PHYSICAL REVIEW B VOLUME 55, NUMBER 14 1 APRIL 1997-II

Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics
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We propose a variable-cell-shape molecular dynamics algorithm where the dynamical variables associated
with the cell are the six independent dot products between the vectors defining the cell instead of the nine
Cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically
eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple
scalar that is quadratic in the time derivatives of the metric tensor makes the dynamics invariant with respect
to the choice of the simulation cell edges. Choosing the tensorial density of that scalar allows us to have a
dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant
external pressure and constant thermodynamic tension. We also show that using the metric as a variable is
convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-
Jones parameters and for Si with forces and stresses calculated from first principles of density-functional theory
to illustrate the applications of the methd&$0163-182807)04914-X

[. INTRODUCTION vectors defining the simulation cell as the variables for the
cell dynamics. We show that using these variables avoids in
With the development of simulation methods and the in-a natural way the problems previously encountered.
crease in available computational power, molecular dynam-
ics has become an important tool in the simulation of matter |, vARIABLE-CELL-SHAPE MOLECULAR DYNAMICS
in the condensed staté.In its earliest applications, molecu-
lar dynamics methods were employed to simulate systems of T0 simulate a system at constant pressure, one must allow
interacting particles with a constant density and energy, udfor variations of the volume and shape of the simulation cell.
ing a simulation cell with a fixed volume and shape and withAndersef proposed to use the voluni& of a cubic simula-
a constant number of particles inside. For extended system#0n cell as a dynamical variable in an extended Hamiltonian,
periodic boundary conditions were introduced to reduce fithus allowing for volume fluctuations driven by the dynami-
nite cell-size effects. cal imbalance between the imposed external presgyte,
The calculations with constant energy, volume, and numand the actual instantaneous internal presspke, as given
ber of particles are expected to simulate the thermodynami@y the virial theorem. As the simulation cell is periodically
properties of the microcanonical ensemble. However, iffepeated, the dynamics associated with the cell is fictitious.
laboratory conditions, one often controls the intensive vari{n the extended Lagrangian for the dynamics, Andersen in-
ables temperatur@ and pressur@, instead of the extensive cluded a fictitious kinetic energy term associated with the
variablesE and V. Therefore molecular dynamics methods rate of change of volume,
were developed to simulate systems at constant temperature
or pressuré-’ In the case of constant pressure simulations,
the size and shape of the simulation cell must be allowed to
change. In order to do so, an “extended system” is con-
structed which includes degrees of freedom for the cell. AvhereW” is a fictitious “mass” associated with the cell. He
microscopic simulation of the structural, mechanical, and dy-also added the terid .o = peyV, Which is the potential from
namical response of material systems to external stress @fhich the constant external pressure acting on the cell is
interest in tribology, material fatigue and wear, crack propaderived. During the simulations, the volumé fluctuates
gation, stress-induced phase and structural transformationgbout an average value such that, in the limit of long simu-
lubrication and hydrodynamical phenomena, is more convelation times, the time average of the calculated internal pres-
niently done with varying cell shapes. sure is equal to the chosen external presukes pexi- Here
The dynamics of the cell is fictitious. Therefore there arewe use an overline to indicate the limit of a time average for
many reasonable choices for the equations of motion of théong calculation times. In those simulations it is the enthalpy
variables associated with the cell. Traditionally the dynami-H=E+ pV that is approximately conserved, not the internal
cal variables were the Cartesian components of the vectoenergy, and Andersen showed that, assuming ergodicity,
defining the periodicity of the simulation cell. The early his simulation method samples the isoshape-isobaric-
choices for the equations of motion had some invariancésoenthalpic ensemble to an accuracy@fN~2) when cal-
problems, and more complicated equations of motion haveulating ensemble averages of intensive parameters
been proposed to avoid those problems. [O(N™1) for extensive parametérswhereN is the number
Here we suggest the use of the dot products between thaf particles in the simulation cell.
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Andersen’s method is best suited to study equilibriumthe stress theorem, which is a generalization of the virial
properties of fluids, for which the shape of the cell is irrel- theorem® A weaker condition that is easily checked is that
evant. To study shear flowiscosity in fluids or to study this should be verified in particular when the cell is restricted
solids it is not enough to change volume with constant shapéo undergo isoshape fluctuatiolfsAndersen’s method obeys
For example, a given cell shape may be compatible with thé¢his condition, while the same is true for the Parrinello-
periodicity of one crystal structure and be incompatible withRahman dynamics only in the lardédimit.®
another solid phase, and so the fixed-cell shape may artifi- The orientation in space of the simulation cell is irrelevant
cially prevent the appearance of thermodynamically mordor the structural and thermodynamical description of the
stable phases. In order to study structural phase transitionsystem (principle of material-frame indifferenéd. How-
Parrinello and Rahmé&rf extended Andersen’s method to al- ever, it is included in the dynamics if one uses the compo-
low for changes in both the volume and the shape of the celnents of the cell edges as dynamical variables, and spurious
They used as dynamical variables the Cartesian componentgll rotations have been obtained in actual simulations with
the Parrinello-Rahman method, namely in the simulation of
hij:éi.gl. molecules,_whose internal degrees of frgedom sometimes
cause the internal stress to be asymmetfitalhese rota-
of the three vectoréi defining the periodicity of the simu- tions not only are physically irrelevant, but may complicate
lation cell. Hereg, are the three orthonormal vectors that the analysis of the simulations’ results. Methods to eliminate

define a Cartesian coordinate system. To generate the d{f?€m have been proposed, such as constraining the matrix of

namics, a fictitious kinetic energy of the cell he lattice vectors to be symmetritabr upper trianguldf
(geometrical constrainksor by symmetrization of the infini-
WPR3 3 tesimal strain at each time stégynamical constraint:
PR_ )2
KceII_T.E E (hij) ’
=1j=1 Ill. USING THE METRIC AS A DYNAMICAL VARIABLE

is included in the Lagrangian, whevé"R is again a fictitious
mass. In the limit of largéN, the equipartition principle tells th

us that the kinetic energy qf the hine variables of the c_;eII iS‘nanded triad, then all the properties of the simulated system
small compared with the kinetic energy of th&l3 3 vari- depend only on the symmetrical metric tensor
ables associated with the particles’ positions, and the method '

simulates the isobaric-isoenthalpic ensemble. gi=a-a=g;

As the kinetic energy of the cell is fictitious, it can be e e
chosen in many reasonable ways that simulate the same eand not on the orientation of the three vectors in space. In
semble in the limit of large number of particlé$, and large  our simulation method, we use the six independent compo-
simulation times. However, different choices of the fictitiousnents of the metric tensor as the dynamical variables for the
cell kinetic energy yield different dynamics, and one can aslcell. The three diagonal elements of the metric give informa-
which is better or more convenient. Several authors havéion about the lengths of the lattice vectors, and the three
pointed out some shortcomings of the original method ofindependent off-diagonal elements contain the additional in-
Parrinello and Rahman: it is not invariant under modularformation about the angles between those vectors. The cova-
transformationgdefined below, the consistency between the riant components of the tensgr are related to the matrix
Condition Of mechanical equilibl’ium and the Virial theorem iShE(51,52 ,53), the transformation matrix between Cartesian
only verified in the largeN limit, and it has spurious cell and lattice coordinates, by the relation
rotations® =11

For a given periodic system, there are infinite equivalent g=h'h, 2
choices of the basic simulation cell. zEfI are three vectors T " _
commensurate with the periodic system, then the transformavhereh is the transpose di. The one-forms' associated
tion 5j'=EkMk15k, with M an integer matrix with with the Iatti_ce vectors; , which are(except for a factor of
|detM|=1, gives another set of vectors describing the peri-277)_ the reciprocal-lattice vectors, are related to the contra-
odicity. It is desirable that the dynamics should not depend/@riant components of the metric tensor,
on the particular choice that is made, i.e., the equations of L
motion should be formally invariant with respect to the g'=b'-b'=g",
interchange between  equivalent cells (modular
transformations® This characteristic improves the physical
content of the simulation, by eliminating symmetry-breaking _ — [Tom
effects associated with the fictitious part of the dynamics. V=deh=ydeg;.
Of course, in the thermodynamic limiN( <o) these effects
vanish, but they may be important in computer simulations
which may use only a small number of particles. That is
often the case in first-principles molecular dynantfcs.

For long simulation times and constant applied pressure,
the dynamics for the cell should yie((iPcan)}: pexté} , with  where we use the Einstein summation convention for tenso-
(Peaj the internal stress in Cartesian coordinates given byial quantities. The distance between any two points can be

If a;, a,, andas are three linearly independent vectors
at define the periodic simulation cell and form a right-

and the volume of the unit cell is given by

The positionf(i) of the ith atom in the simulation cell
tan be defined by its lattice coordinat$i),

r(i)=s(i)ay,
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calculated from the metric and the lattice coordinates, and\/liiklz\/\/g(degij)gikgli as an effective-mass tensor. Al-

therefore they completely define the geometry of the simulathough K%, gives slightly more complicated equations of

tion cell. motion for the cell, it has the advantage of reducing to

In the Parrinello-Rahman formalism, the calculation OfAndersen’sKé‘e” [see Eq.(1)] in the case of isoshape fluc-

the total distance traveled by a particle can be misleading ations of the cell if we make the identification
Because the unphysical motion due to the rigid rotation Of\Ng:(3/4)WA, and so the dynamics that it generates obeys
the cell should be discarded, one cannot in general simplya virial theorem in that limit® Since we are using the
use a two-point formula to calculate, for example, the meanp,etric, the orientation of the cell never appears in the equa-

square di;placement ofa particlg. The correct formu!a for th‘ﬁons. It can also be verified th&td,, is invariant with re-
distance is naturally expressed in terms of the metric: et
spect to modular transformations of thge.

R The fictitious Lagrangian for the extended system in the
As= Jt s'g;s'dt. 3 presence of an applied external pressure is
0
For a fixed cell(i.e., for a fixedg;;), Newton’s equations L5(s'(k),s'(k),gij i)
of motion can be derived from the Lagrangian 1
y =520 m(k)$ (kg (k) - U (K),gy)

£4(8(k),8'(K),gi)=5 2, m(k)s'(k)g;;s!(k)
k=1 w9 k] \/d_
_UE R, @ 5 (dew;;)g;i9"gkg” — Pexrvdew;j, (6)
where the summation is over &l atoms in the cellim(k) is ~ and the equations of motion for the atomic coordinates are
the mass of atonk, and the potential energy per céll , - L
includes interactions between atoms in different céllss a m(k)§'(k)=g"F;(k)—m(k)g'g;s'(k), 0
function of the N lattice coordinates of the atomic positions
and the six independent components of the metric tensor. |
the examples of a latter sectiot) is either the Born-
Oppenheimer energy from a first-principles pseudopotenti
local-density calculation or the potential energy of the
Lennard-Jones model. The momentum canonically conjugat%

hereF;(k)= — U/ 3sl(k) are the covariant components of
the force (which can be viewed as the components in
arleciprocal—lattice coordinates multiplied by72. This equa-
tion for the scaled atomic coordinates is identical to the one
btained from Parrinello-Rahman’s Lagrangian, since it does

to s'(K) is not depend on the choice &f;. It should be stressed that
this does not imply that the dynamics of the atoms is the
P same, because in order to convert from the scaled dynamics
(k)= — ! =m(k)gij5j(k), to the actual atomic dynamics we have to use the metric,
s'(k) which is determined by the cell's dynamics. Hence the im-

portance of a fictitious cell dynamics which does not intro-
duce unphysical symmetry-breaking effetts.
_ N (k) g (K) . The coupling of the atomic motion to the cell’'s motion is
Hy(S'(k), mi(K), )= X, ————+U(S'(k),g;). made through the second term on the right-hand Glu of
k=1 2m(k) Eq. (7), which is independent of the orientation and state of
Q) rotation of the cell; from this, the physical irrelevance of the

To construct the extended Lagrangian for the cell d namprientation of.the cell is.evident. . . .
grang y The equation of motion for the cell variables is derived

ics, we must choose the fictitious kinetic energy of the cell,

. . _ Ik .
Keen, and, for simulations with applied pressure, add theWlth the help of the relationd/dgw)deg;; =g de;; , giv-

and the corresponding Hamiltonian is

termpe,V = pexrVdew;; . A simple non-negative scalar that is N9
guadratic in the time derivatives of all the componentg &f 1 P
; WG, = U pogi | WO
] WP 99 ag\" WO. o ) 9ij > Jdeq.. ( detr.. PexTij gik9" 9
K Qi ij agij)ZT(E) (E ZTjS(g'kgmg"). €gj) €gjj
ii .o wWe . .
I [ k

whereW? is a fictitious cell “mass” which has the dimen- -9 gk'gij)+7(gk'g "Imnd" )9 ®

sions of mass times length squared. The positivity of this
term is shown in Appendix A. Instead &f,,, we choose the Where the contravariant components of the internal stress are

slightly modified expression, which is again a scalar, qua{S€€ Appendix B

dratic ing, but with a different tensorial density, ) o IU
W PI=2 m(k)s'(k)s! (k) =25~ 9

K Sen(gij agij): T(degij)gji(gikgklglj)v !

The instantaneous internal pressure averaged over the cell is

whereW?d is a fictitious cell “mass” with the dimensions of (1/3V)TrP ; , and it can also be obtained froht; (Ref. 10

mass times length*. Alternatively, we may view or L;:
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IHy 9L, wheree is the strain tensor for the lattide measured from
Pint= —| = =\ . the reference lattich,. We see thaW,r is the thermody-
Vv AV : X : . :

mi(K) s'(k) namic variable conjugate to the strain. Thus, for fixedhe
Defining the momenturn canonicall niugate to the m t_differential is exact, and so we can integrat® over a finite
fic teensorg € momentum canonically conjugate to the me deformation, to obtain the elastic energy

h
H”E.—2=Wg(degij)g'kgk|g"=ﬂ“, Ucell(h) jhoéw VoTr(re).

agl]
the conserved extended Hamiltonian can be written as The generalized enthalpy of Thurston is givertty
- . mi(k) 7' (k) . H=E+V,Tr(re),
Ha(s'(K), g ,m(k),H'J)=§k} 'ZmTJrU(S'(k),gu) oTr(7e)

whereE is the energy of the system. For our metric-based

1‘[ik1‘[ki formulation, it is desirable to use the metric, instead of the
+ m + PextV- (10 strain, as the thermodynamic variable. In order to find what
! is the conjugate variable, we have to expréggin terms of
In the following sections it will be convenient to define a infinitesimal variations of the metric tensor. This can be done
symmetrical contravariant internal stress tensor as for a symmetrical(i.e., torque-freg external stress, which
does no work in pure rotations of the cell. The result is given
il — —Zﬁ in Eq.(3.5) of Ref.. 17, and, expressed in tensorial notation is
int g a simple expression,
which contains the contributions from the potential energy 1 .
U to P. oW= ETr(ngtégjk)-
IV. ANISOTROPIC EXTERNAL STRESS The thermodynamic variable conjugate to the metric is there-

. . . . fore the external stress in contravariant lattice coordinates.
A constant applied anisotropic stress is in general noncon- . i ji
eepingog,= 0, cOnstant when the cell deforms thus leads

servative, and thus there is no conserved extended Hamil- . : .

tonian in a constant anisotropic stress simulafidh.Of to a conservative external stress, derived from the potential

course some experimental situations are essentially honcon-

servative, and therefore best simulated by an appropriate

nonconservative dynami€s® In this section we will present

a conservative dynamics, but one should keep in mind that T S

the simulation should be tailored to the problem. wherego=hgh, is some reference metric. Sinag,qis fixed,
Molecular dynamics simulations with an applied aniso-0ne can drop the constant ter(1/2)o g, do, from the defi-

tropic stress were proposed by Parrinello and RahfrRay  nition of U, obtaining

and Rahmal later showed that the original formulation was

valid only in the limit of small deformations, and they pro- 1.

posed an extension valid for finite deformations, in which it Uce(9) = EUJextgii ; (14)

is the thermodynamic tensiddefined beloy, not the stress,

that is kept constant, and the quantity that is approximatelwhich is independent of a reference configuration and quite

conserved during the simulation is the generalized enthalpgompact when compared with the definitionsoin Eq. (11).

of Thurston'® This approach is based on the fact that, if the The condition thangt is constant is equivalent to requir-

external stress is allowed to change when the cell deformspg 7 to be constant because its Cartesian coordinates are
so as to keep the thermodynamic tension constant, the virtual

1
Ucell(g)ziagxt(gij_goij)1 (13

work of the stress upon deformations of the cell is conserva- 1 -
tive, and so that stress is derivable from a potential, which TabZV—hoai(r'éx Ejb,
can be used to construct an extended Hamiltonian. The ther- 0
modynamic tension is given by'® as can be seen using E&1) from Appendix B*° Neverthe-
Vv less, to a givenr,,, does not correspond a unique thermody-
= V—hoh’logi{‘(hT)’lhT, (1)  namic 'tens'lon, bec_auéq) is arbitrary. All the physical in-
0 formation is contained inoy,, and g;;, except for the

whereh, andV,, are the reference lattice and its volume, and(arbitrary choice of axes. The thermodynamic tension fixes

o%@ is the external stress in Cartesian coordinates. Fothe choice of axes and also a reference state, thrdygh

ext . .
h=ho, randag"j}{tcoincide. The virtual worksW done by an Notice that from the transformation law for the contra-

external stress on the faces of the cell during an infinitesimaYa”am,f  components of the stress,oe,=deh’/
deformation of the cell in the stateis'®*’ deh[h’“hoegh'(h'") 7] obtained from Eq(B1) keeping

oS constant, we can conclude thdt,, as given by Eq.

SW=V,Tr(78¢), (12 (14) is invariant under modular transformatichs.
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To grasp the physical meaning oﬂxt, let us consider the strain) of U, which is quite difficult because it is a multival-
force acting on the face of the cell opposing edg#Jsing  leyed function of many variables. A practical strategy is to

Egs.(14) and(2), we obtain(in Cartesian coordinatgs use a simulated annealing to bring the configuration to a
deep valley, followed by a search of a minimum in that val-
. U eyl i = ley. The annealing step can be carried out by the variable-
F=- P =04, (19  cell-shape molecular dynamics described previously coupled
1

to a thermostat, Brownian dynamics forces, or a periodic
showing how the force on the fadeis related to the stress. rescaling of the velocities. The local minimization can be

The new extended Lagrangian can be obtained fiyn done efficiently if one has the gradient of the function to be
given by Eq.(6), by replacingpe,V by the newU,, Eq.  minimized.

(14). The equation of motion for the atoms, E@), remains If we want to obtain the crystal structure at zero tempera-
unchanged, and the equation of motion for the cell is obture and for an applied pressure i, we must minimize
tained from Eq(8) by replacingpe,gi; by (1V)of": its enthalpy,

H(s'(k),gip)=U(S'(K),gij) + Pexry/de;.
The gradient of the enthalpy with respect to atomic positions
e _ is
+—(99"™Im g™ g - (16) M aU
as'(k) s (k)

0w which is minus the covariant components of the force on that
i i i atom. Notice that in molecular dynamics it is the contravari-
Hanisds'(K),93 (), 111 = 2 2m(k) TUE k), ant components;' (k) =g"'F;(k) that appear in the equation
K of motion. The gradient of the enthalpy with respect to the
1T, I1% Lt 1 17 metric is
2\/\/9degIl Uex‘g”

1
WG =5 deg; saee (Pi— o)+ Wo(gug g, — 9M'gugy)

—Fi(k),
The conserved Hamiltonian is

oH ou J 1 . 1 .
/ ) ldet
In specific applications, it may be desirable to impose a ag” (79” pextag dey;; = zaim+2 Pexg’ Vdew;;.

constant external pressurgs,;, plus a constant thermody- b d when the f dwh
namic tension. Note that the stress tensor associated with &€ minimum is obtained when the forces are zero and when

the mixed stress tensor divided by the volume is the pressure

constant pressure s, = pe,Vg', and so constant pressure
P ex= PexV0", b times the identity tensor,

is not a particular case of constant thermodynamic tension
The generalization is straightforward, and in this case, When

considering only isoshape fluctuations of the cell, the equa- ;Uinti‘: PexiO:
tion of motion for the cell becomes Vdew;; ' '
1 _ as desired.
WAV(S*- __73' ( a'extj + pexﬁ}), If we want to obtain the crystal structure for a fixed ther-

modynamic tension, then we must minimize the generalized
whereW” is Andersen’s cell mass. This equation shows thagnthalpy,
the off-diagonal elements ofA— UEX,)} are restricted to be _ 1
zero, and the diagonal elements are restricted to take equal H(Si(k)agij):U(Si(k),gij)+ Eogxtgij . (18)
values, at all times: by imposing a fixed cell shape, we have
arrived at an isotropic total stress, as should be expected orhe gradient of the generalized enthalpy with respect to the
physical grounds. In equilibriumV=0, and so the atomic lattice coordinates is still minus the covariant force

average of each diagonal component of \/()jp‘. on the atoms, and the gradient with respect to the metric is
equals lW(O'ext)}+ pext‘S} J YVhiCh implies  Pint= Pext 3ﬁ U1 ; 1 1
+(1/3V) Tr(oex), where the right-hand side is the total ex- —=—+ gl =— o+ >0l

) - g 90 2 2 i 2 e
ternal pressure. This shows that our method obeys the virial ] ]
theorem in the case of isoshape fluctuations of the(dedi  which is zero when the internal stress is equal to the desired
proof in Ref. 10 mentioned in Sec. Il was for applied pres-applied stressg!,= ol
sure only.

VI. APPLICATIONS

V. STRUCTURAL OPTIMIZATION . .
In this section, we apply the method to the study of struc-

A problem encountered in the simulation of materials istural phase transitions and structural optimization. The
the determination of the equilibrium structure of a crystal atisobaric-isoenthalpic ensemble, besides being somewhat
a given pressuréor anisotropic stregredicted by a given unusuaf? is not the most adequate to study transitions in-
modelU (s'(k),g;;) of its total energy. This can, in principle, duced by pressure or stress, because it does not allow for the
be achieved by the minimizatiqunder the appropriate con- exchange of heat with the surroundings. There are several
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methods described in the literature to perform simulations at 1000
constant temperature by connecting the system to a “heat
bath.”®4 In our examples we use Langevin molecular
dynamics) but first we checked that in our simulations the __ ggqlt
generalized enthalpy was conserved in the absence of the 5 ]
heat bath. In the course of a simulation of a structural trans- g
formation the release of heat of transformation must be dis- ¢
sipated to the heat bath, this takes some time and therefore &
the temperature of the system may rise to values quite above 2
those of the heat bath. o
As our first example we simulated a silicon crystal under
a constant pressure using first-principles molecular dynam-
ics. Pioneering examples of first-principles molecular dy-

700

namics with variable-cell shape include the optimization of 600 200 200
the structure parameters of MgSj@nder pressuféand the
structural transition of silicon under pressafen the first MD Step

case the dynamical variable for the cell was the strain tensor,
in the second the lattice vectors.
In our simulation of Si, the energy, forces and stressegy,

Were calculated W'thm the local-density apprqmmaﬂon, UShamics simulation with an applied pressure of 25 GPa. The dots
Ing a pseudopozt‘(lantl%f’l and a plane-wave basis set with a jyicate the simulated data and the three horizontal lines indicate
cutoff of 16 Ry:™ The simulation cell contained 8 atoms, (e yolumes of the diamond, simple hexagonal, and face-centered-
initially disposed in a diamond structure, with lattice con- cypic structures of eight Si atoms at a 25 GPa pressure. At that
stanta=9.435 a.u. The applied pressure was 25 GPa. Thgressure the stable phase is the eightfold-coordinated simple hex-
equations of motion were integrated with a Beemanagonal. The volume starts by oscillating around the volume of the
algorithm? The time step wa$1=200 a.u., and the cell initial diamond phase, but after 200 steps shows a rapid decrease to
“mass” W9=10 a.u. Langevin dynamics with a viscosity values near the equilibrium value at 25 GPa. The heat released
damping constant of =2/m(Si), wherem(Si) is the atomic  during that transformation melts the system and at the end of the
mass of silicon, was used to simulate a heat bath with &hort simulation it has not yet reached equilibrium with the sur-
temperature of 300 K. rounding heat bath. The simulation seems to indicate that at a pres-
It is well known that silicon undergoes several phasesure of 25 GPa, like at zero pressure, Si contracts upon melting.
transformations with increasing pressure, and its pressure-
volume phase diagram has been extensively studiedart-  time from zero to 1% 10~ ° a.u. for the first 4000 simulation
ing from a diamond lattice, the structure changes-dtl  steps, and held thereaftefy at that value. All other applied
GPa into-Sn, and between 13 and 16 GPa transforms inttress components were kept at zero. This corresponds to a
simple hexagonal. Other densely packed phases appear situation of uniaxial compression. During the first 10 000
around 38 GPa. In the first 0.7 ps(200 stepsof the simu-  steps of the simulation the system is kept in contact with a
lation, we observe@Fig. 1) that the volume of the simulation heat bath at 10 K, at which point we minimize the general-
cell was fluctuating around a value that corresponds to thized enthalpy[Eq. (18)] using a method by Davidof{. The
volume of the metastable diamond structure of Si at 25 GP#ninimization is obtained in 96 steps which is approximately
(V~885 a.u. for the eight atoms of the conventional cubicthe number of variables, indicating that the heat bath kept the
unit cell). There was then a rapid drop in the volume, accom-system near a quadratic region of the potential.
panied by a rapid rise in the ionic temperature to around During the compression the system yields for an applied
3500 K (well above the melting poiht The simulation was stress of~0.1 GPa(after ~2500 steps and due to the re-
interrupted after 1000 steps, well before equilibrium with thearrangement of the atoms, the applied stress drops to a mini-
thermal bath was reached. After the transition, the volume ofmum of ~0.07 GPa and then rises again gradually, as the
the cell oscillated around 650 a.u., slightly below the volumethermodynamic tension is increased. After the structural re-
of the stable simple hexagonal structure at that pressure, batrangement, the argon is still in a distorted fcc lattice, but
above the density of the close-packed structures. Remembghe stress is now applied in[a10] direction instead of the
ing that at atmospheric pressure Si contracts upon meltingnitial [100] direction, and the area on which the force is
and considering the high temperatures of the simulation, ouapplied is~ 2 times larger. The yield was accompanied by
results indicate that at high pressures, the liquid phase may rapid rise in the ionic temperature up+@33 K. The heat
still be denser than the solid phase. was gradually dissipated, and at around step 4000 the tem-
For the purpose of illustrating a molecular dynamicsperature was back to 10 K.
method the origin of the forces is irrelevant, therefore we Figure 2 shows the evolution of two of the contravariant
used a Lennard-Jones model, with the constants adjusted kattice components of the internal stresgs, and oL, com-
simulate argon, for the other examples in this article, as th@ared with the corresponding imposed external stress com-
computational demands are much lower. In our second exponents. At first the internal stress oscillates around the ex-
ample, we started with a cubic simulation cell with 32 argonternal values, in particular it accompanies the rise in applied
atoms in an fcc lattice, and increased one diagonal contrastress. When the system yields we observe a dramatic in-

variant component of the external streséﬁt, linearly with  crease in the amplitude of the stress oscillations, which are

FIG. 1. The volumgin atomic unit$ of an eight-atom Si cell is
own as a function of the step of a first-principles molecular dy-
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G wo of the contravarianfattice) components of the FIG. 3. The Cartesian components of the applied and internal

applied and internal stress tens@rsatomic unit$ are shown for a ¢ t | the directi f . h for th
simulation of a cell of 32 argon atoms with a Lennard-Jones paitS ress tensor aiong e direction of compression are snown for the
same simulation as in Fig. 2. The applied stress, which is only

potential submitted to uniaxial loading. The time step is 413.2 a.u,

andW9=0.5 a.u. One of the diagonal components of the applieGmdirectly controlled through its contravariant lattice components,
stress is increased from zero 1054505 a.u during the first 4000 also oscillates. In particular, during the phase transformation the

simulation steps and held constant thereafter, while all the othef int | st due to the atomi :
components are held at zero. During the first 10 000 steps the syg_verage internai stress due to the atomic rearrangement.

tem is kept in contact with a heat bath at 10 K. Thereafter we . .
minimize the generalized enthalpy as described in the text. As the The best way to observe the yield is from the plot of the

minimization is very fast, the horizontal scale is multiplied by aevolutlon of the lattice constani¥ig. 5. From the |n|t|aI_
factor of 20 in that region. During the molecular dynamics theSIOP€S one could extract the Young and Poisson moduli for
internal stress(wiggly lines) oscillate around the applied stress the system. After the yield we see that the three lattice con-
(straight line$ as it should. The minimization makes the internal Stants are different from each other, and that they are rapidly
stress equal to the external stress within the tolerance of the minA€termined by the minimization procedure. At the end of the
mization procedure. At-2500 molecular dynamics steps the sys- Simulation and after the inspection of the angles we obtain a
tem vyields in the way described in the text.

pplied stress drops considerably in response to the decrease in the

‘0-08 1 T 1 1 1 1 L) 1
then damped with time. Finally, in the minimization step the
internal and external stress are identical within the precision | ]
demanded in the minimization (16). —_

The contravariant components of the stress tensor are not =3 -0.09F ]
what we are used to call stregbeir dimensionality is energy S
per areg so we show in Fig. 3 the evolution of the Cartesian
componentsr,, of the applied and internal stress, where we
chose thez axis to be in the direction of the applied stress. <
One can see that the Cartesian components of the applied&
stress are not constant when the contravariant components o
the stress are constant, and that the oscillations of the internal
stress are magnified, but they track each other, and they are
identical at the end of the enthalpy minimization, as desired.

The yield is also apparent in the plot of the potential com-
ponent of the generalized enthalg. (18)] as a function of MD Step
time (Fig. 4). First we observe an increase of the enthalpy
during load due to the work done on the system by the

L - g FIG. 4. Th tential t of th lized enthaip
uniaxial stress. When the system yields there is a strong de~ .~ '€ potential component of the generaiized en y
atomic units is shown as a function of time for the same simulation

crease O.f the potel_’ltlal component of the gnthalpy even Wh'.lgs in Fig. 2. First we observe an increase of the enthalpy during
we continue loading the system, showing that energy i§,,4 que to the work done on the system by the uniaxial stress.
transferred to the kinetic components, and later dissipated e the system yields there is a strong decrease of the potential
the heat bath. Only near the end of the loading cycle do Weomponent of the enthalpy, even while we continue loading the
see the enthalpy rising again. During the annealing step§ystem, and only near the end of the loading cyiridicated by the
there is a rapid initial decrease of the enthalpy, meaning thafrow) do we see the enthalpy rising again. The horizontal scale is
the minimization procedure rapidly reaches the valley of theagain multiplied by a factor of 20 in the minimization part of the
multivariable function, but then takes some time to reach th&imulation, showing the efficiency of the procedure of enthalpy
minimum. minimization in an expanded scale.
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FIG. 5. The evolution of the three lattice constafits atomic FIG. 6. The enthalpypotential part only and in atomic unjtsf

units) with time is shown for the same simulation of the previous g ce|| with 16 atoms of Lennard-Jones argon is shown for a simu-
figures(Figs. 2, 3, and 4 The strong structural rearrangement dur- |5tjon with an applied pressure of 0.3 GPa. The simulation starts at
ing yielding is clearly seen. conditions quite away from equilibrium, evolves for 2000 steps in
contact with a heat bath, and then the enthalpy is minimized. The
monoclinic simulation cell, which is in reality a supercell of inset shows the minimization part of the simulation in an expanded
the orthorhombic system one should expect when loading affale. The horizontal line in the |n§et is the enthalpy of Lennarq-_
fcc crystal in the[110] direction. aneg argon at 0.3 GPa, and that is the value rgached by the rplnl-
A movie of the simulation shows that tHe0G planes mization procedure. Dots_that seem out of plac_e_m the_m|n|m|;a_t|o_n
parallel to the uniaxial stress become distorted close-packe‘?fr_reSpond 1o overshooting steps in the multidimensional minimi-
planes by compression along the direction of the stress arftion procedure.

expansion along the perpendicular direction. A similar simu- ) ) _
lation was performed by Ray and Rahman in Ref. 28. Theyh€ Pprogram to the present formalism. The calculations in-
found an fcc to close-packed transition, with the final struc-volving the separable nonlocal pseudopotential projectors are
ture presenting stacking faults. easier to perform in Cartesian coordinates, so for that specific

Our final example is of a structural optimization under €@S€ we construct from the metgca triangularh and pro-
pressure. We start from conditions quite away from equilib-Ceed in Cartesian coordinates. The arbitrary choice of the
rium, perform 2000 steps in contact with a heat bath, andrientation ofh has, of course, no effect in the results of the
then switch to a gradient minimization. Our target pressure i§alculation. Our plane-wave code also has an old, but con-
0.3 GPa and we simulate 16 argon atoms with a Lennard/€nient, symmetry recognition package that only works for
Jones potential. The final structure is close-packed and cofhe conventional orientation of the unit cell. If one wants to
responds to a stacking of close-packed planes that is neithBerform simulations with fixed symmetry, than one has to

fcc nor hep. During part of the simulation the temperature isPut “by hand” the desired orientation df before using the
well above melting, so the memory of the initial configura- Package. Replacing those two parts of the code to avoid us-

tion is lost. The evolution of the potential contribution to the ing the matrixh is a straightforward, but tedious job, it is
enthalpy is shown in Fig. 6. In the inset of that figure thatmuch easier to use the tested old subroutines and construct a
magnifies the minimization part of the simulation, one canmatrix h whenever it is needed.

see that we obtain the enthalpy of Lennard-Jones argon at

that pressure. The true minimal strgcture is r)0t reached be- VII. CONCLUSIONS
cause the energy cost of the stacking faults is too small, so
the procedure only finds a deep local minimum. We have shown that the metric is a very convenient dy-

In principle the calculation of the energies, forces, andnamical variable to use in molecular dynamics simulations
stresses can be carried out within the metric formalism, aneith variable-cell shape. As the cell part of the dynamics is
therefore one never needs to construct the lattice vectors, thfittitious, there is no unique choice of the kinetic energy to
is the matrixh. Our code for the Lennard-Jones interactionbe included in a Lagrangian or Hamiltonian formulation. The
was written to test the present formalism and is fully imple-use of the tensorial notation in a metric formalism, with the
mented in the metric language. It never uses the méitrix requirement that the energy functions must be scalars, re-
Our pseudopotential plane-wave code is based on Sversgricts our choice of those functions. The simplest expression
Froyen’s Berkeley code, which stored atomic positions andor the cell kinetic energy has several properties that were
k vectors in lattice and reciprocal-lattice coordinates, respecot present in early expressions, namely, absence of rigid
tively, that is in contravariant and covariant coordinates. Inrotations and invariance with respect to modular transforma-
fact the stress was calculated by applying the chain rul¢ions. With a convenient choice of the tensorial density of the
dU/dhi;=(dU13gy)(dgi /dhyj), so it was easy to convert kinetic energy, the virial theorem is also satisfied for iso-
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shape fluctuations. For anisotropic stress, the simplicity of APPENDIX B

Eq. (14) contrasts with the definition of thermodynamic ten-

sion,[Eqg. (11)] and its dependence on a reference cell.
From our kinetic and potential functions for the cell met-

ric, we derived the equations of motion for variable-cell-

shape molecular dynamics under the conditions of consta

applied pressure and anisotropic applied thermodynami

stress. We also showed that the optimization of structures " i Tt

under both conditions can be naturally expressed in the met- D= (deh)h; Do)~ (B1)

ric language. Simulations of silicon with first-principles

forces and argon with empirical Lennard-Jones forces were The average symmetrized internal stress in Cartesian co-

used to illustrate the applications of our equations of motiorordinates is obtained from the stress theofem
and minimization procedures to the study of systems under

The stress is not a true tensor, but a tensorial defity,
thus transforming differently from tensors under a change of
coordinates whose Jacobian is not unity. The transformation
rﬂf a tensorial densityD" from Cartesian to lattice coordi-
pates is given 0z

applied pressure or stress. B 1/ 9E
T
cart V( asi’j)
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ER45439. whereE is the internal energy,'(a) is the velocity of the
atoma, ande’ is the (symmetrical Lagrangian strain corre-
APPENDIX A sponding to a rotation-free infinitesimal homogeneous defor-

mation given byh’'=(1+¢')h,* from the stateg to the
To prove thatkg,, is non-negative, we have to show that stateg’. In order to convert to lattice coordinates, we use Eq.

gjigikgk|glj:Tr(gg_lgg_l) is non-negative. Using EC(Z) (Bl) and apply the chain I'U|@E/O78i’jZ(o-'E/(9g|,(|)((?g{(|/

and the usual properties of the trace, we find that ﬁsi’j) together with the relatiog’ —g=2h"¢'h.” The result
is
Tr(gg 'gg Y =2 T (X+XN)X],
(99 799 ) i( )X] ) IE K aU
. Pl=—2—=-2——-2—, (B3)
where X=hh"'. Writing the rightmost X as 99;j 99 99ij

1/2(X+ X"+ 1/2(X— XT) and using TrK"X)=0, we arrive o _
at the desired result. It will be useful to derive this result inWhereK andU are the kinetic and the potential energy of the

the Hamiltonian formalism: atoms in the cell, respectively, and the factors of two arise
Defining Hpj=hp;h,;/det, where somen compatible from formally treatingg;; andg;; as independent variables.
with g was chosen. and defining The kinetic energy is given by the first term in the rhs of Egs.

(4) or (5). Using these expressions, we find, with the help of
the relationag"'/ 99, = —g"*g™', that

(aK) B (aK
e ’Ti(k)— Gk

and so it must be made clear whether it is {mg(k)} or the

miG, 1% ,,P>2 {éi(k)} that_are kgpt constant V\_/hen taking the_derivatives in
K= k7o _~a ab' (A1) Eqg. (B3). It is easily seen that, in order to obtain the correct
2We 2We kinetic internal stresfsee Eq.(B2)] when transforming Eq.
(B3) back to Cartesian coordinates, the (k)} must be kept
where Pp=H i IT¥'=Py, is a new generalized momen- constant, and thus we conclude that
tum for the cell. The canonically conjugate coordinate is

Gy jij E% HiitabH abij = Gij ki

whereH}, ,,=Hap i, We can write the kinetic energy of the sl(k)

cell as

QabE(H;b’ij)*lgij , as can be seen using the Poisson brack- B TH, FYA
ets relations between canonically conjugate variabtethis Pl=- 2( 0_) = 2((9—) )
last expressiork T is viewed as a &9 matrix with indices 9ij T n(K) i/ sm

ab andij). The relation between the variable®,P) and

the variables ¢,I1) is similar to the relation between,@)  which is Eq.(9).

and G, 7). We note that, becauseldet; j is a scalar capacit§’,and
From Eq.(Al), it is clear thatkd, is positive and con- P; is a tensorial density, the product {/Hegi,-)Pij that ap-

tributes with six distinct quadratic terms to the energy, andpears in Eq(8) is a true tensor, and thus has the same ten-

so the equipartition theorem applies to the degrees of freesorial density as the pressure term in the same equation,

dom of the cell when they are in contact with a heat bath. Pexdi; -
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30when the infinitesimal deformation is not rotation free,
h=(1+€)hy can be written ath=(1+eg)(1+ ea)hy, Where
1+ €, describes a pure infinitesimal rotation and- &g de-
scribes a rotation-free infinitesimal deformatiosy @nd e, are,
respectively, the symmetrized and antisymmetrizedThe re-
lation between € and the Lagrangian straine is
e=1/2(e+€"+€'€). For small deformationsg is the sym-
metrical version ofe.



