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Testing a simple criterion for the critical temperature
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We investigate the applicability of a simple criterion proposed by Wddtlys. Rev. B49, 15 023(1994]
for locating analytically critical temperatures; we apply it to Ising-like spin models with anisotropic interac-
tions, more than one type of interaction between the spins, and multiple-spin interactions. The predicted critical
temperatures only agree with the known exact results or with Monte Carlo simulations for very particular,
highly symmetrical values of the coupling constaf&0163-1827)02809-9

[. INTRODUCTION more general symmetry, and thus provides a test for the pos-
WosieK recently proposed the followingnsatzfor locat- Z;%'ge?;ge maximum rule being a consequence of such

ing the critical temperaturé. of a lattice spin system: let us
define, as usualp=1/KgT, let T be a transfer matrix of a
d-dimensional systenid>1) having a finite degeneracy in !l. TWO-DIMENSIONAL ANISOTROPIC ISING MODEL
the ground state—this excludes models in which the spins IN A SQUARE LATTICE

can take continuous values—and lebe its linear size. De-

- . o S As is well known, the critical temperature of this model is
fining the “characteristic function

obtained from self-duality, and is given by
sinh(28,J;)sinh(28.J,)=1. We will analyze this system us-

(8)= lim (TrT)?] ate-v B ing three different methods; the first and the third differ in
P L—sco TrT? ' the choice of the transfer matrix, while the second is a gen-

eralization of the maximum principle. Results from the three

the maximum ofp occurs at the order-disorder phase transi-Procedures are plotted together in Fig. 1. N
tion point (“maximum principle”): Bmna= B - Method 1.For a lattice with linear siz¢., the partition
The maximum principle can be reformulated in an equivafunction is
lent way? let us consiger tr;e norn;alized second mome]e;t at Lo
finite L, r (B)=(TrT)4/TrT=(Z,)°/Z,. It is easy to s
that Z, and Z, are the partition functions of dd—1)- ZL=Zexp '821 121 J18ijSi+1j+ oSS 41, (D)
dimensional system, and of two couplé@t-1)-dimensional
systems, respectively. What systems are these depends @here periodic boundary conditions in both directions are
the choice ofT, as will become clear latter. Differentiation of implied andJ; (J,) is the horizontalvertica) coupling con-
the logarithm ofr (B) gives as the condition for the maxi- stant. Choosing to propagate the rows of the lattice, it is
MUM U5(Bmad =U1(Bma, Whereu; andu, denote the energy straightforward to calculate the matrix elemextgT|¢'),
density of the(d—1)-dimensional system and of the two where¢ and ¢’ are vectors containing rows of spins.TTis
coupled(d—1)-dimensional systems, respectively.
In this paper we will test the maximum principle in some

simple models; the choice of models was made in order to 1.02

test the criterion in distinct situations: in Sec. Il we study an 1.015 | Method 1
anisotropic self-dual system in two dimensions; Wosiek ar- Method 2 —
gued that his method is exact for self-dual systems with 1017 |
d=2, but he considered isotropic models only. In Sec. lll we . 1.005 |

look at a system with more than one type of interaction be- =

tween the spins, one of them involving more than two spins. § T

In Sec. IV we study a system in a triangular lattice with . 0.995 |

multiple-spin interactions. In Sec. V we analyze the Ashkin-

Teller model, which displays two critical points for certain 099

values of the parameters. In all of these models, for a certain 0.985 |

range of the coupling parameters at least, the location of the e
critical point is a consequence of symmetries like 0'980,5 oie 07 08 09 1 11 12 13 14 15
self-duality? Finally, in Sec. VI we briefly report a numeri- Js

cal study of the two-layer Ising model, for which Wosiek had

predicted the critical temperaturg,=0.2656" As Wosiek FIG. 1. Bmad B as a function ofl,, with J;=1, for the two-

points out, this is an important example because not only igimensional anisotropic Ising model, using the three methods de-
the system not self-dual, but apparently it does not have anycribed in Sec. II.
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the partition functiorZ; of a horizontal one-dimensional spin n

chain with periodic boundary conditions in both directions (dB|W[p™y=exp| B2, JisTs+3,8Ps 1 |, (5b)
(each spin couples with itself along the vertical directjon =1

hencez,=Tr(T,)". Similarly, TrT? is the partition function and the partition function i€, =Tr(VW)"™2 Using Eq.(5)
Z, of two coupled horizontal chains of spins, again with e optain "

horizontal and vertical periodic boundary conditions:
Z,=Tr(T,)". The matricesT, andT, are given by

TiVW) =2 > ] exd B(31+3,)sP(sP+s 1.
(s|T4[s")=exd B(J1+Jz88)], (33 o g8 I=1

6

3b) Equation(6) is the partition functiorzZ, of a diagonal spin
chain with periodic boundary conditions. Again, we define
We will only need the largest eigenvalues Bf and T, TrT?=2,. The corresponding transfer matrices are
because they are dominant in taking the limit in Edy): N ,
p(B) =12 Jtomax. With the help ofuATHEMATICA , we get (81| Tolsysp) =exd B(I1+Jp)sp(s +sp)], (7

(5152| T2|s185) =exp{ B[ 231515, Jo(S151 +5,57) 1}

!

t) map= X192+ x(J1792), (43) (515,5354] T2|S15555S4)
=exp{ B[J1(S;S3+ 5554+ S,S3+S1S4)

1
thaXIE [X2J272Jl+ X 2172354 y231+235 X2J172‘]2]

+J,(51Sa+ 5553+ S1S3+S,84) 1} (7b)

1 with largest eigenvalues
+ 5 [(X231+2J2+X2J1—2J2)2+X—4J1+432+X—4J1—432

ty ma= X~ 201732 4 52014 32) 4 9. (83
—2(xM2+x"H2) + 2x M1+ 12]Y2, (4b)
1
wherex=e” (this definition will be used hencefoith t2max—5 x 801 92) g, (x) + x4 I2) (14 xH)
From Fig. 1 we see thaB,,=08. only whenJ,;=J,.
Whereas the exact solution is obviously symmetricalljn X (1+x2) g,(x) ], (8b)

and J,, this is not the case with Eq#4), the reason being
that the one-dimensional spin chain and the two coupled onevhere
dimensional spin chains we used were horizontal, and,;so

N C . A3+ 3y) 4 123, +4] 8(J+3y) 4 4dq+12
and J, played distinct roles. As a consequence, the condi-  d1(X) =X 717721 XTE TR IX Tl X 2

tions u?(ﬁmax):ug(ﬂmax) and UI(IBmaX):ulzj(Bmax) yield dif- +X12(‘]1+‘]2), (93
ferent values foB,.« (the indicesh andv label the horizon-

tal and yertipal spin chai.msWe can recover tha§ symmetry. Qo(X) = 1— 2(xM1+ x432) + xBI1 4 X824 20x 401 +32)

by considering both horizontal and vertical spin chains si-

multaneously; one possibility is to use the condition —2x8I1t A2 oy A1 t8Yz 4 (801 H ), (9b)
UB( B +U5( Bmad =Un(Bmar) Ui (Bmay) instead(Method 2. _ _ _

This amounts to replacing the partition functiads, by the T, was diagonalized using the propert)’/Tz[,U]
geometric mean o}, and Z; , in the expression for the =0, Where U=(oy®@0)®(0y®0y) =3(S1,~51) 5(Sz,
second-order moment of the transfer matrix, giving —S5) 6(S3,—S3) 8(S4,—S) is the matrix associated with the

inversion of the spins in a 2616 spin matrix(o, is the Pauli
ih 1 matrix). We see thap(B) is now symmetrical inJ; andJ,,
1max-1max . .
p(B)= F—" as expected. Once again the results are correct for the isotro-
V2 mad 2max pic case only, and fod,;#J, the previous method gives

. . . slightly better values.
Once again the predicted critical temperatures match the

act s ol n b ocpc cese, but venise 1, s yo¢ opeL I 4 SOUARE LATTIGE Wi
P 9 NEAREST-NEIGHBOR, NEXT-NEAREST-NEIGHBOR,

first method.
Method 3.If we choose a transfer matrix that propagates AND FOUR-SPIN (SQUARE) INTERACTIONS

diagonal chains of spingonsidering now a lattice with lin- Choosing the transfer matrix to propagate vertically the
ear dimensions along the diagonal of the original lattice rows of the lattice, we find
we obtain in the end a different expression §68), which is

symmetrical inJ; andJ,, as required. Following Baxtée (s|Tq|s"y=exp{ B[ I, + (I +2],)ss +J3]}, (108
label the transfer matri¥ W, whereV andW are the matri-
ces (8152| Tols155) =exp{ B[ J1(S1S,+ 5151 + 5,8, +51S))

n +2J5(51S5+51Sp) +2J33(5:1515,85) 1}

— A B A_B
(¢"VI¢®)=exp B; J1Sih 1Sy Hdosysy [, (58 (10b)
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whereJ,, J,, andJ; are the coupling constants for nearest-
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The maximum ofp(B) is located atB,,=0.440 .. .,

neighbor, next-nearest-neighbor, and four-spin interactionsyhich agrees with3. . We note that the critical temperature

respectively. The largest eigenvalues are

tl A= X2J1+232+J3+X72J2+J3, (11a
t _E 4J1+4J2+2J3+2 —4J,+2J3
2max— 2 [X X
+X—4J1+4J2+2J3+(X8J1+8J2+4J3
4 16X74J3— 2X832+4J3+ X78J1+8J2+4J3)1/2]_
(11b

of this system can be obtained using a duality relation.

If we allow the coupling constants for the up-pointing and
down-pointing triangles to take distinct values, we arrive at a
rather long expression fgi(8) which is symmetrical in the
coupling constants, but fails to provide the right ansies
compared the values @8,,,, with the results from Monte
Carlo simulations We do not know if this more general
model obeys a symmetry relation which determines its criti-
cal point.

V. SQUARE-LATTICE ASHKIN-TELLER MODEL

T, was diagonalized by noting that it remains unchanged This model can be expressed in terms of Ising spins by
when the spin labels 1 and 2 are exchanged, and so it comssociating with each sifetwo spins,s; ando; .2 The inter-

mutes with the %4 matrix with elements

8(s1,8;) 8(s2,51)-

The casel;=J,=0 is ruled out because it has infinite

degeneracy in the ground state. Rir=J;=0, the lattice

action energy for the edgei,() is e(i,j)=—Jss
—J'oj0j—J,8;0;8j0;—J and the transfer matrices are

(so|Tq|s' o’ y=exg{ B[I(1+sS )+ (1+00')

factors into two independent nearest-neighbor isotropic

square Ising lattices, and thus we would expect to recover the

well-known result 8.J,=0.4407/ ... . Instead we get

p(B)=1, and thus no prediction fg8, can be exctracted from
the maximum principle. The cash=0 corresponds to the
isotropic zero-field eight-vertex model, for which the exact
value for B, in the ferromagnetic regime can be derived us-

ing a generalization of the star-triangle relatiénand is
given by

exfl Bc(23+ Jg) [=exfd Be(— 2+ J3) |+ 2 exp — Beds).-
12

+\]4(1+SS,(TO',)+J0]}, (16@

(81015,05| To|S1018507%)
=exp{B[I(25;:S,+ 5,5, +5,55)
+3' (2010, + 0y01+ 0507)
+34(8101S101+S0,550 5+ 2S101S,0,) + 23]}
(16b)

The largest eigenvalue af; iS tg ma=X @ +x +x24

Only for J,=J; does the maximum principle reproduce +X2(J+J’+J4)]_ We did not manage to calculatg,,,, analyti-

the correct result.

IV. TRIANGULAR THREE-SPIN MODEL

The energy is given b= —ZXs;s;s,, where the sum is

over all triangular faces of the triangular lattice. The transfe

matrices
(s|Ty|s"y=exd B(s+s")], (133
(s152|To|s185) =exp{ B[S1S2(S1+S5) +5155(S1+5,) 1,
(13b)
have largest eigenvalues
t1 ma= X2+ X2, (143
. _1+2x4+x8+ 1+4x4+6x8+4x12+xlﬁ+ 3/q.(x)
2 max 3X4 3X4 W 3X4 ’
(14b
with

g(X)=1—21x*+ 15x8+ 74x 2+ 15x16— 21x?0+ x4
+33/2X2\/CI2(X), (159

0o(X) = — 2+ 15x*— 26x8— 124x 2+ 28x 16+ 21820+ 28x2*
— 124x?8— 26x32+ 15x36— 2x*0. (15b)

cally, and thus studie@(8) numerically. We proceeded as
follows: T, is invariant under the inversion of all the spins
(and so it commutes with the matrlt defined in Sec. )t
using this propertyT, can be factored in two independent
8X8 submatricesT, is also invariant under the exchange
rsl<—>0'1, s,—a, [and so it commutes with/?, where V
= 5(s1,55) 8(S,,53) 8(S3,54) 8(S4,S1) is the matrix associ-
ated with the cyclic permutation of the indidef)sing these
two symmetries, in the isotropic casks J’, we were able to
decomposdl, into smaller matrices, with the largest eigen-
value belonging to a6 submatrix. For a given value ¢,
we calculated numerically the largest eigenvalue, obtained a
plot of p(B), and located approximately its maximum by in-
spection. For the anisotropic case we did the same, but using
the 8<8 submatrices mentioned above. In this latter case, it
has been argued that the system always has two distinct criti-
cal temperatures, for any value of the coupling constants,
and so we would expect to find two maximumsggB), but
there was only onéin particular, forJ,=0, the system fac-
tors into two independent Ising lattices with coupling con-
stantsJ andJ’). In the anisotropic case the critical tempera-
tures cannot be obtained from a duality relation, since such a
symmetry implies the existence of a single critical tempera-
ture. Whenl=J’, the criticality condition is obtained from a
duality relation? and is given by exp-28.J,)=sinh(23.J),
with J,<<J.

We compare in Table | the exact valuesef with nu-
merical values forefmax finding that in the limiting cases
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TABLE |. Comparison between the exact valueseft and  analysis yielded a rough estimate f&(>) which is compat-
those predicted by the maximum princip#max for the isotropic  ible with those values.
Ashkin-Teller model with]J=1.

VII. CONCLUSIONS

I e’ e We conclude from our tests that Wosiek’s criterion, at
1 1.316 074 01... ]1.316 073 95,1.316 074 P5 least in its simplest form, given by the second momerni of
0.9 1.328 720 07... 11.328 693 36,1.328 693 [/2 is not exact except for some special, highly symmetrical
0.8 1.342 715 4... ]1.342 588 3,1.342 588 85 cases. In Secs. I, Il and IV we showed, by means of ex-
0.7 1.358 241 4... ]1.357 95,1.358 45 amples, that the existence of symmetry relations, such as
0.6 1375657, 11.375 225 45.1.375 229 6 se_lf—duallty,_\_/vhlch Qetermlr_le the c_rltlcal point, is not a suf-
05 1395 336 71 11.394 674 8,1.394 6749 ficient condition for its validity, and in Sec. Il we pointed out

’ that the method is sensitive to the choice of the transfer ma-

04 1.4177921... 11.416 879 8,1.416 88( 1 trix, and that the symmetry with respect to the anisotropic
0.3 1.4437166... 11.442 575,1.442 5795 coupling constants is not preserved for all the possible
0.2 1.47402169..  ]1.472798,1.472 802 choices. We attempted to reformulate the method to recover
0.1 1.5100616... ]1.509 082,1.509 084 this later symmetry. The failure to reproduce the correct criti-
0 1.55377397... 11.553 773 93,1.553 774 cal temperature for the two-layer Ising model, which is not

self-dual and does not have any other symmetries which de-
termine its critical point, suggests that the existence of such
symmetries is a necessary condition for the validity of the
fhaximum principle’* As it stands, it still remains to be un-
derstood what class of models comply to the maximum prin-
ciple, what is the mechanism underlying its validir not
VI. TWO-LAYER SQUARE LATTICE ISING MODEL in each case, and whether there is any generalization with a
wider applicability. One possibility, explored in Refs. 3 and
4, is that Wosiek’s criterion is the lowest-order approxima-
tion in a hierarchy which converges to the exact result. It
n){vould be interesting to further explore this possibility by
using higher moments of the transfer matrix to study sym-
metrical (e.g., self-dualbut anisotropic models, such as the
anisotropic Ising model, taking into consideration the discus-
Sion in Sec. Il.

(J,=J and J,=0), Wosiek’s criterion gives the correct an-
swer, but otherwise it always gives smaller values than th
exact ones, although it fails by only a small mar@i0.1%.

WosieK predicted from his criterion that the critical tem-
perature for the two-layer Ising model in the limlit—oo
should beB,=0.26% . . . . This prediction has recently been
shown to be incorrect, and better results obtained fro
higher-order moments of the transfer matrix were repotted,
as well as results from Monte Carlo simulatidh#/e have
also performed Monte Carlo simulations of this system, con
firming the latter results. We used several lattice sizes, ran
ing from L=5 to L=30, and found that the pseudocritical
temperaturdétemperature for which the specific heat is maxi-
mum) decreased with increasing, starting from a value We are indebted to Professor Jdseis Martins for his
smaller than Wosiek’s prediction, thus ruling out that predic-encouragement and for a critical reading of the manuscript.
tion. Our sampling was not sufficiently accurate to test theThis work was supported by PRAXIS XXI Grants Nos.
precise values given in Refs. 3 and 4, but finite-size scalin@dD5037/95 and BD5704/95.
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