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Collective excitations in an infinite set of aligned spheres

J. Aizpurua a,*, A. Rivacoba a, N. Zabala b, F.J. Garcı́a de Abajo c
a Materialen Fisika Saila, Kimika Fakultatea, UPV/EHU, 1072 P.K., 20080 Donostia, Spain

b Elektrika eta Elektronika Saila, UPV/EHU, 644 P.K. Bilbao, Spain
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Abstract

We present here electron energy loss spectra (EELS) calculations for an infinite set of aligned dielectric spheres as a first
approximation to calculations in a more complex periodic array with small computer cost. The boundary charge method is
analytically developed for such a system with use of local dielectric theory. A convenient distribution of surface charge densities at
the spherical interfaces, selfconsistently interacting with each other as well as with the external field created by the incoming electron,
can provide a solution of the surface collective modes. Energy loss spectra in the valence range (a few eV ) are obtained for
trajectories parallel and perpendicular to the axis of the aligned spheres and the nature of the excitations is studied by analysing the
charge density distribution induced at the spheres, © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Electron density, excitation spectra calculations; Electron–solid interactions, scattering, diffraction; Scanning transmission
electron microscopy (STEM)

1. Introduction other can provide a solution of the collective
modes. Here we show the application of the
method to calculate surface modes and energyScanning transmission electron microscopy
losses by the scattered electrons near a set of(STEM ) has proved to be an adequate tool to
aligned spheres. The method developed for thisstudy surface collective excitations in many com-
simple system can be easily generalized to moreplex systems. Surface collective modes in simple
complex ordered inhomogeneous systems. On thestructures as the planar interface [1,2], the sphere
other hand, the study of periodic dielectric arrays[3,4] or the cylinder [5,6 ] can be analytically
has been a subject of increasing interest in the lastdescribed, but as the complexity of a structure
years due to its applications connected with pho-increases [7–12] and the coupling between modes
tonic bands. Calculations of energy losses in thisplays an important role, an increasingly elaborated
type of structures have been performed by Pendryanalytical basis together with numerical computa-
and Martı́n-Moreno [13] by calculating thetion is needed. In the non-relativistic approach, a
response of the complex medium to the externalconvenient distribution of charges all along the
field. Vagov et al. [14] also studied the opticalinterfaces self-consistently interacting with each
response of arrays of spheres with use of hyper-
complex variables. A promising basis for calcula-
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electrons in this type of complex systems is the with the experimental spectra (EELS) obtained by
electron microscopy. The probability of losingboundary charge method, also known as boundary

element method, whereby a distribution of surface energy Bv is obtained by transforming the poten-
tial acting at the incoming electron position asor interface charges is generated, interacting self-

consistently with itself as well as with any external
field such as that due to a passing electron. This P(v)=

1

p P−2

2
dt Im[−wind(r, v)|

r=vt
e−ivt ]. (3)

approach has been recently employed to determine
normal mode frequencies of dielectric excitations

In the particular case of an array and due toby Fuchs [15,16 ] for a cube and by Ouyang and
the spherical shape of the particles, we can expressIsaacson [17] for bodies of arbitrary shape. In this
the surface charge density s(s, v) in sphericalpaper we apply the method to study analytically
coordinates (r, h, Q) with the polar axis z parallelthe collective excitations produced by the scanning
to the direction of the array. In terms of associatedelectron beam in a one-dimensional set of aligned
Legendre functions and exponential functionsdielectric spheres for different electron trajectories.
referred to the origin of each different sphere k,Atomic units (a.u., e=m=B=1) will be used from
we can expressnow on, unless otherwise specified. The Fourier

transform is defined following the convention in
s
k
(s, v)=∑

l,m
sk
lm

(v)P
lm

(m
k
) eimQ

k
(4)Ref. [18].

where k=−2,…,−2,−1,0,1,2,…2 labels the
spheres position and m

k
= cos(h

k
). Positive and2. Basic theory and general formula

negative values correspond to positions at different
sides of the central sphere labelled k=0. a theIt is possible to solve Poisson’s equation in terms
radius of the spheres and d the distance betweenof a convenient distribution of surface charge
the centres of two neighbouring spheres. We definedensity s(s, v) at the interfaces separating two
now the parameter a=a/d which is related to thedifferent media. By writing the potentials in terms
filling fraction as f=(4p/3)a3. After some algebraof these surface charge distribution one gets the
it is possible to transform the integral Eq. (1) intofollowing self-consistent integral equation:
a set of linear algebraic equations for each m value
where it is possible to find the multipolar terms

L(v)s(s, v)=n
s

·( P dr∞
rext(r∞, v)

e(r∞, v)|r−r∞| l, m for each sphere k

+n
s

·( P ds∞
s(s∞, v)

|s−s∞|
, (1) AL−

2p

2l+1B sk
lm
=P d3r∞

rext(r∞v)

e(v)
lal−1 (l−m)!

(l+m)!

where

×

P
lm C z∞−kd

E(kd−z∞)2+x∞2D
E(kd−z∞)2+x∞2 l+1 e−imQ∞L(v)=2p

e
2
(v)+e

1
(v)

e
2
(v)−e

1
(v)

(2)

and rext(r∞, v) is the external charge density, which + ∑
n−k=−2,
n−k≠0

2
(2l+1)

(l−m)!

(l+m)!corresponds to the incoming electron. s denotes a
vector which runs over all the interfaces separating
two different media, and ns is the unitary vector
perpendicular to the interface at each point. Once ×∑

j

2p

2j+1
aj+2

this integral equation is solved one can write the
induced potential wind(r, v) in terms of the surface

×[( j+1)Im
lj(n−k)−Zm

lj(n−k)]snjmcharge density, and hence, the energy loss prob-
ability which is the function that can be compared (5)
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where the v dependence of the coefficients sk
lm

3. Parallel trajectory
is assumed. Im

lj(n−k) and Zm
lj(n−k) are geometrical

factors which couple the multipolar term in sphere We now solve the equation presented in the
n with the l multipolar term in sphere k. They are previous section for the particular case of set of
defined as metallic spheres when the electron beam incides

parallel to the axis of the aligned spheres consid-
ered to be z. We assume that the medium surround-

Im
lj(n−k)=P−11 dm[a−(n−k)m]

[a2+(n−k)2−2(n−k)am](j+3)/2 ing the spheres is vacuum, i.e. e1(v)=1 and the
dielectric spheres will be characterized by the fre-
quency-dependent Drude dielectric function×P

jm C m−a

Ea2+n−k)2−2(n−k)amD P
lm

(m)

(6) e
2
(v)=1−

v2p
v(v+ic)

. (8)

and

We use here vp=l5 eV and c=0.5 eV, typical
values for aluminium, but the procedure is generalZm

lj(n−k)=P−11 dm(n−k) (1−m2)

[a2+(n−k)2−2(n−k)am](j+4)/2 for any couple of frequency-dependent dielectric
functions used to describe the response of both
media. In the case of an electron beam travelling×P∞

jm C m−a

Ea2+(n−k)2−2(n−k)amD parallel to the axis of the spheres array the external
charge density is rext(r∞, v)=−1/ud(r∞−b)eivz∞/u×P

lm
(m). (7)

where r is the coordinate perpendicular to the
electron trajectory, b is the impact parameter andEq. (5) allows us to find any multipolar compo-
u is the electron velocity. In this particular case itnent of the surface charge density at every sphere
makes sense to calculate the energy losses depos-by solving the set of linear algebraic equations.
ited at one sphere. Since any sphere is equivalentThe interaction among the spheres is given by the
in terms of the energy loss per sphere, it arisessecond term in the right side of Eq. (5) through
from the equations that the k label in the surfacethe integrals shown in Eqs. (6) and (7) which are
charge density can be removed with no loss ofstrongly dependent on the filling parameter a. The
generality. If one introduces the external chargemodes of the system will be the v values which
density expression in Eq. (5) the energy loss prob-allow a non-trivial solution of the system in

Eq. (5). If one neglects the interaction term the ability per sphere is found to be
modes of the isolated sphere which are given by
L−2p/(2l+1)=0 are recovered and from here the
induced potential self-consistently acting with the P(v)=

16

u2
∑

l,m>0
(2−d

m,0
) Im[A

lm
(v)]

external field produced by the incoming electron.
In the same way, the modes of this infinite number

×
a

2l+1

(va/u)l

E(l+m)!E(l−m)!
K2
m Av

u
bB (9)of interacting spheres can be obtained when the

interaction term in Eq. (5) is taken into account.
In general, Eq. (5) involves an infinite number of

where K
m
(x) is the modified Bessel function of mthequations, but due to the decay of the v compo-

order. This expression is formally similar to thenent of the interacting potential, it is expected that
one found by Ferrell and Echenique [3] for theonly the coupling of close neighbours is relevant
isolated sphere. The difference is due to the inter-for the induced potential. This point will be dis-
action among spheres via the coefficient A

lm
(v)cussed in more detail in the next section in terms

of the spectra of losses. which has now to fulfill this system of linear
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algebraic equations For a high filling fraction (a=0.48) more spheres
are needed, since the coupling among spheres is
stronger but, even in this case, the spectra did notAL−

2p

2l+1B A
lm
=

l

e(v)E(l+m)!E(l−m)! Ava

u Bl change after placing around 20 spheres. In this
way, one can consider this system equivalent to a

+(2l+1) ∑
j

2p

2j+1
aj+2× ∑

n=−2,
n≠0

2
real infinite set of spheres since the presence of the
far neighbouring spheres is negligible in terms of
the coupled interaction. For this trajectory two
main peaks can be clearly observed. For a filling×[( j+1)Im

ljn
−Zm

ljn
]e(vnd/u)iA

jm fraction corresponding to a=0.48, i.e. 0.16 nm
(10) between spheres, the low energy peak is excited at

where A
lm

is directly related with s
lm

as 5 eV. In a two sphere system, the low energy peak
for the same filling parameter (a=0.48) appears
at 6.2 eV [11], therefore, we can conclude that thiss

lm
=−A

lm

2(i )l−m
u

K
m Avb

u B. (11)
peak is shifted down as more spheres are intro-
duced in the array. This effect was also reportedIn Fig. 1 we show the energy loss probability
by Vagov et al. [14] in NaCl arrays. The value ofP(v) for an electron travelling parallel to a set of
this excitation is shifted up as the filling fraction2 nm Al spheres with different filling fractions. In
decreases. In the low filling fraction case (a=0.25),all the calculations the linear set of algebraic
the interaction between spheres is weaker and theequations has been truncated at lmax=20 and a
limit of the dipolar excitation for an isolated spheresufficient number of spheres, depending on the
is almost recovered (8.6 eV ). The high energy peakfilling fraction, was considered in order to get
changes little at 9.5 eV. The surface charge densityconvergence in the spectra.
corresponding to the low energy peaks showsFor a low filling fraction (a<0.4), good con-
basically a dipolar pattern with the dipole orientedvergence in spectra is achieved when taking into
in the direction parallel to the electron trajectory.account 10 neighbouring spheres (five each side).
This peak is a characteristic of the coupled system
which allows such an excitation due to the proxim-
ity of the neighbouring spheres which help to
induce the system of dipoles parallel to the trajec-
tory. The charge is acumulated at both hemi-
spheres with contrary sign in that direction. The
low energy of this excitation is due to the high
filling fraction which facilitates the simultaneous
excitation of many coupled dipoles in the spheres
induced by the others. In the limit of very low
filling fraction the dipolar excitation of an isolated
sphere at 8.6 eV recovered with the dipole oriented
in a direction normal to the electron trajectory.
On the other hand, the surface charge density

Fig. 1. Loss probability per sphere for 100 keV electrons moving
associated with the high energy peak at 9.5 eVparallel to the axis of an infinite system of spheres. The spheres
reveals that many different multipolar terms l andare surrounded by vacuum and assumed to be made of Al,

described via the Drude dielectric function with vp=15 eV and m contribute to this collective excitation. This case
damping c=0.5 eV. The radii of the spheres are all equal to is analogous to the high energy peak excited in a
2 nm. The electron passes at a distance of 1 nm from the spheres isolated sphere [3] but here the excitation ofsurfaces. Different filling parameters a=a/d have been consid-

multipolar terms takes also into account the cou-ered as shown in the labels of the figure. The inset represent
the geometry of the system. pling with the rest of spheres.
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4. Perpendicular trajectory neighbouring spheres are placed at each side of
the sphere in the centre (dashed line) the 7.8 eV

For the case of a trajectory perpendicular to the excitation changes slightly in weight. If we continue
axis of the spheres the position of the spheres in placing more spheres (solid line) the peak is not
the array plays an important role and the label k affected. The high energy peak does not change
for the surface charge density must be maintained. even with a small number of neighbouring spheres.
For such a case, the linear set of algebraic equa- The only peaks which are affected after placing 5
tions takes into account more coefficients corre- spheres at each side (solid line) are the very low
sponding to the different positions of the spheres. energy peaks which have a tendency to flatten as
The external charge density in the perpendicular we approach to the infinite set. The change in this
trajectory case is rext(r∞, v)=−1/ud(x∞−x∞

0
) low energy peaks is logical since the field of this

d(z∞−z∞
0
) eivy∞/v being x∞

0
and y∞

0
the coordinates of excitations decays like e−vx/u with x distance and,

the impact parameter. In Fig. 2 we plot the energy therefore, the number of affected spheres increases
loss probability P(v) for a trajectory as shown in as v decreases. From Fig. 2 one can conclude that
the inset for a filling parameter a=0.45. We sup- a couple of neighbouring spheres is enough to find
pose a different number of neighbouring spheres the main features of the spectra at most values of
placed at each side surrounding the sphere in the v but one should consider more neighbours for
centre in order to study how many neighbours the very low energy range in order to get the
must be considered in the sphere–sphere inter- accurate spectrum.
action. When one neighbouring sphere at each side
is considered (dotted line) two main peaks are
excited at 7.8 and 9.2 eV. The low energy peak is
due to a dipolar-like excitation but the charge is
now excited in the direction perpendicular to the

5. Conclusions
axis of the spheres. The high energy peak corres-
ponds to higher multipole orders. When three

The boundary charge method has been applied
to the calculation of low energy losses of electrons
passing near a one-dimensional set of aligned
spheres. The expansion in the basis of spherical
harmonics together with use of this method has
allowed us to perform calculations in a complex
system with a very reasonable computer time. In
that way, this method offers the possibility of
calculating more complex structures as periodic
ordered systems in two or three dimensions.

Fig. 2. Loss probability for a 100 keV electron travelling per- Acknowledgements
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