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Numerical simulation of electron energy loss near inhomogeneous dielectrics
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The nonrelativistic energy loss suffered by fast electrons passing near dielectric interfaces of arbitrary shape

is calculated by solving Poisson’s equation using the boundary-charge method. The potential induced by a

moving electron is expressed in terms of surface-charge distributions placed at the interfaces. These surface
charges, obtained by self-consistently solving the resulting integral equation, act back on the electron produc-

ing a retarding force and hence energy loss. The dielectrics are described by frequency-dependent dielectric
functions. Two particular cases are discussed in further detail: interfaces invariant under translation along one

particular direction and axially symmetric interfaces. Previous results for simple geometries, such as planes,

spheres, and cylinders, based upon analytical solutions, are fully reproduced within this approach. Calculations
are presented for electrons moving near wedges, coupled parallel cylinders, coupled spheres, and toroidal
surfaces[S0163-182607)00848-5

. INTRODUCTION element method® whereby a distribution of surface or inter-
face charges is generated, interacting self-consistently with
Sophisticated numerical simulation of the elastic scatteritself as well as with any external field, such as that due to a
ing contribution to image contrast is routinely employed inpassing electron. This approach can be traced back to
conventional high-resolution electron microscopy of inho-Maxwell?° who used it to compute capacitances, but it has
mogeneous materials. Inelastic scattering effects are usualjeen employed much more recently to determine normal
included only via a complex optical potential.Now that ~mode frequencies of dielectric excitations by Fuifiéfor a
increasing numbers of high-resolution microscopes are fitte§UP€ and by Ouyang and IsaacSbfor bodies of arbitrary
with energy-loss imaging facilities, a much wider interest inShape. Ouyang and llsaac.%‘bﬂnave gone on to apply the
inelastic scattering processes, hitherto mainly the preserve eundary method to investigate the effect of the support on
scientists equipped with scanning transmission electron mifast electron energy losses near small particles, but do not
croscopes, can be anticipated with a consequent requiremepfovide many details of their procedures. Other recent appli-
to be able to interpret loss intensities in terms of local chemi<ations of this approach include the surface modes of chan-
cal and electronic structure. For energy-loss events aboveels cut on planar surfac@sand those of coupled parallel
about 50 eV, involving the excitation of characteristic atomicW!'€s- _ _ _ _
levels, existing theory can broadly satisfy these requirements Frequency-dependent dielectric functions will be used to
even if the Computation of the details of edge Shapes in indescr.lbe the responses of dlffel’.ent media in what follows.
homogeneous regions may still present challenging probAtomic units(a.u.,e=m=#=1) will be used from now on,
lems. For the relatively more intense, valence loss region thenless otherwise specified. o
situation is so far much less satisfactory because the theory Section Il will be devoted to the description of the
has to deal with collective excitations as well as with themethod. The particular case of cylindrical interfades.,
delocalization arising from the larger impact parameters perthose that are translationally invariant along one particular
missible in low-energy transfers. Fermi's nonrelativistic direction but otherwise arbitrarily shapedlill be considered
theory® of dielectric excitation by a moving classical electron In Sec. lll, where calculations of the loss probability of elec-
has been successfully extended to deal with inhomogeneod®ns passing near wedges and coupled parallel cylinders is
solutions (essentially of Laplace’s equatipran be calcu- cpupled_ spheres and' torqldal surfaces. Finally, the conclu-
lated analytically. Approximate solutions that have been obSions will be summarized in Sec. V.
tained for more complex geometries such as hemispHéres,
coupled sphere and plah&® coupled sphere€’ or Il. BASIC THEORY
coupled cylinder® are still based on increasingly elaborate
analytical analysis. There is an obvious need for direct nu-
merical simulation methods enabling valence losses to be Within the local response approximation, the Poisson
computed in arbitrary geometries using standard packagesequation that relates the scalar potend¢ét , ) to the exter-
A promising basis for such a numerical approach is thenal charge density distributiop®{(r,w) in the presence of
boundary-charge method, also known as the boundarjnhomogeneous dielectrics can be written

A. Boundary-charge method
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VLe(r,w)Vo(r,w)]=—4mp®(r,w), )

where the dielectric response is described in terms of an
arbitrary function of space and frequency, e(r,w). Equa-
tion (1) can be recast

B(r,w)=¢"(r,w)+ ¢*"*Nr, ), (2)
where
FIG. 1. Schematic representation of an interface separating me-
pext(r/ ®) dia u;, and u,. The normalng at the interface positios has been
O (r,w)= f dr/ ———~ "7 3 chosen to point towards mediuny, [see Eq(6)]. The small curved
e(r',w)r—r’| arrow indicates the sense of increasing parameter
and

If the external charge® does not present singularities at the
interface, the electric field produced ky” is continuous.
phoundary ¢ w):if dr,qu(r’,w)Ve(r’,w) 4) However, this is not the case of the electric field derived
’ 4 er' o)r—r'| from ¢P°U"9aY The analysis of this contribution is more

subtle. According to the Gauss theorem,d@nds’ lying on
The first term in Eq(2) reduces to the bulk screened poten-the interface one has

tial in infinitely extended homogeneous materials. The sec-
ond term originates in the inhomogeneity of the response lim ng: V(1/|sttng—s'|)=F(s,s' ) ¥2m8(s—9),
function; it will reduce to surface integrals in the case of t—0"
homogeneous dielectrics separated by abrupt interfaces. W
shall focus on this kind of systems from now on. where
The different homogeneous dielectrics will be labeled by )
an indexu. Denotinge,,(w) the dielectric function charac- F(ss)=— Ny (S—S)
terizing mediumu, the full space- and frequency-dependent ' |s—¢g'|®
dielectric function reads

and the limit corresponds to approaching the interface from
mediumu, and w4 for upper and lower signs, respectively.
e(rw)=> €u(0)0,(1), F gives rise to a continuous contribution to the electric field.
# The normal electric field at a point of mediugy infinitesi-
whered,,(r) is 1 whenr lies in mediumu, 1/2 on its bound- mally close to the interface can then be written
ary, and O otherwise. —ng Vo(s,w)+27a(s,w) and hence the normal displace-
The integrand in Eq(4) is nonzero only at the interfaces, ment reads
where the dielectric function suffers a sudden variation, con-

veniently described in terms of surfaégfunctions. One can Ng:D(s,w)=€,,(0)[ —Ng Vé(sw) +2mo(sw)],
write
where—V¢(s,w) refers to the continuous part of the electric
1 Vé-Ve 1 1 field noted above. Combining this expression with [E).
— =—D-V-=0s, (5) and using Egs(3) and(7), one finds
47 € 4 €

where ds is the surface delta function that defines the inter- A(w)a'(s,w)=ns~V¢>°°(S,w)+j ds'F(s,s)o(s ),

faces,
8
1 €uy(@) (@) where
o(s,w)= yp= Eul(“’)fgz(w) ng- D(s,w) (6)
. . ) ) E#Z(w)-l-eul(w)
is the induced boundary charge,js the coordinate vector ANw)y=27——7—"-". (9
running over the interfaces is the interface normal &, Eﬂz(‘”)_fm(“’)

and the indicegt; and u, refer to the media lying opposite . . . .
the interface normal and in the direction of the interface nor_Equat|on(8) constitutes a seli-consistent relation tor The

. ) : - dimension of the problem is reduced from 3 in Efj.to 2 in
mal, respectlvel_}(see Flg' L C_)b_wously, those indices may Eq. (8), with the consequent reduction in the number of
depend ors. Notice that in deriving Eq(6) from Eq.(5), the : : Zhit . X
S function in the latter is unambiguously defined thanks topomts employed to numerically solve“itit is the aim of this

the continuity of the component of the electric displacemenévork to provide expressions suitable for the numerical evalu-

normal to the interfacag- D. tion of integral equations).

Using Eq.(6), Eq. (4) reduces to
B. Solution in terms of interface modes

S’ _ . . . .
pooundaryp () — f d T: _;) _ @ byThe self-sustained oscillations of the system are described
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, , modes of interacting subsystems to those of the noninteract-
ZW)\iU'(S)=J ds'F(ss)a'(s), (10 ing subsystems. Notice that for certain geometties., the
dielectric spherg F is positively or negatively defined.e.,
wherei labels the different modes. The Operaﬁ)ris not its eigenva|ues are all positive or nega)ilvhgading to natu-

symmetric in general. Nevertheless, Ouyang and Isaacsag| oscillation frequencies always below or above the flat
have shown that its eigenvalugs are real® Moreover, the  syrface mode, respectively.

eigenfunctionss' form a complete basis set that satisfies the

orthogonality property C. Electron-energy-loss probability

=4ij, (11)  turbations. Let us now focus on a fast electron moving with
constant velocity along a straight-line trajectory described
where the normalization has been conveniently chosen. by r=ry+vt, wherer is the particle position at=0. The
Now the inhomogeneous term of E@) can be expanded rate of energy loss suffered by the electron can be expressed

j a'(s) agl(s)* All of the above can be applied to arbitrary external per-
ds J’ dsf ——=

|s=s|

in this basis set as in terms of the induced force acting on it according to
ne Vo (s0)=, 2y (0)o'(s) d—E=v-V¢‘"d(r t)]
S ' oy eﬂ(w) Yz ' dt Y lr=rg+vt
where dé™(ro+vt,t) 9
_ =—r 7 ¢ 0 Dhorew. (19
O_I(S/)*
. = fn . ex
fiu(@) f dSJ ds'n qu"t(s'w) |s—¢| The first term on the right-hand side of this equation rep-

resents a conservative work, which need not be considered

here; it vanishes when integrated over an infinite trajectory
p(r ) pgssing near a finite target and also for an electr_on beam
L e directed parallel to a cylindrical surface of the sort discussed
|s—r| below. The second term accounts for production of real ex-
is the direct potential created by the external charge Con(_:itations if‘ thg target, that is’(}iﬁ‘e dissipative part of the work,
tained in medium. and thus it will be denotedE“Sdt. It can be decomposed

Finally, the solution of Eq(8) can be written into the contribution of different energy lossesin the fol-

and

B, (sw)= fv dr

lowing way:
Cip di
= ) 12 A dE®® *
0
and the coefficient€;,, are determined by solving
where
2 AIU:jCjM:fiM"”ZW)\iCiW (13)
i

I‘(w)Zif dtim{—¢™(ro+vt,w)e "  (16)
T 0 '

wherel labels different interfaces, so thaj depends on the 3 _ _ _
two media that interfackactually separatdsee Eq(9)]and  Is the loss probability per unit energy. This can in turn be
conveniently separated as

i * (o

o.:i:f dsf ds' LU,(S), F:rw+1—*boundar¥
S |s—¢'|

. o . . . whereI™ corresponds to bulk loss¢soming from the in-

where the integral is’ is restricted to interface Notice that 4, g part of Eq(3)] and '**U"a%is related to losses origi-

201 =6, according to Eq(11). _ _ nating in the interface moddebtained by substituting Eq.
In the particular case where only two different media are(7)] for M in Eq. (16).

considered,u=1,2, the indexl can be disregarded in the — Eor the fast electron considered above, the external charge
equations written above. Then Eq&2) and(13) are readily density reads
solved and the surface charge reduces to
f ext( 1 L)ei(rH—r‘(‘))w/v
_ in [ pT(r,w)=06(r——rg)———,
o(s,) I}/; e (@A (0)=2m0] ol(s). (19 ’

Notice that the frequency of the self-sustained modes arwherer - andr| represent the componentsroperpendicular
related to the eigenvalues via the dielectric functions of @nd parallel tov, respectively. The bulk losses are readily
the two media according to\(w)=2m\,. Apell and found to be
co-workeré® have exploited this relationship to derive sum 5 20 1
rules conngcting th_e mod_es of a s_ystem to that qbtained by I*(w)= _E T.uf v_q|m(__(w)], (17)
interchanging the dielectric properties of both media, and the T wiv g €

o



15876 F. J. GARCA de ABAJO AND J. AIZPURUA 56

where T, represents the time spent by the electron insidevherel’; is independent of the choice of dielectric functions
mediumu and the upper limit of integration is provided by but depends on the position of the electron begmvia
the cutoff 2, which accounts for the maximum momentum wr;/v and also on the geometry of the interface. The term

that the electron is able to transfer to the target. A more— 1/e,, () inside the square brackets of Hg1) lowers the

realistic way of calculating bulk losses consists in introduc- 4q probability; it represents the begrenzung effect, that is,

ing a dependence of the dielectric function on momentm yhe tact that the strength of the bulk modes given by &)
The bulk losses offer little information on the geometry of is reduced as some interface made activated. Rather than

the system. The rich structure of coupled modes with fre‘using Eq.(20) to calculatel’,, we will obtain it directly from

quencies well separated from the bulk plasmon frequencieg s (g) and(18) by using a Drude dielectric function with a
of the different media that_ form the target is contameq in th amping sufficiently small to ensure that the loss probability
surface loss tgrm, on W.h'Ch we are going to focus in Wha‘ét the energy of resonanag comes almost exclusively from
follows. Inserting Eq(7) into Eq.(16), one finds modei. Then, dividing byg;(w) one readily obtaing’; .
[boundary .y The foIIowi_ng _s_ections will be devoted_to showing the
range of applicability of the present formalism to actual ge-

L ometries. Different selected cases will be studied.

-2 —SL |
= W—Uj dS KO(M) Im{O'(S,O)) e|(r!,—5”)w/v}.
(18)

IIl. TRANSLATIONALLY INVARIANT INTERFACES

Let us consider an arbitrarily shaped cylindrical interface
The expression for the loss probability is further simpli- parallel to thez direction, described in terms of the paramet-
fied when only two different materials are considered. Insertric curve Ry(8) = (Xs(6),y<(0)) [i.e., (6,2) = (Xs,Ys,2z) and
ing Eq. (14) into Eq. (18), one finds ds=dzdg\x.?+y.?, where the prime denotes differentia-
tion with respect to the parametéi. The interface normal
. ] nS:(y;,—x;,O)/\/x;‘ZﬂLy;‘2 points towards the medium on
ey the right-hand side when one runs along the interface in the
(19 sense of increasing, as shown in Fig. 1.
The translational invariance along thelirection makes it

2

1 1
[ bound M’)Z;Ei > |m:—{9i(w)—mr

u=1

where natural to work in Fourier space with respect to that direc-
T. tion,
i
f |I’L—SL| dq iqz
_ pv i,u(w) st O'i(S) ei(r!)—SH)w/v Ko(w 0 ) g(6,z,w)= %Uq(a,w)e .
273(1+pA)) v ’

This permits one to solve E¢B) separately for each com-
(20) ponent. In particular, Eq:3) becomes

2

. _ . ex R’, )
9i(0)= TN+ ex@) (I=np)” ¢q<R.w>=2f dR’K0(|Q||R_R,|)p2(R—,’:;, (22

p=—1(p=1) foru=1 (n=2), andi labels the different hore the spatial dependence of the dielectric function

oscilla_tion mo.des derived from E(]lQ). . €(R,w) is now limited to the directions perpendicular to the
An interesting property of E19) is that it separates the ", i/ R=(x,y). Largeq components are associated with

depe'[nde?tiﬁ on thte d'e'i‘eim(il fu?ﬁtlons ;[_Omrg‘a‘ on t_he ger'apidly oscillating eigenfunction&rqe‘qz, which cannot
ometry of the system. Actually, the COeTlCIerll, aré N~ waa the curvature of the surface and hence their eigenfre-

dependent of the dielectric functions. So, provided Onequencies pile up near the flat surface frequency=(0) 2

knows these coefficients, it is easy to obtain the loss prob- : ; )
ability for an arbitrary choice of the response functions.coranZISng Eq.(22), the inhomogeneous term of E() be

Moreover, /v)I';, depends on the distancdsthat char-
acterize the geometry of the trajectory and the geometry of fo(6,0)=ny 9)~V¢§(Rs( 6),w)
the target only viawd/v. This scaling property permits one
to apply the results of a single calculation to various geom- _ ex
etries that differ just in a scaling of distances by a constant ] €R,w) Ho(R.0)pq (R,0), (23
factor.

Equation(19) takes a particularly simple form when the
electron trajectory is fully contained in one of the megig R—R(6)
in which case the coefficients;, =T'; are real and the rest  H(R, 6)=2[q|Ky[|q|[R—Rs(8)[Ins(6)- |R—TS

.. . 0|
of the coefficientd’;, are zerd® One obtains <(0)]

where

Finally, Eq.(8) reduces to

Fboundar)(w):v_lzz T Im‘ = gi(w)—

J ' Aw)oy(0,0)=f4(0,0)+ f do'Fy(0,0")oq(0", ),
(21 (24

(@)
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where is chosen to be inversely proportional to the average of
Fq(0i,0") overg']. In the particular cases considered below
Fq(0,0")=Xx((0)2+yL(0')% Hq(Ry(6"),0). convergence has been achieved usig100-200.
) . The second term on the right-hand side of E8). van-
Now o(6,w) can be obtained numerically from EQ4).  ishes for an isolated flat surfafeee Eq(26)] and the bound-

One possibility consists in projecting it onto a suitable or-5y charge method trivially produces the well-known results
thogonal basis sete.g., spherical harmonics for spheres o this casé. In thin films, where the two surfaces are
keeping enough terms to reach the required acciifaciwe coupled, full numerical agreement has been found with pre-

will - work 26rather. in real space. Following Lu and ioys resultsS! Let us now discuss other more complicated
Maradudin;® this integral equation will be solved by dis- geometries.

cretizing the parametet. Rather than a continuous variable,
we will consider a convenient partition of the rangedpthat
is, a finite set oN intervals, labeled=1—N. The length of
intervali will be denotedA #; and 6, will be a representative For a unit charge moving along the direction of transla-
value of ¢ inside it. Now the integral in Eq(24) can be tional invariance of the cylindrical interface with velocity
approximated by a sum; one comes to and two-dimensional impact parameRy= (Xg,Yo), one has

A. Energy loss for electrons traveling parallel to the interface

ex _ —iwzglv
PR, 0)=2m8(R—Ry)8(w—qu)e '®%/,
A)ogli=[feli+ 2 [Folijlogl;, ‘ . .
! and hence there is only one momentum component contrib-
where [a4]i=04(6;,0), [Fqlij=Fq(6,6,)A6;, and the uting to the energy loss, namely= w/v. Moreover, the total
dependence of andf on frequencyw is understood. loss probabllltyf is infinite and it Only makes sense to talk
Using matrix notation, the solution of E(Q4) reads about loss probability per unit timg.e., loss rateP). Insert-
ing pg(R, ) into Eq. (23), using Egs.(18) and (25), and

(6 2,0) = —qe'qZE dividing by the interaction time, one finds

27% 4 | A(w)—Fg lfali @9 )

where[1/(A—Fg)]|; ; is the (,j) element of the inverse of phoundary ¢)) = W—UIE ABiVX4(6)2+y4(6,)?
matrix A —F. Notice thatA(w) is a diagonal matrix that !
may depend ors via the different kind of media that the w|Ro—R4(6))] -1
interface separates at each particular point, according to Eq. X Ko m =z (@)
(9). #o

The discretization procedure relies on the assumption that
the quantitiess,, fy, andF vary very little inside each X A —F., Hw/U(Ranj)]y (27
interval. The dominant contribution to the loss probability of @lvlli

fast electrons comes from the lowest-order modes deriveghere ., refers to the medium inside of which the charge is
from Eq. (10), modes that do not display rapid oscillations mqying.

along the interface; hence one expects hatoe a smooth As a first example of application, let us consider a hyper-
function of 6. In addition,f, can show strong variations near polic wedge surface described kyy = b2/2 with x,y<<0,

the electron beam when this passes very close to some intefy thath is the distance from its corner to the origin and its
face, so that the size of the intervals has to be small in thaisymptotes coincide with the andy axes. The wedge will
region. Finally,Fq(6,6") is finite when#’— 6 and more e assumed to be surrounded by vacuum and made of a
precisely metal of plasma frequencyw,, characterized by the
frequency-dependent Drude dielectric function

. y/Xr/_X/y//
lim Fo(6,0")=———"", (26) 2

'8 Xe?+ys E(w):]__L

provided the interface does not have sharp edges; otherwise,
F, presents integrable divergences, which can be handlelor an electron beam directed parallel to the wedge (4.
with using an open formula for the numerical integratftin provides the loss rate due to the creation of surface excita-
the discretization of Eq.24). tions. Some particular spectra have been represented in Figs.

An adaptative choice ak ¢, is crucial in limiting the total 2 and 3 for 100-keV electrons. The plasma frequency has
number of intervaldN to a minimum. Indeed, more poings  been taken to be,=15.8 eV and the damping=0.5 eV,
are necessary near regions where two interfaces are closalues appropriate for Al.
together or where their curvature radius is small. For in- The dependence oh is illustrated in Fig. 2 when the
stance, in a wedge, it is essential to accumulate many littlelectron beam moves in the vacuum side and passes at a
intervals near its corner and not so critical to cover the sidesglistance of 30 a.u. from the origifie., x,=Yy,=21.2 a.u).
in detail. We have quantified this effect with good conver-Dobrzynski and Maradud# pointed out that the spectrum
gent results by making the length of each interval inverselyof a sharp wedge bi=0) must be a continuum. Later,
proportional to the normal component of the electric fieldDavis?® showed that hyperbolic wedges are characterized by
that the whole set of interfaces would create on the intervah discrete spectrum formed by even and odd modes, which
under consideration if they were uniformly chardéed., A 6, are symmetric and antisymmetric with respect to the bisector
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0207 different from these values cannot be efficiently excited by
the electron beam since they correspond to very rapidly os-
beam\ cillating o, eigenfunctions.
. Figures 3a) and 3b) represent the evolution of the loss
spectra as the ion beam sweeps a line parallel tocthgis
(see the insejsWe have takemb/v =0.01. The intensity of
the corner peak, relevant near the corner of the wedge, de-
creases when the beam is near one of the sides, where the
classical surface plasmon of a flat surfacg= wp/\/f, be-
comes the dominant frequency. Inside the matelfag.
— 3(b)], the surface contributioR”*""%Yhas a negative value
—— nearw,, due to the begrenzung effect. Of course, when the
R bulk losses are added, the total loss probability is positive.
Notice the emergence of a small peakeat 0.83w, when
/o the beam is close to the surface; this comes from the excita-
tion of the first odd mode.
FIG. 2. Loss rate spectra for a 100-keV electron moving parallel The allowed momentum transferis fixed in the parallel
to a hyperbolic wedge as a function bf the distance from its trajectories;q= w/v. This permits one to tune modes corre-
corner to the origin. The asymptotes of the wedge are taken to forrsponding to a given choice af by varying the electron
an angle of 90°. The electron beam is located on the bisector of theelocity. It is interesting to stress that the above results are
wedge and in the vacuum side at a distance of 30 a.u. from thehe same for other combinations ofandb such thatwb/v
origin in all cases, as shown in the inset. The valuels afe 0.001, remains constant, due to the scaling property discussed in
0.01, 0.1, 1, 10, 30, and 50 a.(every curve has been shifted Sec. |I C. In addition, the wedge replicates itself under trans-
upward 0.005 a.u. with respect to the previous one for clarle  formation of distance scaling =0, and the results ob-
wedge is described by the Drude dielectric function wilfi=15.8  {ained forb< 1 for the impact parameter under consideration
eV and dampingy=0.5 eV. in Fig. 2 can be applied to that case since no variation with
is observed below that value.
of the wedge, respectively. The dominant feature observed in The contribution to the total loss probability coming from
Fig. 2, hereafter denoted corner peak, corresponds to an esach surface mode can be used in combination with the scal-
ergy loss of~ w,/2 for small values ob and shifts towards ing property just noted to obtain loss probabilities for arbi-
higher energies for increasirg in agreement with the first trary choices of dielectric functions and absolute scales ac-
of the even modes obtained by Da%isWhen b—0, the cording to Eq.(21). As discussed above, the total loss
lowest-order even modes pile up neap/2 and the odd probability diverges for the geometries under consideration,
modes near 0.8, ; higher-order modes of frequencies very so that Eq(21) has to be replaced by the loss rate

|

(notice the different scaling with). Figure 4—6 offer some
examples ofP; for different modes of various targets, ob-
tained from Eq.(10). They should be understood as energy
filtered images in the case of small dampipg

The contour plots shown in Figs. 4 and 5 correspond to
the same geometry as in Fig. 2 fapb/v=0.1 and
wb/v=0.001, respectively. The weight of different modes in
the loss rateP; is represented for the first two symmetric
modes in(a) and(c) (n=0 and 2, respective)yand the first
two antisymmetric modes itb) and(d) (n=1 and 3, respec-
tively). The accompanying plots show the mode eigenfunc-
tions o"q directly over the surface profile. The number of
changes of sign ob'q is given byn. Notice that the mode
n=0 (corner modg acts preferentially near the wedge cor-

0.10"

0.05

Probability (a.u.)

P“”“da”(w)%Ei P lm{ ~| gi(@)~

gl @)

Probability (a.u.)

FIG. 3. Dependence of the loss r&éw) on the position of the
electron beam under the same conditions as in Fig. bfe0.01 . . .
a.u. Different spectra correspond to equally separated positions &er, in agreement with the spectra dlsc_ussed above. .
the beam along lines parallel to one of the wedge asymptotes, as T.he Smooth curvature of the Com?r In the wedge studied
shown in the insets. The spectra evolve smoothly between botf! Fig- 4 is clearly observable both i, and in the contour
ends of those lines, designatédand B, respectively, and whose Plots. Notice, for instance, how the corner spot in Fig) 4s
coordinates are(in a.u) (@ (50,—200) and (50,50 and (b) displaced towards the actual corner from the origin, where
(—20,—200) and (-20,50) respectively. The electron travels in the bright regions in Fig. @) point at.
the vacuum side for all cases (8) and inside the wedge for some  For the small value ob considered in Fig. 5, the surface
trajectories in(b). charge of the first modes accumulates close to the corner
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u q
y WM’ p Wu \
Y s =

o

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

OX/V OxX/V

‘ I\IHIHI\H'}I;,‘J"\
I HHHHHI‘H\ T
“I}I\‘h‘ﬁ'ﬁh“"‘f}?‘_,f',..

FIG. 4. The weightP; that multiplies the contribution of the first two symmetric modés and (c), respectively and the first two
antisymmetric modelb) and(d), respectively to the total loss rate of an electron traveling parallel to a wedge surface is represented here
as a function oixw/v andyw/v. They correspond ta;=—0.371, 0.190,—-0.101, and 0.053 fofa)-(d), respectively. The contour lines
limiting white areas stand fdP;=1.13, 0.27, 0.17, and 0.27, respectively. The darker the region, the smaller the vBlueTdfe distance
between consecutive contour lines corresponds to a factor of 2/3. The wedge is contained yr<tBeegion and its asymptotes are made
to coincide with thex andy axes. The distance from the corner to the origin is set equabto =0.1. The inset accompanying each contour
plot shows the density associated with the mode under considerﬂ(}ipwith g=wlv, represented directly on the surface profile.
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FIG. 5. Same as Fig. 4 fdyw/v=0.001. The values of; are now—0.451, 0.409,-0.324, and 0.257, respectively, and thosé>pfn
the contour lines limiting white regions are 1.33, 0.12, 0.36, and 0.12, respectively.
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FIG. 6. Same as Fig. 4 for two parallel cylinders of radius/v =0.3 whose centers are separated by a distande =0.8. The values
of \; are(a) —0.830,(b) —0.938,(c) —0.242, andd) —0.225. The values d?; in the contour lines limiting white areas are 0.42, 0.20, 0.18,
and 0.15, respectively. The insets represﬂ@directly on the surface profiles for each mode.

(compare the plots 0¢fr{q with those of Fig. 4 and the con- geometry of the object. The image corresponding to the first
tour plot of the corner peak is nearly circul@ig. 5@]. An  antisymmetric mod¢Fig. 6(b)] clearly reflects the shape of
obvious spatial correlation between bright regions in the conthe two cylinders. Unlike these two modes, higher order
tour plots on the one hand and the peakg-'&)in the accom- modes can only be excited efficiently near the cylinder sur-
panying insets on the other can be clearly observed, except f@ces, as can be seen in Figéc)éand &d).

the peaks near the corner of the wedge in Figs). &nd 5d),

too narrow to contribute to efficiently excite their respective
modes.

Figure 6 illustrates the case of two neighboring circular Next we shall examine the case of perpendicular motion.
cylinders, whose surfaces are  described bylLet us consider a fast electron moving with veloaitypar-
(xsia/2)2+y§=R2. The symmetric mode shown in Fig. allel to thex direction along the straight line defined by 0
6(a) gives the largest contribution to the loss, though theand y=a. The external charge density that represents this
image coming out of it does not permit one to establish theelectron is given by

B. Energy loss for electrons traveling perpendicularly
to the interface
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o(eV) They have been obtained from EQ9). The corner peak is
6 7 8 9 10 1 12 again the dominant feature. Smaller peaks can be seen near
0~0.56w,, 0.61lw,, and 0.6,. These roughly agree with
the position of the modes found for the wedge from &d}),
though these results cannot be ascribed to a single valge of
| as in the case of parallel trajectories, since the electron does
not conserve its momentum along the direction of motion
[see the integral oveg in Eqg. (29)]. However, the dominant
e value ofq is still given by w/v (compare the position of the
corner peak with the case of parallel trajectories in Fig. 2 for
b=0.01 a.u.

02 T e

Mo -
(a.u)

0.1

IV. AXIALLY SYMMETRIC INTERFACES

Tl Ly

Interfaces characterized by axial symmetry are conve-
niently described in cylindrical coordinates, so that
(0, d) = (ps(0) cosp,py0)sing,z(6)), where pg is the dis-

FIG. 7. Loss probability for a 100-keV electron traveling per- tance_to the axis an_dG IS a parameter.
pendicularly to a hyperbolic wedge as depicted in the inset. Differ- USINg Fourier series to represent the dependence on the
ent impact parameters have been considered with respect to tt@zimuthal anglep, the surface charge can be expressed as
wedge corner, ranging from 10 a.u. to 190 a.u. in steps of 20 a.u.
(the larger the distance to the wedge, the lower the probabilitye
distance from the corner to the origin has been taken ta=h6.01
a.u. The wedge is described by the Drude dielectric function with ) ]
w,=15.8 eV and damping=0.5 eV. wherem labels different Fourier components. Moreover, the
integral equation8) becomes totally identical to Edq24),

04 045 05 055 0.6 065 07 075 08
/o
»

o(sw)= %% ol 6,w)em?, (30

1 except that the momentum has to be replaced by the inte-
pg"‘(R,w)z ;e""x’vﬁ(y—a). germ. The kernel of the integral is found to be
Assuming for simplicity that the particle moves fully inside Fn(0,0')=ps(0')Vx5(0')2+y(6")?
mediumu without crossing any interface, E(R3) reduces
to XJ q A—Ccosp
_ ¥ (B—Dcosp)*?
. 2 eIwXS/U e7Q|afyS|
f5(0,w)=— where
700 6l0) V@707
. A=n,p|(0) ~nZ 246)~2,(6")],
X|—ys—Qx¢sgna—ys) |, (28) . )
v’ T ) B=py(6)>+ps(0')°+[2s(6) — 2(6) 17,
whereQ= \Jg?+w?/v?. _ / _ /
The first term on the right-hand side of E@.5), which C=nyps(0"), D=2py(0)ps(0'),

represents a conservative work, vanishes after integratiognd (np,nz):(zé(g),_pé(g))/‘/pé(0)2+zé(9)2 stands for
along the whole trajectory. Thus the total loss probability pefhe radial andz components of the interface normal.

unit @ is found to be For simplicity, we will consider electron trajectories par-
1 allel to the axis of symmetry and fully contained inside one
T(w)=—| dt Im{— ¢"(vt,a,0w)e 1. of the dielectricsuq. In that case, the inhomogeneous term of
(@) wf {=¢™ 2 ! Eq. (24) is found to be
Finally, using Eqs(18), (25), and(28), one obtains —4ro wa [ wps0)
fm(ﬁ,w)zz—elwzv I'm Tnme >

2 (=dq e
boundar _ = “H _ .
r {w) vao QIZJ A6;
i
X \XL(6)2+yL(6,)%e Qa-yso)l inK,,

. -1
—iwxg(6;)/v 19,
xlm{e [—A(w)—FJ ij[fq]J]. +Km

wps( 0))
v

e(ps(a)_a)]

, [ @ps(0)). wpaﬁw
nl in,l
p'm v z'm v

X H(a_ps( ‘9))] ),

(29

Figure 7 shows spectra corresponding to trajectories di-
rected perpendicularly to the wedge, as shown in the insetvherea is the distance from the trajectory to theaxis.
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FIG. 8. Loss probability suffered by 100-keV electrons moving
parallel to systems of one to three spheres aligned along the direc-
tion of motion of the electrons. The spheres are surrounded by —~
vacuum and assumed to be made of Al, described via the Drude =
dielectric function foro,=15.8 eV and damping/=0.5 eV. The ~
radii of the spheres are all equal to 10 nm. The electron passes at a5
distance of 1 nm from the sphere surfaces. Neighboring spheres are’s
separated 0.833 nm. The probability has been divided by the num-
ber of spheres under consideration. The insets represent the geom: &
etry of the target, including arrows that show the electron trajectory.

obal

P

The differentm components of the surface char@é) are
decoupled and their contribution to the loss can be calculated _ -
separately. High-order terms decrease rapidly withand 02 0.3 04 0.5 06 0.7 08 0.9

their oscillation frequencies go ;. It has been found that /o
the contribution ofm>6 is negligible in the cases considered p
below.

. . . FIG. 9. (a) Loss probability suffered by 100-keV electrons pass-
Figure 8 shows the loss probability experienced by ar]ng near a torus made of Ak(,—15.8 eV and damping=0.5 eV)

electron passing close to coupled Al spheres. The IOS§ p%Ilowing trajectories parallel to the axis of rotational symmetry.
sphere has_ bee_n Calculat_ed for systems of Spher_es al'gn?qe internal and external radii of the toroidal surface are 170 a.u.
along the direction of motion of the electrésee the insets 4ng 250 a.u., respectively. The impact parameters with respect to
for a schematic description of the geometijhe position of  {he axis of symmetry are 0, 40, and 460 asee the inset (b)

the energy-loss peaks agrees well with previous calculationgontribution of the firstm components for the largest impact pa-
for the two-sphere syste?r?l'.16 The results for the loss near rameter under consideration.

isolated spheréSand recent calculations based on analytical

expansion in terms of bispherical coordinates for the two-of the sphere, where for a certaim the allowed modes are
sphere systetfi'” are reproduced within the present ap- those corresponding to=|m|, | being the angular momen-
proach. The low-energy peak at around 6 eV, which emergegim number.

in that case, is split into two peaks when one passes to the

three—sphere system. The small bump at around 7.5 eV re- V. CONCLUSIONS

mains the same and the peak near 9 eV is enhanced.

As a final example, motivated by the increasing number The boundary-charge method has been applied to the cal-
of nanostructures that are becoming experimentally availeulation of low-energy losses of electrons passing near arbi-
able, we have explored the loss near a Al torus. Figuae 9 trarily shaped dielectric interfaces. The cases of interfaces
shows the results for different impact parameters. When theharacterized by translational invariance along one particular
electron passes near the center of the torus, the main contdirection and axially symmetric interfaces have been studied
bution to the energy loss comes fram~0.84w,, which is  in more detail. This increases considerably the number of
related to the excitation of the=0 component in Eq(30). geometries for which electron-energy-loss calculations are
A richer structure is obtained in external trajectories, foravailable and at the same time offers the possibility of fitting
which the loss probability due to different components has the shape of objects observed with electron microscopes with
been analyzed in Fig.(B). Notice that the contribution of respect to the direction of the electron beam. Examples have
each component cannot be assigned to a single frequency. been offered for wedges, coupled cylinders, coupled spheres,
particular, the excitation of then=0 component induces and toroidal surfaces.
losses arouna~0.67w,, in contrast to what happens with  Two customary approximations have been adopted. First,
trajectories passing near the center. This is similar to the cagbe dielectric properties of the different media under consid-
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eration have been described in terms of frequency-dependeaharge, out of which the whole image can be constructed in
dielectric functions, appropriate for the large electron veloci-a time proportional td\? times the number of points in the
ties of common use in electron microscopy. Furthermore, thémage.

dielectrics are assumed to terminate suddenly, defining Finally, the loss probability has been expressed in terms
abrupt interfaces. Concerning this latter point, consecutivef separate contributions, ascribed to the excitation of differ-
layers of increasingly lower electron density are a good canent oscillation modes. This permits one to obtain a weight
didate to simulate smooth profil@Further research on this function for each of the modes that is independent of the

point is in progress. actual choice of dielectric functions.
Convergence in the number of poifNshas been achieved
with =100 points per surfacevedge, cylinder, ett. Com- ACKNOWLEDGMENTS
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