall
resistivity to Eq. (2). The close agreement reinforces the
conclusion [18] that the KL contribution to b dominates
over SJ.

Table I summarizes the comparison of the calculated
intrinsic AHC with experiments. For polycrystals the
agreement is excellent, while in the case of single crystals
the sign and magnitude of the anisotropy are correct, but
the calculated AHC values are somewhat smaller than the
experimental ones, especially along the c axis. In making
such comparisons the limitations of both theory (e.g., the
use of an approximate density functional) and experiment
should be kept in mind [6]. We note, in particular, that
while in Ref. [18] both the Hall and Ohmic resistivities
were measured over a range of temperatures in order to
isolate the intrinsic contribution, Ref. [9] only reports the
room-temperature Hall resistivities, making the compari-
son with our calculations more difficult.

Next we discuss the origin of the strong anisotropy. The
AHC of uniaxial crystals is anisotropic to first order in the
magnetization [17], while in cubic crystals anisotropy
appears only in third order, and is expected to be much
weaker. For example, the calculated AHC of fcc Co
changes by less than 10% as a function of orientation
(Table I). Perhaps more surprising is the fact that in hcp
Co the AHE appears to be considerably more anisotropic
than both the magneto-optical spectrum [19] and the orbi-
tal magnetization [20]. This is intriguing because the three
phenomena are related by sum rules [21], and hence an-
isotropy appears at the same order.

The sum rules read h!�1 Im�ai! ¼ ð�=2Þ�að! ¼ 0Þ
and hIm�ai! ¼ ð�ec=@ÞMðIÞ

SR, where hfi! ¼ R1
0 fð!Þd!.

�að! ¼ 0Þ is the dc AHC; at finite frequencies �a ac-
quires an imaginary part which describes the magnetic
circular dichroism (MCD). The first sum rule expresses
the intrinsic AHC in terms of the first inverse moment of

the interband MCD spectrum. The second relatesMðIÞ
SR, the

‘‘gauge-invariant self-rotation’’ part of Morb, to the zeroth

spectral moment [21]. The absorptive part of �mð!Þ was
calculated [17] and is plotted in the upper panel of Fig. 2
for � ¼ 0; �=2. The lower panel shows the AHC sum rule
frequency integral as a function of the lower limit of
integration. While for either orientation there are sizable
contributions to the AHC up to!� 3:5 eV, the orientation
dependence is concentrated below 0.3 eV. At these low
frequencies the MCD spectrum changes sign between � ¼
0 and � ¼ �=2. This difference gets magnified in the AHC
via the inverse-frequency weight factor, producing the bi-
furcation of the two curves in the lower panel. All frequen-
cies are equally weighted in the orbital moment sum rule,
which as a result is more isotropic, as seen in the inset.
It is clear from the above that the anisotropy of the

intrinsic AHC is dominated by low-frequency interband
transitions. Such transitions couple quasidegenerate states
on opposite sides of the Fermi level, and to see their role
more directly we turn to Fig. 3. The upper panel displays
the energy bands near EF. Rotating Ms from the c axis to
the a axis in the presence of the spin-orbit interaction turns
various band crossings into avoided crossings and
vice versa. When this occurs close to the Fermi level,
��k � m̂s can flip sign in the process while retaining the
large magnitude which is typical of (anti)crossings at EF

[3–5]. This is what happens near the zone-boundary point
L, as seen in the middle and lower panels.
How can the spiky behavior of �k be reconciled with

the smooth angular dependence of �a? According to the
phenomenological expression (4), �a

i / Mi (i ¼ x; y; z) to
leading order in Ms. That will be the case for the intrinsic
AHC provided that in Eq. (1) �k;i / Mi at each k. This
proportionality holds reasonably well even around strong

TABLE I. Anomalous Hall conductivity in S=cm for selected
high-symmetry orientations of the magnetization in hcp and fcc
Co. The polycrystalline AHC is calculated as an orientational
average (see text), and the Hall resistivities of Ref. [9] were
converted into conductivities as detailed in Ref. [17].

Co Orientation Calculated Experiment

hcp c axis 481 �813a

ab plane 116 �150a

Polycrystal 226 205b

fcc [001] 249

[110] 218

[111] 234

aReference [9]
bReference [18]
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FIG. 2 (color online). Upper panel: Interband MCD spectrum
for two magnetization directions. Lower panel: Cumulative con-
tribution to the AHC from the spectrum above energy @!,
AAH
m ð!Þ ¼ 2

�

R
!max
!

1
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Circles denote the AHC calculated directly from Eq. (1).
Inset: Cumulative contribution to the gauge-invariant self-
rotation per atom from the spectrum below energy @!,
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2�ec

R
!
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mð!0Þd!0 (Vc is the cell volume).
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resonance peaks, judging from the comparison in Fig. 3
between �k for � ¼ �=4 and for � ¼ 0; �=2.

We end with a discussion of temperature effects. The
calculated AHC hardly changes as the Fermi-smearing
temperature in Eq. (1) is varied from 0 to 300 K (Fig. 1).
This agrees with the constancy of the coefficient b from 78
to 350 K [18]. Thermal fluctuations in m̂s can also give rise
to a T dependence of the AHC: if at T ¼ 0 �a

i changes
linearly with Mi upon rotating Ms then �aðTÞ ¼
½MðTÞ=Mð0Þ��að0Þ, a behavior seen in Mn5Ge3 [7].
Figure 4 shows that in hcp Co �a

z depends linearly on
Mz, while the �a

xðMxÞ curve is significantly nonlinear. As
a result, the a-axis AHC should decrease with T faster than
MðTÞ, producing an increase in the ratio �a

z ð� ¼
0Þ=�a

xð� ¼ �=2Þ. A quantitative estimate can be made
(see Ref. [17] for details). The result, shown in the inset

of Fig. 4, is a 17% increase between 0 K and Tc. This effect
is, however, preempted by the phase transformation into
the fcc structure at 695 K.
In summary, we have shown that the intrinsic AHC of

single crystals of hcp Co depends strongly on the magne-
tization direction, decreasing by a factor of 4 between the
c axis and ab plane orientations. The calculated AHCs
agree in sign and compare fairly well in magnitude with
single-crystal measurements, and averaging over orienta-
tions yields close agreement with measurements on poly-
crystalline films. The anisotropy of the AHE provides a
stringent test for quantitative theories, and our findings
support the emerging viewpoint that the AHE of transition
metal ferromagnets is largely intrinsic.
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