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Abstract

Recently, we have addressed the e�ects of overall shape upon the electronic response of isolated molecules and

nanoclusters, with particular emphasis on the mean excitation energy. Here, we consider the relationship between gross

molecular shape and mean excitation energy anisotropy for very long objects. In particular we compare results for

elongated ellipsoids and a string of particles. We ®nd the latter model gives a better prediction of stopping power

anisotropies of isolated long molecules. Ó 2000 Elsevier Science B.V. All rights reserved.

1. Background

For most of the history of stopping calculations
and measurements, the focus has been either bulk
(crystalline) or very dilute gas (atomic) response.
That history can be viewed as a focus upon the
system (solid) and its isolated constituents (atoms).
With increasing sophistication of both experi-
mental and theoretical technique, as well as ad-
vances in material characterization and
preparation, the evolution of charged particle en-
ergy deposition research would be expected to
parallel the recent development of condensed
matter physics: A broadening from study of bulk
systems to include surfaces and nanoscale objects
like quantum dots, Rydberg atoms, (®nite) wires,
and nanotubes. Clearly such assemblies have
properties that can depend strongly on the rela-
tively isolated nature of their constituents. In

many cases, those constituent entities are highly
orientable. As chemists and material scientists
become increasingly skillful at orienting long,
more-or-less isolated molecular entities [1,2], it will
be of growing importance to have interpretive
predictions of orientation-related behavior.

This work addresses the characteristic anisot-
ropy of stopping in isolated, very long molecules
by connecting the extremes, namely, of stopping in
simple, gas-phase atoms and in a single in®nite
chain of atoms, i.e., a thin wire. In other words we
are delineating stopping behavior upon passing, in
a global sense, from zero-dimensional to one-di-
mensional behavior. We devote particular atten-
tion to very asymmetric molecules (in the sense of
long or high aspect ratio) since it is easy to
anticipate that there will be more and more ex-
perimental results available for such molecules in
well-controlled circumstances (e.g., aligned to
avoid statistical averaging over directional prop-
erties). We ®nd good correlation between our
simple stopping model and results from detailed
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calculations on long molecules. The results may be
expected to be relevant also for understanding the
properties of, for example, metallic powders which
tend to form strings of particles, chain-like dipolar
systems [3] or brine-®lled porous rock with similar
geometrical patterns [4]. Another example of po-
tential relevance comes from near-®eld optical
microscopy. There has been recent interest in
that area in rows of gold nanoparticles on an
indium-tin-oxide doped glass [5]. Those rows are
particularly relevant since the coupling between
the particles was the basis for the observation of
some unexpected features. Chains have also been
suggested recently as having a strong absorption
enhancement at long wavelengths because of
structurally induced resonances [6].

Recently we have investigated the e�ects
of molecular topology on the electronic structure
and properties of molecules and nanoclusters [7]
and their dependence on orientation with respect
to the projectile beam. The main result was to es-
tablish a relationship between the mean excitation
energy and the molecular ellipticity as de®ned
from van der Waals radii. Good correlation was
found with ®rst-principles mean excitation energy
calculations for a large class of molecules, thereby
showing the importance of shape for an average
quantity such as the mean excitation energy. That
formalism is the point of departure for the present
analysis.

For an axially symmetric target with its major
axis aligned along the laboratory z axis, the linear
energy deposition for a probe incident with labo-
ratory frame velocity v is [8]

ÿ dE
di

� �
� nSi�v�; �1�

with i either x � y or z and n the number density of
scatterers. For a swift longitudinal beam (aligned
along z), the stopping cross-section (SI units) is
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and for the transverse alignment
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Here Z1; Z2 are the projectile charge and the
number of scattering electrons in the target mole-
cule, respectively. In the Bethe approximation, the
directional components I i

o of the mean excitation
energy are determined by the energy-dependent
dipole oscillator strength distribution of the target,
f i�E�,

ln I i
o �

R
f i�E� ln E dER

f i�E� dE
: �4�

Evidently the directional di�erence in stopping
cross-section for a single, fully axially symmetric
system is

DS�v� � Sx�v� ÿ Sz�v� � Z2
1 Z2e4

8pmv2�2
o

ln
Ix

o

Iz
o

: �5�

Clearly the ratio Ix
o=I z

o is the parameter that char-
acterizes the stopping anisotropy for such mole-
cules. This ratio thus is the major object of our
study. We will present results for two models of
jellium systems.

2. Jellium ellipsoids

In this section we connect stopping and collec-
tive excitation energies via electron gas consider-
ations. Such connections have a long history in
stopping theory, dating to the homogeneous gas
calculation of Kramers [9] and the related local
plasma approximation of Lindhard and Schar�
[10].

Finite, non-spherical jellium objects have
proven to be a simple but powerful model for
elucidating shape e�ect trends. Such objects have
collective electronic dipolar excitation frequencies
associated with the direction i which can be written
as

xi
p �

����
ni
p

xp: �6�

xp is the plasma frequency, hence is a measure of
the density of the smeared-out ionic (jellium)
background which by charge neutrality has to be
the same as the electronic density. ni is the so-
called depolarization factor that is de®ned by
geometry alone [11,12]. We do not consider the
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bulk plasmon excitation since it is not shape-de-
pendent and would drop out of Eq. (5). The sim-
plest way to obtain Eq. (6) is to take the expression
for the polarizability of a small (metal) particle
(see e.g. [13]), introduce the free-electron-like
Drude dielectric function and look for the poles of
the polarizability which are the collective surface
modes of the small particle.

The shape of a jellium ellipsoid of revolution
with rotational axis c and semiaxes a � b (i.e., a
spheroid) satisfying

x2

a2
� y2

b2
� z2

c2
� 1 �7�

is determined uniquely by the eccentricity e

e � 1

c

�����������������
ja2 ÿ c2j

p
: �8�

We assume the jellium ellipsoid to have sharp
boundaries and to consist of a uniform electron
gas. As we have shown within a heuristic scheme
[7], because the plasma frequency is the only
available energy scale, it follows that

Ix
o

Iz
o

�
�����
nx

nz

r
; �9�

independent of the actual value of xp. (At the risk
of pointing out the obvious, this ratio applies to a
single system. It is not a comparison of two dif-
ferent molecules.) This result can be con®rmed on
a more fundamental basis via the so-called Clem-
enger model [14] of cluster physics. Thus, the
asymmetry ratio is expressed in terms of functions
which only depend on shape. The depolarization
factors �06 ni6 1� for a jellium ellipsoid can be
written [13]

ni � abc
2

Z 1

0

dp

�j2 � p� ��������������������������������������������������a2 � p��b2 � p��c2 � p�p ;

�10�

where j � a; b; c in order when i � x; y; z. Consid-
eration of a prolate ellipsoid leads, after some al-
gebra, to a depolarization factor (in terms of
eccentricity e) of

nz � 1ÿ e2

e3
ln

�����������
1� e
1ÿ e

r"
ÿ e

#
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For a spheroid where a � b,

nx � ny � 1

2
�1ÿ nz� �12�

since the n's must sum to unity [13]. The ratio of
the mean excitation energies perpendicular and
parallel to the axis of rotation for such a jellium
ellipsoid is then

Ix
o

I z
o

�
�������������
1ÿ nz

2nz

s
: �13�

Notice that this ratio is a function of a=c alone and
is unity for a � c (sphere). Thus the stopping an-
isotropy is solely a function of geometry in this
model. It should be noted that the results above
have no overall energy scale except xp, the plasma
frequency.

The dashed curves in Fig. 1 show the dispersion
of the two collective modes (Eqs. (6), (11) and (12))
as a function of the shape of the particle parame-
terized by a=c. (Also shown there are the results
for a string of N pearls parameterized by 1=N ; see
discussion below, e.g., Eq. (15).) Starting from the
spherical shape �a � c�, the separation of modes
grows such that at the extreme of asymmetric
shape �a� c� one mode goes completely soft and
the other approaches a squared energy of 1

2
x2

p. For

Fig. 1. Energies squared (in units of the plasma frequency

squared) of the two collective modes of a jellium spheroid

(dashed curves) as a function of its inverse aspect ratio a=c
denoted as 1=N �a � 1�. Points give the corresponding modes

for a chain of touching spheres (``string of pearls'') as a function

of the number N of spheres (``pearls'') in the chain.
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the purposes of the present analysis, this softening
behavior is a drawback of the model, since the
corresponding shapes prevent prediction of as-
ymptotic features of very elongated molecules. (It
should be pointed out in passing that a cylindrical
model would have the same mode softening in the
limit that the aspect ratio goes to in®nity.) Hence
we present a new approach in the next section.

Fig. 2 shows the mean excitation energy ratio
from Eq. (9) as a function of inverse aspect ratio
a=c (a=c! 0 for very elongated objects, a=c � 1
for spherical ones). The divergence for small values
of a=c is a direct manifestation of the mode soft-
ening shown in Fig. 1. Fig. 2 also provides a
comparison with values for some representative
molecules calculated via a much more sophisti-
cated scheme [15]. In that calculation CH4 corre-
sponds to a spherical molecule in the present
calculation and C2H2 is an example of a relatively
high aspect-ratio molecule.

This simple model captures well the main
physics involved. However, closer inspection of
Fig. 2 shows that the longer molecule values are
slightly below the theoretical prediction. It is also
obvious as we go to longer molecules that the
spheroidal model does not reproduce their shape
accurately. Of necessity it introduces an incorrect
curvature to the terminal electron distribution.

Therefore, the next section gives a description that
permits consideration of extended objects without
requiring the use of a spheroid as it becomes as-
ymptotically long. This additional realism turns
out to have bene®cial e�ects on the ability to
predict the directional mean excitation energy ra-
tio and leads to a ®nite value for Ix

o=Iz
o when

a=c! 0.

3. A string of pearls

We introduce a model built from many spheres
in a row, with the possibility of going from one to
in®nitely many. It is based on the so-called spectral
representation of the response properties of a
general chain of non-overlapping spheres with
arbitrary separations (center±center distance r)
and sizes (sphere diameter d) [16]. Here, we con-
sider only equidistant spheres of equal size but
with variable ®lling fraction a � d=r. Hence a goes
from zero for very separated spheres to unity for
touching spheres. a is a purely geometrical quan-
tity that, however, can be related to the interaction
strength; see discussion after Eq. (16). As with the
previous model, one can derive the depolarization
factors and again they sum to unity, hence Eq. (12)
holds but with [16]

nz � 1

3
1
ÿ ÿ a3FN

�
: �14�

Now N is the number of spheres and FN is a
structure function discussed below. In terms of N
and a we can relate the spheroidal inverse aspect
ratio, a=c considered before, to the ratio between
the width of the chain and its length as

a
c
� d
�N ÿ 1�r� d

� a
a� N ÿ 1

; �15�

which for touching spheres �a � 1� assumes the
simple form a=c � 1=N . Physically a is a measure
of the ®lling fraction of the chain. Chemically a
can be interpreted alternatively as a measure of the
interaction or bonding strength between the con-
stituent ``atoms'' (spheres) of the chain. Hence, the
range of a spans the non-interacting to the fully
interacting chain. Note that a� 1 because the

Fig. 2. Directional mean excitation energy ratio as a function of

inverse aspect ratio c=a for a jellium spheroid (prolate a6 c
only). The speci®c molecular anisotropies shown are from po-

larization propagator calculations [15]. The full curve comes

from evaluating Eq. (9). The dashed line is our improved model,

plotted as a function of the ratio between width and length of a

chain of atoms. Note that in this case the mean excitation en-

ergy ratio does not diverge for small a=c (large N) because there

is no mode softening in the case of the chain.
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model does not allow for overlapping spheres.
Introduction of such overlap would add com-
plexity well beyond the scope of the present study.

The function FN , which contains the geometri-
cal information is given by Fuchs [16] �N > 1�

FN � 1

2N

XN

i�1

XN

j�i�1

1

jjÿ ij3 : �16�

This we recognize as a so-called dipolar sum since
it sums an interaction decaying as the third power
of the inverse distance over all the ``atoms'' in the
system. We retrieve speci®cally the one-dimen-
sional dipolar sum for the in®nite chain:
F1 � 1

2
f�3� � 0:601 (where f is the Riemann zeta

function).
With de®nitions of FN and a=c in hand for the

string of pearls, we can use Eq. (14) in Eq. (6) to
provide the dispersion of the two dipolar modes in
the string-of-pearls model as a function of the
geometrical factor a and the number of atoms in
the chain N. It is convenient to do this ®rst for
a � 1 as a function of 1=N . This case is shown as
points in Fig. 1. It is clear that the modes for the
string of pearls are qualitatively di�erent for the
very long, high aspect-ratio objects. In particular
there is no mode softening. This di�erence obvi-
ously has important consequences for the mean
excitation energy ratio and in fact remedies that
speci®c shortcoming of the spheroidal model in the
limit of very long objects.

The ratio of mean excitation energies for the
chain is

Ix
o

Iz
o

�
�����
nx

nz

r
�

��������������������
1� 1

2
a3FN

1ÿ a3FN

s
: �17�

Since F1 < 1 and a6 1, the ratio in Eq. (17) is ®-
nite in the limit of very long molecules as opposed
to the in®nite value in the spheroidal model. To
relate Eq. (17) to geometrical parameters for long
molecules we must ®nd reasonable measures of
bonding distances and radii of the constituent at-
oms. Here, we do not pursue those issues but refer
to our previous papers where a thorough discus-
sion is given [7]. Instead we use a � 1 since this is
the best case to illustrate the qualitative di�erences

between the two models of stopping asymmetry we
consider.

Fig. 2 shows the mean excitation energy ratio
from Eq. (17) as a function of a=c � 1=N �a � 1�,
as determined via Eq. (15). It is readily apparent
that the chain has less variation for long mole-
cules, mainly because there is no mode softening in
this model (see comparison of dispersion for the
two models in Fig. 1). The string-of-pearls model
also gives a better account of the ®rst-principles
numerical calculations [15] than does the prolate
spheroidal curve. Our main emphasis has been to
introduce a qualitative change to indicate how the
problem with the divergence in the spheroidal
model can be avoided. In a geometrical sense, we
have used a model which approximates the mo-
lecular shape from the opposite perspective from
that of the spheroidal model. Clearly the true re-
sults are in between the two curves. Also notice
that we have used one a-value to represent the
di�erent molecules in order to indicate the main
features of the string-of-pearls model. In reality
there would be a di�erent a-value for each mole-
cule. The determination of a�a=c� for real mole-
cules might seem somewhat arbitrary. However,
the values of a=c in the ®gure assigned to the ac-
tual molecules were determined from the canonical
van der Waals radii of their constituents. Addi-
tional details of this procedure are given in [7]. In
any case, these models are semi-quantitative at
most, hence, no purpose would be served by trying

Fig. 3. Illustration of the way the directional mean excitation

energy ratio changes in passing from one atom �N � 1� to in-

®nitely many as a function of the ®lling fraction a (a � 1 cor-

responds to touching spheres), i.e., how this ratio changes with

dimensionality going from zero-dimensional to one-dimen-

sional.
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to tune the model parameters to yield quantita-
tively reliable results.

To appreciate the a-dependence, i.e., the im-
portance of the ®lling fraction or degree of inter-
action in the chain, which is both of physical and
chemical interest, Fig. 3 shows the directional
mean excitation energy ratio as a function of a for
a chain with one up to an in®nite number of at-
oms. Again a � 1 is the touching situation and
a � 0 is the extreme dilute limit corresponding to
one sphere. As such, Fig. 3 accounts for the pos-
sible spread in directional mean excitation energies
on the far left in Fig. 2. Fig. 3 also illustrates the
relationship between directionality in stopping and
the dimensionality of a system.

4. Conclusions

An amusing consequence of Eq. (17) is that an
in®nite string of vanishingly small �d ! 0� objects
with non-vanishing spacing (r ®nite) is nearly
isotropic in its stopping. A moment's re¯ection
shows that this is not as odd a result as it might
seem at ®rst thought: The stopping of an arbi-
trarily small electronic distribution with ®nite
electron density must tend to zero, hence the an-
isotropy of even an in®nitely long chain of such
objects must tend to zero also.

The string-of-pearls model provides semi-
quantitative predictive power regarding longer
molecules which is useful both for understanding
trends and for calibrating what to expect before
embarking on demanding ®rst- principles calcula-
tion of such large systems. As with the spheroidal
jellium model however, limitations will emerge if
we want to address more detailed questions than
the ones in this paper. In those cases one must go a
step farther in re®nement and use a treatment such
as the boundary charge method [17]. It is a sim-
pli®ed numerical scheme useful for doing stopping
and energy loss calculations on more complicated

geometries which are not easily amenable to the
kind of models we have presented in this paper.
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