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Supplemental Material for
“Gyrotropic Magnetic Effect and the Magnetic Moment on the Fermi Surface”

I. KUBO FORMULA FOR NATURAL GYROTROPY IN CRYSTALS

The electronic structure of the crystal is treated at the independent-particle level taking into account the spin-orbit
interaction. The Pauli Hamiltonian has the formS1,S2

H0 =
p2

2me
+ V (r) +

h̄

4m2
e

(∂rV × p) · σ , (S1)

where V (r) = V (r + R) is the periodic crystalline potential, p is the canonical momentum, and σ is the vector of
Pauli matrices. The kinematic momentum associated with H0 is

π =
me

ih̄
[r,H0] = p +

h̄

4me
σ × ∂rV , (S2)

and it satisfies [ri, πj ] = [ri, pj ] = ih̄δij .
In the presence of an electromagnetic field with vector potential A(r, t) the Hamilonian becomesS2

H =
1

2me
(p + eA)2 + V (r) +

h̄

4m2
e

[∂rV × (p + eA)] · σ + gS
µB

2
(∂r ×A) · σ , (S3)

where me and −e are the electron mass and charge, gs = 2.0023 is the spin g factor of the electron, and µB = eh̄/2me

is the Bohr magneton. Expanding Eq. (S3) and comparing with Eq. (S2) we find H = H0 +HI +O(A2), where

HI =
e

2
(v ·A + A · v) +

gse

2me
(∂r ×A) · S . (S4)

Here v = π/me is the velocity operator without the field,S2 and S = (h̄/2)σ is the spin operator. The first and
second terms describe the orbital and spin (Zeeman) couplings, respectively. The interaction Hamiltonian of Eq. (S4)
neglects orbital terms quadratic in A, which do not contribute to the linear response of interest to us.

Consider an optical field A(t, r) = A(ω,q)eiq·r−iωt. The current-density operator in the Fourier representation is

j = − e

2V

{
[v + (e/me)A]e−iq·r + e−iq·r[v + (e/me)A]

}
− i gse

2meV
q× Se−iq·r , (S5)

where V is the volume of the crystal. The first term is the orbital current, comprising paramagnetic (v) and diamag-
netic (A) contributions;S3,S4 the diamagnetic term appears because the total orbital current is given by the velocity
operator in the presence of the optical field, vtot = (1/ih̄)[r,H] = v + (e/me)A. The last term in Eq. (S5) is the
current density associated with the induced spin magnetization.

Expressing the total current density induced at linear order by the optical field as

ji(ω,q) = Πij(ω,q)A(ω,q) (S6)

we find, following the standard perturbative calculationS4,S5 and setting h̄ = 1,

Πij(ω,q) = − e2

me

∑
n

∫
[dk] f0

knδij − e2
∑
n,m

∫
[dk]

f0
k−q/2,n − f

0
k+q/2,m

εk−q/2,n − εk+q/2,m + ω + iη
Mknm,ij(q) , (S7)

where the first term gives the diamagnetic response. [dk] ≡ d3k/(2π)3, f0
kn = f(εkn) is the occupation of the Bloch

eigenstate |ψkn〉 = eik·r|ukn〉 in equilibrium, η is a positive infinitesimal, and the matrix element Mknm,ij(q) reads

Mknm,ij(q) = I∗kmn,i(q)Ikmn,j(q) (S8a)

Ikmn(q) = Iorb
kmn(q) + Ispin

kmn(q) (S8b)

Iorb
kmn(q) = 〈ψk+q/2,m|eiq·rv + veiq·r|ψk−q/2,n〉/2 = 〈uk+q/2,m|∂kHk|uk−q/2,n〉 (S8c)

Ispin
kmn(q) = −(igs/2me)〈uk+q/2,m|q× S|uk−q/2,n〉 . (S8d)
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In Eq. (S8c) Hk ≡ e−ik·rH0e
ik·r, and we used ∂kHk = vk ≡ e−ik·rveik·r and vk±q/2 = vk ± q/2me.

S1 At q = 0,
Eq. (S7) reduces to the Kubo formula for the optical conductivity σij(ω, 0) = (1/iω)Πij(ω, 0) in the electric-dipole
approximation.S4,S5 The dissipative (anti-Hermitean) part of Eq. (S7) corresponds to Eq. (40) in Ref. S6.

At nonabsorbing frequencies the response is purely reactive (i.e., Πij is HermiteanS7) and we can set η = 0 in
Eq. (S7). Optical gyrotropy is described by the antisymmetric part ΠA

ij = (Πij −Πji)/2 at O(q).S8 We therefore take

ΠA
ij(ω,q) = −ie2

∑
n,m

∫
[dk]

f0
k−q/2,n − f

0
k+q/2,m

εk−q/2,n − εk+q/2,m + ω
ImMknm,ij(q) , (S9)

and Taylor expand it to first order in q, in order to capture natural gyrotropy:

ΠA
ij(ω,q) = ΠA

ij(ω, 0) + ΠA
ijl(ω)ql + . . . . (S10)

Our goal is to calculate ΠA
ijl(ω � εgap/h̄), with εgap/h̄ the threshold for interband absorption. This low-frequency

regime where the semiclassical description holds can be viewed the ω → 0 limit of the Kubo formula (Ref. S9, p. 253).
In Sec. III we calculate ΠA

ijl(ω → 0) from Eq. (S9) in the static limit (setting ω = 0 before sending q → 0), and

in the uniform limit (sending q → 0 before ω → 0). The uniform-limit results are valid in the frequency range
1/τ � ω � εgap/h̄ where intraband as well as interband absorption is negligible; the effects of intraband scattering
at lower frequencies are included heuristically in Sec. IV.

For future reference, we collect below the expressions for all q-dependent quantities in Eq. (S9) up to O(q). In
particular, we expand the matrix-element part as

ImMknm,ij(q) ' ImMknm,ij(0) + Im(Mknm,ijl)ql , (S11)

and consider separately the orbital and spin contributions, and the intraband (m = n) and interband (m 6= n) parts.
Using a simplified notation where |ukn〉 → |n〉 and ∂ki → ∂i, and defining vni = ∂iεn and Sni = 〈n|Si|n〉, we find

f0
k−q/2,n − f

0
k+q/2,m ' (f0

n − f0
m)− (1/2) (vnl∂f/∂εn + vnm∂f/∂εm) ql (S12)

εk−q/2,n − εk+q/2,m + ω ' (εn − εm + ω)− (1/2)(vnl + vml)ql (S13)

ImMknn,ij(0) = Im(vnivnj) = 0 (S14)

ImMkn 6=m,ij(0) = −(εn − εm)2 Im(〈n|∂im〉〈m|∂jn〉) (S15)

ImMorb
knn,ijl = vnjIm〈n|∂iH|∂ln〉 − (i↔ j) (S16)

ImMorb
kn6=m,ijl = (1/2)(εn − εm)Im [−〈∂ln|∂iH|m〉〈m|∂jn〉+ 〈n|∂iH|∂lm〉〈m|∂jn〉]− (i↔ j) (S17)

ImM spin
knn,ijl = −(gs/2me)εiplSnpvnj − (i↔ j) (S18)

ImM spin
kn6=m,ijl = −(gs/2me)(εn − εm)εiplRe(〈n|Sp|m〉〈m|∂jn〉)− (i↔ j) , (S19)

where we have abbreviated ∂f/∂ε|ε=εkn
as ∂f/∂εn, and Hk as H.

II. SOME USEFUL IDENTITIES

We list here some identities that will be used in subsequent manipulations (Eq. (S24) has already been used in
connection with Eqs. (S14)-(S19) above),

〈n|∂im〉 = −〈∂in|m〉 (S20)∑
m

|∂im〉〈m| = −
∑
m

|m〉〈∂im| (S21)

(∂iH)|m〉 = (εm −H)|∂im〉+ vmi|m〉 (S22)∑
m

〈∂in|H|∂lm〉〈m|∂jn〉 = −
∑
m

εm〈∂in|m〉〈∂lm|∂jn〉 (S23)

〈n|∂iH|m〉 = −(εn − εm)〈n|∂im〉+ vniδnm (S24)

〈n|∂iH|∂ln〉 =
∑
m

(εn − εm)〈∂in|m〉〈m|∂ln〉+ vni〈n|∂ln〉 (S25)

〈n|∂iH|∂lm〉 = εn〈∂in|∂lm〉 − 〈∂in|H|∂lm〉+ vni〈n|∂lm〉 . (S26)

Equations (S20)–(S22) are obtained by differentiating 〈n|m〉 = δnm, the completeness relation
∑
m|m〉〈m|= 1, and

H|m〉 = εm|m〉, respectively. Equation (S23) follows from Eq. (S21), and Eqs. (S24)-(S26) follow from Eq. (S22).
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III. LOW-FREQUENCY RESPONSE WITHOUT DISSIPATION

A. Orbital part

1. Static limit

Here, ΠA
ijl denotes the orbital part of the purely reactive response of Eq. (S9) at O(q), calculated by setting ω = 0

before expanding in powers of q. We decompose it into interband and intraband parts,

ΠA
ijl = ΠA,inter

ijl + ΠA,intra
ijl . (S27)

The interband part is calculated by setting n 6= m in Eq. (S9), and then using Eqs. (S12), (S13), (S15) and (S17),

ΠA,inter
ijl = − ie

2

2

∑
n,m6=n

∫
[dk] Im

{
(vnl∂f/∂εn + vnm∂f/∂εm) 〈n|∂im〉〈m|∂jn〉(εn − εm)

− (f0
n − f0

m)(vnl + vml)〈n|∂im〉〈m|∂jn〉

+ (f0
n − f0

m) [−〈∂ln|∂iH|m〉〈m|∂jn〉+ 〈n|∂iH|∂lm〉〈m|∂jn〉 − (i↔ j)]
}
.(S28)

The first, second, and third lines are obtained by differentiating the occupation factors, energies, and matrix elements
in Eq. (S9), respectively, and Eq. (S24) was used to cancel an energy denominator in the last term. The summation
over m can be extended to include m = n, and exchanging dummy indices n ↔ m in terms containing fm renders
them equal to the corresponding fn terms. Using Eq. (S20) in some terms we obtain

ΠA,inter
ijl = −ie2

∑
n,m

∫
[dk]

{
− ∂f

∂εn
vnlIm(〈∂in|m〉〈m|∂jn〉)(εn − εm) + f0

n(vnl + vml)Im(〈∂in|m〉〈m|∂jn〉)

+ f0
nIm [−〈∂ln|∂iH|m〉〈m|∂jn〉+ 〈n|∂iH|∂lm〉〈m|∂jn〉 − (i↔ j)]

}
. (S29)

At ω = 0 and for n = m, the fraction in Eq. (S9) becomes ∂f/∂εn. Using Eq. (S16) we find for the intraband part

ΠA,intra
ijl = −ie2

∑
n

∫
[dk] (∂f/∂εn) vnj Im〈n|∂iH|∂ln〉 − (i↔ j) , (S30)

which can be rewritten with the help of Eq. (S25) as

ΠA,intra
ijl = −ie2

∑
n

∫
[dk] (∂f/∂εn) Im [−vnj〈∂ln|m〉〈m|∂in〉 − (i↔ j)] (εn − εm) . (S31)

Adding Eqs. (S29) and (S31) gives ΠA
ijl as a sum of three types of terms, ΠA

ijl = T1 + T2 + T3. They are

T1 = −ie2
∑
n,m

∫
[dk]

∂f0
n

∂εn
Im [−vnl〈∂in|m〉〈m|∂jn〉 − vnj〈∂ln|m〉〈m|∂in〉+ vni〈∂ln|m〉〈m|∂jn〉] (εn − εm) (S32a)

T2 = −ie2
∑
n,m

∫
[dk] f0

n Im [〈n|∂iH|∂lm〉〈m|∂jn〉 − 〈∂ln|∂iH|m〉〈m|∂jn〉 − (i↔ j)] (S32b)

T3 = −ie2
∑
n,m

∫
[dk] f0

n(vnl + vml) Im(〈∂in|m〉〈m|∂jn〉) . (S32c)

Writing vnl∂f/∂εn = ∂lf
0
n in T1 and integrating by parts yields

T1 = −ie2
∑
n,m

∫
[dk] f0

n

{
(εn − εm) Im [−〈∂jn|∂lm〉〈m|∂in〉+ 〈∂ln|∂jm〉〈m|∂in〉+ 〈∂jn|∂im〉〈m|∂ln〉 − (i↔ j)]

+ (vnl − vml) Im(〈∂in|m〉〈m|∂jn〉)
− (vnj − vmj) Im(〈∂in|m〉〈m|∂ln〉)

+ (vni − vmi) Im(〈∂jn|m〉〈m|∂ln〉)
}
. (S33)
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In order to facilitate the collection of terms, we have adopted the following conventions: in Im(〈∂an|∂bm〉〈m|∂cn〉) we
set c = i, l but never c = j, and in Im(〈∂an|m〉〈m|∂bn〉) we choose “a < b” where “i < j < l.”

Expanding the term T2 using Eq. (S26) followed by Eq. (S23),

T2 = −ie2
∑
n,m

∫
[dk] f0

n[− (vnj + vmj) Im(〈∂in|m〉〈m|∂ln〉)− εn Im(〈∂jn|∂lm〉〈m|∂in〉)− εm Im(〈∂jn|∂lm〉〈m|∂in〉)

− εm Im(−〈∂ln|∂jm〉〈m|∂in〉 − 〈∂jn|∂im〉〈m|∂ln〉)− (i↔ j)] . (S34)

Consider the identity obtained by multiplying Eq. (S21) on the left with 〈∂ln| and on the right with |∂jn〉. It implies
that the second term in Eq. (S34) [combined with its “−(i ↔ j)” partner] vanishes upon summing over m, and so
−εn therein can be changed into εn. Likewise, we can substitute −εm in the second line with εn − εm, to find

T2 = −ie2
∑
n,m

∫
[dk] f0

n[− (vnj + vmj) Im(〈∂in|m〉〈m|∂ln〉)

+ (εn − εm) Im (〈∂jn|∂lm〉〈m|∂in〉 − 〈∂ln|∂jm〉〈m|∂in〉 − 〈∂jn|∂im〉〈m|∂ln〉)− (i↔ j)] . (S35)

Adding Eqs. (S32c), (S33), and (S35) we obtain, upon invoking the completeness relation,

ΠA
ijl = ie2

∑
n

∫
[dk] f0

n [vnlΩn,ij − (i↔ l)− (j ↔ l)] , (S36)

where Ωn,ij = −2Im〈∂in|∂jn〉 = −Ωn,ji is the Berry curvature. Because the quantity [. . .] in the previous equation is
totally antisymmetric, it can be written as Cnεijl with Cn = (1/6)εijl[. . .] = Ωn · vn. Thus,

ΠA
ijl = (ie2/h̄)εijl

∑
n

∫
[dk] f0

n(Ωn · vn) = 0 (orbital, static limit) (S37)

where we have restored h̄. Writing ji = ΠA
ijlAjql for the current and Bi = −iεijlAjql for the field, we arrive at Eqs. (1)

and (2). The vanishing of Eq. (S37) was demonstrated in Ref. S10, and an alternate proof is given in the main text.

2. Uniform limit

We expand Eq. (S9) in powers of q keeping ω finite, and send ω → 0 at the end. This change in the order of limits

compared to the static case does not affect the calculation of the interband term ΠA,inter
ijl , but the intraband term now

vanishes. To show this, define F ≡ f0
k−q/2,n − f

0
k+q/2,n and G ≡ εk−q/2,n − εk+q/2,n + ω, so that

ΠA,intra
ijl = −ie2 lim

ω→0

∑
n

∫
[dk]

[
(F/G)|q=0 ImMorb

knn,ijl + ∂l (F/G)|q=0 ImMorb
knn,ij(0)

]
, (S38)

where

(F/G)|q=0 = (f0
n − f0

n)/(εn − εn + ω) = 0 , (S39a)

∂l (F/G)|q=0 = −(1/ω)vnl∂f/∂εn , (S39b)

and ImMorb
knn,ij(0) = 0 according to Eq. (S14). Thus ΠA,intra

ijl = 0, and so the response in the uniform limit is purely
interband. Since the interband term is independent of the order of limits, and the net response vanishes in the static
limit, the uniform-limit response is given by minus the intraband term calculated in the static-limit. Using Eq. (S22)
in Eq. (S30) we find, after some cancellations,

ΠA
ijl = (ie2/h̄)

∑
n

∫
[dk] (∂f/∂εn)vni Im〈∂jn|H − εn|∂ln〉 − (i↔ j) . (S40)



5

B. Spin part

1. Static limit

We again start with the interband part, and collect O(q) spin contributions to Eq. (S9). Since ImMkn 6=m,ij(0) is
purely orbital [Eq. (S15)], the only contribution comes from Eq. (S19), yielding

ΠA,inter
ijl = (igse

2/2me)
∑
n,m

∫
[dk] (f0

n − f0
m)εipl Re(〈n|Sp|m〉〈m|∂jn〉)− (i↔ j) . (S41)

Exchanging n↔ m indices in one term and using the completeness relation gives

ΠA,inter
ijl = (igse

2/2me)
∑
n

∫
[dk] f0

nεipl∂jSnp − (i↔ j)

= −(igse
2/2me)

∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (S42)

For the intraband part we use Eq. (S18), which leads to the expression above, but with the opposite sign. Thus,

ΠA
ijl = ΠA,inter

ijl + ΠA,intra
ijl = 0 . (S43)

2. Uniform limit

The steps in the derivation are similar to those carried out in Sec. III A 2 for the orbital contribution. The intraband
part of the spin contribution vanishes, and the interband part is the same as in the static limit [Eq. (S42)], so that

ΠA
ijl = −(igse

2/2me)
∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (S44)

IV. LOW-FREQUENCY RESPONSE WITH DISSIPATION

The low-frequency (h̄ω � εgap) natural gyrotropy response was evaluated in Secs. III A 2 and III B 2 in the clean
limit ωτ � 1. It is well known that at q = 0 the Drude formula for the complex optical conductivity (i.e., including
both reactive and dissipative parts) can be recovered heuristically from the intraband part of the Kubo formula (S7)
for a pristine metal, by interpreting the positive infinitesimal η therein as a scattering rate 1/τ .S11 Here we apply the
same procedure to extend our calculation of natural gyrotropy in metals to arbitrarily low frequencies compared to
1/τ . The first step is to restore η in the denominator of Eq. (S9),

ΠA
ij(ω,q) = −ie2

∑
n,m

∫
[dk]

f0
k−q/2,n − f

0
k+q/2,m

εk−q/2,n − εk+q/2,m + h̄ω + ih̄η
ImMknm,ij(q) , (S45)

and we have also brought back h̄ for clarity. Multiplying and dividing by h̄ω and then using the identity

1

h̄ω(h̄ω + ∆)
=

1

∆

(
1

h̄ω
− 1

h̄ω + ∆

)
(S46)

with ∆ = εk−q/2,n − εk+q/2,m + ih̄η we find

ΠA
ij(ω,q) =− ie2

∑
n,m

∫
[dk]

f0
k−q/2,n − f

0
k+q/2,m

εk−q/2,n − εk+q/2,m + ih̄η
ImMknm,ij(q)

+ ie2h̄ω
∑
n,m

∫
[dk]

f0
k−q/2,n − f

0
k+q/2,m

εk−q/2,n − εk+q/2,m + ih̄η

ImMknm,ij(q)

h̄(ω + iη) + εk−q/2,n − εk+q/2,m
. (S47)
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Consider first the dissipative response, given by the real part of the above expression. The semiclassical condition
h̄ω � εgap excludes interband absorption, and so we can set m = n. The contribution from the first line is

−πe2
∑
n

∫
[dk]

(
f0
k−q/2,n − f

0
k+q/2,n

)
δ(εk−q/2,n − εk+q/2,n)ImMknm,ij(q) , (S48)

and it vanishes identically because whenever the first factor is nonzero the second factor is zero, and vice-versa. Thus,
intraband absorption comes entirely from the second line in Eq. (S47),

Re ΠA
ij(ω � εgap/h̄,q) = Re

{
ie2h̄ω

∑
n

∫
[dk]

∂f

∂εn

ImMknn,ij(q)

h̄(ω + iη) + εk−q/2,n − εk+q/2,n

}
. (S49)

The dissipative part of natural gyrotropy is given by the O(q) terms in this equation. Since ImMknn,ij(0) = 0 accord-
ing to Eq. (S14), the only contribution comes from Taylor expanding the numerator with q = 0 in the denominator.
Identifying η with 1/τ and assuming it is constant across the Fermi surface (FS) we find

Re ΠA
ijl(ω � εgap/h̄) = e2 Re

(
ωτ

1− iωτ

)
Gijl , (S50)

where

Gijl =
∑
n

∫
[dk] (∂f/∂εn) ImMknn,ijl = Gorb

ijl +Gspin
ijl (S51a)

Gorb
ijl = (1/h̄)

∑
n

∫
[dk] (∂f/∂εn)vni Im〈∂jn|H − εn|∂ln〉 − (i↔ j) (S51b)

Gspin
ijl = −(gs/2me)

∑
n

∫
[dk] (∂f/∂εn)εiplvnjSnp − (i↔ j) . (S51c)

To obtain the orbital term we used Eqs. (S16) and (S22), and for the spin term we used Eq. (S18).
The reactive part can be recovered from the Kramers-Krönig relationS12 for σijl = (1/iω)Πijl, the O(q) part of the

effective conductivity defined in Eq. (S59) below. The result for the full (complex) response at low frequencies is

ΠA
ijl(ω � εgap/h̄) =

e2ωτ

1− iωτ
Gijl (orbital + spin, uniform limit) (S52)

which can be viewed as a Drude-like formula for natural gyrotropy in metals. At ωτ � 1 the response becomes
purely dissipative and at ωτ � 1 it becomes purely reactive, reducing to the result from the rigorous Kubo-formula
calculation in the clean limit, Eqs. (S40) and (S44). Equation (8) is the combination of Eqs. (S51) and (S52).

V. ORBITAL GME IN TWO-BAND MODELS: COMPARISON WITH THE PREVIOUS LITERATURE

In the main text we obtained an expression [Eq. (17)] for the orbital GME current jB = αGMEB in a clean Weyl
semimetal with two isotropic Weyl points (WPs). Here we consider a generic two-band model, and show how to
recover, starting from the FS formula for αGME, the expression given in Refs. S13 and S14 for αGME ≡ tr(αGME)/3
(but keeping in mind that in anisotropic models the traceless part is generally nonzero; specific traceless pieces will
be considered in Secs. VI A 3 and VI D).

In two-band models the orbital moment is given by Eq. (15), and it is simply related to the Berry curvature
according to morb

kt = (e/h̄)tdkΩkt.
S15 Inserting this expression into Eq. (9) and taking the trace gives, at ωτ � 1,

αGME = − e
2

3h̄

∑
t=±

∫
[dk] (∂f/∂εkt)tdkvkt ·Ωkt . (S53)

Replacing vkt∂f/∂εkt with ∂h̄kf
0
kt and integrating by parts yields two terms; the one containing ∂k ·Ωkt, Eq. (S56)

below, vanishes identically, leaving

αGME =
e2

3h̄

∑
t=±

∫
[dk] f0

ktΩkt · ∂h̄k(tdk) . (S54)
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Writing tdk as εkt − (εk+ + εk−)/2 and using Eq. (2) to eliminate a term we find

αGME = − e
2

3h̄

∑
t=±

∫
[dk] f0

kt

vk+ + vk−

2
·Ωkt . (S55)

The expression in Refs. S13 and S14 amounts to 3/2 times Eq. (S55) minus 1/2 times Eq. (S53), divided by two. To
understand the division by two, recall from Eq. (6a) that αGME describes the current response to the optical B field.
The optical E field contributes an equal amount to the component of the natural gyrotropy current along B (see
Sec. VI A below), bringing our result in accord with Refs. S13 and S14. While strictly correct, the above expression
for αGME in two-band models is not physically transparent. It fails to recognize the FS nature of the effect, and has
led to the erroneous identification of the Berry curvature as the key quantity governing it.

Between Eqs. (S53) and (S54) we dropped a term containing the divergence of the Berry curvature,

e2

3h̄2

∑
t=±

∫
[dk] fkt(εkt − εk) (∂k ·Ωkt) . (S56)

The Berry curvature Ωkt = ∂ ×Akt is divergence-free except at the WPs εkt = εk, which act as monopole sources
and sinks. The above expression is proportional to the sum over all WPs, and over the two bands, of fkt times
εkt − εk times δ-function singularities. Since fkt = 0, 1 and εkt − εk = 0 are the same for the two bands at a WP, the
summation only acts on the last factor. But

∑
t=± ∂k ·Ωkt = 0, because each WP contributes twice with opposite

signs: once as a source term in one band, and another time as sink in the other band: see, e.g., Eq. (10) in Ref. S16.
Thus, each WP gives a vanishing net contribution to the expression in Eq. (S56).

VI. NATURAL OPTICAL ACTIVITY OF METALS IN THE SEMICLASSICAL LIMIT

A. Gyrotropic response in equilibrium

1. Phenomenological relations

The GME in metals is conveniently formulated in terms of the dual tensors ΠA
ijl = −ΠA

jil and αGME
ij , related to

one another by Eq. (5). Instead, the gyrotropic response of a bulk medium is usually discussed in terms of the
antisymmetric part of the relative permittivity tensor, εAij(ω,q) = [εij(ω,q)− εji(ω,q)] /2, expanded to O(q):S8

εAij(ω,q) = εAij(ω, 0) + iγAijl(ω)ql + . . . . (S57)

The T -odd tensor εAij(ω, 0) describes magneto-optical gyrotropic effects such as Faraday rotation and magnetic circular

dichroism, and the T -even tensor γAijl(ω) = −γAjil(ω) describes natural gyrotropy effects including natural optical

rotation and natural circular dichroism. It is also useful to introduce a dimensionless rank-2 tensor gij(ω) dual to
γAijl(ω) according toS8

γAijl = (c/ω)εijmgml (S58a)

gij = (ω/2c)εilmγ
A
lmj , (S58b)

where c is the speed of light. In order to convert between ΠA
ijl and αGME

ij on one hand and γAijl and gij on the other,

consider the effective conductivity tensor σij(ω,q) satisfyingS6,S7

ji(ω,q) = σij(ω,q)Ej(ω,q) . (S59)

Using E = iωA and comparing with Eq. (S6) gives Πij = iωσij . Hence the tensors εij , σij , and Πij are related byS7

εij(ω,q) = δij +
i

ωε0
σij(ω,q) = δij +

1

ω2ε0
Πij(ω,q) . (S60)

Expanding the antisymmetric part to O(q) and comparing with Eq. (S57) yields the relation

γAijl = −(i/ω2ε0)ΠA
ijl (S61)
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between the two rank-3 natural gyrotropy tensors. The relation between their duals gij and αGME
ij follows from

combining Eqs. (S58b), (S61), and (5a). The result is (note the transposed indices)

gij =
1

ωcε0

(
α̃GME
ji − 2αGMEδij

)
, (S62)

where αGMEδij and α̃GME
ij are the trace piece and the traceless part of αGME

ij , respectively.

2. Optical rotation in high-symmetry metals

Let us specialize to a metal with cubic symmetry or higher, and express the rotatory power ρ in terms of αGME.
In a medium with such high symmetry the tensors ΠA

ijl and γAijl are totally antisymmetric.S8,S17 From Eq. (5) we get

ΠA
ijl = −2iαGMEεijl and αGME

ij = αGMEδij , Eq. (6) gives jB = iq×ME = αGMEB, and finally γAijl = γεijl with

γ = −(2/ε0ω
2)αGME (S63)

according to Eq. (S61). The standard formulaS18,S19

ρ = (ω2/2c2)Re γ (S64)

for the rotatory power of a high-symmetry medium becomes

ρ = −
(
1/ε0c

2
)

ReαGME . (S65)

This expression, together with Eq. (11), implies that the rotatory power of a clean metal goes to a constant at low
frequencies. Instead, the rotatory power of an insulator decreases as ω2, because γ goes to a constant, as follows from
Eq. (S61) and the ω2 scaling at low frequencies of Im ΠA

ijl = ωReσAijl (see, e.g., Ref. S6).

As an application of Eq. (S65), consider a Weyl semimetal with isotropic Weyl nodes described by the effective
2-band Hamiltonian (see main text)

Hkν = εν1 + χν h̄vFk · σ . (S66)

The orbital contribution to αGME from a pair of nodes of opposite chirality is given in the clean limit by the prefactor
in Eq. (17), yielding

ρ = (2α/3hc)(εL − εR) (S67)

per node pair in the frequency range 1/τ � ω � εgap/h̄, where α = e2/4πε0h̄c ≈ 1/137 is the fine-structure constant.
This result, given as Eq. (18) in the main text, can be extended to lower frequencies in the constant relaxation-time
approximation by inserting a factor of Re [iωτ/(iωτ − 1)] = ω2τ2/(1+ω2τ2) on the right-hand-side. Therefore ρ ∝ ω2

at the lowest frequencies in dirty metals, the same low-frequency behavior as in moleculesS20 and insulators.S6,S18

3. Transverse GME in polar metals

In a “pyroelectric” metal with polar axis ĉ, the optical activity tensors gij and αGME
ij acquire an antisymmetric

part that does not contribute to optical rotation,S17 but which gives rise to an inverse GME [Eq. (6b)] of the formS21

ME =
1

1− iωτ
τe

8π2h
E× δ , (S68)

with δ ‖ ĉ. This characteristic magnetoelectric response of polar metals has been noted.S22 It should occur in the
Weyl semimetal TaAs, and in the low-temperature phase of the “ferroelectric” metal LiOsO3. Using Eq. (11) we find

δ =
∑
n,a

∫
Sna

dS (v̂F ×mkn) (S69)

The (polar) vector δ = δorb + δspin vanishes in metals without a polar axis, and its magnitude in a given polar metal
reflects the extent to which the polar character of the structure is transmitted to the conduction electrons.
δorb vanishes for an asymmetrically-confined 2D metal with the polar axis normal to the plane, because in 2D systems

morb
kn always points out of plane; the Rashba spin-orbit interaction generates an in-plane tangential spin texture that

leads to a δspin ‖ ĉ, and an in-plane spin polarization normal to E appears: this is the inverse spin-galvanic effect in 2D
Rashba systems.S23 In 3D polar metals (including strained “piezoelectric” metalsS24), the dissipative magnetoelectric
effect of Eq. (S68) has an orbital-magnetization contribution that does not require spin-orbit coupling.
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B. Nonequilibrium optical gyrotropy in Weyl semimetals driven by the chiral anomaly

It was pointed out in Ref. S25 that the chiral-anomaly mechanism leads to circular dichroism for light propagating
inside a Weyl semimetal in the presence of external electric and magnetic fields with Eext ·Bext 6= 0. In the following
we use our microscopic formulation of natural gyrotropy in metals to calculate the induced response at low frequencies.

For Weyl nodes described by Eq. (S66), we obtain from Eqs. (11) and (15) the following expression for the orbital
contribution to αGME

ij (ω) = αGME(ω)δij from the spherical pocket enclosing the ν-th node, with chemical potential µν ,

αGME
ν (ω) =

1

3

e

(2π)2h

iωτ

iωτ − 1
(4πk2

F )

(
∓χν

evF
2kF

)
= ∓1

3

e2

h2

iωτ

iωτ − 1
χν h̄vF kF =

1

3

e2

h2

iωτ

iωτ − 1
χν(εν − µν) . (S70)

The minus (plus) sign in the intermediate expressions corresponds to εν < µν (εν > µν).
Consider a minimal model where ν = L,R. In the equilibrium situation (µL = µR = εF ) depicted in Fig. 1(b) in

the main text, Eq. (S70) reduces to Eq. (16) for ωτ � 1. Here we are interested in the scenario where the background
Eext ·Bext field pumps charge across the nodes, leading to µL 6= µR. Following Ref.S25 we assume ωτ � 1, and for
simplicity we set εL = εR ≡ εW as in Fig. 1(a), so that the equilibrium gyrotropic response of Eq. (S67) vanishes.
Combining Eqs. (S63) and (S70) and taking the imaginary part yields

Im γν(ω � 1/τ) = −χν(µν − εW )e2τ

6π2ε0h̄
2ω

. (S71)

Summing over WPs and using
∑
ν χν = 0S26 gives for the orbital contribution to the nonequilibrium circular dichroism

Im γ(ω � 1/τ) =
(µL − µR) e2τ

6π2ε0h̄
2ω

. (S72)

Equation (S71) agrees with Eq. (11) of Ref. S25, except possibly for the numerical prefactor. Exact agreement
was not expected, since the calculation in Ref. S25 was based on an incomplete formulation of natural gyrotropy in
metals in terms of the Berry curvature. On the other hand, semiquantitative agreement for two-band models seems
plausible, in view of the simple relation between the Berry curvature and the orbital moment in such models.S15

Consider now the optical rotation under nonequilibrium conditions. According to Eq. (S70) Re γ(ω � 1/τ) = 0,
suggesting an absence of optical rotation at the lowest frequencies.S25 Note, however, that Eq. (S70) was obtained
starting from Eq. (S40), which assumes an equilibrium situation where the nondissipative gyrotropic current vanishes
in the static limit [Eq. (S37)]. In the presence of a chemical-potential imbalance, a new reactive term appears: the
optical B field induces a dissipationless current at O(q) via Eq. (3), leading to optical rotation even for ω � 1/τ .
Interestingly, this is a genuine Berry-curvature – as opposed to orbital-moment – contribution to the (nonequilibrium)
optical gyrotropy in Weyl semimetals.

C. Reciprocity relation for a gyrotropic metal with a smooth interface

There is a general reciprocity principle for electromagnetic fields interacting with time-reversal (T ) invariant media
in equilibrium that requires the optical rotation to vanish in the reflection geometry.S27,S28 Thus, while for a T -
breaking material there are in general optical rotation effects both in transmission (Faraday) and in reflection (Kerr),
optical rotation in T -invariant materials occurs in transmission only. At first glance this is surprising, because it
implies a constraint on the nonlocal response functions imposed by T symmetry when the gyrotropic coefficient varies
in space, for example at an interface.S29–S31 This has been actively discussed recently in the context of optical rotation
measured in reflection on cuprate superconductors.S19,S28,S32

We show in the following how this constraint appears in our treatment of natural optical activity in metals. While
the validity of the constraint is not in question, i.e., it had to be satisfied, it seems worthwhile to explain how it arises,
given the recent interest in the nonlocal constitutive relation in spatially varying media with natural optical activity.

A T -invariant spatially-dispersive medium with a boundary or an interface is described, taking into consideration
only the first derivatives with respect to coordinates, by the following constitutive relation,

Di(ω, r) = ε0
[
εSij(ω, r)Ej(ω, r) + γAijl(ω, r)∂rlEj(ω, r) + Ej(ω, r)∂rlλ

A
ijl(ω, r)

]
. (S73)

This is Eq. (8) in Ref. S29, with the T -breaking parameter Bext set to zero. Under those conditions, the response
tensors satisfy εSij(ω, r) = εSji(ω, r), γAijl(ω, r) = −γAjil(ω, r), and λAijl(ω, r) = −λAjil(ω, r). (More generally, in a T -

breaking material the constitutive relation can be split into even and odd parts with respect to Bext, and Eq. (S73)
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then corresponds to the T -even part.) For an infinite macroscopically homogeneous medium the response tensors
are independent of r, and only the first two terms survive in Eq. (S73). The last term is an additional contribution
coming from the spatial inhomogeneity near the interface. The reciprocity constraint takes the formS29

λAijl(ω, r) =
1

2
γAijl(ω, r) , (S74)

which in turn implies vanishing optical rotation in reflection: see Ref. S28 and references cited therein.
To obtain Eq. (S74) for a metal subject to a low-frequency optical field, recall from the discussion around Eq. (7) that

the natural gyrotropy of metals at low frequencies is fully determined by the magnetoelectric response of the medium,
i.e., by the dynamic polarization PB and magnetization ME induced by the optical fields B and E respectively. In
the main text, the T -even magnetoelectric response of a metal was calculated at h̄ω � εgap using a semiclassical
Boltzmann formalism, and the result was of the form

PB
i (ω, r) = (i/ω)αGME

ij (ω, r)Bj(ω, r) (S75a)

ME
i (ω, r) = −(i/ω)αGME

ji (ω, r)Ej(ω, r) , (S75b)

with αGME given in the long-wavelength limit by Eq. (11). (The calculation was done for a bulk metal where αGME is
independent of r, but the semiclassical approach remains valid if we assume a smooth interface with a spatial variation
that is slow on the scale of the mean free path.) Writing the constitutive relation in terms of the auxiliary fields,

D(ω, r) = ε0E(ω, r) + P(ω, r) + (i/ω)∂r ×M(ω, r) , (S76)

and using Eq. (S75) together with Bj = −(i/ω)εjlp∂rlEp, we find for the spatially-dispersive part of Di(ω, r)

(1/ω2)
[
εilpα

GME
jp (ω, r)− εjlpαGME

ip (ω, r)
]︸ ︷︷ ︸

ε0γA
ijl(ω,r)

∂rlEj(ω, r) + Ej(ω, r)∂rl
[
(1/ω2)εilpα

GME
jp (ω, r)

]︸ ︷︷ ︸
ε0λijl(ω,r)

. (S77)

We have identified the tensors γAijl and λijl = λSijl+λAijl by comparing with Eq. (S73), noting that the term containing

λSijl = λSjil was included in the first term of Eq. (S73).S29 The expression for γAijl is consistent with Eqs. (S61) and (5a)

for a bulk medium, and by inspection we obtain Eq. (S74), with 2λAijl(ω, r) ≡ λijl(ω, r) − λjil(ω, r). In conclusion,
our microscopic formulation of natural gyrotropy in metals is consistent with the general reciprocity principle.

D. Berry-curvature contributions

In Ref. S33, the natural optical activity of clean metals in equilibrium was studied using a semiclassical “Berry-
Boltzmann” approach, and a combination of the band velocity and the Berry curvature was shown to give a traceless
contribution to the tensor gij defined in Eq. (S58). Here we show how that contribution appears as part of the full
microscopic expression in terms of the intrinsic magnetic moment. We start by setting ωτ � 1 in Eq. (9) to get

αGME
ij = −e

∑
n

∫
[dk] (∂f/∂εkn)vkn,i

(
mspin

kn,j +morb
kn,j

)
≡ αspin

ij + αorb
ij , (S78)

and note that Eq. (10) for morb
kn contains two terms, one of which involves the Berry curvature,

morb
kn = (e/2h̄)Im〈∂kukn|×Hk|∂kukn〉+ (e/2h̄)εknΩkn ≡mH

kn + mΩ
kn . (S79)

Accordingly we write αorb = αH +αΩ/2, with

αH
ij = − e

2

2h̄
εjlp

∑
n

∫
[dk] (∂f/∂εkn)vkn,iIm〈∂lukn|Hk|∂pukn〉 (S80a)

αΩ
ij = −e

2

h̄

∑
n

∫
[dk] (∂f/∂εkn)vkn,iεknΩkn,j . (S80b)

The reason for writing αΩ/2 is that αH can be further decomposed as (see derivation at the end)

αH
ij = αΩ

ij/2 + ∆αorb
ij (S81a)

∆αorb
ij =

e2

2h̄2 εjlp
∑
n,m

∫
[dk] f0

kn(1− f0
km)∂i [(εkn + εkm)Im(〈∂lukn|ukm〉〈ukm|∂pukn〉)] , (S81b)
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so that finally

αorb = αΩ + ∆αorb . (S82)

The decomposition (S82) has two noteworthy features. Firstly, the Berry-curvature contribution is traceless,

tr
(
αΩ
)

=
e2εF

2h̄2

∑
n,a

∫
Sna

dS (v̂F ·Ωkn) =
πe2εF

h̄2

∑
n,a

Cna = 0 , (S83)

for the same reason that the chiral magnetic effect vanishes when all Fermi sheets are in chemical equilibrium (see
main text). Secondly, αΩ and ∆αorb are separately gauge-invariant, but they are not separately invariant under a
shift of the zero of energy. Nevertheless, αΩ can be further decomposed into two traceless parts, only one of which
depends on the zero of energy, by replacing vkn,i∂f/∂εkn in Eq. (S80b) with (1/h̄)∂if

0
kn and integrating by parts,

αΩ
ij = αΩ,1

ij + αΩ,2
ij (S84a)

αΩ,1
ij =

e2

h̄2

∑
n

∫
[dk] f0

knεkn∂iΩkn,j (S84b)

αΩ,2
ij =

e2

h̄

∑
n

∫
[dk] f0

knvkn,iΩkn,j . (S84c)

The trace of αΩ,1 vanishes for the same reason as Eq. (S56), and the trace of αΩ,2 vanishes according to Eq. (2). αΩ,1

clearly depends on the zero of energy, but αΩ,2 does not.
The Berry-curvature contribution identified in Ref. S33 amounts to αΩ,2. To see this, convert Eq. (S84c) into a

(traceless) contribution to gij using Eq. (S62),

gΩ,2
ij =

e2

h̄ωcε0

∑
n

∫
[dk] f0

knvkn,jΩkn,i . (S85)

To compare with Ref. S33 the expression above should be multiplied by icε0,S34 leading to Eq. (10) therein.S35

In closing, we reiterate that even if Berry-curvature contributions can be identified (see also Sec. V), the magnetic
moment on the FS provides a more basic and compact description of the low-frequency natural gyrotropy of metals.

1. Derivation of Eq. (S81)

Integrating Eq. (S80a) by parts and inserting a complete set of states gives, in the condensed notation used earlier,

αH
ij =

e2

2h̄2 εjlp
∑
n,m

∫
[dk] f0

n ∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)]

=
e2

2h̄2 εjlp
∑
n,m

∫
[dk]

[
f0
m − f0

m

(
1− f0

n

)
+ f0

n

(
1− f0

m

)]
∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)] .

Exchanging n and m in the first and second terms,

αH
ij =

e2

2h̄2 εjlp
∑
n,m

∫
[dk]

{
f0
n ∂i [εnIm(〈∂lm|n〉〈n|∂pm〉)]

− f0
n

(
1− f0

m

)
∂i [εnIm(〈∂lm|n〉〈n|∂pm〉)] + f0

n

(
1− f0

m

)
∂i [εmIm(〈∂ln|m〉〈m|∂pn〉)]

}
. (S86)

Using Eq. (S20) to combine the second and the third terms, and to recast the first in terms of the Berry curvature,
we arrive at Eq. (S81) after an integration by parts:

αH
ij =− e2

2h̄

∑
n

∫
[dk] (∂f/∂εn) vn,i (εnΩn,j)

+
e2

2h̄2 εjlp
∑
n,m

∫
[dk] f0

n

(
1− f0

m

)
∂i [(εn + εm)Im(〈∂ln|m〉〈m|∂pn〉)] . (S87)
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