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Abstract. In this paper we discuss some of the details of the calculation of the
macroscopic polarization, via the Berry-phase approach, using a general (numerical)
local combination of atomic orbitals (LCAO) as a basis set. Previous implementations
with a LCAO basis relied on the use of gaussian expansions, where analytical formulas
exist for the crucial matrix elements. However, our approach, which only requires
the matrix elements of the position operator, can be more easily implemented in the
case of numerical orbitals. This work is a necessary first step towards our main goal
of applying the SIESTA code to the study of ferroelectric alloys. This code, which
uses a numerical LCAO basis set. has been highly optimized for the treatment of
large systems. We are confident that it will allow us to treat larger systems than the
standard plane™"waves methods, while keeping a reasonable accuracy. Test results for
representative ferroelectric perovskites are presented.

INTRODUCTION

Currently there is great interest in the study of the ferroelectric properties of
different alloys, such as PZT, PMN-PT, or PZN-PT [1-3]. These alloys exhibit
very large piezoelectric constants, which make them especially attractive for tech-
nological applications [1]. Unfortunately, the role of first-principles calculations in
the study of these materials has been highly limited by the small system sizes that
can be treated by standard methods. For methods such as plane-waves (PW), even
when using ultrasoft Vanderbilt pseudopotentials [4], calculations with simulations
cells containing more than a few tens atoms are a highly demanding computational
task. The situation is even worse for methods such as augmented plane-waves
(APW). These size limitations have forced to consider only highly ordered config-
urations of the alloys in the calculations performed to date [2,3,5]. It is true that
even these very idealized calculations can be quite useful in determining whether
the large measured pizoelectric constants are mainly clue to the so-called extrinsic
factors (movement of grain boundaries, presence of point defects, etc...), or to the
intrinsic properties of the materials. However, calculations with more complicated
("disordered") structures are necessary to obtain more reliable theoretical estimates
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predictions for the alloys, which can be compared more directly with experiments.
This is especially important since a recent calculation has shown that lowering the
symmetry of the simulation cell can increase the piezoelectric response [5]. Actu-
ally this is not very surprising since there is some evidence that the relaxation of
the atomic positions under an applied strain is the main factor determining the
piezoelectric response. Imposing a high symmetry on the supercells can prevent
some kinds of atomic relaxation, yielding a smaller estimate for the piezolectric
constants.

This has been our motivation for undertaking the modifications of the SIESTA
program [6] required for being able to perform calculations in ferroelectric per-
ovskites with the desired accuracy. This program has been especially optimized
to perform self-consistent density-funtional calculations for very large systems. It
uses a numerical LCAO basis of finite range pseudo-atomic orbitals (PAO) [7], and
also an auxiliary real-space grid to compute the Hartree and exchange-correlation
contributions to the energy and forces. The computational cost (time and memory)
scales linearly with the system size (O(N)) for all the tasks, such as the construction
of the self-consistent Hamiltonian or, when using the appropriate techniques [8], the
diagonalization. Among the performed modifications we can cite the inclusion of
semicore shells, and the corresponding use of several Kleinnian-Bylander projectors
for each angular momentum [9]. We have also implemented the calculation of the
macroscopic polarization using the Berry-phase approach, which is necessary when
standard diagonalization is used (i.e., when Bloch instead of Wannier functions are
used). In the following we describe in detail our implementation of the polarization
calculation, which can be easily applied to any LCAO method, and then present
some examples of test calculations in perovskite oxides.

POLARIZATION CALCULATION

Only very recently has it become possible to calculate the macroscopic polariza-
tion as a bulk quantity from the electronic structure of a periodic solid, using the
so-called "Berry-phase" theory of polarization [10,11]. With this powerful tool, it
is possible to compute quantities like the dynamical charges [10] and piezoeletric
constants [12,13] from standard first-principles calculations.

The Berry-phase approach provides a straightforward method for calculating the
change in the macroscopic polarization when the system undergoes an adiabatic
change from a state AI to a state A2. The system has to remain insulating along
the transformation path, and the macroscopic electric field is kept at zero. If R$
are the lattice vetors and P^ = Y^=i ^l ^R^ *s the electronic contribution to the
macroscopic polarization, then we have

(27T)
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where G^ is the corresponding reciprocal lattice vector, e is the electron charge,
and Wkn(r) is the periodic part of the Bloch function. The factor of two comes
from the spin degeneracy, which we will always assume in order to simplify the
notation. The quantum phase ^^(k. k') is defined as the imaginary part of the
logarithm of the determinant of the overlap matrix between the occupied u^n(r)
at different points k and k'. It is worth noting that the derivative of the quantum
phase appearing inside the integral in (1) is not a well-defined quantity, since it
depends on the particular choice of gauge [14]. For the computation of (1) a gauge
has to be chosen such that u^G(r) = e~~fiG'Tuk (r). Once this condition is imposed,
the remaining gauge freedom will be reflected in the fact that the polarization is
only defined modulo 2eR/Q [10,13], 0 being the volume of the unit cell, and R a
lattice vector. Usually this does not represent a problem, as the factor 2eR/Q can
be eliminated by inspection, and tipically one computes changes in polarization
between configurations close enough so that |AP| = |P(A2) — P(Ai)| « |2eRfi|.

In practical calculations, the integral is replaced by a discrite summa-
tion, and a finite-difference approximation is taken for the derivative [10]:
Afo. J^(A)(k, k') /= w f [?MA)(k, k + Afe) - ̂ (A)(k, k - Afe)]. Then formula (1)
becomes (particularized here for the first unit cell vector)

9 N2-l,Nz-l Ni-l
Gl ' P<A) * ~o^TXT £ £ 4>w(*w,ki1+1*,), (3)

i£ - i \O. iV '3 • r\ • n • nZ a 32=0,33=0 *1= 0

where we have split the sum to stress the fact that we have a two-dimensional
integral in the plane defined by 62 and GS, and a linear integral along GI. Due
to the approximation in the derivative, the linear integral usually requires a finer
mesh than the surface integral. The calculation of the quantum phase (2) between
two neighboring points is therefore the only ingredient necessary to compute the
polarization. We will show in the following how this can be easily done using a
LCAO basis.

The expression for the Bloch functions $kn(r) — e*k'rWkn(r) using a basis of local
orbitals 6P centered, within the unit cell, at the positions r^ is

$k n(r) = £ «£ „ E e'k^'+R%(r - r,, - R) , (4)
^ i

where JV& is the number of basis orbitals in the unit cell, and R$ represent the set
of all possible lattice translations. Using this definition to calculate the overlaps
appealing in (2) we obtain

k+Ak m) =
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Therefore it is necessary to calculate the matrix elements of the plane-wave with
wave vector Ak between all the orbitals which have an appreciable overlap. For-
mulas similar to (5) have been implemented by several authors [15,16], mainly
in the context of Hatree-Fock calculations. However, in those cases the use of a
gaussian expansion for the orbitals simplifies considerably the calculation, as ana-
lytical formulas exist for the matrix element of a plane-wrave between two gaussian
functions centered on different points [15]. In our case, the numerical basis of
pseudo-atomic orbitals with a finite localization radius [6,7] is not well suited for
an expansion using a small number of gaussians. and we have decided to take a
different route: the plane-waves appearing in equation (5) are expanded to first
order e~"*Ak-(r~nJ & l — ̂ Ak * (r ~~ r^) + 0(A&2), and then we use the matrix
elements of the position operator, wiiich are easier to calculate numerically than
those of the original plane-wave. This approach follows closely the formulation
proposed in the framework of empirical tight-binding [17]. It is interesting to
note that, since the discretized formula (3) only holds to 0(Afc2)? the approx-
imation of the matrix elements in (5) does not introduce any further errors in
the calculation of the polarization. It should also be noticed that the expansion
must be made only in the last expression appearing in (5). Otherwise we find,
taking into account the orthogonality between wavefuntions at different k-points,
($kn|e~*Ak 'r |$k+Akm) -> -«{$kn|Ak • r *k+Akm), which fails to give an approx-
imation for (likn Jkl^km}- This failure is due to the fact that in this case Ak • r
can be arbitrarily large, regardless of the value of |Ak|, as the wave functions are
defined in all space, and pairs of overlapping orbitals can be found at an arbitrarily
large distance from the origin.

In the present implementation we have chosen a symmetrized version of the
formulas, and the approximation to equation (5) reads

/ . / . ak nak+Ak m JJL, C 2 ^ [ (^W I vV\r ~ Xp,z/)/

Ak / - - \]
~ l~2~ ' (vM1")! r l</Wr - X^)/ + \0"(r + X^)l r l<Wr)j » (6)

where X^ = TM -f R^ — rv. At first sight it may seem surprising that in the
evaluation of the matrix elements of the position operator in (6), the origin is
alternately taken on each atom, rather than using a common one. Actually it can
be easily shown that the origin can be arbitrarily shifted to any point to, if the
appropriate compensating phase factor e'iAk"to is introduced. To first order in |Ak|
all the choices should give the same result.

We will now briefly comment on the calculation of the matrix elements. Our basis
orbitals can be expressed as a product of a radial function with the corresponding
spherical harmonic, ^^(r) = 6v(r)YivWiv{f). The overlap matrix between two of
those orbitals is then easily calculated using their Fourier transforms, ^mi/(q) =

ii/(q)j where (j>v(q) = -^5 f dr r'2 ji(qr) <j>v(r), and j i ( x ) are the spherical
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Bessel functions. This is advantageous and has been used in the SIESTA code [6],
with the overlap given by

(^ (r) \$*m* (r - IV)) = £ Sl^(R,v) G(lv, m,,; l» m,, 1, m) Ylm(R^), (7)
lm

where

dq q2
 3l(qR^} f c ( q ) ^(q). (8)

The sum in I and m has very few terms, as the coefficients G(lv, mv\ l^ mM, I, m) =
J'cKl 3^*m(/(r) Y^m^r) Vj^(f) are non-zero only when \lv ~~~ l^\ < I < lv ~f ZM, the
sum of all the angular momenta l^ + l^-^-l is an even number, and raM — mv — m =
0. Therefore, in order to calculate the matrix elements of the position operator
appearing in (6) we only need the Fourier transform of r<^;'mi/(r). This can be
easily computed using expressions of the type,

, 0; /„, m,; /, + 1, m,) tf,,+1

v) ^-iTOl,(q) ], (9)

where

(10)

and z is the quantization direction of the angular momentum. Similar formulas,
involving also F^+l(q) and F^~l(q)1 can be written for (x0)^(q)5 and (y<j))v(q).
Therefore, it is evident that the calculation of the matrix elements of the posi-
tion operator is not any more difficult than the calculation of the overlap matrix,
as it involves the same kind of operations. In practical calculations, the expan-
sion of r<j)ljm"(r) in spherical harmonics, and the calculation of the coefficients
G(7, ra; I' , m'; 2", m") have been done numerically using Gauss-Legendre quadrature
integration [18].

RESULTS

In this section we present some results for the ferroelectric distorsion and dy-
namical charges of BaTiOa and PbTiOs obtained with the SIESTA [6] code, using
the method described above in the calculation of the dynamical charges. Before
presenting the results we will comment on some of the technical details.

A double-^" polarized basis of PAO's [6,19] has been used for all the elements.
The semicore states 85 and 3p of Ti, and the 5s and 5p states of Ba have been ex-
plicitly included in the calculation. Inner states have been removed using Troullier-
Martins [20] pseudopotentials generated from the configurations 3s23p63d2 for Ti,
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2s22p3'83d°'2 for O, 5s2 5p6 for Ba, and 6s26p2 for Pb. The pseudopotentials were put
into a separable form [9], and two different projectors were used for those angular
momenta where a semicore shell was included in addition to the valence states. In
those cases the projectors were constructed from the pseudo-atomic wavefunctions
and orthogonalized following the prescription by Blochl [9].

The Perdew-Zunger parametrization of the Ceperly-Alder exchange-correlation
potential [21] was used. The Brillouin zone was sampled with a 6x6x6 Monkhrost-
Pack [22] grid in all the self-consistent calculations, while a 4x4x20 integration
grid was used in the calculation of the polarization. The spacing of the real-space
mesh used to calculate the Hartree and exchange-correlation contributions to the
forces and energies [6] was equivalent to a 200 Ry plane-wave expansion. Once self-
consistency was achieved, the calculated density matrix was used to average forces
and energies over two different meshes (shifted relative to the atoms). This has an
effect similar to the use a much higher cut-off, effectively improving the convergence
of the results. With the use of this scheme total energies are converged within a
few meV, even with the highly localized semicore states present in these systems.

For cubic BaTiOs and PbTiOs wre obtain equilibrium lattice constants of 7.44 and
7.26 Bohr, and bulk moduli of 213 and 236 GPa respectively. For the Ba compound
this data compare quite well with other local density (LDA) calculations, which
give lattice parameters of 7.45 [23,24] and 7.46 Bohr [25], and a bulk modulus of
196 GPa [25], while the experimental lattice constant is approximately 2 % larger,
ao™7.56 Bohr. The agreement is somewhat less satisfactory in the case of PbTiOs,
for which the published LDA results are 7.34-7.35 Bohr for the lattice constant,
and 203-215 GPa for the bulk modulus [25,26]. The experimental lattice constant
in the cubic phase is 7.50 Bohr.

Table 1 shows the frequency and eigenvector of the soft modes at the theoretical
and experimental equilibrium volumes. In this table Oi refers to the oxygen atom
which moves along the Ti-O bond, while On refers to the two oxygen atoms moving
perpendicularly to this bond. The dynamical matrix at F was calculated by finite
differences from the forces acting on the atoms in the unit cell when they are
displaced by 0.005ao from their ideal positions in the cubic structure. The results
for the eigenvectors are in quite good agreement with the recent calculation of
Ref. [23] using PW and density functional perturbation theory. In particular, our

TABLE 1. Soft mode eigenvector (in real space) and frequency at F point,

ap (a.u.) uj (cm"1 ) Ba/Pb Ti Qn
BaTiO3

PbTiO3

SIESTA
SIESTA
PW [23]

APW [24]
SIESTA
SIESTA
PW [23]

7.45
7.56
7.56
7.56
7.26
7,50
7.50

i!99
^310
*219
«72
*98

2249
aso

-0.000
-0.000
-0.002
-0.001
-0,027
-0.011
-0.016

-0.102
-0.093
-0.096
-0.091
-0.003
-0.077
-0.058

0.070
0.061
0.071
0.090
0.147
0.099
0.120

0.148
0.171
0.158
0.145
0.099
0,153
0.143
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TABLE 2. Dynamical charges of cubic BaTiO3 and PbTiO3. calculated
at the experimental lattice parameter (respectively 7.56 and 7.50 Bohr)

zi
Z*i

Z0TT

%

SIESTA
+2.72
+7,60
-2.18
-5.96

BaTiO3
PW [23]

+2,74
+7.32
-2.14
-5.78

PW [27]
+2.75
+7.16
-2.11
-5,69

SIESTA
+3.96
+7.40
-2.65
-6,06

PbTiO3
PW [23]
+3.87
+7.04
-2.57
-5.76

PW [27]
+3.90
+7.06
-2.56
-5.83

data reproduces the different character of the ferroelectric distorsion in BaTiOs and
PbTiOa. While in the former the distorsion is dominated by the displacement of Ti
against O along the Ti-O chains, in the latter it also has an appreciable component
arising from the motion of the Pb atoms against the oxygen atoms in the Pb-O
planes [23]. At the experimental volumes, the frequencies of the soft modes are
30%~40% larger in our case than those reported in Ref. [23]. This may indicate
an overestimation, at least at these volumes, of the depth of the potential wells
compared to the PW results,

Table 2 shows a comparison between the dynamical charges calculated with the
present method and with PW [23,27]. The overall agreement is good. The anoma-
lous Born effective charges of Ti and Oi are well reproduced, but their values are
around 5% larger in our LCAO calculation than in the PW ones. These discrep-
ancies may be attributed to the different basis set, and not to the details of the
method used in the computation of the dynamical charges. At the present time
very few calculations of dynamical charges are available where a LCAO basis set
is used in combination with LDA, and therefore it is not possible to establish any
general trends. However, it is worth to notice that in the calculation reported in
Ref. [28], where a gaussian basis set was used to compute the properties of KNbOs,
the values of the anomalous effective charges for Nb and Oi were overestimated by
7% and 15% respectively, compared to PW-based calculations. In that case the
authors attributed the differences to the fact that the basis set was optimized for
Hartree-Fock calculations, rather than LDA.

Results for the dynamical charge Z|3 in tetragonal PbTiOs are shown in Table 3.
Our calculation has been performed at the experimental structure [12]. The values
taken from Ref. [2] were calculated at the fully optimized structure, while in Ref. [12]

TABLE 3. Dynamical effective charge
Zjjs in tetragonal

Z|3 SIESTA LAPW [12] PW [2]
Pb
Ti
On
Oi

4.02
4.61
-2.18
-4.27

3.52
5.18
-2.16
-4,38

3.5
5.5
-2.2
-4.6
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TABLE 4, Band-by-band decomposition of the
dynamical charges of Ti and Oj in cubic
with ao=7.45 a.u.

Ti 3s
Ti 3p
Ba 5s
O 2s
Ba 5p
O 2p
Core
Total

SIESTA
-2.06
-6,20
0.06
0.29
0.37
3,17
12.00
7.63

PW [29]
-2,03
-6.22
0.05
0.23
0.36
2.86
12.00
7.25

SIESTA
0.04
0.21
0.01
-2,58
-0.12
-9.66
6.00
-6.10

PW [29]
0.02
0.21
0.01
-2.51
-0,13
-9.31
6.00
-5.71

the experimental unit cell volumen was preserved during the energy minimization.
The different choices of the reference structure are probably behind some of the
differences in the data presented in Table 3. However, all the calculations seem
to agree in the large reduction of Ti and Oi effective charges when going from
the cubic to the tetragonal phase. Our approach also succeed in reproducing this
behaviour.

Some insight into the origin of the small discrepancies shown in Table 2 can be
obtained by performing a decomposition of the dynamical charges into contributions
coming from different isolated groups of bands. This is usually known as a band-
by-band decomposition. Table 4 shows the results for Ti and Oi in cubic BaTiOs,
compared with those published in Ref. [29]. For both Z^. and ZQ^ we perfectly
reproduce the anomalous contribution coming from Ti 3p (-0.20. +0.21), O 2s
(+0.29, -0.58), and Ba 5p (+0.37, -0.12). However, the contribution from the O 2p
group of bands is 11% (Ti) and 4% (Oi) larger in the LCAO case. This seems to
indicate that the hybridization between Ti 3d and O 2p is not fully reproduced
by our LCAO basis set, with a stronger effect on the Ti effective charge. The
inclusion of more diffuse d polarization orbitals on the O atoms, or even a shell of
quite extended / polarization orbitals on Ti, only reduces the computed dynamical
charges by very small amounts (of the order of 1%).

CONCLUSIONS

In this paper we have presented an implementation of the calculation of the
macroscopic polarization, by means of the Berry-phase approach, using a LCAO
basis set. The usual discretized Berry-phase formula is expressed in terms of the ma-
trix elements of the position operator in the basis orbitals. These matrix elements
are much easier to calculate using a numerical basis than those of a plane-wave,
required in the previous implementations. Our method has been coded, along with
other necessary modifications for a reliable treatment of the ferroelectric oxides.
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within the SIESTA program. This code performs self-consistent LDA calculations
using a flexible LCAO basis set of numerical orbitals, and allows for the treatment
of very large systems, thanks to the linear scaling of the computational cost with
the number of atoms,

We have presented several test caculations for BaTiOs and PbTiOs which de~
mostrate not only the usefulness of our implementation of the polarization calcula-
tion, but also the fact that LCAO calculation can reproduce the PW results, giving
a very reasonable description of these syterns. We are confident that, with the use
of this LCAO method, we will be able to increase the size of the systems that can
be treated with ab initio methods, allowing for a more realistic simulation of the
properties of the complex ferroelectric oxides.
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