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Valence losses in electron microscopy can be conveniently computed using classical dielectric excitation
theory. In many practical situations, the presence of complex structures gives rise to the possibility of coupling
between interface modes, surface modes, and edge modes. In the nonrelativistic case, the losses in such
geometries can be calculated by taking a distribution of surface and interface points, each of which is associ-
ated with an interface charge. These charges interact self-consistently with each other as well as with the
charge of the incident electron. Here, we have applied this boundary charge method to provide scanning
transmission electron microscopy energy loss spectra near-edged structures such as truncated slabs and junc-
tions formed by several media. We find the dominant modes associated with such systems and study their
contribution to the characteristic energy loss functions. The significance of these excitations compared with the
planar interface peaks is discussed in terms of the sample geometry with illustrations for the cases of an MgO
cube and an Si/SiQthin-film interface.[S0163-18289)00939-X

[. INTRODUCTION modes and plasmon frequencies in cubes, rectangular par-
ticles and wedges have also been made by several
Electron energy loss spectroscoffELS) is a powerful — authors$$~° As the geometry involved in real problems be-
tool to study the characteristics and nature of electron excicomes more complicated, a mixture of both analytical and
tations in a solid. Spatially resolved EELS using fast elec-computational work is required in order to solve systems
trons in scanning transmission electron microsc@@YEM) such as a sphere coupled to a plahe, hemispheré? a
shows two types of loss depending on the nature of the initiathannelt® or a wedgé* When the number of particles, or of
electron states that are excited. Core electron excitations odifferent media, or the difficulty of the geometry itself do not
cur at very well-defined energies and have been successfulbllow an analytical solution, other computational techniques
studied in terms of excitations from the different atomic lev-are necessary to deal with the problem. Fithigetermined
els corresponding to a specific atomic element. On the othehe normal modes of a cube by distributing dipoles over a
hand, valence electrons give more intense spectral losses kadlid, selfconsistently interacting with one another. Ouyang
their interpretation is much more difficult since these oftenand Isaacsdfi developed a formalism to deal with inhomo-
have a collective nature connected not only to the composigeneous dielectric systems that was based on solving Pois-
tion of the material but also to the geometry of the sampleson’s equation with a distribution of surface charge density
under study. The dielectric theory, in which the media areat every interface separating two different media and applied
described through a local dielectric functiefw) dependent it to calculate the energy losses of a spherical particle lying
only on the frequency, has however supplied an adequaten a thin film’ A similar approach was followed to calcu-
basis for interpreting these excitations. The local approacHate electron energy losses near both translationally invariant
neglecting the momentum dependencespfcan largely be and axially symmetric targets with otherwise arbitrary
applied in this kind of problem since very fast electrons inshape'® In fact, this paper can be understood as a continua-
the scanning-beam transfer mainly rather small momentaion of this previous work since all the formalism used here
Following Ritchie’s prediction of the surface plasmon was already explained there in more detajpart from slight
excitation} much work has been done on collective excita-changes in notation which are noted here when they )arise
tions associated with a particular geométryhe aim has Here we study further the application of this general formal-
often been comparison between theoretical predictions andm to a number of practical situations in STEM. The inter-
experimental loss spectfag.g., losses near a dielectric faces and so the surface charge densities can be discretized in
spheré or Ag spherical particlesSTEM experiments in eas- a convenient way in order to solve a self-consistent integral
ily damaged materials such as Alffielded loss spectra from equation, which involves the surface charge density distribu-
cylindrical holes and stimulated analytical solutions for ap-tion. As an example of the power of the technique, we pro-
propriate geometr$. Losses from colloidal dispersions of vide simulations for a variety of cases not studied previously
small spherical precipitates were also foliadd interpreted due to the complexity of the geometry or to the number of
in terms of effective medium theory. Analytical studies of media involved. These calculations are exact for such con-
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figurations, but we also include some approximate character- €
istic energy loss functions that refer the spectrum of losses to
a few dominant modes that are strongly excited by the in-
coming beam. These approximate functions may be found
useful by experimentalists in a certain number of cases
where a complicated spectrum of losses occurs. The detailed
description of the loss spectra must of course ultimately de-
pend on the exact numerical computation but the approxi-
mate function can throw light on the nature and intensity of
the losses found. In this spirit, different features of the spec- ) ) ) )
trum of modes and losses arising near the end of a truncate FIG. 1. Schematic representation of an interface separating me-

slab are simulated to investigate the influence of slab thick= la e, andeg W.'th invarnance a'.o.ng th.e axis. The unit vectons
. normed to the interface at positianpoints towards mediunag .
ness on the mode coupling for edges and walls. A real Sys: -~ . :
he arrow indicates the sense of increasing paranteter

tem that shows such geometrical features is the MgO cube
whoselgexmtatlonz% by STEM electrons hr_:lve been studied bé(lell as from the sharp boundaries which occur in these struc-
Marks?!® Cowley?° and Milne and Echenigdtamong oth-

. . i fures.
ers. Loss spectra for different trajectories are shown and ex-
plained in terms of bulk and surface losses. Using the for-
malism presented previousfand summarized more briefly ll. BASIC THEORY

here, we are able to study in a systematic way the losses in \ye briefly outline in this section the theoretical basis,
these systems even for trajectories close to the edges. We C@ich allows systematic calculation of the modes and losses
also study complex junctions where several media meet at g an arbitrarily shaped object. The theory for the nonre-

losses for such complex systems resembling the energy Sgrerely summarize it here for completeness.
lected loss images. Furthermore, another case of interest that

shows coupling between edges and mixes several media is
the system formed by a junction of Si and $i a slab
surrounded by vacuum. Previous calculations on this The key to deal with losses in arbitrary objects is given by
system?Zwere based on a Si-Si(lanar interface approxi- the possibility of writing the potential and electric field all
mation and suggested the presence of a 1-nm-thick layer @fver the space in terms of the surface charge density induced
SiO at the interface in order to explain the observed magniby an external fieldproduced by the incoming electron in
tude of the interface plasmon peak. The importance of retarthis casgat the interfaces separating the different media. The
dation effects in determining the peak position was alsgurface charge density(s,») at each interface poirstinter-
noted. These calculations did not take into account the influacts consistently with the charge at the other positsas
ence of the thickness of the slab on the loss spectrum, i.ewell as with the external field frequency component
the top and bottom surfaces and the corners forming th& ¢*(s,w), which in Ref. 18 was denoted by ¢”(s ),
edges, something we remedy in this paper. We have to poiftroduced by the passing electron. From Poisson’s equation
out that all the calculations performed here ignore retardatioithe self-consistency expression based on the surface charge
and radiation effects, that is, we are dealing within a nonreldensity leads to
ativistic approximation in which Poisson’s equation for each
Fourier component of frequeney is solved numerically for
different caszs of interes'g As ?ﬁ’e velocity of electron)é in the A(©)0(8,0)=ns-V ¢7(5,0) - f ds 5|
scanning beam is of the order o2, this approximation will 1)
be more accurate for small enough samples and particles and
trajectories close enough to the interface. Beyond these limwhere
its, one should introduce retardation to get accurate quanti-
tative values. The boundary charge numerical method has Alw)= WSB(“’HSA(“’) %)
been recently extended to include retardation effects by solv- eg(w)—ep(w)’
ing Maxwell's equations rather than Poisson’s equatf@ns.

. . and
All the examples treated here involve small impact param-
eters so that retardation effects may not be too serious. In exty
some casefoted below, Cherenkov radiation or transition d)ext(r,w):J' dr” P& w) . @)
radiation may occur and is not included in our nonrelativistic e(r",w)|r—r"|
treatment. Nevertheless the nonrelativistic boundary charge
method shows promise as a tool to treat real systems in The dielectric responses are described in terms of an ar-
STEM configurations. As an application of this numerical bitrary function of spacer” and frequencyw, s(r”,w),
method to cases of practical interest in STEM, we analyzewhich denotes the local dielectric function at the paifit
first, the case of the edge and the truncated slab as an efeithere, or g in the simplest casesp(w) andeg(w) are
ample of a complex two-media geometrical system and sedhe dielectric functions of the two media surrounding each
ond, the cases of thEand| junctions where the complexity interface points as shown in Fig. 1, and®{(r"”,») denotes
arises from the number of media involved in the system ashe Fourier component of the external charge density associ-

A. The boundary charge method

M) )
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ated with the electron beam that is assumed to move in a

material of dielectric functiorz(w). As can be observed in A o) agli=[fgli+ X [Fqlijlogl;, (8)

Eq. (1), the surface charge density can be obtained through a '

self-consistent integral equation involving all the interface\,\,here[(Tq]i:(Tq(gi ,w) is the surface charge density corre-
points. In order to deal with practical cases and nonstandarghonding to theith point of the surface parametrization,
geometries the integration can be converted to a matrix OFFf ] = f4( 6 ,w) is theq component of the external field pro-
erator where the surface charge points are discretized angl;ced by the incoming electron at thi¢h position and
conveniently distributed, depending on the local inten‘aceU:q]i i =Fq4(6;,6;)A6; is theq component of the interaction
shape and its closenes_s to the beam._ In addition to this, if thgetween theth andjth surface points of the parametrization
system shows some kind of translational or rotational geotthe interaction matrix In this process of discretization, a
metrical symmetry the integral equation simplifies and turmnssyficient number of points must be considered in order to
into a one-dimensional problem, when appropriately pro-get convergence in the results. In the nanometric scale, typi-
jected over the invariant coordinateWe deal in this paper cally it was found necessary to use around 100 surface
with objects invariant along the axis, which takes account points. These were generally concentrated in the regions of
of the main features of the edges, truncations, and junctiongterest of smallest curvature and closest to the electron
present in many real systems such as cubes or thin filmgeam path with a smaller number of points at greater dis-
composed of two different components. In this way, the patances. The number of points needed for convergence of the
rametrization of the interface depends only on one parameteiomputed loss spectrum and their maximum distance from
¢, and can be performed in th€Y plane as shown in Fig. 1. the electron beam were found by trial and error. It is impor-
If we project Eq.(1) over the Fourier transformed compo- tant to point out that this method separates clearly the geom-

nentq of the invariant real coordinate we get etry of the systentgiven by[F,]; ;). the compositiorigiven
by A, which depends on the pair, and eg surrounding
_ , , / every interfacgand the strength of the induced charge den-
= + . . ; . .
Aw)og(0,0)=Tq(6,w) Jda Fq(6,6")04(0,), sity (given by[f,];, which depends mainly on the impact

(4)  parameter of the incoming electron

where the surface charge density(6,») depends only on

the paramete#. The explicit expression for thgcomponent B. Dominant interface modes

of the external term is The eigenmodes for a given geometrical system can be
easily obtained from Eq8) by neglecting the external term
fq(0,0)=ny( 0)~V¢3’“[Rs( 0),w] [fq]i and setting the determinant of the interaction matrix

, [Fqli,j to zero, which is the condition for the charge density
_ J’ H.(R".0)p™(R".0) 5 to exist without an external field. Apedt al..25 found that
e(R", ) et PP T these modes fulfill interesting sum rules, which apply in such
situations. Once the modes are calculated, they are excited
where with different weights depending on the particular conditions
of the trajectory.
[R"—R4(6)] For a two-media situation it is possible to calculate a
P E——— spectrum of modes as a standard eigenvalue problem for the
[R"=Ry(0)]| [Fqli,; matrix, which depends only on the geometry of the
6) structure and not on the two particular media involv@df.
"=(x",y") is the projection of the position vector over the We denote by a\n\g the eigenvalues of the interaction matrix

XY plane perpendicular to the invariant azjiy(#) the unit  [Fql, associated with a corresponding eigenveftgyl*, the
vector normal to the interface at each point, MX] is a equation for the mode of this par“CUIar surface Charge den-
modified Bessel function of first order. When the trajectorySity can be expressed as
crosses several media(R"”,w) depends on the particle po-
sitionR”, and the integral in E(5) has to be broken into the 2\ o 1K= ET k 9
different regions the electron is crossing. Otherwise, when ol oql E,: [Falijloaly ©
the medium surrounding the incoming particle does not o ]
change, it can be directly expressed @@). The self- Wherei,j labels the matrix elements and the vector compo-
consistent-induced term or interaction matrix is given by ~Nents. The interface modes have to be labeled with two pa-
rametersyg (wave vector along the symmetry axendk (a
mode number normal to this axis

The set of eigenvectorgaq]k form a complete basis

where the prime denotes differentiation with respect to théVhose orthogonality properties are derived ffém
parameter)’. _ _

When solving the integral equation for the surface charge f dsf 4 a'(s)ol(s)* _s 10
density in expressiofd) by means of a convenient discreti- |s—s| e
zation of the whole interface present in a system, the integral
equation turns into an algebraic system that can be expressé&this allows us to project the expression for the external term
in a matrix form: in terms of these eigenvectors as

Hq(R”,6)=2a|K[[a][R"=Rs(0)|Ins(6)-

Fo(0,0")=x5(0")2+yL(0")2H[R4(6),6], (7)
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in the probability of excitation for larger values gfarises
Ns: V¢§Xt(51w):2 fi(w,b)ak(s), (1) naturally in the formalism due to the nature of the Coulomb
K interaction which introduces a dependence proportional to
wheref';(w,b) is the projection of the external terfy over  gb in the argument of the Bessel functierK,[qb] [see Eq.
the k eigenvectoraf(s), and depends on the particular tra- (6)]. If we now setay=1+\"2 and Ay(w,b) = (2/m)Ty,
jectory described via the impact parameter we find a simple expression for the excitation probability
If there are only two media forming the system, the ei-dP/dw in a two-component system
genvalue)\g is straightforwardly related with the parameter 5 n
A () through dp_ 2e S Aw.b)im
do  zav2 €

. (16)

aeat(l—ay)eg
A(w)—2m\E=0, (12) _ N . _
_ ) - where «, gives the position of th&th mode in terms of its
which gives account of the-mode position {,) for every  gjgenvalue \* strongly dependent on the shape of the
value ofq. In terms of the_two local dielectric functiors, sample, andA (w,b) is the weight of the mode under the
andeg, Egs.(2) and(12) give particular circumstances of excitatiéimpact parameter and
K K size of the samp)e In principle, the sum over the modes
(1+Xhgleat(1-Ag)es=0, 13 jnvolves as many modes as the number of interface points in
which is the mode equation for translationally invariant in-the parametrization, but in practice, for a real system such as
terfaces separating two different media. an edge or a truncation, it is sufficient to take the dominant
The total interface charge density,(s ) can be ob- modes which can be efficiently excited and act back at the

tained as a sum over all the modes present in the geometriclicoming electron, i.e., those with large valuesAg{w,b).

system, weighted with the external temg(w'b) As indicated in later sections, an adequate approximation to
the loss spectrum can often be obtained by including only 3
fg(w,b) or 4 modes.
To(sw)=> —————0((s). (14)
K [Alw)=2mhg] lll. ISOLATED EDGE

In principle, the exact solution of the interface charge density

consists of the sum over all the eigenmodes, but in practice}g
STEM configurations only some dominant modes are signifi-
cantly excited and play an important role in the spectrum o
energy loss. One of the aims of this paper is, therefore, t
detect and deal with these dominant modes in complex co
figurations formed by the coupling of edges and junctions.

In many practical situations, the presence of sharp edges
a prominent feature that cannot be neglected when an ac-
urate study of the electron energy losses is required. We try
o show here quantitatively the influence of the presence of
An edge in the spectra of losses. In all the cases, the edges are
"Eonsidered very sharp compared to the distance of the beam.
Therefore, the shape of the apex does not introduce an extra
dependence in the mode frequency position which is given

C. Characteristic energy loss functions effectively by the junction of two straight walls.
In a general formulation of the problem, the energy loss
probability and hence, the excitation probability for a dielec- A. Drude-like metallic edge

tric can be obtained by the action of the retarding field due to

the induced interface charge densitys,») at the position mode contributions to describe the whole spectrum of losses.

of the if‘.cor.“ing electron. The explicit expressi_on for the Ios% the case of a sharp edge, it was found that the discrete
probability is given by a weighted sum over different mOdesdistribution of surface modes corresponds to the valuges

(labeledk) associated with the different contributions of the = 0.30(symmetrig, 0.70 (antisymmetrig, 0.34 (symmetrig
L\r,\vc(i)ucmeed d;ugs)ct;e%]a;%ee 2223\,7%%;' '?r:)e ngEi(tlét(iii).p::oobra?)ilityo'63 (antisymmetrig, . . ., together with a cluster of values
1 8
for a dislectric svstern™ %Y as a weighted sum over dif- around 0.5(planar surface plasmczﬁ_ It should be noted
y q g that for subsequent convenience with the more complex
ferent modes: and| junctions discussed below, the discretization procedure
1 used here for the isolated edge is slightly different than the
rgoundaﬂg_z > Im{—gg(w)l“g}. (15) ~ one previously employetf. Here, all the points lie on the
VT Tk two intersecting planes forming the edge. Although there is

As pointed out in the previous section, we assume several

. . o - no point at the actual intersection of the two planes, since the
9q=2Mea(1+Xg) +£5(1—N)] gives the mode position  gyrface normal is not well defined there, points if necessary
as noted in the previous section ahtf, which gives the can be taken arbitrarily close to the intersection by working
contribution of thek mode is proportional t@rg(s) andf'cj. with finer and finer mesh scales. With this slightly different
For trajectories parallel to the invariant direction, conservaprocedure, ther values for the edge modes become slightly
tion of energy and momentum means that only one value different, but the changes in the loss spectra are extremely
= wl/v is relevant in the loss spectrum,being the velocity small.
of the fast electron. For perpendicular trajectories, there has Although all the modes belong to the edge geometry, only
to be an integration ovey, which roughly speaking extends some of them are noticeably excited when the electron im-
up to values of ordejg|=1/b whereb is the impact param- pinges on such a structure. Figure 2 shows the spectrum of
eter measured from the nearest interface point. This decreakesses for a 100-keV electron impinging with an impact pa-
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rameter of—1 nm on a single 90° edge of aluminum, char- tively small damping when the contribution of each mode is
acterized by a Drude-like dielectric functiom,=1  more easily detected. For a practical material, such as that
_“’S/[“’("’H?’)] with plasma frequencw,=15.8 eV and shown in the next section, this reductionist approximation
dampingy=0.5 eV surrounded by vacuuag=1. The mi- describes_r_nost of the fea_tures ofa given spe_ctrum. This will
nus sign for the impact parameter denotes a trajectory insidee the spirit of the following approximations in the charac-
the material measured from the vertex of the edge. For sucl¢ristic energy loss functions of complex structures. It is in-
a case, it is clear that together with the bulk peak at 15.8 eViéresting to stress here that the valugsgiving rise to the
the main contribution to the spectrum of losses is the peak &tUrface modes are not as arbitrary as one might think at first
8.3 eV, corresponding ter=0.30, which denotes the edge Sight. In fact, although there is a considerable spread of
peak corresponding to the first symmetric surface mode afodes (G<a,<1) all along the spectrum, it is noticeable
the edge. The contribution of the pure planar modg/(\/i) that the most prominent Wedge_ mode position shows a sys-
due to the walls of the edge is also present at 11.2 eV. For {gmatic tendency to increase with the wedge angle or filling
beam passing normally through an edge, at a distaricem fracftlon getting close to~1/4 in the case of a perfectly
the vertex of the edge, the path travelled inside the materiaftraight 90° edge. _

is L=2|b|, and after integrating over the differeqicompo- The weight of every modé depends only on the impact

nents and total path, the approximate energy loss probabilitfarametei with respect to the apex of the edge. The coef-
icients do not follow any known analytical dependence as a

becomes . . .
function of the impact parameter. For the particular case
2 shown in Fig. 2, however, the coefficients can be approxi-
dP  2e - -1
—=——L{AyIm—|+A; IMm ———— mated as
do 7TﬁV2 En 058A+05£B
200 nm
-1 Ao=In(kev/w)— [1—e(~2blev)]
+A,Im m ], (17) L
where A, =A,(b,»), (k=0,1,2) depend on the impact pa- A ~ 300 nm 1— o~ 2lblom) 18
rameterb and give the weight of the three main excitations in 1= [1-e 1 (18)

the loss probability whosey, values have been explicitly

written. In the case of a penetrating trajectory, the first modeand

to be taken into account is the bulk mode characterized by

a,=1. The second important feature that arises naturally A,=65( e(~1dblo/v)]

from the formalism is the pure planar mode characterized by

a1=0.5 and finally the main mode associated with thewith an accuracy of 10% in the estimate of the functional
charge density oscillations near the edge, which are dedependence. For the case of a trajectory perpendicular to the
scribed bya,=0.30. As pointed out above, there are moreaxis of symmetry as shown in the inset of Fig. 2, the edge
modes associated with the edggmmetric and antisymmet- mode (@,=0.30=w~0.53v,) decreases very strongly in

ric ones oscillating all around the edfle but since this latter intensity with increasing distancéb| from the edge

is the one which dominates the spectrum of losses, it i§~e(~0bl*/V)y and the planar surface mode intensity in-
enough to consider it alone to show the main features of thereases more slowly~e(=2l*/") to a fixed value. The
losses produced by the edge. In order to account for thbulk mode also increases in intensity with distance from the
additional background in Fig. 2 given by the exact calcula-edge, since the beam travels through a longer path inside the
tions, one should certainly include another pair of modes, buinaterial. For such penetrating trajectories, this peak is cor-
this is an extreme case of free electron response with relaected by a term that follows an analogous dependence to the
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planar surface contribution with contrary sigBegrenzung geometrical uncertainty is the precise value of the impact
effect: the excitation of new surface modes decreases thgarameter that can change the total weight of the loss prob-
intensity of the bulk peak ability due to a different contribution arising from the bulk
losses. The simulation does not reproduce the excitations ob-
served in the band gap which must arise either from defects
or from relativistic effects.

This edge geometry was also studied for the more practi-
cal case of MgO cube®,which show sharp edges. Although
the peaks cannot be so precisely associated with a particular IV. COUPLED EDGES: TRUNCATED SLAB
geometrical feature as in the case of a simple metal, similar
conclusions were reached. The MgO sample considered is in
fact infinite in thez direction normal to Fig. 3 and the dis-  Another case of interest from the practical point of view is
tance from the apex to the farthest surface point is taken té€e truncated slab that can be considered as the junction of
be 100 nm in the computation. Since we are concerned withvo edge structures. A major parameter then involved is the
the effect of the edge, the coupling between parallel sides dilab thicknesdd. In Fig. 4 the modes of a truncated slab
the cube is not included in this particular calculation, but thisdepending on the dimensionless paramefdrare shown,
can be considered a good approximation for the large size dfeingqg the momentum component in the direction parallel to
cube studied heréseveral hundreds of nnwhere this cou- the axis of symmetryz as shown in Fig. 1. The dielectric
pling is absolutely negligible. The procedure to calculate thegesponse functios is assumed to be a Drude-like function
spectrum of losses for the case of an MgO edge is analogow#th no damping ¢=0). For very thick slabsqd>1.5), the
to the one presented above for the metallic edge, but in thikmit of the isolated edge is obtained with the presence of
case, the frequency-dependent dielectric function is derivedell-defined modes¢~0.53w,,0.63w,, . .. ,0.80w, and a
from the bulk loss function in the same material extractedconcentration of modes close to the valg/ J2). As the
from energy loss data after deconvolution. In Fig. 3, wethickness of the slab decreases, the modes start to couple
present both the STEM observed energy loss spectrum andiving rise to a spread of allowed values. As in the case of
for the identical trajectory, the total simulated energy lossthe isolated edge, some of these modes are more likely to be
probability d P(w)/dw, which agrees in absolute terms to a excited depending on the particular features of the electron
factor of about 0.7. Together with the bulk loss at 22.5 eV trajectory, which couples better to some particular density
the enhancement of the low-energy peaks at 11 and 14 evharge distribution with a large amplitude nearby. It is also
can only be explained in terms of the edge mode associatgebssible to plot the charge density oscillations associated
with this structure. As in the case of the metallic edge thewith every particular mode since the eigenvectors of the in-
correction introduced by the surface features influences thteraction matrix F,] in expression7) are the contribution
spectrum by enhancing the weight of the peaks more sensie the surface charge density corresponding to each mode.
tive to the edgélow-energy peaksand on the other hand, by In Fig. 5 the surface charge density(s, ) for six domi-
decreasing smoothly the weight of the bulk loss in anant modes in the casgd=0.6 (which corresponds tal
Begrenzung-like effect associated with the edge and walls as 10 nm in a Drude-like aluminum for a momentum transfer
mentioned above. Equatio$7) and(18) also fulfil for this  typical of STEM q=w/v) are shown all along the bound-
case withe o= eyg0 andeg=1. The planar contributio®0  aries of the truncation of the slab. There are three slab-
eV) associated te;=0.5 is not so strong in this case due to symmetric mode$Figs. 5a), 5(c), and %e)] corresponding
the fact that the trajectory is very close to the apex of theo w=0.40w,, ©=0.54w,, and «=0.83w, which come
edge[see approximate functional dependenceAgrin Eq.  from the lower branches of the edge coupling, and three
(18)]. Also the bulk peak does not mask the surface and edgslab-antisymmetric modg$igs. 5b), 5(d), and 5f)] corre-
correction at such impact parameters. In any case, the masponding to v=0.86w,, ®w=0.550,, and w=0.82w,,

B. MgO edge

A. Interface modes
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which comes from the upper branch of the couplisge Fig. and down. In any case, the interface charge density associ-
4 for qd=0.6). On the other hand, it is also possible to ated with each mode follows the same scheme as that for
determine the nature of the different modes in terms of th&¢|d=0.6 and the nature of each mode can be explained in
symmetry with respect to the bisector of the isolated edgéerms of slab-symmetry and edge-symmetry.

itself. Those modes whose frequency is smaller than the pla- In Figs. @b), 6(c), and &d) we have calculated the loss

nar interface mode, i.e.w<wp/\/§ are edge-symmetric SPectra for three different cases of truncated slabs of alumi-
modes, whereas the edge-antisymmetric modes are found fgFM. When the electron trajectory is parallel to the axis of

frequencies greater than the planar interface mode, d.e., symmetry at different positions outside the slab as shown in

. . Fig. 6(a). The trajectories have been labeled from 0, the cen-
>“’P/\/§' As thg slab becomes thinner, the cpup!mg Ofte of the truncation, to 2, the furthest trajectory from the
edges and walls is enhanced as can be checked in Fig. 4, ag ge of the truncation. In the first cagdig. 6(b)] the thick-

the values of the resonance frequencies are clearly shifted YRss of the slab is 20 nm and only two clear excitations can
be observed. The distance between the two edges is enough
to excite only the modes of the pure planar case and the
isolated edge separately. The isolated edge mode
(~+/0.3w,=8 eV) is clearly excited when the beam is close
to it (label 1) since the interaction between walls is not no-
ticeable. For trajectories close to the middle of the truncation
(label O the pure planar mod&(p/ﬁ= 11.2 eV) is clearly
excited. For trajectories closer to the edge, the planar loss
decreases as the edge loss ri@sgrenzung effe¢t This
situation corresponds in aluminum to the excitation of modes
at qd~ 1.5 where the isolated edge accounts on its own for
all the excitations present in the spectrum of losses. As the
truncated slab is made thinner, the walls and edges are closer
and the coupling make the modes split up all over the spec-
trum. In the second cadé-ig. 6(c)], corresponding tayd
~0.6, the main excited peak belongs to a low-energy
coupled mode (0.40,=6.3 eV). This peak corresponds to
the first slab-symmetric mode plotted in Figaband has the
most intense excitation just in the middle of the truncation
(label Q. There is a slab anti-symmetric mode at Q34
(8.53 eV}, which is also excited near the ed@abel 1. The
pure planar mode is still excited but with a lower intensity
since the proximity of the edge boundaries and the Begren-
zungs effect do not allow it to be excited in this region. In
the third casdFig. 6(d)], for a 5-nm slab, the low energy
peak is excited at a still lower energy (0a3=4.5 eV) due
to the stronger coupling among interfaces which corresponds
FIG. 5. (a), (b), (¢), (d), (6), and (f) show, respectively, the t0 qd~0.2 in the spectrum of modes of Fig. 4. From these
surface charge density( ) of the first modes at a truncated slab as €xamples, it is possible to conclude that the coupling of
a function of the dimensionless coordinates/v andyw/v for the ~ edges and walls is relevant for slab thicknesses of less than
caseqd=0.6. Notice that there are edge-symmetric and antisymthe parametev/w,, which is 15 nm for the case 100 keV
metric modes and slab-symmetric and antisymmetric ones. electrons impinging on aluminum.
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FIG. 6. (a) Schematic representation of a truncated slab with several trajectories marked fctraedto the center of the truncatjcio
2 (far away from the edge of the truncatjoitb),(c),(d) Spectra of losses for aluminum slahs=15.8 eV and damping=1.35 eV) of
different thicknes$20, 10, and 5 nm, respectivelwhen the electron travels parallel to the axis of symmetry at the positions shaian in
The impact parameter is 2 nm in all the cases disl the slab thickness.

thicknessd is shown for such a trajectory and different val-
ues ofd. The impact parametdy is 2 nm outside the slab
The simulations and observations of energy losses whemeasured from the truncation. We compare the spectrum of
the beam travels perpendicular to the axis of symmetry giveksses ford=20, 50, 100, and 200 nm with the pure planar
another possibility to study the edge effect on the loss speaase (— ). For the thickest slab, it is clear that the planar
tra. In Fig. 7, the spectrum of losses normalized to the slalexpression is adequate to describe the features of the spec-

B. Influence of specimen thickness in EELS

4x107°
) b
2 F
= .
L L
g 3 X 10-5 -_d[ m ’ ili
k) FeY FIG. 7. (a) Energy loss probability for Al
= - slabs of different thicknesd (200, 100, 50, and
S r 20 nm, respectivelywhen the electron travels
B 2x10° L perpendicular to the axis of symmetry as shown
g E in the inset compared with the pure planar inter-
:_*? o face d=<) under the same circumstances. The
§ 1% 10°5 C impact parameteb is 2 nm outside the trunca-
é 3 tion. Notice that the surface planar excitation is
P a recovered for thick enough slabs.
K 3
>y C -
g 0
5 4 16
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trum since the edge region is negligible compared to the reddbrude-like case, this few mode approximation is good
of the path. As we decrease the thickness of the slab, the puemough when using a damping parameger w,/20 appro-
planar excitation at 11.2 eV decreases in intensity leavingriate in most experimental situations. It is clear that the
more visible the edge peak at0.53w,=8.4 eV in alumi-  planar situation is a good approximation for slabs thicker
num. All the losses have been normalized to the thickness dhan ~10v/wp(~150 nm in aluminum but for thinner
the slab in order to compare similar intensities. Because ofruncations it has been shown to be necessary to take into
the Begrenzungs effect, an increase in intensity in one exciaccount the edge effect as a relevant feature modifying the
tation is linked to a decrease in another one. This is preciselgpectrum of losses. For real materials with higher character-
the mechanism of intensity exchange between the planar anstic frequencies, the thickness for the validity of the planar
the edge excitation. approximation is not so big since this is again an extreme
From these simulations of truncated slabs of aluminum, &xample of the edge effect. It is also possible to find out the
characteristic loss function can also be inferred from theange of impact parameters sensitive to the presence of the
spectrum of losses. For perpendicular trajectories, the inteedge from a set of spectra for beams that penetrate the slab,
gration over theg component of the momentum broadens thebut as we observed for the case of the isolated edge, this
excitation peaks, but the relevant distances remain valignode is more localized than the planar surface plasmon and
since the effective contribution to the total integrated lossone expects a similar behavior for the truncated slab, where
comes from parallel momentum componegtsw/v. As we  the limit of the single slab is rapidly recovered. For the case
observed in the previous spectra, the coupling of modes ief a cube, these results also give an indication of the circum-
noticeable for slabs whed<v/w,, i.e., slabs wheral is  stances in which it might be necessary to include the effects
thinner than about 15 nm in the case of aluminum. Thereforef 4 or more of the edges.
we assume slabs thicker than this relevant value in order to
get the characteristic energy loss functions for the isolated V. SITUATIONS INVOLVING THREE
edge and surface modes. For such a case, it is possible to DIFFERENT MEDIA
check the influence of the edges in the spectrum of losses
and develop a systematic way to include the corrections de- For a system involving three or more media, the determi-
rived from their presence in a spectrum obtained experimenAant giving the modes is obtained from(w)—[Fq], but
tally. Under the conditions mentioned above, the charactemow, A (w) is given by the pair of dielectric functions, and

istic energy loss function would be given by: eg surrounding the particular interfat@s shown in Eq(2).

Equation(8) is still valid for this case, but E9) has to be

dp  2¢? H (Zwb) Al} [ -1 } generalized with the additional indéxo allow for the fact

—= —— M= that A (w) now has a subscrigtdepending on which media

2 0 —
do  7hy L 054 +(1-09 bound a particular segment of the interface. In that case Eq.
A, —1 (8) can be expressed for a system witlnterfaces as
M 0.3, (1-0.30 ] (19 .

Ik _ k k
where the coefficientd&, and A, are dependent on the im- 2| M(@)logli=2mNgloqli, (20

pact parametel and for a 2-nm impact parameter are found

to beA;=21.70,A,=26.10 nm. If the beam passed through where[o'q]ik is theq component of the interface charge den-
the medium, the bulk term should be added as in expressiosity of thek mode, which is only valid at theh point of the
(17), but for a trajectory outside the slab, there is no bulklth interface, ancﬂgq]:‘ is defined as in Eq9). If we project
contribution since the response function for vacuum is equatonveniently this expression over the interfaces according to
to zero. Notice that the excitation of the edge modes turngq. (10), we get

into a decrease in the excitation of the planar surface plas-

mon. These two contributions are constrained by the Begren- n

zungs effect and modify the planar contribution, which is > S A(w)=2m\E. (21)
linearly dependent on the sample sizeThis is a useful first !

approximation to the whole spectrum but has two main limi- _ O )
tations. The first one has already been pointed out and re- N this latter expressior,  takes account of a partial
quires the study of sufficiently thick sampléshich is the ~ Projection, since it is constrained to theterface. In matrix
usual situation in electron microscopyrhe second point is notationS™ is found to be

the fact that the exact spectrum is given by an infinite num-

ber of modes with their respective weights and here we only y ke K
consider the most representative ones since the rest are neg- - Z 2 A0 AG[oglilaql;
ligible. The case of a slightly damped Drude-like metal is Sy = (22)
one of the most extreme examples to check this approxima- 2 E A’ Agj[aq]ik[gq]:f
P

tion since the loss spectrum shows well-defined and isolated
peaks associated with each particular mode.

In practice, the modes do not appear so clearly separated Once we get théth eigenvalue\§ of the interaction ma-
and the approximation of the spectrum in terms of prominentrix and the values os';*' for the different interfaces labeled
modes is even better. For real materials such as MgO cubésthe mode position can be obtained from E2{l) for any
this approximation is fulfilled very accuratet§Even for the  group of dielectric functions pairs surrounding an arbitrary
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tification of the different modes. After diagonalizing the in-
teraction matrix, a spread of modes is obtained. As in the
edge and truncated slab cases, some modes are more relevant
to the spectrum of losses than others. We have already
pointed out the connection between the dominant mode po-
sitions and the space fraction filled by the materials. If we
select the modes which are more prominent in terms of the
intensity of the excitations, the first ones to be taken into
account are the modes associated with the planar excitations
at each boundary, i.e.gp+ec=0(w=20 eV), gpt+1

FIG. 8. Schematic representation offgunction composed of =(Q(»=11.17 eV), andec+1=0(w=16.6 eV), which
three different media characterized by dielectric functieps eg, arise naturally in the method. Apart from these, we get other
andec. well-defined modes that can be excited at differ@ntalues.

. . ) ) In Figs. 9a), 9(b), 9(c), and 9d) we show energy-filtered
number of interfaces forming a system. In this section, Wgqgg gpectra for some of the dominant modes both in a three
analyze the particular case offajunction formed by three 4 ansional plot as well as in a contour plot that can be
different materials as an example of the application of th&jrectly compared with the filtered images obtained in a
method. For such a system, the characteristic energy 108.anning microscope. The most interesting contour plot is
function is not so straightforward due to the coupling Ofthe oneat 14.5 eV, which is associated with charge density
different dielectric functions, as pointed out above, but any-,ijiations in theT junction itself. In fact, we conclude from
how, for some dominant modes, it may sometimes be poss5icjations that the main features of the spectrum of losses
sible to guess a loss function with a similar structure to the, o given by the peak at the junction and the three planar
one presented in E416), where the values for the coeffi- peaks along the three boundaries. By makingadrhocas-

cients giving the mode frequenay, are related to geometri- g mption that the modes are still characterized by excitation
cal features of the problem. Here, we aim to throw light on¢,,ctions In{— 1] we o+ Beg+(1—a—B)]}, we introduce

these characteristic energy loss fu_nctio_ns for_ real comple parameter3 giving the position of the modes. We can
systems based on the exact numerical simulations performeg,,\ that this assumption, though certainly not rigorous,
with use of the boundary charge method. works moderately well. For th& junction shown in Fig. 8,
where mediumA fills 1/4 of space B fills another 1/4 and
A. T junction half the space is vacuum, we may thus roughly guess the

The boundary charge method also allows the calculatiofnction mode position by using an expression analogous to
of energy losses near junctions composed of three differerfed. (16) with coefficientsay = 1/4 andp,=1/4. The energy
media as shown, e.g., in Fig. 8. The three different dielectrivalue that fulfills the condition for the junction mode ds
functions characterizing the media involved are denoted by=14.2 €V, which agrees with the value obtained through the
ea, €5, andec and they will be taken as standard Drude-Poundary charge method to an accuracy of 2%. In terms of
like functions wherew,a, ®ps, andw, are the character- this geor.net.ncal argument, |f_ the three media junction were
istic plasma frequencies. If we calculate the modes for such 8ymmetric, i.e., each occupying an angle of/3, the value
system, the main feature to be pointed out is the presence &f the dominant mode position would he=1/3 and gy
the planar modes corresponding to each pair of interfaces 1/3, i.e.,ea+ec+3=0, and an ad hoc energy loss func-
and which are given by a+e5=0, sa+ec=0, andep tion characteristic of such @ junction could be computed
+8C=0' As for the edge or the truncated S|ab1 itis pOSS|b|éN|th thesle Vallues. IfWe include both the planar excitations
to get the modes for such a structure by equating to zero th@nd the JUnCt|0n excitation as the most relevant featur:es of
determinant of the interaction matij ] in expression(7), ~ the losses, the expected approximate energy loss function for
corresponding to charge density oscillations with no externalhe system shown in Fig. 8, becomes
field. The calculation of modes for this case involving sev-
eral media is more complicated than the case of a two-media
system where the modes can be obtained independently of
the composition of the material as was pointed out in Sec. IIl. ~ d°P  2€? A im -1
In this case, the diagonalization of the matrix takes into ac- dwdz 54y2| ©  |0.5e+0.5e¢
count the mixing of different media in paifthroughA ()]
and the modes are strongly dependent on the composition of

the structure. - -

A very interesting application of the boundary charge the Im{0-5€m+0-5 +A3|m[0-5€c+0-5
method in a three-component structure is the calculation of

energy loss maps to compare with images obtained in -1

energy-selected scanning transmission electron microscopy. +AsIm 0.25 5 +0.25+ 05|’ (23

As an example of this, we study the particular case of the
structure of Fig. 8 where medium is considered to be Al
(0p=15.8 eV; y=0.5 eV), mediunB is considered to be
carbon @,=23.5 eV; y=1 eV) and mediumC is sup-  where the subscripts 1, 2, and 3 refer to the planar losses and
posed to be vacuum. This choice was made to facilitate iderthe subscript 4 refers to the junction loss. The bulk term
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FIG. 9. (a), (b), (c), and(d) Simulation of filtered energy loss probability for the case of a 100 keV electron impinginglTgnrection
composed of aluminumaf,=15.8 eV, y=0.5 eV) and carbon¢,=23.5 eV, y=1 eV) next to vacuum. The values of the filtered
energies are 11.2, 14.5, 16.6, and 20.0 eV, respectively and have been obtained through the diagonalization of the interaction matrix in the
boundary charge method. The darker the region, the smaller the value of the probability of losing energy. Aluminum is contained in the
regionx,y<0, carbon forx>0, y<0 and vacuum foy>0.
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should be added when the trajectory crosses through aluméiuce the influence of retardation in the position of the peak.
num or carbon. The dependence of the coefficiégtsvith  The spectrum of losses for different slabs is represented to
respect to the impact parameter is here even more complFig. 10 both for the range of validity of the planar approxi-
cated than in the two-media case, making clear the necessitifation d—=) and for thin slabs where the edge effect
of numerical simulations through, e.g., the boundary chargehifts the peak downwards. From the simulations in the fig-
methOd.tO find the exact W6|ght of the different eXCitationSure, one can establish that the p|anar approximation is very
depending on the beam position. . good for slabs thicker than50 nm but fails when dealing
Close investigation of the eigenvalue equation for they;it thinner ones. Although we will return to this point later,
modes of theT junction indicates that they may be analyti- it s convenient now to study the problem in terms of rel-

cally Fe'ate.d to the modes (.Jf the |sqla_tgd edge, which WEIGyant thicknesses and characteristic losses, which can throw
described in Sec. lIl. There is a possibility, which we plan tolight on the effect. The case we present here is more com-

explore in a later publication, that this approach can alsq_;. . .
yield more exact excitation functions for the-junction plicated to study due to the complex dielectric response func

modes and eventually an improved form of E23). In the tions characterizing both media. In the case of a Drude-like

meantime we believe that this equation represents a usefHIuncate<j slab, we were ablg to analy_ze well-defmgd and
working compromise. separate losses associated with the particular modes in a sys-

tem, but for a realistic case, such as this one, it is not pos-
sible to identify the contribution of each mode in such a clear
way. Nevertheless, as for the case of the truncated slab, the
downward shifting can be interpreted in terms of excitation
B. Si-SiG; | junction of edge modes whose relative intensity is more noticeable as

The most important practical case to test the success dhe thickness of the slab decreases. As in the case of the
the boundary charge method is the complex but realistidruncated slab, we can also distinguish here three different
structure of thd junction often encountered in experiments. regions in order to interpret the Si-SiGnterface plasmon
This comprises a thin slab containing two different dielectricpeak position and intensity: for slabs thicker thadOv/ w,,
regions separated by a boundary running normal to the slap~50 nm for this casea treatment based on the planar in-
surfaces. We study a system composed of sili€®in and  terface approximation is sufficient to deal with the energy
silica (SiG,) when the electron beam penetrates one of thdosses. For slabs thinner than this value, the presence of the
two regions[see Fig. 10 Besides the bulk plasmon of the junctions is clearly noticeable and new junction modes given
material penetrated, the Si-Siinterface plasmon given by by the relatione g+ &sio,+2=0 (a=1/4, B,=1/4), must
the relatione s;+ £5i0,= 0 is also excited. The exact position pe included in the spectrum of losses. Finally, in the case of
of this interface plasmon peak has been recently studied relaery thin slabs §<v/w,<5 nm), the coupling of edges
tivistically and good agreement with experiments has beeand interfaces, gives rise to new surface modes in the case of
achieved for thick enough slali$80 nm thick where the very thin films and makes it difficult to express the losses in
planar interface approximation can properly be USefls in  terms of well-defined excitations. The contribution of differ-
previous sections, it is possible to estimate the influence oént values of the parallel momentum componenglso
the thickness of the slab on the weight and position of thidoroadens the peak for trajectories perpendicular to the axis of
interface plasmon and the relevant thicknesses at which thgymmetry, since it takes into account contributions of differ-
edges and the coupling between surfaces should be takemtly coupled modes to the spectra of losses. In any case, the
into account. The experimental situation for such a junctiorfinal intensity is mainly given by very low components of the
is represented in the insert in Fig. 10 where the beam travelmomentum close to the value/v. In a first approximation,
through the Si@ with a 2-nm impact parameter. We con- for slabs greater than 5 nm in the case of SiiDis possible
strain our study to small impact parameters in order to reto express the losses for the case of a 100-keV electron im-
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pinging on a junction as shown in the inset of Fig. 10 interm proportional to the thickness. On the other hand, for the
terms of the weighted modes as follows: isolated edge, it is also possible to guess a dependence of
these coefficients on the impact paraméteby introducing
dP 22 an exponential decay for the plasmon intensity, which de-
do Wﬁsz[Ao

0.5¢5i0,+0.5

€sio,

pends on the nature of the surface plasma@y(b,w)
~exp(—nwb/v)] wheren depends on the particular mgde
The modes associated to the edges and junctions are more
localized than the planar ones therefore, one expects the pa-
rametemn to be greater for these modes.

For very thin films, the main effect influencing the spec-
trum of losses is the coupling among surfaces and edges, as
pointed out for the case of the truncated slab in Sec. IV. For
the case of the Si-SiQjunction, the relevant thickness pa-

J rameter below which the coupling is significant is 5 nm. In

+A;Im

+A,Im

+Az1m (24)  practice, it is very difficult to deal with such thin films, there-
fore we constrain our study to values greater than this rel-
evant parameter. Below these values, the structure of the

modes complicates as can be seen in Fig. 4.

0.255+0.25 50, 0.5

The first mode(labeled  corresponds to the Silbulk
plasmon, the surface modes labeled 1 (Si@cuum, and 2
(SI-SiG, interface correspond to the pure planar cases and
the last one(labeled 3 corresponds to th&-junction edge VI. CONCLUSIONS
mode characterized by,=0.25, 8,=0.25 as obtained be-
fore. The coefficientsA,=A(b,w), are dependent on the
impact parameter and the thickndssof the slab. For the We have studied complex systems whose normal modes
energy rangg4-10 eV, it is adequate to take the last two and characteristic energy loss functions can only be handled
modes(labeled 2 and 3 in the characteristic loss functin  successfully by numerical calculations. The complexity of
simulate the main features of the spectrum since thehe systems arises from the presence of sharp edges and junc-
SiO,-vacuum interface peak and the Si and Skfulk plas-  tions such as the truncated slab or the junctions composed
mon peaks appear at 18 and 23 eV, respectively. In thif'om more than two media. The method employed here es-
range of losses, the single slab relatioh,=In(k.v/w)  tablishes a systematic procedure to express the losses in
—0.5A; and A;=constL of the type employed in Eq19)  terms of excitation of modes, which are given by the geom-
can then be uselFor the case of a trajectory penetrating Si, etry of the system. We have obtained general quantitative
the characteristic energy loss function can be obtained bygriteria to deal with the edge effect at truncations, cubes or
interchanging Si@Q with Si in expressior(24). With optical  junctions in slabs where we distinguish three different cases.
dielectric data for amorphous Sj@nd crystalline St/ the  For interfaces longer in the beam direction thadOv/wy,
interface peak appears at 8.6 eV freg+ &sio,= 0 and the the planar approximation treats successfully the intensity and

junction edge mode appears at 7.6 eV frem+ego +2  POsition of the losses since the edge effect is negligible in
2

—0. Since both modes are very close together in the s eé:_omparison with the planar interface loss. For truncated in-
y 9 P rfaces betweew/ w, and~10v/w,, the edge effect has to

trum and are broadened by damping, we simply observe %e g . .
shifting from one valug8.6 eV) to another(7.6 e\) as we e taken into account via the presence of the dominant new

decrease the slab thickness, instead of two separate mod §<’citation assoc_iated \.Nith the edge itself as well as through
weighted according to the sample thickness as in Fig. 7ihe decrease of intensitgegrenzungs effeLbf well-known

From this point of view, it is possible now to understand theSxcitations such as bulk and plan_ar s_urfac_e plasmons. For
spectra in Fig. 10, where numerical calculations for the en:[hIS range of structures, an approximation directly related to
ergy loss probability per eV normalized to the slab thicknes§he geometry has been proved to be adequate to express the

are provided for a 100-keV electron beam traveling at 2 nrtharaCte”St'C energy loss functions in terms only of the

from the interface separating both media. As pointed Outgomlnant modes. The third range of sizes belongs to the case

there is 1 eV shift of the interface plasmon peak, whichof structures with truncations smaller thafw,, where only

should be detectable in thin enough films when using higin® numerical simulations based on, e.g., the boundary
resolution in STEM. If we split the peak into two different charge methoq developed here, can adequately describe the
contributions according to the peaks in the characteristic losS°MPIex coupling of modes and the resulting loss spectrum.
function in expressioii24), A, andA; can be expressed for

a fixed impact parameter, in an analogous way to the trun-
cated slab casgsee Eq. (18)], i.e., A,=K,(2wb/v)
—consp/L and Az=const/L where const=19.8 nm and
consg=21.7 nm for the case of 2 nm impact parameter. The authors would like to thank Iberdrola for support
Notice that these values are coincident with those obtainegA.H.) and the Departamento de Educagitniversidades e
for the case of the truncated slab and have the same meanirigvestigacim of the Basque Country Government for sup-
they are fixed contributions of the edge effect independent ofporting the visit to the Cavendish Laboratory through its pre-
the thickness of the slab that modify the usuél(2wb/v)] doctoral grants prograrfd.A.) (Project No. Pl 1997/39
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