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The current density jB induced in a clean metal by a slowly-varying magnetic fieldB is formulated as the
low-frequency limit of natural optical activity, or natural gyrotropy. Working with a multiband Pauli
Hamiltonian, we obtain from the Kubo formula a simple expression for αGME

ij ¼ jBi =Bj in terms of the

intrinsic magnetic moment (orbital plus spin) of the Bloch electrons on the Fermi surface. An alternate
semiclassical derivation provides an intuitive picture of the effect, and takes into account the influence of
scattering processes in dirty metals. This “gyrotropic magnetic effect” is fundamentally different from the
chiral magnetic effect driven by the chiral anomaly and governed by the Berry curvature on the Fermi
surface, and the two effects are compared for a minimal model of a Weyl semimetal. Like the Berry
curvature, the intrinsic magnetic moment should be regarded as a basic ingredient in the Fermi-liquid
description of transport in broken-symmetry metals.
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Introduction.—When a solid is placed in a static
magnetic field the nature of the electronic ground state
can change, leading to striking transport effects. A prime
example is the integer quantum Hall effect in a quasi-two-
dimensional metal in a strong perpendicular field [1]. Novel
magnetotransport effects have also been predicted to occur
in 3D topological (Weyl) metals, such as an anomalous
longitudinal magnetoresistence [2,3], and the chiral mag-
netic effect (CME), where an electric pulse E∥B induces a
transient current j∥B [4]; both are related to the chiral
anomaly that was originally discussed for Weyl fermions in
particle physics [5,6]. In all these phenomena the role of the
static B field is to modify the equilibrium state, but an E
field is still required to put the electrons out of equilibrium
and drive the current (since E ¼ − _A, the vector potential is
time dependent even for a static E field).
Recently, the intriguing proposal was made that a pure B

field could drive a dissipationless current in certain Weyl
semimetals where isolated band touchings [the “Weyl
points” (WPs)] of opposite chirality are at different energies
[7]. The existence of such an effect was later questioned [8],
and the initial interpretation as an equilibrium current was
discounted. (Indeed, that would a violate a “no-go theo-
rem” attributed to Bloch that forbids macroscopic current in
a bulk system in equilibrium [9].) Subsequent theoretical
work suggests that the proposed effect can still occur in
transport, as the current response to a B field oscillating at
low frequencies [10–13].
At present the effect is still widely regarded as being

related to the chiral anomaly [10] (or, more generally, to the
Berry curvature of the Bloch bands [11–14]), and is broadly
characterized as a type of CME. We show in this Letter that

the experimental implications and microscopic origin of
this effect are both very different from the CME (as defined
in Ref. [4], consistent with the particle-physics literature
[15]). Experimentally, the effect is realized as the low-
frequency limit of natural gyrotropy [16] in clean metals
(see also Ref. [14]), and we will call it the “gyrotropic
magnetic effect” (GME). Both E and B optical fields
drive the gyrotropic current, but at frequencies well below
the threshold for interband absorption (ℏω ≪ ϵgap) their
separate contributions can be identified. In nonpolar metals,
the induced gyrotropic current can be inferred from optical
rotation measurements. The GME is predicted to occur not
only in certain Weyl semimetals, but in any optically active
metal; it is necessary that the structure lacks an inversion
center, and it is sufficient that the structure is either chiral
[17,19,20] or polar [18].
Existing expressions for the natural gyrotropy current

in metals involve the Berry curvature of all the occupied
states (and velocities of empty bands) [11–14], at odds with
the notion that transport currents are carried by states near
the Fermi level ϵF. Integrals over all occupied states
involving the Berry curvature also appear in calculations
of a part of the low-frequency optical activity [21–23], and
of the anomalous Hall effect (AHE); in the case of the
AHE, a Fermi surface (FS) reformulation exists [24]. We
find that the GME is not governed by the chiral anomaly or
the Berry curvature, but by the intrinsic magnetic moment
of the Bloch states on the FS. Our analysis also takes into
account the finite relaxation time τ in real materials, which
is shown to weaken the effect at the lowest frequencies. The
magnitude of the GME is estimated for the predicted chiral
Weyl semimetal SrSi2 [25].
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CME versus GME.—Both effects can be discussed by
positing a linear relation between j and B:

ji ¼ αijBj: ð1Þ
Suppose we use linear response to evaluate α for a clean
metal, describing the B field in terms of a vector potential
that depends on both q and ω. The result will depend on
the order in which the q → 0 and ω → 0 limits are taken
[10–12], much as the compressibility and conductivity are
different limits of electrical response. The CME tensor
αCME can be obtained from Eq. (1) in the equilibrium or
static limit of the magnetic field (setting ω ¼ 0 before
sending q → 0), with an additional step needed to des-
cribe the E-field pulse. The GME tensor αGME is extracted
directly from Eq. (1) in the transport or uniform limit
(sending q → 0 before ω → 0) that describes conductivities
in experiment. (Here, “ω → 0” means ℏω ≪ ϵgap, but note
that ωτ ≫ 1 because the clean limit τ → ∞ is assumed;
effects caused by finite relaxation times in dirty samples
will be discussed later.) Only αGME is a material property,
since the details of the E-field pulse producing nonequili-
brium are missing from αCME. Below we derive micro-
scopic expressions for both.
Chiral magnetic effect.—The tensor α calculated in the

static limit is isotropic, αij ¼ αstatδij, with

αstat ¼ −
e2

ℏ

X
n

Z
½dk�f0knðvkn ·ΩknÞ ¼ 0; ð2Þ

where ½dk� ¼ d3k=ð2πÞ3, the integral is over the Brillouin
zone, f0kn ¼ fðϵknÞ is the equilibrium occupation factor,
vkn ¼∂ℏkϵkn is the band velocity, Ωkn ¼−Imh∂kuknj×
j∂kukni is the Berry curvature, and −e is the electron
charge. Equation (2) was derived in Ref. [26] using the
semiclassical formalism [27], and we obtain the same result
from linear response [28]. The fact that αstat vanishes (see
below) is in accord with Bloch’s theorem [9].
To turn the above “quasiresponse” into αCME, let us recast

Eq. (2) as a FS integral. Integrating by parts produces two

terms. The one containing ∂k ·Ωkn picks up monopole
contributions from the occupied WPs, and vanishes because
each WP appears twice with opposite signs [44]. In the
remaining term we write ∂kf0 ¼ −v̂Fδ3ðk − kFÞ, with v̂F
the FS normal atkF, and introduce the Chern numberCna ¼
ð1=2πÞ RSna dSðv̂F ·ΩknÞ of theathFermi sheetSna in bandn
[24,44]. After assigning different chemical potentials to
different sheets to account for the effect of theE-field pulse,
Eq. (2) becomes αCME ¼ −ðe2=h2ÞPn;aμnaCna, leading to
the current density j¼ αCMEB [4,9]. In equilibrium μna ¼ ϵF,
and using

P
n;aCna ¼ 0 we find j ¼ 0, as per Eq. (2).

For a Weyl semimetal with two Fermi pockets with
C ¼ þ1 and C ¼ −1 placed at slightly different chemical
potentials μL and μR [45] [Fig. 1(a)], a current develops:

j ¼ ðe2=h2ÞBðμR − μLÞ: ð3Þ

Gyrotropic magnetic effect.—Symmetry considerations
already suggest a link between the GME and natural
gyrotropy. Both j and B are odd under time reversal T,
and j is odd under spatial inversion P, while B is P even,
and so according to Eq. (1) the GME is T even and P odd,
the same as natural gyrotropy [16].
To make the connection precise, consider the current

density induced by a monochromatic electromagnetic field
Aðt; rÞ ¼ Aðω;qÞeiðq·r−ωtÞ at first order in q:

jiðω;qÞ ¼ ΠijlðωÞAjðω;qÞql: ð4Þ
The T-even part ΠA

ijl of the response tensor is antisym-
metric (A) under i↔j. It has nine independent components,
and can be repackaged as a rank-2 tensor using [46,47]

ΠA
ijl ¼ iεilpαGME

jp − iεjlpαGME
ip ; ð5aÞ

αGME
ij ¼ 1

4i
εjlpðΠA

lpi − 2ΠA
ilpÞ: ð5bÞ

At nonabsorbing frequencies αGMEðωÞ is real and ΠAðωÞ is
purely imaginary, but otherwise both are complex.

FIG. 1. (a) Chiral magnetic effect in a
T-broken Weyl semimetal in a static B field.
The left- and right-handed Weyl nodes are at
the same energy ϵL ¼ ϵR, but the enclosing
Fermi pockets are not in chemical equilib-
rium (μL ≠ μR) due to the application of an
E∥B pulse, and this drives the current
[Eq. (3)]. (b) Gyrotropic magnetic effect. P
symmetry is now broken along with T,
leading to ϵL ≠ ϵR. The Fermi pockets are
in chemical equilibrium, μL ¼ μR ¼ ϵF, and
an oscillating B field drives the current
[Eq. (17)]. The bottom of each panel shows
the Fermi pockets, and the arrows represent
the Fermi velocities.
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From now on we assume ℏω ≪ ϵgap, so that only intra-
band absorption can occur. In this regime αGME satisfies

jBi ¼ −iωPB
i ¼ αGME

ij Bj; ð6aÞ
ME

i ¼ −ði=ωÞαGME
ji Ej; ð6bÞ

where E ¼ iωA and B ¼ iq ×A, and PB and ME are
oscillating moments induced by B and E, respectively. The
natural gyrotropy current is jB þ iq ×ME. In the long-
wavelength limit Eq. (6a) describes a transport current
induced by a time-varying B in an optically active metal
(the direct GME), and Eq. (6b) describes a macroscopic
magnetization induced by E; this inverse GME has been
previously discussed for polar [48] and chiral [49] metals.
To derive Eq. (6), consider a finite sample of sizeL. Using

Eq. (20) of Ref. [47] for σAijl ¼ ð1=iωÞΠA
ijl, we find [50]

αGME
ij ¼ ðω=2iÞðχemij − χme

ji Þ þ ðE:Q: termsÞ: ð7Þ

“E. Q.” denotes electric quadrupole terms that keep αGME

origin independent at higher frequencies [47,51], but do not
contribute to jB or ME when ℏω ≪ ϵgap, as they are higher
order in ω than the first term. The low-frequency gyrotropic
response is controlled by themagnetoelectric susceptibilities
χemij ¼ ∂Pi=∂Bj and χme

ij ¼ ∂Mi=∂Ej. The dynamic polari-
zation PB

i can be decomposed into T-even and T-odd parts
ð1=2Þðχemij − χme

ji ÞBj and ð1=2Þðχemij þ χme
ji ÞBj [52], and

Eq. (6a) corresponds to the former. Similarly, Eq. (6b) gives
the T-even part of the magnetization induced by E. (The T-
odd part of the magnetoelectric susceptibilities describes the
linear magnetoelectric effect in insulators such as Cr2O3.)
In brief, the GME is the low-frequency limit of natural

gyrotropy in P-broken metals, in much the same way that
the AHE is the transport limit of Faraday rotation in T-
broken metals. While the intrinsic AHE is governed by the
geometric Berry curvature [24,27] and becomes quantized
by topology in Chern insulators, the GME is controlled by a
nongeometric quantity, the intrinsic magnetic moment of
the Bloch states on the FS [54].
To establish this result let us return to periodic crystals

and derive a bulk formula for αGME at ℏω ≪ ϵgap. From the
Kubo linear response in the uniform limit, we obtain [28]

ΠA
ijl ¼

e2ωτ
1 − iωτ

X
n

Z
½dk� ∂f

∂ϵkn

�
−

gs
2me

εiplvkn;jSkn;p

þ vkn;i
ℏ

Imh∂juknjHk − ϵknj∂lukni − ði↔jÞ
�
: ð8Þ

[The calculation was carried out for a clean metal where
formally τ ¼ 1=η and η → 0þ [56]. Alternately one could
retain a finite τ to give a phenomenological relaxation
time in dirty metals, and indeed the semiclassical relaxa-
tion-time calculation to be presented shortly gives the same

Drude-like dependence on ωτ as Eq. (8)]. Skn is the
expectation value of the spin S ¼ ðℏ=2Þσ of a Bloch state,
gs ≃ 2 is the spin g factor of the electron, and me is the
electron mass. Inserting Eq. (8) into Eq. (5b) gives

αGME
ij ¼ iωτe

1 − iωτ

X
n

Z
½dk�ð∂f=∂ϵknÞvkn;imkn;j; ð9Þ

where mkn ¼ −ðegs=2meÞSkn þmorb
kn is the magnetic

moment of a Bloch electron, whose orbital part is [27]

morb
kn ¼ e

2ℏ
Imh∂kuknj×ðHk − ϵknÞj∂kukni: ð10Þ

At zero temperature, we can replace ∂f=∂ϵkn in Eq. (9) with
−δ3ðk − kFÞ=ℏjvknj to obtain the FS formula

αGME
ij ¼ iωτ

iωτ − 1

e
ð2πÞ2h

X
n;a

Z
Sna

dSv̂F;imkn;j: ð11Þ

A nonzero mkn requires broken PT symmetry, but the
GME can only occur if P is broken: with P symmetry
present, m−k;n ¼ mkn and v̂Fð−kFÞ ¼ −v̂FðkFÞ, leading
to αGME ¼ 0. Without spin-orbit coupling, only the orbital
moment contributes.
Equations (6) and (11) are our main results. The GME is

fully controlled by the bulk FS and vanishes trivially for
insulators, contrary to the AHE where the FS formulation
misses possible quantized contributions [24].
According to Eq. (11), the reactive response ReαGME is

suppressed by scattering when ω ≪ 1=τ. It increases with
ω, and levels off for ω ≫ 1=τ (satisfying this condition
without violating ℏω ≪ ϵgap requires sufficiently clean
samples). The opposite is true for the dissipative response
ImαGME, which drops to zero at ω ≫ 1=τ and becomes
strongest at ω ≪ 1=τ. In this lowest-frequency limit
jB → 0, and Eqs. (6b) and (9) for the induced magnetization
reduce to the expression in Ref. [49]. Thus, in the dc limit
only a dissipative inverse GME occurs in dirty metals.
Semiclassical picture.—Our discussion of the GME

assumed from the outset ℏω ≪ ϵgap. Since this is the
regime where the semiclassical description of transport
in metals holds [57], it is instructive to rederive Eqs. (6) and
(9) by solving the Boltzmann equation. This provides an
intuitive picture of the GME and its modification by
scattering processes. The key ingredient beyond previous
semiclassical approaches [21–23] is the correction to the
band energy and the band velocity (as opposed to the
anomalous velocity) in the presence of a magnetic field
[12,27]: ~vkn ¼ ∂ℏk ~ϵkn, where ~ϵkn ¼ ϵkn −mkn ·B.
In a static B field, the conduction electrons reach a new

equilibrium state with f0knðBÞ ¼ fð~ϵknÞ as the distribution
function [12], and the current vanishes according to Eq. (2).
Under oscillating fields E;B ∝ eiðq·r−ωtÞ the electrons are
in an excited state with a distribution function gknðt; rÞ
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which we find by solving the Boltzmann equation in the
relaxation-time approximation,

∂tgkn þ _r
∂gkn
∂r

þ _k
∂gkn
∂k

¼ −½gkn − f0knðBÞ�=τ; ð12Þ

where τ is the relaxation time to return to the instantaneous
equilibrium state described by f0kn(Bðt; rÞ) (for a slow
spatial variation of B). Using the semiclassical equa-
tions [27], the distribution function to linear order in E
and B is gknðt; rÞ ¼ f0kn(Bðt; rÞ)þ f1knðt; rÞ, with

f1kn ¼
∂f=∂ϵkn

1 − q
ω · vkn þ i

ωτ

½mkn · Bþ ðie=ωÞE · vkn�; ð13Þ

which at ωτ ≫ 1 reduces to the result in Ref. [12].
As the current associated with f0knðBÞ vanishes, the

current induced by an oscillating B field is obtained by
multiplying the first term in Eq. (13) with the unperturbed
band velocity. The result in the long-wavelength limit is

jB ¼ iωτe
1 − iωτ

X
n

Z
½dk�ð∂f=∂ϵknÞvknðmkn ·BÞ; ð14Þ

in agreement with Eqs. (6a) and (9). Conversely, inserting
the second term of Eq. (13) in the bulk expression for
M ¼ Mspin þMorb [27] leads to Eqs. (6b) and (9) for the
magnetization induced by an oscillating E field.
GME in two-band models.—Consider a situation where

only two bands are close to ϵF, and couplings to more
distant bands can be neglected when evaluating the orbital
moment on the FS (for simplicity, we focus here on the
orbital contribution). The Hamiltonian written in the basis
of the identity matrix and the three Pauli matrices is
Hk ¼ ϵ̄k1þ dk · σ, with eigenvalues ϵkt ¼ ϵ̄k þ tdk,
where t ¼ �1 and dk ¼ jdkj. Equation (10) becomes

morb
kt;i ¼ −

e
ℏ
εijl

1

2d2k
dk · ð∂jdk × ∂ldkÞ: ð15Þ

For orientation we study a minimal model for a Weyl
semimetal where the FS consists of two pockets surrounding
isotropicWPsof opposite chirality.Weallow theWPs to be at
different energies (this requires breaking both P and T), but
ϵF is assumed close to both [Fig. 1(b)]. Near each WP the
Hamiltonian isHkν ¼ ϵν1þ χνℏvFk · σ, where ν labels the
WP, ϵν and χν ¼ �1 are its energy and chirality (positive
means right-handed), k is measured from the WP, and vF is
the Fermi velocity. From Eq. (15), morb

kν ¼ −χνðevF=2kÞk̂
for t ¼ �1, and only the trace piece ᾱGMEδij survives in
Eq. (11); in the clean limit each pocket contributes

ᾱGME
ν ¼ ∓ 1

3

e2

h2
χνℏvFkF ¼ 1

3

e2

h2
χνðϵν − ϵFÞ; ð16Þ

where the minus (plus) sign in the middle expression
corresponds to ϵν < ϵF (ϵν > ϵF). Summing over ν and

using
P

νχν ¼ 0 [58] gives ᾱGME ¼ ðe2=3h2ÞPνχνϵν.
For a minimal model ν ¼ L;R, and the GME current is

jB ¼ ðe2=3h2ÞðϵR − ϵLÞB: ð17Þ

Equation (17) looks deceptively similar to Eq. (3) for the
CME current. The prefactor is different, but the key
difference is in the meaning of the various quantities,
and in their respective roles. To stress this point, in both
equations we have placed the “force” that drives the current
at the end, after the equilibrium parameter that enables the
effect. The GME current is driven by the oscillatingB field,
while ϵL and ϵR are band structure parameters, with ϵR − ϵL
reflecting the degree of structural symmetry breaking that
allows the effect to occur. Equation (3) is “universal”
because of the topological nature of the FS integral
involved, while Eq. (17) is for spherical pockets surround-
ing isotropic Weyl nodes. For generic two-band models the
traceless part of αGME is generally nonzero [59], and the
non-FS expression of Refs. [11,12] for the orbital con-
tribution to the trace can be recovered from Eq. (9) [28].
We emphasize that breaking T is not required for the

GME. If T is present (and P broken), the minimum number
of WPs is four, not two [60]. In the class of T-symmetric
Weyl materials so far discovered, T relates WPs of the same
chirality and energy. Mirror symmetries connect WPs of
opposite chirality so that jB ·B ¼ 0, as expected since these
symmetries tend to exclude optical rotation [19,20].
Fortuitously, the predicted Weyl material SrSi2 has mis-
aligned WPs of opposite chirality due to broken mirror
symmetry [25]. Its rotatory power ρ can be estimated from
the energy splitting between WPs. Neglecting anisotropy
effects and spin contributions that were not included in
Eq. (17), each WP pair contributes [28]

ρ ¼ ð2α=3hcÞðϵL − ϵRÞ; ð18Þ

with α the fine-structure constant and c the speed of light.
The calculated splitting jϵL − ϵRj ∼ 0.1 eV [25] gives
jρj ∼ 0.4 rad=mm per node pair, about the same as
jρj ¼ 0.328 rad=mm for quartz at λ ¼ 0.63 μm [20]. This
should be measurable in a frequency range from the
infrared (above which the semiclassical assumptions break
down) down to 1=τ, which depends on crystal quality.
When ϵL ¼ ϵR the rotatory power vanishes in equilibrium,
but a nonequilibrium gyrotropic effect can still occur due to
the chiral anomaly [22,28]. In polar metals, the tensor αGME

acquires an antisymmetric part (equivalent to a polar vector
δ) that does not contribute to optical rotation, but which
leads to a transverse GME of the form ME ∝ E × δ [28].
In summary, we have elucidated the physical origin of

currents induced by low-frequency magnetic fields in
metals in terms of the magnetic moment on the FS, and
discussed the experimental implications. Unlike the CME
[61] or the photoinduced AHE [62], no detailed model of
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nonequilibrium is required to quantify the GME, and
efficient ab initio methods already exist to compute the
needed orbital moments [63].
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Note added.—Along with the present paper, the role of
orbital moments in the natural gyrotropy of metals was also
recognized in Ref. [64].
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