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Abstract

STEM valence loss spectra have an energy resolution of about 0.2 eV and a
spatial resolution of about 1 nm. With developments of inhomogeneous
dielectric excitation theory, detailed spectral infexpretation is now becoming
possible in the complex geometry of typical nanostructures. A non-relativistic,
numerical approach based on the boundary charge method is outlined. This
method gives useful results in good agreement with experiment for 90°
wedges and truncated slabs. It appears that these results form a convenient
basis for the interpretation of loss spectra from more complex shapes such
as the T or I junctions arising when two dielectrics form an interface in a
thin film. The numerical boundary method can be extended to the relativistic
case to include retardation and radiation. Such computations of the radiation
emitted by excited nanostructures are potentially useful for optical emission
spectroscopy in the STM and NSOM as well as in the STEM.
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Introduction

Various forms of electron microscopy (TEM, SEM, STM)
now have an established role in determination of geomet-
rical structure on a nanometer scale. The power of this
approach is greatly augmented when combined with
some form of spatially localized spectroscopy to yield
information about local composition or even about elec-
tronic structure. Core loss spectroscopy in the scanning
transmission electron microscope (STEM) can be achieved
with 0.2 nm spatial resolution and 0.2 eV energy reso-
lution to provide information about local chemistry as
well as the density of unoccupied electronic states. More
direct information about occupied states is in principle
available at better than 1 nm spatial resolution from the
relatively more intense valence loss spectra which can
usually be collected more rapidly with less risk of radiation
damage. Further attractions of these lower energy excita-
tions are their reasonable accessibility in the STM or near
field SOM and the additional detection channel they
provide of optical emission with potentially much higher
energy resolution.

Although spatiallv localized valence loss spectrosconv

has a long history in electron microscopy, its widespread
use has been hampered by problems in interpreting the
results. The loss spectra depend not only on the dielectric
response of the different regions present but also on the
geometry of the boundaries between them. Over the
past two decades however these difficulties have been
substantially overcome. The dielectric excitation problem
can be solved analytically in the case of simple shapes
such as planar [1-3], cylindrical [4,5] or spherical [6~10]
interfaces and yields results in reasonably good agreement
with the experimental observations. Study of these simple
situations has also served to reveal the general structure of
the theory for more complex geometries where numerical
methods have to be employed.

At an impact parameter b, the probability P(b,») for a
given energy loss ® in a composite medium composed of
two materials A and B depends in general on a linear
combination of dielectric excitation functions. Each of
these functions corresponds to an eigenmode j of the
system and depends on the geometry. The frequency of
the eigenmode is determined by the vanishing of the
denominator in the excitation function.
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The bulk losses in the two media A and B are described
by the above excitation functions with o; = 1 and 0
respectively and far from any interface only the appro-
priate one of these functions appears in eq. (1). As a
planar interface is approached, this bulk loss term is
progressively replaced by a planar interface loss term
characterized by o5 = 0.5, the quantity I A; (wb/v)
remaining constant (the so-called Begrenzungs effect). The
familiar surface plasmon is a particular example arising
at the free surface of material A say, when B is vacuum
i.e. eg = 1. A particularly important planar interface mode
is observed at about 8 eV in the case of the Si-SiO,
boundary [11]. The simplest example of a non-planar
boundary is provided by a small sphere of material A
embedded in material B where the appropriate dipole
mode excitation function has the value o4 = 1/3. For a
given geometry (which determines the quantities o
and Aj(wb/v)), eq. (1) defines the loss spectrum for any
choice of dielectric materials if the appropriate dielectric
functions are used. Eq. (1) and the above sum rule both
appear to be followed in much less simple situations,
including for instance colloidal dispersions of small inter-
acting partides {12,13] where an efféctive medium
approach is appropriate. ) R

In better defined but still complex geometries, eq. (1)
provides an excellent basis for (non-relativistic) analysis
of the localized loss spectra but numerical methods are
needed to find the various eigenmodes (defined by a
value of ;) and the corresponding weight A; with which
they contribute to the loss spectrum at each impact
parameter. In the following three sections, we outline the
boundary charge method for solving such problems and
some of the results obtained for structures often studied
in transmission electron microscopy. We then briefly
discuss the recently developed extension of this approach
to the relativistic regime where retardation and radiative
losses are included. Finally we make some concluding
observations about the likely future usefulness of spatially
resolved valence loss spectroscopy in various contexts of
nanostructure characterization.

The boundary charge method

The method (originally used for electrostatic problems by
Maxwell) depends on finding a self-consistent distribution
of boundary charges on all the dielectric interfaces and
was employed by Fuchs [14] to find the eigenmodes of a
small cube and later reformulated by Ouyang and Isaacson
[15,16] for energy loss problems. Aizpurua et al. [17-
19] have applied the method to 90° wedges and other
geometries such as a torus and coupled cylinders. We
employ their notation to describe the self-consistent condi-
tion for the interface charge density 6(s,®) in the presence
of an external potential ¢**(s,®) with frequency generated
at an interface point s by a passing fast electron.
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A(®)o(s,0) = 1
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Is—s'{s,

where (@) + £4(0)
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Here ng is a umnit vector at the point s on the interface
directed normal to the interface from medium A to
medium B. In the absence of the external potential, eq.
(2) gives the eigenmodes oi(s) and eigenvalues 2m); of
the system. With standard computer packages and an
adequate number of sampling points (typically about 100)
on the interface, the eigenmodes can readily be computed
and, in the case of simple shapes like a sphere, checked
against the known results. For any combination of the
two dielectric materials, eq. (3) can then be employed,
setting equal to each 2mA; value in turn to determine the
mode frequencies which will in general be complex
because of damping. It may be observed that interface
charge interactions in a plane do not produce any electric
field component normal to the plane so that all the
eigenvalues 2mA; are zero in that case. Although the
integrand in eq. (2) is not symetrical under interchange
of s and s’, the eigenvalues 2mA; can in general be shown
to be real [15] and furthermore the eigenfunctions ¢'(s)
form a complete basis set, satisfying an orthogonality
property.

. i i (@’\*
) Id?sjd2§'i/m(s_2__ = Sij

4
Is — 8l @

With the aid of this equation, the complete solution of
eq. (2) can be obtained. The mode excitation functions
appearing in eq. (1) then have o5 = (1 + Aj)/2.

For any particular interface charge distribution o(s,®),
the stopping power and energy loss probability function
P(b,) can be directly expressed by evaluating the electric
field component E which it generates at the position of
the fast electron. In determining the contribution A; from
each mode in eq. (1), the impact parameter in fact
contributes twice— once in fixing the mode excitation
and a second time in evaluating the field generated by
that mode at the trajectory position. It is important to
note that when only two dielectric media are involved
the eigenmode computation need only be done once for
each geometry and does not have to be redone if the
dielectric functions are changed.

With the aid of standard computer packages, the theory
just described can be employed to compute non-relativistic
energy loss spectra near dielectric interfaces with a com-
plex geometry. It is particularly efficient for interface
shapes with axial symmetry or for cases, such as a dielectric
wedge, which are independent of one coordinate z since
all the quantities can then be expressed in terms of Fourier
components q in this direction [17]. In such cases the
interface charge density can often be adequately sampled
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Fig. 1 Boundary charge arrangements for (a) an isolated 90° wedge and (b) the T junction components of the I junction in a thin film.

with as few as twenty points s. In more general situations,
a few hundred points could be required. When the fast
electron beam also travels parallel to the z direction, the
situation becomes even simpler since by conservation of
momentum only a single Fourier component q = /v
is involved. For perpendicular or other more general
trajectories, an integration over the contribution of modes
of different q has to be carried out. The range of q values
required is approximately defined by Igy,.| = 1/Ibl where
b is the impact parameter (or closest distance from the
dielectric interface to the electron trajectory).

Energy loss spectra from wedges and
truncated slabs

The 90° dielectric wedge in vacuum, whose eigenmodes
have already been studied by a number of authors [20,21],
provides an interesting and experimentally relevant illus-
tration of the boundary charge method. Complications
from the singularity at the wedge apex (where the surface
normal is not defined) are minimized by taking surface
points s as shown in Fig. 1a and examining the numerical
results for convergence in terms of the number and
spacing of points taken and in particular the distance d
of the closest points from the wedge apex. Although mode
frequencies are somewhat changed and extra modes
appear if more points are inserted closer to the apex,
these changes do not appreciably affect energy loss spectra
of fast electrons provided d < Bv/® where B = 0.1.
Because of the reflection symmetry of the wedge about
the dotted diagonal in Fig. 1a, the modes can be classified
as symmetrical or antisymmetrical for the surface charge
distributions on the two limbs. If we denote these two
charge distributions by o;, V) (s) and o, @ (s) for a

particular mode (now labelled by its wavevector q along
the axis and a radial index j) we can rewrite the eigenvalue
equation in a contracted form.

A©)01(5) = - Gy 63 (s); A(@)0jg? (5) = - Gjq 63qV(5)
5

Here the interaction integral Gjq is the same in both
cases because of the reflection symmetry already noted
and the planar structure of each limb ensures no self-
interaction of the charge on each limb. For each set of
indices j,q a symmetric and an antisymmetric mode arise
with frequencies defined by A(®) = - Gjq and A(®) = Gjq
respectively. Referring to equations (1) and (3), we then
see that the symmetric and antisymmetric modes have
characteristic excitation functions defined by o = 0.5 +
Gjq/4m and ajq = 0.5 — Gj¢/4r respectively. The numerical
results obtained with the scheme of Fig. 1a agree exactly
with this simple model.

The boundary charge method has been successfully
employed [18] to assess the importance of edge effects in
the loss spectra from aligned MgO cubes with various
possible trajectories (e.g. near the middle of a face or near
a corner). Figure 2 shows for example a comparison
between the experimental STEM and computed loss spec-
tra for a 100 keV electron travelling near and just inside
the edge of a cube. The theory successfully reproduces
the structure below 15 eV (most of which arises from the
most prominent edge mode and had been observed in
earlier experiments [22]), but there is a discrepancy of
almost a factor of two in the absolute scale. At least part
of this may be due to the difficulty of normalizing the
experimental spectrum to the zero loss component. The
losses observed experimentally below the band gap may
be due to defects.
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Fig. 2 Energy loss probability for a 100 keV electron impinging on an MgO wedge as shown in the inset. The impact parameter is 1 nm inside the

edge. Bulk and surface contributions to the losses are shown [18].
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Fig. 3 Spectrum of modes for the truncated end of an Al metallic slab (see inset) as a function of the dimensionless parameter qd [19]. The dielectric

function of the slab is characterised by a plasmon frequency .

An interesting case which has received some attention
[6,22,23] is the so-called ALOOF beam configuration
when the fast electron beam travels parallel to but a few
nm outside a surface such as the face of an MgO cube.
Surface, or near surface, valence excitations can be probed
in this way without the complicating effects of strong
elastic scattering or damaging core excitations which
would occur for a penetrating beam [11]. So far the
analysis of ALOOF beam spectra has assumed an infinitely
extended surface and neglected the contributions from
any terminating edges or corners. A preliminary numerical
investigation of these effects has been carried out [18,19]
for the truncated slab geometry shown in the inset to
Fig. 3. In this figure, the behaviour of the various edge

modes is shown as a function of gd where d is the slab
thickness and q the mode wave vector normal to the
diagram. For small values of qd the modes at the top and
bottom edges are interactively coupled to form new
symmetrical and antisymmetrical combinations with dif-
ferent frequencies. For qd > 2 (or approximately wd/v
>2) however the two edges can be treated independently
and the effect on the loss spectrum can be evaluated fairly
simply [18,19].

More complex dielectric junctions

A very important but more complicated 90° wedge situ-
ation arises at the junction of three media e.g. at the edge
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points where the interface between two media A and B
in a thin film cuts the interface with the vacuum. This
I junction configuration, depicted in Fig. 1b is (with
€. = 1) the one most frequently employed in TEM or
STEM spectroscopy of interfaces but the effects of the top
and bottom surfaces of the film as well as the dielectric
wedges formed at the corners is generally ignored. The
numerical approach to find the eigenfunctions in a single
computation valid for any combination of media then
generally fails but has been successfully elaborated {17,19]
to deal with such cases. It is interesting to note however
that the analysis employed for the isolated wedge in eq.
(5) can usefully be extended for this case. Since the
dielectric interfaces are now all different, in place of we
now use
Ay(0) = 27 (e¢ + €4)/(Ec ~ €a); Az() =
21 (ec + €g)/(€c — €g); A3(®) = 27 (ep + €,)/(€p — €4)

Using the same notation as before, the eigenmode equa-
tions for the T junction region at the top of the film
then become
Ay(@)03q (V) (5) = = Gjq 014 P (5)
Ay(@)0jg @ (5) = - Gy 63 @ (s) (6)
A3(@)0jq @ (s) = = Gjq 03 V) (s) + Gyq 03 @ (5)

where the purely geometrical integral G;q has exactly the
‘same value as for the isolated 90° wedge. We then find
that the mode frequencies are defined by the equation

A{@)Az(@)A3(0) = {Az(0) - A (0))Gjg? 7

It then follows that the T junction modes, their excitations
and their contributions to the energy loss for a given
trajectory can all be related to the properties of the isolated
wedge already investigated. The complete case of the I
junction shown in Fig. 1b would involve interactive
coupling between the two T junctions at top and bottom
in the case of a very thin film. Reference to the truncated
slab results indicates however that for film thicknesses qd
or wad/v > 2 the two T junctions will be effectively
decoupled.

Relativistic effects and radiation

Relativistic corrections both in the form of the mode
excitation functions and stopping power contributions A;
in eq. (1) of the above theory become necessary in high
voltage electron spectroscopy since even at 100 keV
v/c = 0.55. Moreover, the Cherenkov process of radiation
emission in a dielectric offers an additional channel of
energy loss for electrons of velocity v > c/g,!/2, Independ-
ently of the incident electron energy however the excited
modes can decay by the emission of transition radiation
as well as by electronic damping and retardation effects
can produce significant changes in the form and frequency
of modes (particularly low-order modes) with character-
istic wavelength a > c/w. All of these effects are most
simply and automatically included . in relativistic energy
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Fig. 4 Loss probability per unit energy range and per sphere for a 100keV
electron travelling in vacuum parallel to the axis of symmetry of a set of
14 aligned Al spheres and passing at 1 nm from their surfaces [28].
Consecutive curves are relatively shifted upwards by 0.1 a.u for darity.
The spheres have radius 10 nm, separation 1 nm and a free electron
dielectric response with @, = 15.8 ¢V and damping n = 1.06 eV. Solid
(broken) curves refer to the relativistic (non-relativistic) computation.
The total loss probability is about 2.2% per sphere in all cases.

loss theories but only a small number of examples have
been worked out. Kroger [24] obtained relativistic analyt-
ical solutions for the dielectric losses of an electron passing
through a dielectric slab. The case of a relativistic electron
moving parallel to a planar dielectric interface was later
analysed by Gras Marti ef al. [25] and successfully com-
pared with experiment by Moreau et al. [26] in the case
of the Si/SiO, interface. An analytical solution for an
isolated sphere has also been obtained recently [27]. It is
difficult to apply the relativistic theory analytically to
other geometries however and it is therefore particularly
significant that the boundary charge numerical method
can be generalized [28] for the relativistic regime.
Although a good deal of the simple physics of the non-
relativistic boundary method survives, we now have to
deal with boundary charges and currents interacting self-
consistently through the electromagnetic field. An extra
complication which arises is that the velocity of light (and
hence the Green function) is different in the different
dielectric regions. Nevertheless, numerical solutions for
the eigenmodes, their contributions to the energy loss
spectrum as well as the intensity spectrum and angular
distribution of any emitted radiation can be computed.
Once again the computations are faster for cases where
there is an axis along which the dielectric boundaries are
either invariant or have axial symmetry. Figure 4 shows
a comparison of relativistically and non-relativistically
computed loss spectra for one, two, three and four Al
spheres interacting along a line parallel to the incident
beam. The relativistic shift of the modes is readily apparent
as well as the effects of the inter-sphere coupling in the
low energy range. The dependence of the loss spectrum
from a single Al sphere on electron velocity and sphere
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Fig. 5 Scaled loss probability (a single sphere) as a function of fast electron velocity v and sphere radius a [27]. The sphere is characterized by a free
electron dielectric response with e, = 15.8 eV and damping parameter n = 0.07aw,. The impact parameter (measured from the sphere centre) is 1.1a.

size is shown in Fig. 5 with the non-relativistic results
again included for comparison. The electron passes just
outside the sphere. The contributions due to the 1 = 1
(dipole), 1 = 2 and 1 = 3 modes can be seen. Their
amplitudes, but not their positions, depend on the electron
velocity. The mode positions are strongly affected by
retardation effects, particularly for the larger spheres and
lower 1 values. For instance the dipole mode of the largest
sphere (in Fig. 5d) appears below 0.5 ®, instead of at
/312 as in the non-relativistic theory. The probability
of radiative decay (emission of transition radiation) is
greatest for the dipole mode and falls off with increasing
1. Figure 6 shows how the total loss probability is divided
between electronic damping and radiation emission for the
different modes as a function of the electronic damping.

It appears that the transition radiation emission probab-
ility from typical nanostructures per incident fast electron
may approach 0.5% and be sufficiently intense to provide
a useful additional source of spectral information about
local electronic and geometrical structure. In recent TEM
experiments [29], transition radiation and Cherenkov
radiation have both been detected from thin films and
can readily be computed by the relativistic boundary
method. Transition radiation from the dipole 1 = 1 and
quadrupole ]l = 2 modes of Ag spheres and the dependence
of the emission wavelength on sphere size has also recently
been noted (N. Yamamoto — private communication).
These results may possibly be explained by the retardation
effect. ITn other cases however. such as the size-denendence
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Fig. 6 Loss probability (solid curves) and photon emission probability
(broken curves) for a 100 keV electron passing at lnm from a 10 nm
radius sphere described by a free electron response function with @, =
15.8 eV and various levels of electronic damping shown. The inset shows
the total probability as a function of damping [28].

of the bulk mode observed in small Si particles [30], the
explanation depends on quantum size effects as well as
the spill-over of the valence charge density beyond the
geometrical boundary [31]. Both of these phenomena
signal a failure at these small volumes of the local macro-
scopic dielectric function used here to characterize each
dielectric region.
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Conclusions

The boundary charge method offers a convenient means
of computing spatially localized valence loss spectra from
arbitrary structures in the non-relativistic regime. When
only two media are involved in a geometry which is
invariant along one axis or has axial symmetry, the
computations are particularly fast and the geometry is
cleanly separated from the dielectric response of the
components. Important cases, such as a planar interface
between two media in a thin film studied in HREM profile
imaging, can now be solved exactly in terms of simpler
structures.

At some increase in complexity, the boundary method
has been developed for relativistic situations when either
fast electrons are involved or when it is desired to compute
the radiation emitted from a complex structure.

Since a very large variety of problems can now be
tackled by these methods, priority should be given to
situations where experimental data are already available
or likely to be available. Apart from the planar interface
case just noted, the cases of small particles of well-defined
shape (such as MgO smoke cubes) or nanotubes deserve
attention.

The combination of spatially resolved valence EELS and
optical emission spectroscopy appears both practical and
interesting. To distinguish experimentally between trans-
ition radiation, Cherenkov radiation and other forms
of cathodoluminescence it might be useful to employ
coincidence detection methods like those already used for
valence losses and secondary electron emission.

Spectroscopy of emitted photons is a potentially a useful
technique in the context of the STM. The radiation
spectrum is however a sensitive function of the local tip-
sample geometry as well as of the dielectric response of
the materials concerned. The relativistic boundary method
should be useful in computing these effects. It is also in
principle capable of computing van der Waals interactions
in arbitrary geometries.
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