
Mapping the Plasmon Resonances of
Metallic Nanoantennas
Garnett W. Bryant,* ,† F. Javier Garcı´a de Abajo, ‡ and Javier Aizpurua §

National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8423,
Instituto de OÄ ptica, CSIC, Serrano 121, 28006 Madrid, Spain, and Donostia
International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain

Received November 21, 2007

ABSTRACT

We study the light scattering and surface plasmon resonances of Au nanorods that are commonly used as optical nanoantennas in analogy
to dipole radio antennas for chemical and biodetection field-enhanced spectroscopies and scanned-probe microscopies. With the use of the
boundary element method, we calculate the nanorod near-field and far-field response to show how the nanorod shape and dimensions determine
its optical response. A full mapping of the size (length and radius) dependence for Au nanorods is obtained. The dipolar plasmon resonance
wavelength λ shows a nearly linear dependence on total rod length L out to the largest lengths that we study. However, L is always substantially
less than λ/2, indicating the difference between optical nanoantennas and long-wavelength traditional λ/2 antennas. Although it is often assumed
that the plasmon wavelength scales with the nanorod aspect ratio, we find that this scaling does not apply except in the extreme limit of very
small, spherical nanoparticles. The plasmon response depends critically on both the rod length and radius. Large (500 nm) differences in
resonance wavelength are found for structures with different sizes but with the same aspect ratio. In addition, the plasmon resonance deduced
from the near-field enhancement can be significantly red-shifted due to retardation from the resonance in far-field scattering. Large differences
in near-field and far-field response, together with the breakdown of the simple scaling law must be accounted for in the choice and design
of metallic λ/2 nanoantennas. We provide a general, practical map of the resonances for use in locating the desired response for gold
nanoantennas.

Over the past decade, intense renewed effort has been made
to understand the plasmonics of metallic nanoparticles. The
ability to tune the plasmon resonances over a wide wave-
length range via the choice of nanoparticle size, shape, and
composition, extreme local-field enhancements, and intense
far-field scattering are all strong motivations for applications
in high-resolution and single-molecule microscopy and
spectroscopy, surface-enhanced Raman spectroscopy, bio-
sensing, and optical communication below the diffraction
limit.1-14 Explicit control of the plasmon response has been
achieved by the use of different particle shapes, such as
nanoshells,15 nanorings,16 and nanorods.17 Recently, the
analogy between nanorods, acting as nanoantennas with
response in the optical regime, and traditional microwave
and radio wave antennas has been brought out, explored,
and exploited.18-23 Linear scaling of the plasmon resonance
wavelengthλ with total nanorod lengthL emphasizes this
analogy. The dipolar mode of such nanoantennas is often
referred to as theλ/2 mode with the expectation that the
resonance should occur whenL is a half wavelength, as
happens for traditional long-wavelength antennas made from

nearly perfect conductors with skin depths much less than
the antenna size. While such an assignment is tempting, it
has not been established and previous simulations17,22suggest
that it is not the case for nanoantennas where the skin depth
is comparable to or much larger than the nanorod dimensions.
Thus, it is imperative that a full mapping of the nanorod
plasmon be obtained as a function of nanorod size and shape
(lengthL and radiusR), both to understand how and when
nanoantennas differ from traditional antennas and to provide
useful guidelines for nanoantenna design needed for antenna-
assisted fluorescence, spectroscopy, and sensing.

Nanorods have been studied theoretically in detail.17,24-36

However, typically the focus has been to provide an
understanding of plasmon resonances in nanostructures by
limiting the calculations to specific sizes (typically, particular
radii Rs) or limited size ranges. It is well known that in the
quasistatic limit, where the light wavelength is much larger
than the particle size (λ . L, R), the plasmon resonance
should be independent of particle size and depend only on
particle shape via the aspect ratioL/(2R). As a consequence,
much of the theoretical work has highlighted the dependence
of the plasmon resonance on aspect ratio, ignoring any
explicit dependence on nanorod length or radius. Because
the quasistatic model is simple but intuitively compelling, it
has also been used as a simple model for the general
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properties of local plasmons in nanostructures.37 In this letter,
we present a full mapping of the plasmon dipole resonances
in Au nanorods, explicitly determining theL andR depen-
dence over the range typical of these nanoparticles (L < 2000
nm, R < 100 nm). This mapping is obtained from exact
electromagnetic calculations. The mapping demonstrates that
the plasmon resonance depends linearly on rod length over
most of this range ofL but with a scaling that differs
significantly from the scaling assumed forλ/2 antennas. Most
importantly, our results show how this linear dependence
changes asR is increased and retardation effects become
important. Finally, with a full mapping we show that the
quasistatic limit applies only over a very narrow range of
sizes and shapes close to a sphere and that aspect ratio should
not be used to describe nanoparticle properties, except in
this very limited size regime. Recently, Prescott and
Mulvaney34 reached a similar conclusion about the use of
aspect ratio.

The optical response of the nanorods is calculated exactly
by means of the boundary element method in a full
electromagnetic calculation,16,17,38,39including retardation. We
consider external light incident normal to the nanorod axis
and polarized along the rod. Even though the radiusR is at
least a factor of 5 smaller than the incident wavelength, our
results show that retardation effects across the structures are
important and must be included. Maxwell’s equations for
nanostructures with sharp boundaries are solved in terms of
effective surface charges and surface currents. Boundary
conditions are imposed via surface integrals along the
nanorod boundaries. The metal is characterized by a local
bulk dielectric function. The external fields interact self-
consistently with the induced surface charges and currents,
which are determined by discretizing the surface integrals
on a grid on the surface and solving the resulting matrix
equations. We calculate in this way the near and far fields
for a given structure. In this letter, we focus on Au nanorods.
We obtained similar results for other materials. For Au, we
use the bulk dielectric function tabulated by Johnson and
Christy.40 We have extended the tabulated results to longer
wavelength by matching the tabulated dielectric function to
a Drude form at long wavelength using the Drude parameters
suggested by Johnson and Christy. In this letter, we consider
nanorods consisting of a cylindrical rod, radiusRand length
Lrod, capped with hemispherical ends, radiusR, such that the
total lengthL ≡ Ltot ) Lrod + 2R (see Figure 1). In this case,
the aspect ratio isLtot/(2R) ) (Lrod/(2R)) + 1.

To define the plasmon resonances, we first calculate the
far field in the forward direction, the far-field scattering (i.e.,
the scattering cross section obtained from the optical
theorem) and the near field (normalized to the incident field)
one nanometer from the rod end, each as a function of the
incident wavelength.17 The peak in the response at the longest
wavelength defines the dipole resonance, which is the lowest-
energy, optically active resonance with a single node in the
surface charge density. Figure 1 shows a typical surface
charge density for the nanorod dipole mode.17 The charge
oscillation is cut off at the rod ends and is less than a half
wavelength oscillation. Resonance peaks at shorter wave-

lengths are assigned to higher-order, optically active reso-
nances. The peak wavelength for the dipolar resonance as a
function of total rod length is shown in Figure 2 for Au
nanorods withR ) 20, 50, and 100 nm. In each case, we
show the resonance wavelengths as extracted from the far
field in the forward direction, the far-field scattering, and
the normalized near field. Over the range ofLtot shown, the
resonance wavelength increases linearly with increasingLtot,
except whenLtot ≈ 2R and end effects are dominant. For
Ltot > 800 nm, the increase becomes slightly sublinear but
would not be noticeable in the figures shown here. For small
R, dipole resonance wavelengths extracted from the far field,

Figure 1. Schematic and dimensions of the cylindrical nanorod
with hemispherical caps studied here and the surface charge density
typical for a dipolar resonance.

Figure 2. Dependence of the dipolar resonance wavelength on
nanorod length forR ) 20, 50, and 100 nm. The resonance
wavelengths extracted from the forward far-field, the far-field
scattering, and the normalized near-field are shown.
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near field, and far-field scattering are nearly identical. AsR
increases, the resonances extracted from the forward far-
field and far-field scattering remain nearly equal for the range
of Rstudied here. However, the near-field resonance becomes
noticeably red-shifted from the far-field resonances forR )
50 nm. ForR ) 100 nm, the red-shift is about 200 nm for
the range of rod lengths considered. This shift is comparable
to the resonance half-width. This large red-shift could have
important implications for the design and optimization of
these nanostructures because the resonance wavelength
depends substantially on which response is to be engineered.
This red-shift between the near-field and far-field responses
is a signature of the onset of retardation effects, which
become important for rod diameters on the order of one fifth
of a wavelength.

The near-field resonance wavelength also depends on
where in the near field the response is measured. A blue-
shift of the resonance is observed as the near-field position
is moved back along the rod from the rod end to the center
of the nanorod while remaining a fixed distance away from
the nanorod surface. For a large nanorod withLtot ) 400
nm andR ) 100 nm, this blue-shift is about 150 nm. For a
thinner nanorod withLtot ) 280 nm andR ) 40 nm, this
blue-shift is about 50 nm. This variation along the rod axis
could also be key for any application that exploits the
plasmon resonance to modify the response of attached
molecules or other nanostructures.

As the nanorod length increases, additional, higher order,
optically active resonances appear initially at short wave-
lengths, near the resonance for a spherical nanoparticle and
then red-shift linearly withLtot.17 For smallerR, the shorter
wavelength resonances that appear first for increasing rod
length are the higher order, optically active longitudinal
resonances (those resonances with odd numbers of nodes in
the surface charge density). These higher order resonances
show up in both the far-field and near-field response with a
smaller red-shift between the far-field and near-field response
than for the dipolar resonance. However, for the thickest
nanorod we consider here (R ) 100 nm), the first higher
order resonance that occurs with increasing rod length
appears to be a transverse mode with strong far-field response
and weak near-field response at the rod end. That a mode
with response transverse to the rod can be driven by a
longitudinal polarization is another signature of the onset of
retardation effects with the surface charge on opposite sides
of the nanorod being driven by local incident fields with
different phases. As the rod length increases, this transverse
resonance weakens and disappears because it becomes
increasingly more difficult to drive a resonance that has a
transverse oscillation with an incident field that has longi-
tudinal polarization. As the transverse resonance weakens,
higher order, optically active longitudinal resonances become
the dominant higher order resonances.

Intuitively, one would expect that the dipole response at
the end of the rod is enhanced by minimizing any excitation
of these transverse modes. At points along the rod further
away from the rod end, the local response should be
enhanced by mixing higher order longitudinal and transverse

modes. Consequently, the resonance peak for the near-field
at the rod end should occur at the longest wavelength, while
away from the rod end the mixing should blue-shift the peak
response. In addition, the far-field scattering should be
enhanced by an appropriate mixture of these modes and
should also be blue-shifted from the near-field response at
the rod end. Finally, the contribution of the transverse modes
excited due to retardation effects should be weaker in thinner
rods. Our results support this intuition.

The full dependence of the dipole resonance wavelength
on Ltot for differentR is shown in Figure 3. Here, we show
the resonance wavelength extracted from the far-field scat-
tering. The linear dependence onLtot, except forLtot ≈ 2R,
is clear. However, the linear dependence varies substantially
with R. The slopeS for this linear dependence, defined as
Ltot ) L0 + Sλ, is shown in Figure 4 as a function ofR. A
slopeS ) 1/2 would correspond to the linear dependence
expected for a half-wavelength antenna made from a perfect
conductor. For smallR, the nanoantennas are far away from
a λ/2 antenna, indicating that much less than a half-
wavelength of surface charge oscillation fits on the nanorod
at resonance (as seen in Figure 1). End effects and the effects
of the finite skin depth of Au are essential.22 The skin depth

Figure 3. The full dependence of the dipole resonance wavelength
on Ltot for different R. The resonance wavelength extracted from
the far-field scattering is shown.

Figure 4. Slope S for the linear dependence between nanorod
length and resonant wavelength.

Nano Lett., Vol. 8, No. 2, 2008 633



of Au at these wavelengths is on the order of 20-30 nm.
The nanorods are far from perfect conductors because an
external field can penetrate across the structure. In addition,
for small R the sharp ends should inhibit full charge build-
up, suppressing half-wavelength charge oscillations that have
peak charge density at the rod ends. AsR increases, the slope
S monotonically increases, indicating that end effects and
the finite skin depth are becoming less significant. However,
in the range that we have considered, it appears that the slope
has converged to 0.4, still far away from aλ/2 antenna. In
this range, the skin depth is still comparable to the size of
the structure. Our results suggest that convergence to the
λ/2 limit will be slow even for micron-sized antennas.

The dipole mode of a nanorod of lengthLtot and radiusR
should be related to the plasmon mode with wavevector q
for an infinite cylinder with radiusR, where q) π/Ltot (i.e.,
by relating the nanorod plasmon to the cylinder plasmon that
has a half-period of lengthLtot). Novotny22 recently consid-
ered such a model with an additionalR-dependent correction
to account for end effects. Using an approximate evaluation,
valid for small R, of the dispersion relation for the dipole
mode22,41 and a Drude model for the dielectric function, he
found that the dipole resonance wavelength increased linearly
with Ltot and the slopeS increased withR. However, the
slopes obtained from his model were higher than those
obtained here.

The dispersion relation for the cylindrically symmetric
mode of an infinite cylinder is obtained from the dispersion
relation,41 f ) DrI0(DrR)K1(DR) + εDI1(DrR)K0(DR) ) 0,
whereε is the dielectric function of the nanorod,D ) (q2 -
k2)1/2, Dr ) (q2 - εk2)1/2, In andKn are the modified Bessel
functions of ordern, andk ) 2π/λ. To identify the solutions
to this dispersion relation, we consider the quantity 1/|f|,4
normalized to the maximum value for each lambda (the
maximum value is finite because the imaginary part ofε

broadens the resonance). We sum the contributions from
nanorods with the radii as used in Figure 3 and show the
dependence onLtot andλ as a contour plot in Figure 5. The

resonance wavelengths are identified as maxima at eachLtot.
We use the dielectric function of Johnson and Christy and
evaluate the dispersion exactly for allR. We find a linear
dependence of the resonance wavelength onLtot for eachR.
The slopeS for this dependence increases with increasing
R. However, the resonance wavelengths obtained from the
dispersion relation are significantly shorter than those we
obtained for nanorods, as can be seen by comparing Figures
3 and 5. Moreover, the slopesSobtained from the dispersion
relation are significantly higher than those in Figure 4. For
example, from the dispersion relation,S ) 0.17, 0.29, and
0.42 forR ) 5, 10, and 20 nm and for largeR, Sapproaches
the expected 1/2 limit. While the simple cylinder model is
suggestive, end effects clearly play a crucial role in defining
the resonance position. Moreover, similar slopesSare found
by Novotny,22 even when end effects are included in the
cylinder model. These simple models predict resonance
wavelengths substantially shorter than those we obtain for
nanorods. Moreover, the nanorods never reach theλ/2
limit for the range ofR that we consider, while the simpler
cylinder models are nearly converged to this limit forR )
100 nm.

The R dependence of the plasmon dipole resonance is
shown in Figure 6. This is the same data shown in Figure 3,
replotted to highlight theR dependence. The individual
curves are for fixedLrod. We plot for fixedLrod so that each
curve shows the variation in resonance wavelength as the
transverse dimension is scaled. As expected, for spherical
particles (Lrod ) 0) the plasmon dipole resonance wavelength
increases weakly, red-shifting with increasing particle size
due to retardation. For nanorods with finiteLrod, two regimes
are apparent. At smallR, the resonance varies inversely with
R, blue-shifting with increasingR, as would be expected for
the quasistatic limit where the resonance depends only on
the aspect ratio. In contrast, for largerR the resonance
increases monotonically at fixedLrod, red-shifting for increas-
ing R as for spherical particles. A similar red-shift is seen
for all Lrod. The most significant difference for differentLrod

is that the onset of this retardation effect occurs at largerR
for longer nanorods.

Figure 5. The dependence of the dipole resonance wavelength on
Ltot for different R as obtained from the folded spectrum of an
infinite cylinder (i.e., with the prescription q) π/Ltot for the
longitudinal wavevector). The same values ofR are shown here as
in Figure 3.

Figure 6. The full dependence of the dipole resonance wavelength
on R for different Lrod. The resonance wavelength extracted from
the far-field scattering is shown.
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So far we have considered the explicit dependence of the
plasmon resonance on size and shape by mapping the
dependence on bothLtot andR. However, it is still common
in the literature to highlight the dependence on shape alone
under the assumption that nanoparticles are in the quasistatic
limit where the resonance depends only on the aspect ratio.
In Figure 7, we plot our results as a function of aspect ratio.
Each curve corresponds to a fixedR. In the quasistatic limit,
where aspect ratio is a meaningful parameter to characterize
the structures, the plasmon resonance should be independent
of the size (i.e., independent ofR) and all curves should lie
on a common universal curve. Surprisingly, there is no
region, except for the very smallest nearly spherical nano-
particles, where the curves for differentR are close. We do
not observe scaling with the aspect ratio. For example, the
plasmon resonance red-shifts by more than 500 nm in the
range ofR from 5 to 100 nm for an aspect ratio of only 2.
For large aspect ratios, the red-shifts are even larger. These
results show that the requirement that the radius be much
less than the wavelength really is a stringent requirement,
and that outside of this restricted range the quasistatic
approximation is limited (see also ref 34). Therefore, the
resonance map presented here should be valuable as a
practical guide to locating plasmon resonances when design-
ing realizable nanoantennas for molecular fluorescence and
spectroscopy.

In conclusion, we have provided a full mapping of the
size and shape dependence of the dipolar plasmon resonance
of Au nanorods. The dipolar resonance wavelengthλ shows
a nearly linear dependence on rod lengthLtot except for small
Ltot, where the nanorod is nearly spherical and end effects
are more important. However,Ltot is always substantially less
thanλ/2, indicating a key difference between optical nano-
antennas and long wavelength, traditionalλ/2 antennas made
from nearly perfect conductors. Theλ/2 limit is approached
as the nanorod increases in size. However, this limit is not
reached on the nanoscale for optical nanoantennas. Although
it is often assumed that the plasmon wavelength scales with
the nanorod aspect ratio, we find that scaling with the aspect
ratio does not apply except in the extreme limit of very small

nearly spherical nanoparticles. For small rod radii, the
plasmon response blue-shifts with increasing radii and fixed
rod cylinder lengthLrod, as would be expected for scaling
with the aspect ratio. However, the plasmon response still
depends on both the rod length and radius and does not scale
with the aspect ratio. For larger radii, the resonance red-
shifts for increasingR and fixedLrod. Moreover, for larger
radii the plasmon resonances deduced from the near-field
enhancement is significantly red-shifted due to retardation
from the resonance in far-field scattering. Such large
differences in near-field and far-field response and the
breakdown of the simple scaling law must be accounted for
in choosing and designing nanoparticles for a particular
response.
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