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Metric tensor as the dynamical variable for variable-cell-shape molecular dynamics

Ivo Souza* and Jose´ Luı́s Martins
Departamento de Fı´sica, Instituto Superior Te´cnico, Avenida Rovisco Pais 1, 1096 Lisboa, Portugal

and Instituto de Engenharia de Sistemas e Computadores, Rua Alves Redol 9, Apartado 13069, 1000 Lisboa, Portugal
~Received 15 November 1996!

We propose a variable-cell-shape molecular dynamics algorithm where the dynamical variables associated
with the cell are the six independent dot products between the vectors defining the cell instead of the nine
Cartesian components of those vectors. Our choice of the metric tensor as the dynamical variable automatically
eliminates the cell orientation from the dynamics. Furthermore, choosing for the cell kinetic energy a simple
scalar that is quadratic in the time derivatives of the metric tensor makes the dynamics invariant with respect
to the choice of the simulation cell edges. Choosing the tensorial density of that scalar allows us to have a
dynamics that obeys the virial theorem. We derive the equations of motion for the two conditions of constant
external pressure and constant thermodynamic tension. We also show that using the metric as a variable is
convenient for structural optimization under those two conditions. We use simulations for Ar with Lennard-
Jones parameters and for Si with forces and stresses calculated from first principles of density-functional theory
to illustrate the applications of the method.@S0163-1829~97!04914-X#
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I. INTRODUCTION

With the development of simulation methods and the
crease in available computational power, molecular dyna
ics has become an important tool in the simulation of ma
in the condensed state.1,2 In its earliest applications, molecu
lar dynamics methods were employed to simulate system
interacting particles with a constant density and energy,
ing a simulation cell with a fixed volume and shape and w
a constant number of particles inside. For extended syste
periodic boundary conditions were introduced to reduce
nite cell-size effects.

The calculations with constant energy, volume, and nu
ber of particles are expected to simulate the thermodyna
properties of the microcanonical ensemble. However,
laboratory conditions, one often controls the intensive va
ables temperatureT and pressurep, instead of the extensive
variablesE andV. Therefore molecular dynamics metho
were developed to simulate systems at constant temper
or pressure.1–7 In the case of constant pressure simulatio
the size and shape of the simulation cell must be allowe
change. In order to do so, an ‘‘extended system’’ is co
structed which includes degrees of freedom for the cell
microscopic simulation of the structural, mechanical, and
namical response of material systems to external stres
interest in tribology, material fatigue and wear, crack pro
gation, stress-induced phase and structural transformat
lubrication and hydrodynamical phenomena, is more con
niently done with varying cell shapes.

The dynamics of the cell is fictitious. Therefore there a
many reasonable choices for the equations of motion of
variables associated with the cell. Traditionally the dynam
cal variables were the Cartesian components of the vec
defining the periodicity of the simulation cell. The ear
choices for the equations of motion had some invaria
problems, and more complicated equations of motion h
been proposed to avoid those problems.

Here we suggest the use of the dot products between
550163-1829/97/55~14!/8733~10!/$10.00
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vectors defining the simulation cell as the variables for
cell dynamics. We show that using these variables avoid
a natural way the problems previously encountered.

II. VARIABLE-CELL-SHAPE MOLECULAR DYNAMICS

To simulate a system at constant pressure, one must a
for variations of the volume and shape of the simulation c
Andersen5 proposed to use the volumeV of a cubic simula-
tion cell as a dynamical variable in an extended Hamiltoni
thus allowing for volume fluctuations driven by the dynam
cal imbalance between the imposed external pressure,pext,
and the actual instantaneous internal pressure,pint , as given
by the virial theorem. As the simulation cell is periodical
repeated, the dynamics associated with the cell is fictitio
In the extended Lagrangian for the dynamics, Andersen
cluded a fictitious kinetic energy term associated with
rate of change of volume,

Kcell
A 5

WA

2
V̇2, ~1!

whereWA is a fictitious ‘‘mass’’ associated with the cell. H
also added the termUcell5pextV, which is the potential from
which the constant external pressure acting on the ce
derived. During the simulations, the volumeV fluctuates
about an average value such that, in the limit of long sim
lation times, the time average of the calculated internal pr
sure is equal to the chosen external pressure,p̄int5pext. Here
we use an overline to indicate the limit of a time average
long calculation times. In those simulations it is the entha
H5E1pV that is approximately conserved, not the intern
energy, and Andersen showed that, assuming ergodi
his simulation method samples the isoshape-isoba
isoenthalpic ensemble to an accuracy ofO(N22) when cal-
culating ensemble averages of intensive parame
@O(N21) for extensive parameters#, whereN is the number
of particles in the simulation cell.
8733 © 1997 The American Physical Society
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8734 55IVO SOUZA AND JOSÉLUÍS MARTINS
Andersen’s method is best suited to study equilibriu
properties of fluids, for which the shape of the cell is irre
evant. To study shear flow~viscosity! in fluids or to study
solids it is not enough to change volume with constant sha
For example, a given cell shape may be compatible with
periodicity of one crystal structure and be incompatible w
another solid phase, and so the fixed-cell shape may a
cially prevent the appearance of thermodynamically m
stable phases. In order to study structural phase transit
Parrinello and Rahman6,7 extended Andersen’s method to a
low for changes in both the volume and the shape of the c
They used as dynamical variables the Cartesian compon

hi j5eW i•aW j

of the three vectorsaW j defining the periodicity of the simu
lation cell. HereeW i are the three orthonormal vectors th
define a Cartesian coordinate system. To generate the
namics, a fictitious kinetic energy of the cell

Kcell
PR5

WPR

2 (
i51

3

(
j51

3

~ ḣi j !
2,

is included in the Lagrangian, whereWPR is again a fictitious
mass. In the limit of largeN, the equipartition principle tells
us that the kinetic energy of the nine variables of the cel
small compared with the kinetic energy of the 3N23 vari-
ables associated with the particles’ positions, and the me
simulates the isobaric-isoenthalpic ensemble.

As the kinetic energy of the cell is fictitious, it can b
chosen in many reasonable ways that simulate the same
semble in the limit of large number of particles,N, and large
simulation times. However, different choices of the fictitio
cell kinetic energy yield different dynamics, and one can a
which is better or more convenient. Several authors h
pointed out some shortcomings of the original method
Parrinello and Rahman: it is not invariant under modu
transformations~defined below!, the consistency between th
condition of mechanical equilibrium and the virial theorem
only verified in the large-N limit, and it has spurious cel
rotations.8–11

For a given periodic system, there are infinite equival
choices of the basic simulation cell. IfaW i are three vectors
commensurate with the periodic system, then the transfor
tion aW j85(kMk jaW k , with M an integer matrix with
udetM u51, gives another set of vectors describing the pe
odicity. It is desirable that the dynamics should not depe
on the particular choice that is made, i.e., the equation
motion should be formally invariant with respect to th
interchange between equivalent cells ~modular
transformations!.9 This characteristic improves the physic
content of the simulation, by eliminating symmetry-breaki
effects associated with the fictitious part of the dynamic9

Of course, in the thermodynamic limit (N→`) these effects
vanish, but they may be important in computer simulatio
which may use only a small number of particles. That
often the case in first-principles molecular dynamics.12

For long simulation times and constant applied press
the dynamics for the cell should yield(Pcart) ji5pextd j

i , with
(Pcart) ji the internal stress in Cartesian coordinates given
e.
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the stress theorem, which is a generalization of the vi
theorem.13 A weaker condition that is easily checked is th
this should be verified in particular when the cell is restrict
to undergo isoshape fluctuations.10 Andersen’s method obey
this condition, while the same is true for the Parrinell
Rahman dynamics only in the large-N limit.8

The orientation in space of the simulation cell is irreleva
for the structural and thermodynamical description of t
system ~principle of material-frame indifference11!. How-
ever, it is included in the dynamics if one uses the com
nents of the cell edges as dynamical variables, and spur
cell rotations have been obtained in actual simulations w
the Parrinello-Rahman method, namely in the simulation
molecules, whose internal degrees of freedom someti
cause the internal stress to be asymmetrical.14 These rota-
tions not only are physically irrelevant, but may complica
the analysis of the simulations’ results. Methods to elimin
them have been proposed, such as constraining the matr
the lattice vectors to be symmetrical14 or upper triangular15

~geometrical constraints!, or by symmetrization of the infini-
tesimal strain at each time step~dynamical constraint!.11

III. USING THE METRIC AS A DYNAMICAL VARIABLE

If aW 1, aW 2, and aW 3 are three linearly independent vecto
that define the periodic simulation cell and form a righ
handed triad, then all the properties of the simulated sys
depend only on the symmetrical metric tensor,

gi j[aW i•aW j5gji ,

and not on the orientation of the three vectors in space
our simulation method, we use the six independent com
nents of the metric tensor as the dynamical variables for
cell. The three diagonal elements of the metric give inform
tion about the lengths of the lattice vectors, and the th
independent off-diagonal elements contain the additional
formation about the angles between those vectors. The c
riant components of the tensorg are related to the matrix
h[(aW 1 ,aW 2 ,aW 3), the transformation matrix between Cartesi
and lattice coordinates, by the relation

g5hTh, ~2!

wherehT is the transpose ofh. The one-formsbW i associated
with the lattice vectorsaW i , which are~except for a factor of
2p) the reciprocal-lattice vectors, are related to the con
variant components of the metric tensor,

gi j[bW i•bW j5gji ,

and the volume of the unit cell is given by

V5deth5Adetgi j .

The positionrW( i ) of the i th atom in the simulation cel
can be defined by its lattice coordinatessk( i ),

rW~ i !5sk~ i !aW k ,

where we use the Einstein summation convention for ten
rial quantities. The distance between any two points can
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calculated from the metric and the lattice coordinates,
therefore they completely define the geometry of the simu
tion cell.

In the Parrinello-Rahman formalism, the calculation
the total distance traveled by a particle can be mislead
Because the unphysical motion due to the rigid rotation
the cell should be discarded, one cannot in general sim
use a two-point formula to calculate, for example, the me
square displacement of a particle. The correct formula for
distance is naturally expressed in terms of the metric:

Ds5E
t0

t1Aṡigi j ṡjdt. ~3!

For a fixed cell~i.e., for a fixedgi j ), Newton’s equations
of motion can be derived from the Lagrangian

L1„si~k!,ṡi~k!,gi j …5
1

2(k51

N

m~k!ṡi~k!gi j ṡ
j~k!

2U„si~k!,gi j …, ~4!

where the summation is over allN atoms in the cell,m(k) is
the mass of atomk, and the potential energy per cellU
includes interactions between atoms in different cells.U is a
function of the 3N lattice coordinates of the atomic position
and the six independent components of the metric tenso
the examples of a latter section,U is either the Born-
Oppenheimer energy from a first-principles pseudopoten
local-density calculation or the potential energy of t
Lennard-Jones model. The momentum canonically conjug
to si(k) is

p i~k![
]L1

] ṡi~k!
5m~k!gi j ṡ

j~k!,

and the corresponding Hamiltonian is

H1„s
i~k!,p i~k!,gi j …5 (

k51

N
p i~k!gi jp j~k!

2m~k!
1U„si~k!,gi j ….

~5!

To construct the extended Lagrangian for the cell dyna
ics, we must choose the fictitious kinetic energy of the c
Kcell , and, for simulations with applied pressure, add
termpextV5pextAdetgi j . A simple non-negative scalar that
quadratic in the time derivatives of all the components ofg is

Kcell
0 ~gi j ,ġi j !5

W0

2 S ]g

]t D
j i
S ]g

]t D
i j

5
W0

2
ġ j i ~g

ikġklg
l j !,

whereW0 is a fictitious cell ‘‘mass’’ which has the dimen
sions of mass times length squared. The positivity of t
term is shown in Appendix A. Instead ofKcell

0 , we choose the
slightly modified expression, which is again a scalar, q
dratic in ġ, but with a different tensorial density,

Kcell
g ~gi j ,ġi j !5

Wg

2
~detgi j !ġ j i ~g

ikġklg
l j !,

whereWg is a fictitious cell ‘‘mass’’ with the dimensions o
mass times length24. Alternatively, we may view
d
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Mj ikl[Wg(detgi j )g
ikgl j as an effective-mass tensor. A

thoughKcell
g gives slightly more complicated equations

motion for the cell, it has the advantage of reducing
Andersen’sKcell

A @see Eq.~1!# in the case of isoshape fluc
tuations of the cell, if we make the identificatio
Wg5(3/4)WA, and so the dynamics that it generates obe
the virial theorem in that limit.10 Since we are using the
metric, the orientation of the cell never appears in the eq
tions. It can also be verified thatKcell

g is invariant with re-

spect to modular transformations of theaW i .
The fictitious Lagrangian for the extended system in

presence of an applied external pressure is

L2„si~k!,ṡi~k!,gi j ,ġi j …

5
1

2(k m~k!ṡi~k!gi j ṡ
j~k!2U„si~k!,gi j …

1
Wg

2
~detgi j !ġ j i g

ikġklg
l j2pextAdetgi j , ~6!

and the equations of motion for the atomic coordinates a

m~k!s̈i~k!5gi j F j~k!2m~k!gi j ġ j l ṡ
l~k!, ~7!

whereF j (k)[2]U/]sj (k) are the covariant components o
the force ~which can be viewed as the components
reciprocal-lattice coordinates multiplied by 2p). This equa-
tion for the scaled atomic coordinates is identical to the o
obtained from Parrinello-Rahman’s Lagrangian, since it d
not depend on the choice ofKcell . It should be stressed tha
this does not imply that the dynamics of the atoms is
same, because in order to convert from the scaled dynam
to the actual atomic dynamics we have to use the me
which is determined by the cell’s dynamics. Hence the i
portance of a fictitious cell dynamics which does not intr
duce unphysical symmetry-breaking effects.9

The coupling of the atomic motion to the cell’s motion
made through the second term on the right-hand side~rhs! of
Eq. ~7!, which is independent of the orientation and state
rotation of the cell; from this, the physical irrelevance of t
orientation of the cell is evident.

The equation of motion for the cell variables is deriv
with the help of the relation (]/]gkl)detgi j5glkdetgi j , giv-
ing

Wgg̈i j5
1

2Adetgi j
S Pi j
Adetgi j

2pextgi j D 1Wg~ ġikg
klġl j

2gklġklġi j !1
Wg

2
~ ġklg

lmġmng
nk!gi j , ~8!

where the contravariant components of the internal stress
~see Appendix B!

P i j5(
k
m~k!ṡi~k!ṡj~k!22

]U

]gi j
. ~9!

The instantaneous internal pressure averaged over the c
(1/3V)TrP j

i , and it can also be obtained fromH1 ~Ref. 10!
or L1:
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pint52S ]H1

]V D
p i ~k!

5S ]L1
]V D

ṡi ~k!

.

Defining the momentum canonically conjugate to the m
ric tensor

P i j[
]L2
]ġi j

5Wg~detgi j !g
ikġklg

l j5P j i ,

the conserved extended Hamiltonian can be written as

H2„s
i~k!,gi j ,p i~k!,P i j

…5(
k

p i~k!p i~k!

2m~k!
1U„si~k!,gi j …

1
P i

kP
k
i

2Wgdetgi j
1pextV. ~10!

In the following sections it will be convenient to define
symmetrical contravariant internal stress tensor as

s int
i j 522

]U

]gi j
,

which contains the contributions from the potential ene
U to P.

IV. ANISOTROPIC EXTERNAL STRESS

A constant applied anisotropic stress is in general nonc
servative, and thus there is no conserved extended Ha
tonian in a constant anisotropic stress simulation.8,16 Of
course some experimental situations are essentially non
servative, and therefore best simulated by an appropr
nonconservative dynamics.8,16 In this section we will presen
a conservative dynamics, but one should keep in mind
the simulation should be tailored to the problem.

Molecular dynamics simulations with an applied anis
tropic stress were proposed by Parrinello and Rahman.7 Ray
and Rahman17 later showed that the original formulation wa
valid only in the limit of small deformations, and they pro
posed an extension valid for finite deformations, in which
is the thermodynamic tension~defined below!, not the stress
that is kept constant, and the quantity that is approxima
conserved during the simulation is the generalized entha
of Thurston.18 This approach is based on the fact that, if t
external stress is allowed to change when the cell defor
so as to keep the thermodynamic tension constant, the vi
work of the stress upon deformations of the cell is conser
tive, and so that stress is derivable from a potential, wh
can be used to construct an extended Hamiltonian. The t
modynamic tension is given by17,18

t5
V

V0
h0h

21sext
cart~hT!21h0

T , ~11!

whereh0 andV0 are the reference lattice and its volume, a
sext
cart is the external stress in Cartesian coordinates.

h5h0, t andsext
cart coincide. The virtual workdW done by an

external stress on the faces of the cell during an infinitesi
deformation of the cell in the stateh is16,17

dW5V0Tr~td«!, ~12!
t-

y

n-
il-

n-
te

at

-

t

ly
y

s,
al
-
h
r-

or

al

where« is the strain tensor for the latticeh measured from
the reference latticeh0. We see thatV0t is the thermody-
namic variable conjugate to the strain. Thus, for fixedt, the
differential is exact, and so we can integratedW over a finite
deformation, to obtain the elastic energy

Ucell~h!5E
h0

h

dW5V0Tr~t«!.

The generalized enthalpy of Thurston is given by18

H̃[E1V0Tr~t«!,

whereE is the energy of the system. For our metric-bas
formulation, it is desirable to use the metric, instead of
strain, as the thermodynamic variable. In order to find w
is the conjugate variable, we have to expressdW in terms of
infinitesimal variations of the metric tensor. This can be do
for a symmetrical~i.e., torque-free! external stress, which
does no work in pure rotations of the cell. The result is giv
in Eq. ~3.5! of Ref. 17, and, expressed in tensorial notation
a simple expression,

dW5
1

2
Tr~sext

i j dgjk!.

The thermodynamic variable conjugate to the metric is the
fore the external stress in contravariant lattice coordina
Keepingsext

i j 5sext
j i constant when the cell deforms thus lea

to a conservative external stress, derived from the poten

Ucell~g!5
1

2
sext
i j ~gi j2g0i j !, ~13!

whereg05h0
Th0 is some reference metric. Sincesext

i j is fixed,
one can drop the constant term2(1/2)sext

i j g0i j from the defi-

nition of Ucell , obtaining

Ucell~g!5
1

2
sext
j i gi j , ~14!

which is independent of a reference configuration and q
compact when compared with the definition oft in Eq. ~11!.

The condition thatsext
i j is constant is equivalent to requir

ing t to be constant because its Cartesian coordinates a

tab5
1

V0
h0aisext

i j h0 jb
T ,

as can be seen using Eq.~B1! from Appendix B.19 Neverthe-
less, to a givensext

i j does not correspond a unique thermod
namic tension, becauseh0 is arbitrary. All the physical in-
formation is contained insext

i j and gi j , except for the
~arbitrary! choice of axes. The thermodynamic tension fix
the choice of axes and also a reference state, throughh0.
Notice that from the transformation law for the contr
variant components of the stress,sext8 5deth8/
deth@h821hsexth

T(h8T)21# obtained from Eq.~B1! keeping
sext
cart constant, we can conclude thatUcell as given by Eq.

~14! is invariant under modular transformations.8
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To grasp the physical meaning ofsext
i j , let us consider the

force acting on the face of the cell opposing edgei . Using
Eqs.~14! and ~2!, we obtain~in Cartesian coordinates!

FW i[2
]Ucell

]aW i
52sext

i j aW j , ~15!

showing how the force on the facei is related to the stress
The new extended Lagrangian can be obtained fromL2

given by Eq.~6!, by replacingpextV by the newUcell , Eq.
~14!. The equation of motion for the atoms, Eq.~7!, remains
unchanged, and the equation of motion for the cell is
tained from Eq.~8! by replacingpextgi j by (1/V)s i j

ext:

Wgg̈i j5
1

2detgi j
~Pi j2s i j

ext!1Wg~ ġikg
klġl j2gklġklġi j !

1
Wg

2
~ ġklg

lmġmng
nk!gi j . ~16!

The conserved Hamiltonian is

Haniso„s
i~k!,gi j ,p i~k!,P i j

…5(
k

p i~k!p i~k!

2m~k!
1U„si~k!,gi j …

1
P i

kP
k
i

2Wgdetgi j
1
1

2
sext
j i gi j . ~17!

In specific applications, it may be desirable to impose
constant external pressure,pext, plus a constant thermody
namic tension. Note that the stress tensor associated w
constant pressure issext

i j 5pextVg
i j , and so constant pressu

is not a particular case of constant thermodynamic tens
The generalization is straightforward, and in this case, w
considering only isoshape fluctuations of the cell, the eq
tion of motion for the cell becomes

WAV̈d j
i5

1

V
Pji2S 1Vsextj

i1pextd j
i D ,

whereWA is Andersen’s cell mass. This equation shows t
the off-diagonal elements of (P2sext) j

i are restricted to be
zero, and the diagonal elements are restricted to take e
values, at all times: by imposing a fixed cell shape, we h
arrived at an isotropic total stress, as should be expecte

physical grounds. In equilibriumV̈50, and so the
average of each diagonal component of (1/V)P j

i

equals 1/V(sext) j
i1pextd j

i , which implies pint5pext
1(1/3V)Tr(sext) j

i , where the right-hand side is the total e
ternal pressure. This shows that our method obeys the v
theorem in the case of isoshape fluctuations of the cell~the
proof in Ref. 10 mentioned in Sec. III was for applied pre
sure only!.

V. STRUCTURAL OPTIMIZATION

A problem encountered in the simulation of materials
the determination of the equilibrium structure of a crystal
a given pressure~or anisotropic stress! predicted by a given
modelU„si(k),gi j … of its total energy. This can, in principle
be achieved by the minimization~under the appropriate con
-

a

a

n.
n
a-

t
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t

straint! of U, which is quite difficult because it is a multival
leyed function of many variables. A practical strategy is
use a simulated annealing to bring the configuration to
deep valley, followed by a search of a minimum in that v
ley. The annealing step can be carried out by the varia
cell-shape molecular dynamics described previously coup
to a thermostat, Brownian dynamics forces, or a perio
rescaling of the velocities. The local minimization can
done efficiently if one has the gradient of the function to
minimized.

If we want to obtain the crystal structure at zero tempe
ture and for an applied pressure ofpext, we must minimize
its enthalpy,

H„si~k!,gi j …5U„si~k!,gi j …1pextAdetgi j .
The gradient of the enthalpy with respect to atomic positio
is

]H

]si~k!
5

]U

]si~k!
52Fi~k!,

which is minus the covariant components of the force on t
atom. Notice that in molecular dynamics it is the contrava
ant components,Fi(k)5gi j F j (k) that appear in the equatio
of motion. The gradient of the enthalpy with respect to t
metric is

]H

]gi j
5

]U

]gi j
1pext

]

]gi j
Adetgi j52

1

2
s int
i j 1

1

2
pextg

i jAdetgi j .

The minimum is obtained when the forces are zero and w
the mixed stress tensor divided by the volume is the pres
times the identity tensor,

1

Adetgi j
s intj

i5pextd j
i

as desired.
If we want to obtain the crystal structure for a fixed the

modynamic tension, then we must minimize the generali
enthalpy,

H̃„si~k!,gi j …5U„si~k!,gi j …1
1

2
sext
i j gi j . ~18!

The gradient of the generalized enthalpy with respect to
atomic lattice coordinates is still minus the covariant for
on the atoms, and the gradient with respect to the metric

]H̃

]gi j
5

]U

]gi j
1
1

2
sext
i j 52

1

2
s int
i j 1

1

2
sext
i j ,

which is zero when the internal stress is equal to the des
applied stress,s int

i j 5sext
i j .

VI. APPLICATIONS

In this section, we apply the method to the study of stru
tural phase transitions and structural optimization. T
isobaric-isoenthalpic ensemble, besides being somew
unusual,20 is not the most adequate to study transitions
duced by pressure or stress, because it does not allow fo
exchange of heat with the surroundings. There are sev
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methods described in the literature to perform simulation
constant temperature by connecting the system to a ‘‘h
bath.’’3,4 In our examples we use Langevin molecu
dynamics,4 but first we checked that in our simulations th
generalized enthalpy was conserved in the absence o
heat bath. In the course of a simulation of a structural tra
formation the release of heat of transformation must be
sipated to the heat bath, this takes some time and there
the temperature of the system may rise to values quite ab
those of the heat bath.

As our first example we simulated a silicon crystal und
a constant pressure using first-principles molecular dyn
ics. Pioneering examples of first-principles molecular d
namics with variable-cell shape include the optimization
the structure parameters of MgSiO3 under pressure

21 and the
structural transition of silicon under pressure.22 In the first
case the dynamical variable for the cell was the strain ten
in the second the lattice vectors.

In our simulation of Si, the energy, forces and stres
were calculated within the local-density approximation, u
ing a pseudopotential23 and a plane-wave basis set with
cutoff of 16 Ry.24 The simulation cell contained 8 atom
initially disposed in a diamond structure, with lattice co
stanta59.435 a.u. The applied pressure was 25 GPa.
equations of motion were integrated with a Beem
algorithm.25 The time step wash5200 a.u., and the cel
‘‘mass’’ Wg510 a.u. Langevin dynamics with a viscosi
damping constant ofg52/m(Si), wherem(Si) is the atomic
mass of silicon, was used to simulate a heat bath wit
temperature of 300 K.

It is well known that silicon undergoes several pha
transformations with increasing pressure, and its press
volume phase diagram has been extensively studied.26 Start-
ing from a diamond lattice, the structure changes at;11
GPa intob-Sn, and between 13 and 16 GPa transforms i
simple hexagonal. Other densely packed phases appe
around 38 GPa. In the first;0.7 ps~200 steps! of the simu-
lation, we observed~Fig. 1! that the volume of the simulation
cell was fluctuating around a value that corresponds to
volume of the metastable diamond structure of Si at 25 G
(V;885 a.u. for the eight atoms of the conventional cu
unit cell!. There was then a rapid drop in the volume, acco
panied by a rapid rise in the ionic temperature to arou
3500 K ~well above the melting point!. The simulation was
interrupted after 1000 steps, well before equilibrium with t
thermal bath was reached. After the transition, the volume
the cell oscillated around 650 a.u., slightly below the volu
of the stable simple hexagonal structure at that pressure
above the density of the close-packed structures. Remem
ing that at atmospheric pressure Si contracts upon melt
and considering the high temperatures of the simulation,
results indicate that at high pressures, the liquid phase
still be denser than the solid phase.

For the purpose of illustrating a molecular dynam
method the origin of the forces is irrelevant, therefore
used a Lennard-Jones model, with the constants adjuste
simulate argon, for the other examples in this article, as
computational demands are much lower. In our second
ample, we started with a cubic simulation cell with 32 arg
atoms in an fcc lattice, and increased one diagonal con
variant component of the external stress,sext

33 , linearly with
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time from zero to 1531025 a.u. for the first 4000 simulation
steps, and held thereaftersext

33 at that value. All other applied
stress components were kept at zero. This corresponds
situation of uniaxial compression. During the first 10 0
steps of the simulation the system is kept in contact wit
heat bath at 10 K, at which point we minimize the gener
ized enthalpy@Eq. ~18!# using a method by Davidon.27 The
minimization is obtained in 96 steps which is approximate
the number of variables, indicating that the heat bath kept
system near a quadratic region of the potential.

During the compression the system yields for an appl
stress of;0.1 GPa~after;2500 steps!, and due to the re-
arrangement of the atoms, the applied stress drops to a m
mum of ;0.07 GPa and then rises again gradually, as
thermodynamic tension is increased. After the structural
arrangement, the argon is still in a distorted fcc lattice,
the stress is now applied in a@110# direction instead of the
initial @100# direction, and the area on which the force
applied is;A2 times larger. The yield was accompanied
a rapid rise in the ionic temperature up to;33 K. The heat
was gradually dissipated, and at around step 4000 the t
perature was back to 10 K.

Figure 2 shows the evolution of two of the contravaria
lattice components of the internal stress,sext

33 andsext
31 , com-

pared with the corresponding imposed external stress c
ponents. At first the internal stress oscillates around the
ternal values, in particular it accompanies the rise in app
stress. When the system yields we observe a dramatic
crease in the amplitude of the stress oscillations, which

FIG. 1. The volume~in atomic units! of an eight-atom Si cell is
shown as a function of the step of a first-principles molecular
namics simulation with an applied pressure of 25 GPa. The d
indicate the simulated data and the three horizontal lines indi
the volumes of the diamond, simple hexagonal, and face-cente
cubic structures of eight Si atoms at a 25 GPa pressure. At
pressure the stable phase is the eightfold-coordinated simple
agonal. The volume starts by oscillating around the volume of
initial diamond phase, but after 200 steps shows a rapid decrea
values near the equilibrium value at 25 GPa. The heat relea
during that transformation melts the system and at the end of
short simulation it has not yet reached equilibrium with the s
rounding heat bath. The simulation seems to indicate that at a p
sure of 25 GPa, like at zero pressure, Si contracts upon meltin
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then damped with time. Finally, in the minimization step t
internal and external stress are identical within the precis
demanded in the minimization (1025).

The contravariant components of the stress tensor are
what we are used to call stress~their dimensionality is energy
per area!, so we show in Fig. 3 the evolution of the Cartesi
componentsszz of the applied and internal stress, where w
chose thez axis to be in the direction of the applied stres
One can see that the Cartesian components of the ap
stress are not constant when the contravariant componen
the stress are constant, and that the oscillations of the inte
stress are magnified, but they track each other, and they
identical at the end of the enthalpy minimization, as desir

The yield is also apparent in the plot of the potential co
ponent of the generalized enthalpy@Eq. ~18!# as a function of
time ~Fig. 4!. First we observe an increase of the entha
during load due to the work done on the system by
uniaxial stress. When the system yields there is a strong
crease of the potential component of the enthalpy even w
we continue loading the system, showing that energy
transferred to the kinetic components, and later dissipate
the heat bath. Only near the end of the loading cycle do
see the enthalpy rising again. During the annealing st
there is a rapid initial decrease of the enthalpy, meaning
the minimization procedure rapidly reaches the valley of
multivariable function, but then takes some time to reach
minimum.

FIG. 2. Two of the contravariant~lattice! components of the
applied and internal stress tensors~in atomic units! are shown for a
simulation of a cell of 32 argon atoms with a Lennard-Jones p
potential submitted to uniaxial loading. The time step is 413.2
andWg50.5 a.u. One of the diagonal components of the app
stress is increased from zero to 1531025 a.u. during the first 4000
simulation steps and held constant thereafter, while all the o
components are held at zero. During the first 10 000 steps the
tem is kept in contact with a heat bath at 10 K. Thereafter
minimize the generalized enthalpy as described in the text. As
minimization is very fast, the horizontal scale is multiplied by
factor of 20 in that region. During the molecular dynamics t
internal stress~wiggly lines! oscillate around the applied stres
~straight lines! as it should. The minimization makes the intern
stress equal to the external stress within the tolerance of the m
mization procedure. At;2500 molecular dynamics steps the sy
tem yields in the way described in the text.
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The best way to observe the yield is from the plot of t
evolution of the lattice constants~Fig. 5!. From the initial
slopes one could extract the Young and Poisson moduli
the system. After the yield we see that the three lattice c
stants are different from each other, and that they are rap
determined by the minimization procedure. At the end of
simulation and after the inspection of the angles we obta
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FIG. 3. The Cartesian components of the applied and inte
stress tensor along the direction of compression are shown for
same simulation as in Fig. 2. The applied stress, which is o
indirectly controlled through its contravariant lattice componen
also oscillates. In particular, during the phase transformation
applied stress drops considerably in response to the decrease
average internal stress due to the atomic rearrangement.

FIG. 4. The potential component of the generalized enthalpy~in
atomic units! is shown as a function of time for the same simulati
as in Fig. 2. First we observe an increase of the enthalpy du
load due to the work done on the system by the uniaxial str
When the system yields there is a strong decrease of the pote
component of the enthalpy, even while we continue loading
system, and only near the end of the loading cycle~indicated by the
arrow! do we see the enthalpy rising again. The horizontal scal
again multiplied by a factor of 20 in the minimization part of th
simulation, showing the efficiency of the procedure of entha
minimization in an expanded scale.
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8740 55IVO SOUZA AND JOSÉLUÍS MARTINS
monoclinic simulation cell, which is in reality a supercell
the orthorhombic system one should expect when loading
fcc crystal in the@110# direction.

A movie of the simulation shows that the$100% planes
parallel to the uniaxial stress become distorted close-pac
planes by compression along the direction of the stress
expansion along the perpendicular direction. A similar sim
lation was performed by Ray and Rahman in Ref. 28. Th
found an fcc to close-packed transition, with the final stru
ture presenting stacking faults.

Our final example is of a structural optimization und
pressure. We start from conditions quite away from equi
rium, perform 2000 steps in contact with a heat bath, a
then switch to a gradient minimization. Our target pressur
0.3 GPa and we simulate 16 argon atoms with a Lenna
Jones potential. The final structure is close-packed and
responds to a stacking of close-packed planes that is ne
fcc nor hcp. During part of the simulation the temperature
well above melting, so the memory of the initial configur
tion is lost. The evolution of the potential contribution to th
enthalpy is shown in Fig. 6. In the inset of that figure th
magnifies the minimization part of the simulation, one c
see that we obtain the enthalpy of Lennard-Jones argo
that pressure. The true minimal structure is not reached
cause the energy cost of the stacking faults is too small
the procedure only finds a deep local minimum.

In principle the calculation of the energies, forces, a
stresses can be carried out within the metric formalism,
therefore one never needs to construct the lattice vectors,
is the matrixh. Our code for the Lennard-Jones interacti
was written to test the present formalism and is fully imp
mented in the metric language. It never uses the matrixh.
Our pseudopotential plane-wave code is based on Sv
Froyen’s Berkeley code, which stored atomic positions a
k vectors in lattice and reciprocal-lattice coordinates, resp
tively, that is in contravariant and covariant coordinates.
fact the stress was calculated by applying the chain
]U/]hi j5(]U/]gkl)(]gkl /]hi j ), so it was easy to conver

FIG. 5. The evolution of the three lattice constants~in atomic
units! with time is shown for the same simulation of the previo
figures~Figs. 2, 3, and 4!. The strong structural rearrangement du
ing yielding is clearly seen.
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the program to the present formalism. The calculations
volving the separable nonlocal pseudopotential projectors
easier to perform in Cartesian coordinates, so for that spe
case we construct from the metricg a triangularh and pro-
ceed in Cartesian coordinates. The arbitrary choice of
orientation ofh has, of course, no effect in the results of th
calculation. Our plane-wave code also has an old, but c
venient, symmetry recognition package that only works
the conventional orientation of the unit cell. If one wants
perform simulations with fixed symmetry, than one has
put ‘‘by hand’’ the desired orientation ofh before using the
package. Replacing those two parts of the code to avoid
ing the matrixh is a straightforward, but tedious job, it i
much easier to use the tested old subroutines and constr
matrix h whenever it is needed.

VII. CONCLUSIONS

We have shown that the metric is a very convenient d
namical variable to use in molecular dynamics simulatio
with variable-cell shape. As the cell part of the dynamics
fictitious, there is no unique choice of the kinetic energy
be included in a Lagrangian or Hamiltonian formulation. T
use of the tensorial notation in a metric formalism, with t
requirement that the energy functions must be scalars,
stricts our choice of those functions. The simplest express
for the cell kinetic energy has several properties that w
not present in early expressions, namely, absence of r
rotations and invariance with respect to modular transform
tions. With a convenient choice of the tensorial density of t
kinetic energy, the virial theorem is also satisfied for is

FIG. 6. The enthalpy~potential part only and in atomic units! of
a cell with 16 atoms of Lennard-Jones argon is shown for a sim
lation with an applied pressure of 0.3 GPa. The simulation start
conditions quite away from equilibrium, evolves for 2000 steps
contact with a heat bath, and then the enthalpy is minimized. T
inset shows the minimization part of the simulation in an expand
scale. The horizontal line in the inset is the enthalpy of Lenna
Jones argon at 0.3 GPa, and that is the value reached by the m
mization procedure. Dots that seem out of place in the minimizat
correspond to overshooting steps in the multidimensional mini
zation procedure.
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shape fluctuations. For anisotropic stress, the simplicity
Eq. ~14! contrasts with the definition of thermodynamic te
sion, @Eq. ~11!# and its dependence on a reference cell.

From our kinetic and potential functions for the cell me
ric, we derived the equations of motion for variable-ce
shape molecular dynamics under the conditions of cons
applied pressure and anisotropic applied thermodyna
stress. We also showed that the optimization of structu
under both conditions can be naturally expressed in the m
ric language. Simulations of silicon with first-principle
forces and argon with empirical Lennard-Jones forces w
used to illustrate the applications of our equations of mot
and minimization procedures to the study of systems un
applied pressure or stress.
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APPENDIX A

To prove thatKcell
g is non-negative, we have to show th

ġ j i g
ikġklg

l j5Tr(ġg21ġg21) is non-negative. Using Eq.~2!
and the usual properties of the trace, we find that

Tr~ ġg21ġg21!52 Tr@~X1XT!X#,

where X[ḣh21. Writing the rightmost X as
1/2(X1XT)11/2(X2XT) and using Tr(XTX)>0, we arrive
at the desired result. It will be useful to derive this result
the Hamiltonian formalism:

Defining Hba,i j[hbiha j /deth, where someh compatible
with g was chosen, and defining

Gkl,i j[(
ab

Hkl,ab
T Hab,i j5Gi j ,kl ,

whereHkl,ab
T [Hab,kl , we can write the kinetic energy of th

cell as

Kcell
g 5

P i j Gi j ,klP
kl

2Wg 5
(abPab

2

2Wg , ~A1!

wherePab[Hab,klP
kl5Pba is a new generalized momen

tum for the cell. The canonically conjugate coordinate
Qab[(Hab,i j

T )21gi j , as can be seen using the Poisson bra
ets relations between canonically conjugate variables~in this
last expression,HT is viewed as a 939 matrix with indices
ab and i j ). The relation between the variables (Q,P) and
the variables (g,P) is similar to the relation between (rW,pW )
and (sW,pW ).

From Eq.~A1!, it is clear thatKcell
g is positive and con-

tributes with six distinct quadratic terms to the energy, a
so the equipartition theorem applies to the degrees of f
dom of the cell when they are in contact with a heat bath
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APPENDIX B

The stress is not a true tensor, but a tensorial densit29

thus transforming differently from tensors under a change
coordinates whose Jacobian is not unity. The transforma
of a tensorial densityDi j from Cartesian to lattice coordi
nates is given by29

Dkl5~deth!hki
21Dcart

i j ~hT! j l
21 . ~B1!

The average symmetrized internal stress in Cartesian
ordinates is obtained from the stress theorem13

P cart
i j 52

1

V S ]E

]« i j8
D

«850

5
1

V F(
a

m~a!v i~a!v j~a!2S ]U

]« i j8
D

«850

G , ~B2!

whereE is the internal energy,v i(a) is the velocity of the
atoma, and«8 is the~symmetrical! Lagrangian strain corre
sponding to a rotation-free infinitesimal homogeneous de
mation given byh85(11«8)h,30 from the stateg to the
stateg8. In order to convert to lattice coordinates, we use E
~B1! and apply the chain rule]E/]« i j8 5(]E/]gkl8 )(]gkl8 /
]« i j8 ) together with the relationg82g52hT«8h.7 The result
is

P i j522
]E

]gi j
522

]K

]gi j
22

]U

]gi j
, ~B3!

whereK andU are the kinetic and the potential energy of t
atoms in the cell, respectively, and the factors of two ar
from formally treatinggi j andgji as independent variables
The kinetic energy is given by the first term in the rhs of Eq
~4! or ~5!. Using these expressions, we find, with the help
the relation]gnl/]gkm52gnkgml, that

S ]K

]gkl
D

p i ~k!

52S ]K

]gkl
D
ṡi ~k!

,

and so it must be made clear whether it is the$p i(k)% or the

$ṡi(k)% that are kept constant when taking the derivatives
Eq. ~B3!. It is easily seen that, in order to obtain the corre
kinetic internal stress@see Eq.~B2!# when transforming Eq.
~B3! back to Cartesian coordinates, the$p i(k)% must be kept
constant, and thus we conclude that

P i j522S ]H1

]gi j
D

pm~k!

52S ]L1
]gi j

D
ṡm~k!

,

which is Eq.~9!.
We note that, because 1/Adetgi j is a scalar capacity,29 and

Pi j is a tensorial density, the product (1/Adetgi j )Pi j that ap-
pears in Eq.~8! is a true tensor, and thus has the same t
sorial density as the pressure term in the same equa
pextgi j .
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