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Valence-electron energy loss near edges, truncated slabs, and junctions
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Valence losses in electron microscopy can be conveniently computed using classical dielectric excitation
theory. In many practical situations, the presence of complex structures gives rise to the possibility of coupling
between interface modes, surface modes, and edge modes. In the nonrelativistic case, the losses in such
geometries can be calculated by taking a distribution of surface and interface points, each of which is associ-
ated with an interface charge. These charges interact self-consistently with each other as well as with the
charge of the incident electron. Here, we have applied this boundary charge method to provide scanning
transmission electron microscopy energy loss spectra near-edged structures such as truncated slabs and junc-
tions formed by several media. We find the dominant modes associated with such systems and study their
contribution to the characteristic energy loss functions. The significance of these excitations compared with the
planar interface peaks is discussed in terms of the sample geometry with illustrations for the cases of an MgO
cube and an Si/SiO2 thin-film interface.@S0163-1829~99!00939-X#
xc
ec

iti
o

fu
v
th
s
en
os
pl
ar

ua
c

in
nt
n

ta

a
ic
-

p
f

of

par-
eral
e-
nd

ms

f
ot
es

r a
ng
-
ois-
ity

lied
ing
-
iant
ry
ua-
re

se
al-
r-
ed in
ral

bu-
ro-
sly
of
on-
I. INTRODUCTION

Electron energy loss spectroscopy~EELS! is a powerful
tool to study the characteristics and nature of electron e
tations in a solid. Spatially resolved EELS using fast el
trons in scanning transmission electron microscopy~STEM!
shows two types of loss depending on the nature of the in
electron states that are excited. Core electron excitations
cur at very well-defined energies and have been success
studied in terms of excitations from the different atomic le
els corresponding to a specific atomic element. On the o
hand, valence electrons give more intense spectral losse
their interpretation is much more difficult since these oft
have a collective nature connected not only to the comp
tion of the material but also to the geometry of the sam
under study. The dielectric theory, in which the media
described through a local dielectric function«(v) dependent
only on the frequency, has however supplied an adeq
basis for interpreting these excitations. The local approa
neglecting the momentum dependence of«, can largely be
applied in this kind of problem since very fast electrons
the scanning-beam transfer mainly rather small mome
Following Ritchie’s prediction of the surface plasmo
excitation,1 much work has been done on collective exci
tions associated with a particular geometry.2 The aim has
often been comparison between theoretical predictions
experimental loss spectra,3 e.g., losses near a dielectr
sphere4 or Ag spherical particles.5 STEM experiments in eas
ily damaged materials such as AlF3 yielded loss spectra from
cylindrical holes and stimulated analytical solutions for a
propriate geometry.6 Losses from colloidal dispersions o
small spherical precipitates were also found7 and interpreted
in terms of effective medium theory. Analytical studies
PRB 600163-1829/99/60~15!/11149~14!/$15.00
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modes and plasmon frequencies in cubes, rectangular
ticles and wedges have also been made by sev
authors.8–10 As the geometry involved in real problems b
comes more complicated, a mixture of both analytical a
computational work is required in order to solve syste
such as a sphere coupled to a plane,11 a hemisphere,12 a
channel,13 or a wedge.14 When the number of particles, or o
different media, or the difficulty of the geometry itself do n
allow an analytical solution, other computational techniqu
are necessary to deal with the problem. Fuchs15 determined
the normal modes of a cube by distributing dipoles ove
solid, selfconsistently interacting with one another. Ouya
and Isaacson16 developed a formalism to deal with inhomo
geneous dielectric systems that was based on solving P
son’s equation with a distribution of surface charge dens
at every interface separating two different media and app
it to calculate the energy losses of a spherical particle ly
on a thin film.17 A similar approach was followed to calcu
late electron energy losses near both translationally invar
and axially symmetric targets with otherwise arbitra
shape.18 In fact, this paper can be understood as a contin
tion of this previous work since all the formalism used he
was already explained there in more detail~apart from slight
changes in notation which are noted here when they ari!.
Here we study further the application of this general form
ism to a number of practical situations in STEM. The inte
faces and so the surface charge densities can be discretiz
a convenient way in order to solve a self-consistent integ
equation, which involves the surface charge density distri
tion. As an example of the power of the technique, we p
vide simulations for a variety of cases not studied previou
due to the complexity of the geometry or to the number
media involved. These calculations are exact for such c
11 149 ©1999 The American Physical Society
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figurations, but we also include some approximate charac
istic energy loss functions that refer the spectrum of losse
a few dominant modes that are strongly excited by the
coming beam. These approximate functions may be fo
useful by experimentalists in a certain number of ca
where a complicated spectrum of losses occurs. The deta
description of the loss spectra must of course ultimately
pend on the exact numerical computation but the appr
mate function can throw light on the nature and intensity
the losses found. In this spirit, different features of the sp
trum of modes and losses arising near the end of a trunc
slab are simulated to investigate the influence of slab th
ness on the mode coupling for edges and walls. A real s
tem that shows such geometrical features is the MgO c
whose excitations by STEM electrons have been studied
Marks,19 Cowley,20 and Milne and Echenique21 among oth-
ers. Loss spectra for different trajectories are shown and
plained in terms of bulk and surface losses. Using the
malism presented previously18 and summarized more briefl
here, we are able to study in a systematic way the losse
these systems even for trajectories close to the edges. W
also study complex junctions where several media meet
fixed point or line. It is possible to simulate maps of ener
losses for such complex systems resembling the energy
lected loss images. Furthermore, another case of interes
shows coupling between edges and mixes several med
the system formed by a junction of Si and SiO2 in a slab
surrounded by vacuum. Previous calculations on t
system22,23were based on a Si-SiO2 planar interface approxi
mation and suggested the presence of a 1-nm-thick laye
SiO at the interface in order to explain the observed mag
tude of the interface plasmon peak. The importance of re
dation effects in determining the peak position was a
noted. These calculations did not take into account the in
ence of the thickness of the slab on the loss spectrum,
the top and bottom surfaces and the corners forming
edges, something we remedy in this paper. We have to p
out that all the calculations performed here ignore retarda
and radiation effects, that is, we are dealing within a non
ativistic approximation in which Poisson’s equation for ea
Fourier component of frequencyv is solved numerically for
different cases of interest. As the velocity of electrons in
scanning beam is of the order ofc/2, this approximation will
be more accurate for small enough samples and particles
trajectories close enough to the interface. Beyond these
its, one should introduce retardation to get accurate qua
tative values. The boundary charge numerical method
been recently extended to include retardation effects by s
ing Maxwell’s equations rather than Poisson’s equation24

All the examples treated here involve small impact para
eters so that retardation effects may not be too serious
some cases~noted below!, Cherenkov radiation or transitio
radiation may occur and is not included in our nonrelativis
treatment. Nevertheless the nonrelativistic boundary cha
method shows promise as a tool to treat real system
STEM configurations. As an application of this numeric
method to cases of practical interest in STEM, we analy
first, the case of the edge and the truncated slab as an
ample of a complex two-media geometrical system and s
ond, the cases of theT andI junctions where the complexity
arises from the number of media involved in the system
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well as from the sharp boundaries which occur in these st
tures.

II. BASIC THEORY

We briefly outline in this section the theoretical bas
which allows systematic calculation of the modes and los
for an arbitrarily shaped object. The theory for the non
tarded case has already been presented in detail18 and we
merely summarize it here for completeness.

A. The boundary charge method

The key to deal with losses in arbitrary objects is given
the possibility of writing the potential and electric field a
over the space in terms of the surface charge density indu
by an external field~produced by the incoming electron i
this case! at the interfaces separating the different media. T
surface charge densitys(s,v) at each interface points inter-
acts consistently with the charge at the other pointss8, as
well as with the external field frequency compone
¹fext(s,v), which in Ref. 18 was denoted by¹f`(s,v),
produced by the passing electron. From Poisson’s equa
the self-consistency expression based on the surface ch
density leads to

L~v!s~s,v!5ns•¹fext~s,v!2E ds8
ns•~s2s8!

us2s8u3
s~s8,v!,

~1!

where

L~v!52p
«B~v!1«A~v!

«B~v!2«A~v!
, ~2!

and

fext~r ,v!5E dr 9
rext~r 9,v!

«~r 9,v!ur2r 9u
. ~3!

The dielectric responses are described in terms of an
bitrary function of spacer 9 and frequencyv, «(r 9,v),
which denotes the local dielectric function at the pointr 9
~either«A or «B in the simplest case!. «A(v) and«B(v) are
the dielectric functions of the two media surrounding ea
interface points as shown in Fig. 1, andrext(r 9,v) denotes
the Fourier component of the external charge density ass

FIG. 1. Schematic representation of an interface separating
dia «A and«B with invariance along thez axis. The unit vectorns

normed to the interface at positions points towards medium«B .
The arrow indicates the sense of increasing parameteru.
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ated with the electron beam that is assumed to move
material of dielectric function«(v). As can be observed in
Eq. ~1!, the surface charge density can be obtained throug
self-consistent integral equation involving all the interfa
points. In order to deal with practical cases and nonstand
geometries the integration can be converted to a matrix
erator where the surface charge points are discretized
conveniently distributed, depending on the local interfa
shape and its closeness to the beam. In addition to this, i
system shows some kind of translational or rotational g
metrical symmetry the integral equation simplifies and tu
into a one-dimensional problem, when appropriately p
jected over the invariant coordinatez. We deal in this paper
with objects invariant along thez axis, which takes accoun
of the main features of the edges, truncations, and junct
present in many real systems such as cubes or thin fi
composed of two different components. In this way, the
rametrization of the interface depends only on one param
u, and can be performed in theXY plane as shown in Fig. 1
If we project Eq.~1! over the Fourier transformed compo
nentq of the invariant real coordinatez, we get

L~v!sq~u,v!5 f q~u,v!1E du8Fq~u,u8!sq~u8,v!,

~4!

where the surface charge densitysq(u,v) depends only on
the parameteru. The explicit expression for theq component
of the external term is

f q~u,v!5ns~u!•¹fq
ext@Rs~u!,v#

5E dR9

«~R9,v!
Hq~R9,u!rq

ext~R9,v!, ~5!

where

Hq~R9,u!52uquK1@ uquuR92Rs~u!u#ns~u!•
@R92Rs~u!#

uR92Rs~u!u
.

~6!

R95(x9,y9) is the projection of the position vector over th
XY plane perpendicular to the invariant axisz, ns(u) the unit
vector normal to the interface at each point, andK1@x# is a
modified Bessel function of first order. When the trajecto
crosses several media,«(R9,v) depends on the particle po
sition R9, and the integral in Eq.~5! has to be broken into the
different regions the electron is crossing. Otherwise, wh
the medium surrounding the incoming particle does
change, it can be directly expressed as«(v). The self-
consistent-induced term or interaction matrix is given by

Fq~u,u8!5Axs8~u8!21ys8~u8!2Hq@Rs~u8!,u#, ~7!

where the prime denotes differentiation with respect to
parameteru8.

When solving the integral equation for the surface cha
density in expression~4! by means of a convenient discret
zation of the whole interface present in a system, the inte
equation turns into an algebraic system that can be expre
in a matrix form:
a
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L~v!@sq# i5@ f q# i1(
j

@Fq# i , j@sq# j , ~8!

where@sq# i5sq(u i ,v) is the surface charge density corr
sponding to thei th point of the surface parametrization
@ f q# i5 f q(u i ,v) is theq component of the external field pro
duced by the incoming electron at thei th position and
@Fq# i , j5Fq(u i ,u j )Du j is theq component of the interaction
between thei th and j th surface points of the parametrizatio
~the interaction matrix!. In this process of discretization,
sufficient number of points must be considered in order
get convergence in the results. In the nanometric scale, t
cally it was found necessary to use around 100 surf
points. These were generally concentrated in the region
interest of smallest curvature and closest to the elec
beam path with a smaller number of points at greater d
tances. The number of points needed for convergence o
computed loss spectrum and their maximum distance fr
the electron beam were found by trial and error. It is imp
tant to point out that this method separates clearly the ge
etry of the system~given by@Fq# i , j ), the composition~given
by L, which depends on the pair«A and «B surrounding
every interface! and the strength of the induced charge de
sity ~given by @ f q# i , which depends mainly on the impac
parameter of the incoming electron!.

B. Dominant interface modes

The eigenmodes for a given geometrical system can
easily obtained from Eq.~8! by neglecting the external term
@ f q# i and setting the determinant of the interaction mat
@Fq# i , j to zero, which is the condition for the charge dens
to exist without an external field. Apellet al.25 found that
these modes fulfill interesting sum rules, which apply in su
situations. Once the modes are calculated, they are exc
with different weights depending on the particular conditio
of the trajectory.

For a two-media situation it is possible to calculate
spectrum of modes as a standard eigenvalue problem fo
@Fq# i , j matrix, which depends only on the geometry of t
structure and not on the two particular media involved.18 If
we denote by 2plq

k the eigenvalues of the interaction matr
@Fq#, associated with a corresponding eigenvector@sq#k, the
equation for the mode of this particular surface charge d
sity can be expressed as

2plq
k@sq# i

k5(
j

@Fq# i , j@sq# j
k , ~9!

wherei , j labels the matrix elements and the vector comp
nents. The interface modes have to be labeled with two
rameters:q ~wave vector along the symmetry axis! andk ~a
mode number normal to this axis!.

The set of eigenvectors@sq#k form a complete basis
whose orthogonality properties are derived from16

E dsE ds8
s i~s!s j~s8!*

us2s8u
5d i j . ~10!

This allows us to project the expression for the external te
in terms of these eigenvectors as
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ns•¹fq
ext~s,v!5(

k
f q

k~v,b!sq
k~s!, ~11!

where f q
k(v,b) is the projection of the external termf q over

the k eigenvectorsq
k(s), and depends on the particular tr

jectory described via the impact parameterb.
If there are only two media forming the system, the

genvaluelq
k is straightforwardly related with the paramet

L(v) through

L~v!22plq
k50, ~12!

which gives account of thek-mode position (vk) for every
value ofq. In terms of the two local dielectric functions«A
and«B , Eqs.~2! and ~12! give

~11lq
k!«A1~12lq

k!«B50, ~13!

which is the mode equation for translationally invariant
terfaces separating two different media.

The total interface charge densitysq(s,v) can be ob-
tained as a sum over all the modes present in the geome
system, weighted with the external termf q

k(v,b)

sq~s,v!5(
k

f q
k~v,b!

@L~v!22plq
k#

sq
k~s!. ~14!

In principle, the exact solution of the interface charge den
consists of the sum over all the eigenmodes, but in pract
STEM configurations only some dominant modes are sign
cantly excited and play an important role in the spectrum
energy loss. One of the aims of this paper is, therefore
detect and deal with these dominant modes in complex c
figurations formed by the coupling of edges and junction

C. Characteristic energy loss functions

In a general formulation of the problem, the energy lo
probability and hence, the excitation probability for a diele
tric can be obtained by the action of the retarding field due
the induced interface charge densitys(s,v) at the position
of the incoming electron. The explicit expression for the lo
probability is given by a weighted sum over different mod
~labeledk) associated with the different contributions of th
induced surface charge densitysq

k(s,v) in Eq. ~14!. For a
two media problem, one can write the excitation probabi
for a dielectric systemGq

boundaryas a weighted sum over dif
ferent modes:

Gq
boundary5

1

v2 (
k

Im$2gq
k~v!Gq

k%. ~15!

gq
k52/@«A(11lq

k)1«B(12lq
k)# gives the mode position

as noted in the previous section andGq
k , which gives the

contribution of thek mode is proportional tosq
k(s) and f q

k .
For trajectories parallel to the invariant direction, conser
tion of energy and momentum means that only one valuq
5v/v is relevant in the loss spectrum,v being the velocity
of the fast electron. For perpendicular trajectories, there
to be an integration overq, which roughly speaking extend
up to values of orderuqu51/b whereb is the impact param-
eter measured from the nearest interface point. This decr
-
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in the probability of excitation for larger values ofq arises
naturally in the formalism due to the nature of the Coulom
interaction which introduces a dependence proportiona
qb in the argument of the Bessel function;K1@qb# @see Eq.
~6!#. If we now setak511lk/2 and Ak(v,b)5(2/p)Gk ,
we find a simple expression for the excitation probabil
dP/dv in a two-component system

dP

dv
5

2e2

p\v2 (
k

n

Ak~v,b!ImF 21

ak«A1~12ak!«B
G , ~16!

whereak gives the position of thekth mode in terms of its
eigenvalue lk strongly dependent on the shape of t
sample, andAk(v,b) is the weight of the mode under th
particular circumstances of excitation~impact parameter and
size of the sample!. In principle, the sum over the mode
involves as many modes as the number of interface point
the parametrization, but in practice, for a real system suc
an edge or a truncation, it is sufficient to take the domin
modes which can be efficiently excited and act back at
incoming electron, i.e., those with large values ofAk(v,b).
As indicated in later sections, an adequate approximatio
the loss spectrum can often be obtained by including onl
or 4 modes.

III. ISOLATED EDGE

In many practical situations, the presence of sharp ed
is a prominent feature that cannot be neglected when an
curate study of the electron energy losses is required. We
to show here quantitatively the influence of the presence
an edge in the spectra of losses. In all the cases, the edge
considered very sharp compared to the distance of the be
Therefore, the shape of the apex does not introduce an e
dependence in the mode frequency position which is gi
effectively by the junction of two straight walls.

A. Drude-like metallic edge

As pointed out in the previous section, we assume sev
mode contributions to describe the whole spectrum of los
In the case of a sharp edge, it was found that the disc
distribution of surface modes corresponds to the valuesa j
50.30 ~symmetric!, 0.70~antisymmetric!, 0.34~symmetric!,
0.63 ~antisymmetric!, . . . , together with a cluster of value
around 0.5~planar surface plasmon!.18 It should be noted
that for subsequent convenience with the more compleT
andI junctions discussed below, the discretization proced
used here for the isolated edge is slightly different than
one previously employed.18 Here, all the points lie on the
two intersecting planes forming the edge. Although there
no point at the actual intersection of the two planes, since
surface normal is not well defined there, points if necess
can be taken arbitrarily close to the intersection by work
with finer and finer mesh scales. With this slightly differe
procedure, thea values for the edge modes become sligh
different, but the changes in the loss spectra are extrem
small.

Although all the modes belong to the edge geometry, o
some of them are noticeably excited when the electron
pinges on such a structure. Figure 2 shows the spectrum
losses for a 100-keV electron impinging with an impact p
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FIG. 2. Total energy loss probability for a
100-keV electron impinging on a sharp edge
Al. The impact parameter is 1nm inside the edg
Bulk and surface contributions to the losses a
also plotted.
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rameter of21 nm on a single 90° edge of aluminum, cha
acterized by a Drude-like dielectric function«A51
2vp

2/@v(v1 ig)# with plasma frequencyvp515.8 eV and
dampingg50.5 eV surrounded by vacuum«B51. The mi-
nus sign for the impact parameter denotes a trajectory in
the material measured from the vertex of the edge. For s
a case, it is clear that together with the bulk peak at 15.8
the main contribution to the spectrum of losses is the pea
8.3 eV, corresponding toa50.30, which denotes the edg
peak corresponding to the first symmetric surface mode
the edge. The contribution of the pure planar mode (vp /A2)
due to the walls of the edge is also present at 11.2 eV. F
beam passing normally through an edge, at a distanceb from
the vertex of the edge, the path travelled inside the mate
is L52ubu, and after integrating over the differentq compo-
nents and total path, the approximate energy loss probab
becomes

dP

dv
5

2e2

p\v2
LH Ao ImF21

«A
G1A1 ImF 21

0.5«A10.5«B
G

1A2 ImF 21

0.3«A10.7«B
G J , ~17!

where Ak5Ak(b,v), (k50,1,2) depend on the impact pa
rameterb and give the weight of the three main excitations
the loss probability whoseak values have been explicitly
written. In the case of a penetrating trajectory, the first mo
to be taken into account is the bulk mode characterized
ao51. The second important feature that arises natur
from the formalism is the pure planar mode characterized
a150.5 and finally the main mode associated with t
charge density oscillations near the edge, which are
scribed bya250.30. As pointed out above, there are mo
modes associated with the edge~symmetric and antisymmet
ric ones oscillating all around the edge18!, but since this latter
is the one which dominates the spectrum of losses, i
enough to consider it alone to show the main features of
losses produced by the edge. In order to account for
additional background in Fig. 2 given by the exact calcu
tions, one should certainly include another pair of modes,
this is an extreme case of free electron response with r
de
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tively small damping when the contribution of each mode
more easily detected. For a practical material, such as
shown in the next section, this reductionist approximat
describes most of the features of a given spectrum. This
be the spirit of the following approximations in the chara
teristic energy loss functions of complex structures. It is
teresting to stress here that the valuesak giving rise to the
surface modes are not as arbitrary as one might think at
sight. In fact, although there is a considerable spread
modes (0,ak,1) all along the spectrum, it is noticeab
that the most prominent wedge mode position shows a
tematic tendency to increase with the wedge angle or fill
fraction getting close to;1/4 in the case of a perfectly
straight 90° edge.

The weight of every modeAk depends only on the impac
parameterb with respect to the apex of the edge. The co
ficients do not follow any known analytical dependence a
function of the impact parameter. For the particular ca
shown in Fig. 2, however, the coefficients can be appro
mated as

Ao5 ln~kcv/v!2
200 nm

L
@12e(22ubuv/v)#,

A15
300 nm

L
@12e(22ubuv/v)#, ~18!

and

A25650@e(210ubuv/v)#,

with an accuracy of 10% in the estimate of the function
dependence. For the case of a trajectory perpendicular to
axis of symmetry as shown in the inset of Fig. 2, the ed
mode (a250.30⇒v;0.53vp) decreases very strongly i
intensity with increasing distanceubu from the edge
(;e(210ubuv/v)) and the planar surface mode intensity i
creases more slowly (;e(22ubuv/v)) to a fixed value. The
bulk mode also increases in intensity with distance from
edge, since the beam travels through a longer path inside
material. For such penetrating trajectories, this peak is c
rected by a term that follows an analogous dependence to
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FIG. 3. Total energy loss probability for a
100-keV electron impinging on an MgO edge a
shown in the inset. The impact parameter is 1 n
inside the edge. Bulk and surface contributions
the losses are also plotted.
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planar surface contribution with contrary sign~Begrenzung
effect: the excitation of new surface modes decreases
intensity of the bulk peak!.

B. MgO edge

This edge geometry was also studied for the more pra
cal case of MgO cubes,26 which show sharp edges. Althoug
the peaks cannot be so precisely associated with a partic
geometrical feature as in the case of a simple metal, sim
conclusions were reached. The MgO sample considered
fact infinite in thez direction normal to Fig. 3 and the dis
tance from the apex to the farthest surface point is take
be 100 nm in the computation. Since we are concerned w
the effect of the edge, the coupling between parallel side
the cube is not included in this particular calculation, but t
can be considered a good approximation for the large siz
cube studied here~several hundreds of nm! where this cou-
pling is absolutely negligible. The procedure to calculate
spectrum of losses for the case of an MgO edge is analog
to the one presented above for the metallic edge, but in
case, the frequency-dependent dielectric function is deri
from the bulk loss function in the same material extrac
from energy loss data after deconvolution. In Fig. 3,
present both the STEM observed energy loss spectrum
for the identical trajectory, the total simulated energy lo
probability dP(v)/dv, which agrees in absolute terms to
factor of about 0.7. Together with the bulk loss at 22.5 e
the enhancement of the low-energy peaks at 11 and 14
can only be explained in terms of the edge mode associ
with this structure. As in the case of the metallic edge
correction introduced by the surface features influences
spectrum by enhancing the weight of the peaks more se
tive to the edge~low-energy peaks! and on the other hand, b
decreasing smoothly the weight of the bulk loss in
Begrenzung-like effect associated with the edge and wall
mentioned above. Equations~17! and~18! also fulfil for this
case with«A5«MgO and«B51. The planar contribution~20
eV! associated toa150.5 is not so strong in this case due
the fact that the trajectory is very close to the apex of
edge@see approximate functional dependence forA1 in Eq.
~18!#. Also the bulk peak does not mask the surface and e
correction at such impact parameters. In any case, the m
he
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geometrical uncertainty is the precise value of the imp
parameter that can change the total weight of the loss p
ability due to a different contribution arising from the bu
losses. The simulation does not reproduce the excitations
served in the band gap which must arise either from defe
or from relativistic effects.

IV. COUPLED EDGES: TRUNCATED SLAB

A. Interface modes

Another case of interest from the practical point of view
the truncated slab that can be considered as the junctio
two edge structures. A major parameter then involved is
slab thicknessd. In Fig. 4 the modes of a truncated sla
depending on the dimensionless parameterqd are shown,
beingq the momentum component in the direction parallel
the axis of symmetryz as shown in Fig. 1. The dielectri
response function« is assumed to be a Drude-like functio
with no damping (g50). For very thick slabs (qd.1.5), the
limit of the isolated edge is obtained with the presence
well-defined modes (v;0.53vp ,0.63vp , . . . ,0.80vp and a
concentration of modes close to the valuevp /A2). As the
thickness of the slab decreases, the modes start to co
giving rise to a spread of allowed values. As in the case
the isolated edge, some of these modes are more likely t
excited depending on the particular features of the elec
trajectory, which couples better to some particular dens
charge distribution with a large amplitude nearby. It is a
possible to plot the charge density oscillations associa
with every particular mode since the eigenvectors of the
teraction matrix@Fq# in expression~7! are the contribution
to the surface charge density corresponding to each mod

In Fig. 5 the surface charge densitysq(s,v) for six domi-
nant modes in the caseqd50.6 ~which corresponds tod
;10 nm in a Drude-like aluminum for a momentum trans
typical of STEM q5v/v) are shown all along the bound
aries of the truncation of the slab. There are three sl
symmetric modes@Figs. 5~a!, 5~c!, and 5~e!# corresponding
to v50.40vp , v50.54vp , and v50.83vp which come
from the lower branches of the edge coupling, and th
slab-antisymmetric modes@Figs. 5~b!, 5~d!, and 5~f!# corre-
sponding to v50.86vp , v50.55vp , and v50.82vp ,
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FIG. 4. Spectrum of modes for the truncate
end of a metallic slab as shown in the inset as
function of the dimensionless parameterqd. The
dielectric function of the slab is characterized b
a plasma frequencyvp .
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which comes from the upper branch of the coupling~see Fig.
4 for qd50.6!. On the other hand, it is also possible
determine the nature of the different modes in terms of
symmetry with respect to the bisector of the isolated e
itself. Those modes whose frequency is smaller than the
nar interface mode, i.e.,v,vp /A2 are edge-symmetric
modes, whereas the edge-antisymmetric modes are foun
frequencies greater than the planar interface mode, i.ev
.vp /A2. As the slab becomes thinner, the coupling
edges and walls is enhanced as can be checked in Fig. 4
the values of the resonance frequencies are clearly shifte

FIG. 5. ~a!, ~b!, ~c!, ~d!, ~e!, and ~f! show, respectively, the
surface charge densitys(u) of the first modes at a truncated slab
a function of the dimensionless coordinatesxv/v andyv/v for the
caseqd50.6. Notice that there are edge-symmetric and antisy
metric modes and slab-symmetric and antisymmetric ones.
e
e
a-

for

f
nd
up

and down. In any case, the interface charge density ass
ated with each mode follows the same scheme as that
qd50.6 and the nature of each mode can be explained
terms of slab-symmetry and edge-symmetry.

In Figs. 6~b!, 6~c!, and 6~d! we have calculated the los
spectra for three different cases of truncated slabs of alu
num, when the electron trajectory is parallel to the axis
symmetry at different positions outside the slab as shown
Fig. 6~a!. The trajectories have been labeled from 0, the c
ter of the truncation, to 2, the furthest trajectory from t
edge of the truncation. In the first case@Fig. 6~b!# the thick-
ness of the slab is 20 nm and only two clear excitations
be observed. The distance between the two edges is en
to excite only the modes of the pure planar case and
isolated edge separately. The isolated edge m
(;A0.3vp58 eV) is clearly excited when the beam is clo
to it ~label 1! since the interaction between walls is not n
ticeable. For trajectories close to the middle of the truncat
~label 0! the pure planar mode (vp /A2511.2 eV) is clearly
excited. For trajectories closer to the edge, the planar
decreases as the edge loss rises~Begrenzung effect!. This
situation corresponds in aluminum to the excitation of mod
at qd;1.5 where the isolated edge accounts on its own
all the excitations present in the spectrum of losses. As
truncated slab is made thinner, the walls and edges are c
and the coupling make the modes split up all over the sp
trum. In the second case@Fig. 6~c!#, corresponding toqd
;0.6, the main excited peak belongs to a low-ene
coupled mode (0.40vp56.3 eV). This peak corresponds t
the first slab-symmetric mode plotted in Fig. 5~a! and has the
most intense excitation just in the middle of the truncati
~label 0!. There is a slab anti-symmetric mode at 0.54vp
~8.53 eV!, which is also excited near the edge~label 1!. The
pure planar mode is still excited but with a lower intens
since the proximity of the edge boundaries and the Begr
zungs effect do not allow it to be excited in this region.
the third case@Fig. 6~d!#, for a 5-nm slab, the low energ
peak is excited at a still lower energy (0.28vp54.5 eV) due
to the stronger coupling among interfaces which correspo
to qd;0.2 in the spectrum of modes of Fig. 4. From the
examples, it is possible to conclude that the coupling
edges and walls is relevant for slab thicknesses of less
the parameterv/vp , which is 15 nm for the case 100 keV
electrons impinging on aluminum.
-
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FIG. 6. ~a! Schematic representation of a truncated slab with several trajectories marked from 0~close to the center of the truncation! to
2 ~far away from the edge of the truncation!. ~b!,~c!,~d! Spectra of losses for aluminum slabs (v515.8 eV and dampingg51.35 eV) of
different thickness~20, 10, and 5 nm, respectively! when the electron travels parallel to the axis of symmetry at the positions shown i~a!.
The impact parameter is 2 nm in all the cases andd is the slab thickness.
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B. Influence of specimen thickness in EELS

The simulations and observations of energy losses w
the beam travels perpendicular to the axis of symmetry g
another possibility to study the edge effect on the loss sp
tra. In Fig. 7, the spectrum of losses normalized to the s
n
s
c-
b

thicknessd is shown for such a trajectory and different va
ues ofd. The impact parameterb is 2 nm outside the slab
measured from the truncation. We compare the spectrum
losses ford520, 50, 100, and 200 nm with the pure plan
case (d→`). For the thickest slab, it is clear that the plan
expression is adequate to describe the features of the s
n
r-

he
-
is
FIG. 7. ~a! Energy loss probability for Al
slabs of different thicknessd ~200, 100, 50, and
20 nm, respectively! when the electron travels
perpendicular to the axis of symmetry as show
in the inset compared with the pure planar inte
face (d⇒`) under the same circumstances. T
impact parameterb is 2 nm outside the trunca
tion. Notice that the surface planar excitation
recovered for thick enough slabs.
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trum since the edge region is negligible compared to the
of the path. As we decrease the thickness of the slab, the
planar excitation at 11.2 eV decreases in intensity leav
more visible the edge peak at;0.53vp58.4 eV in alumi-
num. All the losses have been normalized to the thicknes
the slab in order to compare similar intensities. Because
the Begrenzungs effect, an increase in intensity in one e
tation is linked to a decrease in another one. This is preci
the mechanism of intensity exchange between the planar
the edge excitation.

From these simulations of truncated slabs of aluminum
characteristic loss function can also be inferred from
spectrum of losses. For perpendicular trajectories, the i
gration over theq component of the momentum broadens t
excitation peaks, but the relevant distances remain v
since the effective contribution to the total integrated lo
comes from parallel momentum componentsq,v/v. As we
observed in the previous spectra, the coupling of mode
noticeable for slabs whend,v/vp , i.e., slabs whered is
thinner than about 15 nm in the case of aluminum. Theref
we assume slabs thicker than this relevant value in orde
get the characteristic energy loss functions for the isola
edge and surface modes. For such a case, it is possib
check the influence of the edges in the spectrum of los
and develop a systematic way to include the corrections
rived from their presence in a spectrum obtained experim
tally. Under the conditions mentioned above, the charac
istic energy loss function would be given by:

dP

dv
5

2e2

p\v2
LH FKoS 2vb

v D2
A1

L G ImF 21

0.5«Al1~120.5!G
1

A2

L
ImF 21

0.3«Al1~120.30!G J , ~19!

where the coefficientsA1 and A2 are dependent on the im
pact parameterb and for a 2-nm impact parameter are fou
to beA1521.70,A2526.10 nm. If the beam passed throu
the medium, the bulk term should be added as in expres
~17!, but for a trajectory outside the slab, there is no b
contribution since the response function for vacuum is eq
to zero. Notice that the excitation of the edge modes tu
into a decrease in the excitation of the planar surface p
mon. These two contributions are constrained by the Beg
zungs effect and modify the planar contribution, which
linearly dependent on the sample sizeL. This is a useful first
approximation to the whole spectrum but has two main lim
tations. The first one has already been pointed out and
quires the study of sufficiently thick samples~which is the
usual situation in electron microscopy!. The second point is
the fact that the exact spectrum is given by an infinite nu
ber of modes with their respective weights and here we o
consider the most representative ones since the rest are
ligible. The case of a slightly damped Drude-like metal
one of the most extreme examples to check this approxi
tion since the loss spectrum shows well-defined and isola
peaks associated with each particular mode.

In practice, the modes do not appear so clearly separ
and the approximation of the spectrum in terms of promin
modes is even better. For real materials such as MgO cu
this approximation is fulfilled very accurately.26 Even for the
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Drude-like case, this few mode approximation is go
enough when using a damping parameterg.vp/20 appro-
priate in most experimental situations. It is clear that t
planar situation is a good approximation for slabs thick
than ;10v/vp(;150 nm in aluminum!, but for thinner
truncations it has been shown to be necessary to take
account the edge effect as a relevant feature modifying
spectrum of losses. For real materials with higher charac
istic frequencies, the thickness for the validity of the plan
approximation is not so big since this is again an extre
example of the edge effect. It is also possible to find out
range of impact parameters sensitive to the presence o
edge from a set of spectra for beams that penetrate the
but as we observed for the case of the isolated edge,
mode is more localized than the planar surface plasmon
one expects a similar behavior for the truncated slab, wh
the limit of the single slab is rapidly recovered. For the ca
of a cube, these results also give an indication of the circu
stances in which it might be necessary to include the effe
of 4 or more of the edges.

V. SITUATIONS INVOLVING THREE
DIFFERENT MEDIA

For a system involving three or more media, the deter
nant giving the modes is obtained fromL(v)2@Fq#, but
now,L(v) is given by the pair of dielectric functions«A and
«B surrounding the particular interfacel as shown in Eq.~2!.
Equation~8! is still valid for this case, but Eq.~9! has to be
generalized with the additional indexl to allow for the fact
that L(v) now has a subscriptl depending on which media
bound a particular segment of the interface. In that case
~8! can be expressed for a system withn interfaces as

(
l

n

L l~v!@sq
l # i

k52plq
k@sq# i

k , ~20!

where@sq
l # i

k is theq component of the interface charge de
sity of thek mode, which is only valid at thei th point of the
l th interface, and@sq# i

k is defined as in Eq.~9!. If we project
conveniently this expression over the interfaces accordin
Eq. ~10!, we get

(
l

n

Sq
k2 lL l~v!52plq

k . ~21!

In this latter expression,Sq
k2 l takes account of a partia

projection, since it is constrained to thel interface. In matrix
notationSq

k2 l is found to be

Sq
k2 l5

(
i

(
j

Du8 i
l Du j@sq

l # i
k@sq# j

k

(
i

(
j

Du8 i
l Du j@sq# i

k@sq# j
k
. ~22!

Once we get thekth eigenvaluelq
k of the interaction ma-

trix and the values ofSq
k2 l for the different interfaces labele

l, the mode position can be obtained from Eq.~21! for any
group of dielectric functions pairs surrounding an arbitra
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number of interfaces forming a system. In this section,
analyze the particular case of aT junction formed by three
different materials as an example of the application of
method. For such a system, the characteristic energy
function is not so straightforward due to the coupling
different dielectric functions, as pointed out above, but a
how, for some dominant modes, it may sometimes be p
sible to guess a loss function with a similar structure to
one presented in Eq.~16!, where the values for the coeffi
cients giving the mode frequencyak are related to geometri
cal features of the problem. Here, we aim to throw light
these characteristic energy loss functions for real comp
systems based on the exact numerical simulations perfor
with use of the boundary charge method.

A. T junction

The boundary charge method also allows the calcula
of energy losses near junctions composed of three diffe
media as shown, e.g., in Fig. 8. The three different dielec
functions characterizing the media involved are denoted
«A , «B , and«C and they will be taken as standard Drud
like functions wherevpA , vpB , andvpC are the character
istic plasma frequencies. If we calculate the modes for su
system, the main feature to be pointed out is the presenc
the planar modes corresponding to each pair of interfa
and which are given by«A1«B50, «A1«C50, and «B
1«C50. As for the edge or the truncated slab, it is possi
to get the modes for such a structure by equating to zero
determinant of the interaction matrix@Fq# in expression~7!,
corresponding to charge density oscillations with no exter
field. The calculation of modes for this case involving se
eral media is more complicated than the case of a two-m
system where the modes can be obtained independent
the composition of the material as was pointed out in Sec
In this case, the diagonalization of the matrix takes into
count the mixing of different media in pairs@throughL l(v)#
and the modes are strongly dependent on the compositio
the structure.

A very interesting application of the boundary char
method in a three-component structure is the calculation
energy loss maps to compare with images obtained
energy-selected scanning transmission electron microsc
As an example of this, we study the particular case of
structure of Fig. 8 where mediumA is considered to be A
(vp515.8 eV; g50.5 eV), mediumB is considered to be
carbon (vp523.5 eV; g51 eV) and mediumC is sup-
posed to be vacuum. This choice was made to facilitate id

FIG. 8. Schematic representation of aT junction composed of
three different media characterized by dielectric functions«A , «B,
and«C .
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tification of the different modes. After diagonalizing the in
teraction matrix, a spread of modes is obtained. As in
edge and truncated slab cases, some modes are more re
to the spectrum of losses than others. We have alre
pointed out the connection between the dominant mode
sitions and the space fraction filled by the materials. If
select the modes which are more prominent in terms of
intensity of the excitations, the first ones to be taken in
account are the modes associated with the planar excita
at each boundary, i.e.,«Al1«C50(v520 eV), «Al11
50(v511.17 eV), and «C1150(v516.6 eV), which
arise naturally in the method. Apart from these, we get ot
well-defined modes that can be excited at differentv values.
In Figs. 9~a!, 9~b!, 9~c!, and 9~d! we show energy-filtered
loss spectra for some of the dominant modes both in a th
dimensional plot as well as in a contour plot that can
directly compared with the filtered images obtained in
scanning microscope. The most interesting contour plo
the one at 14.5 eV, which is associated with charge den
oscillations in theT junction itself. In fact, we conclude from
calculations that the main features of the spectrum of los
are given by the peak at the junction and the three pla
peaks along the three boundaries. By making anad hocas-
sumption that the modes are still characterized by excita
functions Im$21/@a«A1b«B1(12a2b)#%, we introduce
a parameterb giving the position of the modes. We ca
show that this assumption, though certainly not rigoro
works moderately well. For theT junction shown in Fig. 8,
where mediumA fills 1/4 of space,B fills another 1/4 and
half the space is vacuum, we may thus roughly guess
junction mode position by using an expression analogou
Eq. ~16! with coefficientsak51/4 andbk51/4. The energy
value that fulfills the condition for the junction mode isv
514.2 eV, which agrees with the value obtained through
boundary charge method to an accuracy of 2%. In terms
this geometrical argument, if the three media junction w
symmetric, i.e., each occupying an angle of 2p/3, the value
of the dominant mode position would beak51/3 andbk
51/3, i.e.,«Al1«C1350, and an ad hoc energy loss fun
tion characteristic of such aT junction could be computed
with these values. If we include both the planar excitatio
and the junction excitation as the most relevant features
the losses, the expected approximate energy loss function
the system shown in Fig. 8, becomes

d2P

dv dz
5

2e2

p\v2 H A1 ImF 21

0.5«Al10.5«C
G

1A2 ImF 21

0.5«Al10.5G1A3 ImF 21

0.5«C10.5G
1A4 ImF 21

0.25«Al10.25«C10.5G J , ~23!

where the subscripts 1, 2, and 3 refer to the planar losses
the subscript 4 refers to the junction loss. The bulk te
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FIG. 9. ~a!, ~b!, ~c!, and~d! Simulation of filtered energy loss probability for the case of a 100 keV electron impinging on aT junction
composed of aluminum (vp515.8 eV, g50.5 eV) and carbon (vp523.5 eV, g51 eV) next to vacuum. The values of the filtere
energies are 11.2, 14.5, 16.6, and 20.0 eV, respectively and have been obtained through the diagonalization of the interaction m
boundary charge method. The darker the region, the smaller the value of the probability of losing energy. Aluminum is containe
regionx,y,0, carbon forx.0, y,0 and vacuum fory.0.
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FIG. 10. Energy loss probability for a
100-keV electron traveling through aI-junction
type geometry formed by Si and SiO2 as shown
in the inset. Spectra for different thickness of th
film and a comparison with the infinite interfac
case are shown. In all the cases the impact para
eter is 2 nm.
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should be added when the trajectory crosses through al
num or carbon. The dependence of the coefficientsAk with
respect to the impact parameter is here even more com
cated than in the two-media case, making clear the nece
of numerical simulations through, e.g., the boundary cha
method to find the exact weight of the different excitatio
depending on the beam position.

Close investigation of the eigenvalue equation for
modes of theT junction indicates that they may be analy
cally related to the modes of the isolated edge, which w
described in Sec. III. There is a possibility, which we plan
explore in a later publication, that this approach can a
yield more exact excitation functions for theT-junction
modes and eventually an improved form of Eq.~23!. In the
meantime we believe that this equation represents a us
working compromise.

B. Si-SiO2 I junction

The most important practical case to test the succes
the boundary charge method is the complex but reali
structure of theI junction often encountered in experimen
This comprises a thin slab containing two different dielect
regions separated by a boundary running normal to the
surfaces. We study a system composed of silicon~Si! and
silica (SiO2) when the electron beam penetrates one of
two regions@see Fig. 10#. Besides the bulk plasmon of th
material penetrated, the Si-SiO2 interface plasmon given by
the relation«Si1«SiO2

50 is also excited. The exact positio
of this interface plasmon peak has been recently studied
tivistically and good agreement with experiments has b
achieved for thick enough slabs~180 nm thick! where the
planar interface approximation can properly be used.23 As in
previous sections, it is possible to estimate the influence
the thickness of the slab on the weight and position of t
interface plasmon and the relevant thicknesses at which
edges and the coupling between surfaces should be t
into account. The experimental situation for such a junct
is represented in the insert in Fig. 10 where the beam tra
through the SiO2 with a 2-nm impact parameter. We con
strain our study to small impact parameters in order to
i-
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duce the influence of retardation in the position of the pe
The spectrum of losses for different slabs is represente
Fig. 10 both for the range of validity of the planar approx
mation (d→`) and for thin slabs where the edge effe
shifts the peak downwards. From the simulations in the
ure, one can establish that the planar approximation is v
good for slabs thicker than;50 nm but fails when dealing
with thinner ones. Although we will return to this point late
it is convenient now to study the problem in terms of re
evant thicknesses and characteristic losses, which can th
light on the effect. The case we present here is more c
plicated to study due to the complex dielectric response fu
tions characterizing both media. In the case of a Drude-
truncated slab, we were able to analyze well-defined
separate losses associated with the particular modes in a
tem, but for a realistic case, such as this one, it is not p
sible to identify the contribution of each mode in such a cle
way. Nevertheless, as for the case of the truncated slab
downward shifting can be interpreted in terms of excitati
of edge modes whose relative intensity is more noticeabl
the thickness of the slab decreases. As in the case of
truncated slab, we can also distinguish here three diffe
regions in order to interpret the Si-SiO2 interface plasmon
peak position and intensity: for slabs thicker than;10v/vp ,
(;50 nm for this case! a treatment based on the planar i
terface approximation is sufficient to deal with the ener
losses. For slabs thinner than this value, the presence o
junctions is clearly noticeable and new junction modes giv
by the relation«Si1«SiO2

1250 (ak51/4, bk51/4), must
be included in the spectrum of losses. Finally, in the case
very thin slabs (d,v/vp,5 nm), the coupling of edges
and interfaces, gives rise to new surface modes in the cas
very thin films and makes it difficult to express the losses
terms of well-defined excitations. The contribution of diffe
ent values of the parallel momentum componentq also
broadens the peak for trajectories perpendicular to the ax
symmetry, since it takes into account contributions of diffe
ently coupled modes to the spectra of losses. In any case
final intensity is mainly given by very low components of th
momentum close to the valuev/v. In a first approximation,
for slabs greater than 5 nm in the case of SiO2, it is possible
to express the losses for the case of a 100-keV electron
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pinging on a junction as shown in the inset of Fig. 10
terms of the weighted modes as follows:

dP

dv
5

2e2

p\v2
LH AoF 21

«SiO2
G1A1 ImF 21

0.5«SiO2
10.5G

1A2 ImF 21

0.5«Si10.5«SiO2
G

1A3 ImF 21

0.25«Si10.25«SiO2
10.5G J , ~24!

The first mode~labeled 0! corresponds to the SiO2 bulk
plasmon, the surface modes labeled 1 (SiO2-vacuum!, and 2
(Si-SiO2 interface! correspond to the pure planar cases a
the last one~labeled 3! corresponds to theT-junction edge
mode characterized byak50.25, bk50.25 as obtained be
fore. The coefficientsAk5Ak(b,v), are dependent on th
impact parameter and the thicknessL of the slab. For the
energy range~4–10 eV!, it is adequate to take the last tw
modes~labeled 2 and 3 in the characteristic loss function! to
simulate the main features of the spectrum since
SiO2-vacuum interface peak and the Si and SiO2 bulk plas-
mon peaks appear at 18 and 23 eV, respectively. In
range of losses, the single slab relation,Ao5 ln(kcv/v)
20.5A1 and A15const/L of the type employed in Eq.~19!
can then be used.1 For the case of a trajectory penetrating S
the characteristic energy loss function can be obtained
interchanging SiO2 with Si in expression~24!. With optical
dielectric data for amorphous SiO2 and crystalline Si,27 the
interface peak appears at 8.6 eV from«Si1«SiO2

50 and the

junction edge mode appears at 7.6 eV from«Si1«SiO2
12

50. Since both modes are very close together in the sp
trum and are broadened by damping, we simply observ
shifting from one value~8.6 eV! to another~7.6 eV! as we
decrease the slab thickness, instead of two separate m
weighted according to the sample thickness as in Fig
From this point of view, it is possible now to understand t
spectra in Fig. 10, where numerical calculations for the
ergy loss probability per eV normalized to the slab thickn
are provided for a 100-keV electron beam traveling at 2
from the interface separating both media. As pointed o
there is 1 eV shift of the interface plasmon peak, wh
should be detectable in thin enough films when using h
resolution in STEM. If we split the peak into two differen
contributions according to the peaks in the characteristic
function in expression~24!, A2 andA3 can be expressed fo
a fixed impact parameter, in an analogous way to the tr
cated slab case@see Eq. ~18!#, i.e., A25Ko(2vb/v)
2const2 /L and A35const3 /L where const2519.8 nm and
const3521.7 nm for the case of 2 nm impact paramet
Notice that these values are coincident with those obtai
for the case of the truncated slab and have the same mea
they are fixed contributions of the edge effect independen
the thickness of the slab that modify the usual@Ko(2vb/v)#
d

e

is

,
y

c-
a

es,
7.

-
s

t,

h

ss

n-

.
d

ng:
of

term proportional to the thickness. On the other hand, for
isolated edge, it is also possible to guess a dependenc
these coefficients on the impact parameterb, by introducing
an exponential decay for the plasmon intensity, which
pends on the nature of the surface plasmon@Ak(b,v)
;exp(2nvb/v)# wheren depends on the particular mode!.
The modes associated to the edges and junctions are
localized than the planar ones therefore, one expects the
rametern to be greater for these modes.

For very thin films, the main effect influencing the spe
trum of losses is the coupling among surfaces and edge
pointed out for the case of the truncated slab in Sec. IV.
the case of the Si-SiO2 junction, the relevant thickness pa
rameter below which the coupling is significant is 5 nm.
practice, it is very difficult to deal with such thin films, there
fore we constrain our study to values greater than this
evant parameter. Below these values, the structure of
modes complicates as can be seen in Fig. 4.

VI. CONCLUSIONS

We have studied complex systems whose normal mo
and characteristic energy loss functions can only be han
successfully by numerical calculations. The complexity
the systems arises from the presence of sharp edges and
tions such as the truncated slab or the junctions compo
from more than two media. The method employed here
tablishes a systematic procedure to express the losse
terms of excitation of modes, which are given by the geo
etry of the system. We have obtained general quantita
criteria to deal with the edge effect at truncations, cubes
junctions in slabs where we distinguish three different cas
For interfaces longer in the beam direction than;10v/vp ,
the planar approximation treats successfully the intensity
position of the losses since the edge effect is negligible
comparison with the planar interface loss. For truncated
terfaces betweenv/vp and;10v/vp , the edge effect has to
be taken into account via the presence of the dominant
excitation associated with the edge itself as well as thro
the decrease of intensity~Begrenzungs effect! of well-known
excitations such as bulk and planar surface plasmons.
this range of structures, an approximation directly related
the geometry has been proved to be adequate to expres
characteristic energy loss functions in terms only of t
dominant modes. The third range of sizes belongs to the c
of structures with truncations smaller thanv/vp , where only
the numerical simulations based on, e.g., the bound
charge method developed here, can adequately describ
complex coupling of modes and the resulting loss spectr
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