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Testing a simple criterion for the critical temperature
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We investigate the applicability of a simple criterion proposed by Wosiek@Phys. Rev. B49, 15 023~1994!#
for locating analytically critical temperatures; we apply it to Ising-like spin models with anisotropic interac-
tions, more than one type of interaction between the spins, and multiple-spin interactions. The predicted critical
temperatures only agree with the known exact results or with Monte Carlo simulations for very particular,
highly symmetrical values of the coupling constants.@S0163-1829~97!02809-9#
s

n
in

si

va
t a

s
f
i-

o

e
r
an
ar
it
we
be
ins
ith
in
in
ta
th
ke
-
ad

y
a

os-
ch

is

-
in
en-
ee

re

is

de-
I. INTRODUCTION

Wosiek1 recently proposed the followingansatzfor locat-
ing the critical temperatureTc of a lattice spin system: let u
define, as usual,b[1/KBT, let T be a transfer matrix of a
d-dimensional system~d.1! having a finite degeneracy i
the ground state—this excludes models in which the sp
can take continuous values—and letL be its linear size. De-
fining the ‘‘characteristic function’’

r~b!5 lim
L→`

F ~TrT!2

TrT2 G 1/L~d21!

, ~1!

the maximum ofr occurs at the order-disorder phase tran
tion point ~‘‘maximum principle’’!: bmax5bc .

The maximum principle can be reformulated in an equi
lent way:1 let us consider the normalized second momen
finite L, r L(b)5(TrT)2/TrT25(Z1)

2/Z2. It is easy to see1

that Z1 and Z2 are the partition functions of a~d21!-
dimensional system, and of two coupled~d21!-dimensional
systems, respectively. What systems are these depend
the choice ofT, as will become clear latter. Differentiation o
the logarithm ofr L~b! gives as the condition for the max
mumu2~bmax!5u1~bmax!, whereu1 andu2 denote the energy
density of the~d21!-dimensional system and of the tw
coupled~d21!-dimensional systems, respectively.

In this paper we will test the maximum principle in som
simple models; the choice of models was made in orde
test the criterion in distinct situations: in Sec. II we study
anisotropic self-dual system in two dimensions; Wosiek
gued that his method is exact for self-dual systems w
d52, but he considered isotropic models only. In Sec. III
look at a system with more than one type of interaction
tween the spins, one of them involving more than two sp
In Sec. IV we study a system in a triangular lattice w
multiple-spin interactions. In Sec. V we analyze the Ashk
Teller model, which displays two critical points for certa
values of the parameters. In all of these models, for a cer
range of the coupling parameters at least, the location of
critical point is a consequence of symmetries li
self-duality.2 Finally, in Sec. VI we briefly report a numeri
cal study of the two-layer Ising model, for which Wosiek h
predicted the critical temperaturebc>0.2656.1 As Wosiek
points out, this is an important example because not onl
the system not self-dual, but apparently it does not have
550163-1829/97/55~10!/6356~4!/$10.00
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more general symmetry, and thus provides a test for the p
sibility of the maximum rule being a consequence of su
symmetries.

II. TWO-DIMENSIONAL ANISOTROPIC ISING MODEL
IN A SQUARE LATTICE

As is well known, the critical temperature of this model
obtained from self-duality,2 and is given by
sinh~2bcJ1!sinh~2bcJ2!51. We will analyze this system us
ing three different methods; the first and the third differ
the choice of the transfer matrix, while the second is a g
eralization of the maximum principle. Results from the thr
procedures are plotted together in Fig. 1.

Method 1.For a lattice with linear sizeL, the partition
function is

ZL5(sexp S b(
i51

L

(
j51

L

J1si j si11 j1J2si j si j11D , ~2!

where periodic boundary conditions in both directions a
implied andJ1 ~J2! is the horizontal~vertical! coupling con-
stant. ChoosingT to propagate the rows of the lattice, it
straightforward to calculate the matrix elements^fuTuf8&,
wheref andf8 are vectors containing rows of spins. TrT is

FIG. 1. bmax/bc as a function ofJ2, with J151, for the two-
dimensional anisotropic Ising model, using the three methods
scribed in Sec. II.
6356 © 1997 The American Physical Society
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55 6357TESTING A SIMPLE CRITERION FOR THE CRITICAL . . .
the partition functionZ1 of a horizontal one-dimensional spi
chain with periodic boundary conditions in both directio
~each spin couples with itself along the vertical directio!;
henceZ15Tr(T1)

L. Similarly, TrT2 is the partition function
Z2 of two coupled horizontal chains of spins, again w
horizontal and vertical periodic boundary condition
Z25Tr(T2)

L. The matricesT1 andT2 are given by

^suT1us8&5exp@b~J11J2ss8!#, ~3a!

^s1s2uT2us18s28&5exp$b @2J1s1s21J2~s1s181s2s28!#%.
~3b!

We will only need the largest eigenvalues ofT1 andT2
because they are dominant in taking the limit in Eq.~1!:
r(b)5t1max

2 /t2max. With the help ofMATHEMATICA , we get

t1max5x~J11J2!1x~J12J2!, ~4a!

t2max5
1

2
@x2J222J11x22J122J21x2J112J21x2J122J2#

1
1

2
@~x2J112J21x2J122J2!21x24J114J21x24J124J2

22~x4J21x24J2!12x24J1112#1/2, ~4b!

wherex[eb ~this definition will be used henceforth!.
From Fig. 1 we see thatbmax5bc only when J15J2 .

Whereas the exact solution is obviously symmetrical inJ1
and J2, this is not the case with Eqs.~4!, the reason being
that the one-dimensional spin chain and the two coupled o
dimensional spin chains we used were horizontal, and sJ1
and J2 played distinct roles. As a consequence, the con
tions u1

h(bmax)5u2
h(bmax) and u1

n(bmax)5u2
n(bmax) yield dif-

ferent values forbmax ~the indicesh andv label the horizon-
tal and vertical spin chains!. We can recover that symmetr
by considering both horizontal and vertical spin chains
multaneously; one possibility is to use the conditi
u2
h(bmax)1u2

n(bmax)5u1
h(bmax)1u1

n(bmax) instead~Method 2!.
This amounts to replacing the partition functionsZ1,2 by the
geometric mean ofZ1,2

h and Z1,2
n in the expression for the

second-order moment of the transfer matrix, giving

r~b!5
t1max
h t1max

n

At2maxh t2max
n

.

Once again the predicted critical temperatures match
exact values only in the isotropic case, but otherwise
deviations are much smaller than those corresponding to
first method.

Method 3.If we choose a transfer matrix that propaga
diagonal chains of spins~considering now a lattice with lin-
ear dimensionsn along the diagonal of the original lattice!,
we obtain in the end a different expression forr~b!, which is
symmetrical inJ1 andJ2, as required. Following Baxter,

2 we
label the transfer matrixVW, whereV andW are the matri-
ces

^fAuVufB&5exp S b(
j51

n

J1sj11
A sj

B1J2sj
Asj

BD , ~5a!
:

e-

i-

i-

e
e
he

s

^fBuWufA&5exp S b(
j51

n

J1sj
Bsj

A1J2sj
Bsj11

A D , ~5b!

and the partition function isZn5Tr(VW)n/2. Using Eq.~5!
we obtain

Tr~VW!5(
fA

(
fB

)
j51

n

exp@b~J11J2!sj
B~sj

A1sj11
A !#.

~6!

Equation~6! is the partition functionZ1 of a diagonal spin
chain with periodic boundary conditions. Again, we defi
TrT25Z2 . The corresponding transfer matrices are

^s1s2uT1us18s28&5exp@b~J11J2!s2~s11s18!#, ~7a!

^s1s2s3s4uT2us18s28s38s48&

5exp$b@J1~s18s31s28s41s2s31s1s4!

1J2~s18s41s28s31s1s31s2s4!#% ~7b!

with largest eigenvalues

t1 max5x22~J11J2!1x2~J11J2!12, ~8a!

t2 max5
1

2
x28~J11J2!@q1~x!1x4~J11J2!~11x4J1!

3~11x4J2!Aq2~x!#, ~8b!

where

q1~x!5x4~J11J2!1x12J114J2112x8~J11J2!1x4J1112J2

1x12~J11J2!, ~9a!

q2~x!5122~x4J11x4J2!1x8J11x8J2120x4~J11J2!

22x8J114J222x4J118J21x8~J11J2!. ~9b!

T2 was diagonalized using the property [T2 ,U]
50, where U5(sx^ sx)^ (sx^ sx)5d(s1 ,2s18)d(s2 ,
2s28)d(s3 ,2s38)d(s4 ,2s48) is the matrix associated with th
inversion of the spins in a 16316 spin matrix~sx is the Pauli
matrix!. We see thatr~b! is now symmetrical inJ1 andJ2,
as expected. Once again the results are correct for the is
pic case only, and forJ1ÞJ2 the previous method give
slightly better values.

III. ISING-TYPE MODEL IN A SQUARE LATTICE WITH
NEAREST-NEIGHBOR, NEXT-NEAREST-NEIGHBOR,

AND FOUR-SPIN „SQUARE… INTERACTIONS

Choosing the transfer matrix to propagate vertically t
rows of the lattice, we find

^suT1us8&5exp$b@J11~J112J2!ss81J3#%, ~10a!

^s1s2uT2us18s28&5exp$b@J1~s1s21s1s181s2s281s18s28!

12J2~s1s281s18s2!12J3~s1s18s2s28!#%,

~10b!
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whereJ1, J2, andJ3 are the coupling constants for neare
neighbor, next-nearest-neighbor, and four-spin interactio
respectively. The largest eigenvalues are

t1 max5x2J112J21J31x22J21J3, ~11a!

t2 max5
1

2
@x4J114J212J312x24J212J3

1x24J114J212J31~x8J118J214J3

116x24J322x8J214J31x28J118J214J3!1/2#.

~11b!

T2 was diagonalized by noting that it remains unchang
when the spin labels 1 and 2 are exchanged, and so it c
mutes with the 434 matrix with elements
d(s1 ,s28)d(s2 ,s18).

The caseJ15J250 is ruled out because it has infinit
degeneracy in the ground state. ForJ15J350, the lattice
factors into two independent nearest-neighbor isotro
square Ising lattices, and thus we would expect to recover
well-known result bcJ250.4407 . . . . Instead we get
r~b!51, and thus no prediction forbc can be exctracted from
the maximum principle. The caseJ150 corresponds to the
isotropic zero-field eight-vertex model, for which the exa
value forbc in the ferromagnetic regime can be derived u
ing a generalization of the star-triangle relations,2 and is
given by

exp@bc~2J21J3!#5exp@bc~22J21J3!#12 exp~2bcJ3!.

~12!

Only for J25J3 does the maximum principle reproduc
the correct result.

IV. TRIANGULAR THREE-SPIN MODEL

The energy is given byE52(sisjsk , where the sum is
over all triangular faces of the triangular lattice. The trans
matrices

^suT1us8&5exp@b~s1s8!#, ~13a!

^s1s2uT2us18s28&5exp$b@s1s2~s181s28!1s18s28~s11s2!#%,

~13b!

have largest eigenvalues

t1 max5x21x22, ~14a!

t2 max5
112x41x8

3x4
1
114x416x814x121x16

3x4 A3 q1~x!
1

A3 q1~x!

3x4
,

~14b!

with

q1~x!51221x4115x8174x12115x16221x201x24

133/2x2Aq2~x!, ~15a!

q2~x!522115x4226x82124x12128x161218x20128x24

2124x28226x32115x3622x40. ~15b!
-
s,

d
m-

ic
he

t
-

r

The maximum ofr~b! is located atbmax50.4407 . . . ,
which agrees withbc .

2 We note that the critical temperatur
of this system can be obtained using a duality relation.2

If we allow the coupling constants for the up-pointing a
down-pointing triangles to take distinct values, we arrive a
rather long expression forr~b! which is symmetrical in the
coupling constants, but fails to provide the right answer~we
compared the values ofbmax with the results from Monte
Carlo simulations!. We do not know if this more genera
model obeys a symmetry relation which determines its cr
cal point.

V. SQUARE-LATTICE ASHKIN-TELLER MODEL

This model can be expressed in terms of Ising spins
associating with each sitei two spins,si ands i .

2 The inter-
action energy for the edge (i , j ) is «( i , j )52Jsisj
2J8s is j2J4sis isjs j2J0 and the transfer matrices are

^ssuT1us8s8&5exp$b@J~11ss8!1J8~11ss8!

1J4~11ss8ss8!1J0#%, ~16a!

^s1s1s2s2uT2us18s18s28s28&

5exp$b@J~2s1s21s1s181s2s28!

1J8~2s1s21s1s181s2s28!

1J4~s1s1s18s181s2s2s28s2812s1s1s2s2!12J0#%.

~16b!

The largest eigenvalue ofT1 is t1 max5xJ0@x2J1x2J81x2J4

1x2(J1J81J4)#. We did not manage to calculatet2max analyti-
cally, and thus studiedr~b! numerically. We proceeded a
follows: T2 is invariant under the inversion of all the spin
~and so it commutes with the matrixU defined in Sec. II!;
using this property,T2 can be factored in two independe
838 submatrices.T2 is also invariant under the exchang
s1↔s1, s2↔s2 @and so it commutes withV2, where V
5d(s1 ,s28)d(s2 ,s38)d(s3 ,s48)d(s4 ,s18) is the matrix associ-
ated with the cyclic permutation of the indices#. Using these
two symmetries, in the isotropic case,J5J8, we were able to
decomposeT2 into smaller matrices, with the largest eige
value belonging to a 636 submatrix. For a given value ofb,
we calculated numerically the largest eigenvalue, obtaine
plot of r~b!, and located approximately its maximum by in
spection. For the anisotropic case we did the same, but u
the 838 submatrices mentioned above. In this latter case
has been argued that the system always has two distinct
cal temperatures, for any value of the coupling constan2

and so we would expect to find two maximums ofr~b!, but
there was only one~in particular, forJ450, the system fac-
tors into two independent Ising lattices with coupling co
stantsJ andJ8!. In the anisotropic case the critical temper
tures cannot be obtained from a duality relation, since suc
symmetry implies the existence of a single critical tempe
ture. WhenJ5J8, the criticality condition is obtained from a
duality relation,2 and is given by exp~22bcJ4!5sinh~2bcJ!,
with J4,J.

We compare in Table I the exact values ofebc with nu-
merical values forebmax, finding that in the limiting cases
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~J45J and J450!, Wosiek’s criterion gives the correct an
swer, but otherwise it always gives smaller values than
exact ones, although it fails by only a small margin~<0.1%!.

VI. TWO-LAYER SQUARE LATTICE ISING MODEL

Wosiek1 predicted from his criterion that the critical tem
perature for the two-layer Ising model in the limitL→`
should bebc50.2656 . . . .This prediction has recently bee
shown to be incorrect, and better results obtained fr
higher-order moments of the transfer matrix were reported3,4

as well as results from Monte Carlo simulations.4 We have
also performed Monte Carlo simulations of this system, c
firming the latter results. We used several lattice sizes, ra
ing from L55 to L530, and found that the pseudocritica
temperature~temperature for which the specific heat is max
mum! decreased with increasingL, starting from a value
smaller than Wosiek’s prediction, thus ruling out that pred
tion. Our sampling was not sufficiently accurate to test t
precise values given in Refs. 3 and 4, but finite-size sca

TABLE I. Comparison between the exact values ofebc and
those predicted by the maximum principle,ebmax, for the isotropic
Ashkin-Teller model withJ51.

J4 ebc ebmax

1 1.316 074 01... #1.316 073 95,1.316 074 05@

0.9 1.328 720 07... #1.328 693 36,1.328 693 72@

0.8 1.342 715 4... #1.342 588 3,1.342 588 35@
0.7 1.358 241 4... #1.357 95,1.358 05@
0.6 1.375 657... #1.375 225 45,1.375 225 6@
0.5 1.395 336 71... #1.394 674 8,1.394 674 9@
0.4 1.417 792 1... #1.416 879 8,1.416 880 1@
0.3 1.443 716 6... #1.442 575,1.442 575 5@
0.2 1.474 021 69... #1.472 798,1.472 802@
0.1 1.510 061 6... #1.509 082,1.509 084@
0 1.553 773 97... #1.553 773 93,1.553 774@
e

-
g-

-
e
g

analysis yielded a rough estimate forbc~`! which is compat-
ible with those values.

VII. CONCLUSIONS

We conclude from our tests that Wosiek’s criterion,
least in its simplest form, given by the second moment ofT,
is not exact except for some special, highly symmetric
cases. In Secs. II, III, and IV we showed, by means of e
amples, that the existence of symmetry relations, such
self-duality, which determine the critical point, is not a su
ficient condition for its validity, and in Sec. II we pointed ou
that the method is sensitive to the choice of the transfer m
trix, and that the symmetry with respect to the anisotrop
coupling constants is not preserved for all the possi
choices. We attempted to reformulate the method to reco
this later symmetry. The failure to reproduce the correct cr
cal temperature for the two-layer Ising model, which is n
self-dual and does not have any other symmetries which
termine its critical point, suggests that the existence of su
symmetries is a necessary condition for the validity of t
maximum principle.3,4 As it stands, it still remains to be un
derstood what class of models comply to the maximum pr
ciple, what is the mechanism underlying its validity~or not!
in each case, and whether there is any generalization wi
wider applicability. One possibility, explored in Refs. 3 an
4, is that Wosiek’s criterion is the lowest-order approxim
tion in a hierarchy which converges to the exact result.
would be interesting to further explore this possibility b
using higher moments of the transfer matrix to study sy
metrical ~e.g., self-dual! but anisotropic models, such as th
anisotropic Ising model, taking into consideration the disc
sion in Sec. II.
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