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Controlling surface charge and spin density oscillations by Dirac plasmon interaction
in thin topological insulators
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Thin topological insulator (TI) films support optical and acoustic plasmonic modes characterized by effective
net charge or net spin density, respectively. We combine many-body and electromagnetic calculations to study how
these modes can be selectively excited at films and nanodisks at infrared and THz frequencies. We first discuss
the excitation of propagating plasmons in a thin film by a point dipolar source. We emphasize how changing the
distance between the dipolar source and the film allows us to control the relative strength of the acoustic and
optical plasmons and thus to excite net-spin or net-charge waves on demand. The acoustic and optical modes in
a nanodisk structure can be efficiently tuned by changing the size of the disk or by applying electrostatic gating.
Furthermore, these modes can be confined to regions of dimensions much smaller than the wavelength. The
control of the excitation of acoustic and optical modes indicates that thin topological insulators are a promising
system to manipulate the spin and charge properties of the plasmonic response, with potential applications in fast,
compact, and electrically-controlled spintronic devices.
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I. INTRODUCTION

Plasmonic resonances supported by metallic structures
[1–3] allow us to localize and manipulate light using very
small structures, of dimensions well below the diffraction limit.
Their resonant frequency is controlled by the overall geometry
(shape, material...) and cannot be easily tuned after fabrication.
An alternative to plasmons in metals are Dirac plasmons [4] in
two-dimensional (2D) materials such as, e.g., graphene [5–9].
These structures support plasmonic resonances that can be
tuned in the infrared and terahertz frequencies by applying
an external voltage (electrostatic gating), potentially reaching
up to visible frequencies for systems just a few nanometers
large [10]. The excitation and tunability of 2D plasmons in
graphene has been demonstrated in both near and far field
optical measurements [11–15].

Tunable 2D plasmons are also present in three-dimensional
topological insulator systems made of materials [16] such as
Bi2Se3 and Bi2Te3. These topological materials are charac-
terized by a bulk phase that is transparent in the infrared
frequency range due to the aperture of a gap and by (quasi-) 2D
fermion layers (2D-FLs) at the interfaces with the surrounding
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medium [17–20]. As we do not consider 2D topological
insulators presenting one-dimensional conduction channels
[21], we simply call them topological insulators (TI) in the
following.

The 2D-FLs of ∼10 Å width are formed by surface-state
electrons having a linear energy dispersion near the surface
Brillouin zone center and can support surface plasmons at
infrared and lower frequencies in a similar manner as graphene
[16,18,19,22–24], as have been shown experimentally [25–29].
Plasmons in TI can be tuned by electrostatic gating and present
the additional advantage of carrying spin, which is locked
with, and perpendicular to, the direction of propagation of the
plasmon, and parallel to the surface at which they are excited.
These excitations can thus be considered to be transverse spin
waves [30,31].

Notably, the 2D-FLs at the two interfaces of a thin TI film
can interact via Coulomb coupling. As a consequence, two
hybridized modes appear, an acoustic mode characterized by
an approximately linear dispersion relationship and an optical
mode emerging at larger energies and showing a square-root
dependence with wave number (for low frequencies) [32,33].
The optical (acoustic) mode is characterized by in- (out-of)
phase charge waves induced at opposite surfaces of the thin
TI film. Despite the similarity of these modes with those
in spatially separated double-layer graphene [34], the real
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spin-momentum locking in TIs gives rise to a new phenomenon
predicted for thin TI films—spin-charge separation. It implies
that due to the opposite spin-momentum locking at the two
surfaces of the film, the optical mode corresponds to an effec-
tive (pure) charge wave, while the acoustic mode demonstrates
pure spin character [31,35,36]. Thus, thin films and other
nanostructures made of a TI may serve as a nice playground
both for studying the fundamental properties of collective
excitations in the 2D Dirac fermions system and for engi-
neering optoelectronic devices with tunable spin-dependent
characteristics.

For practical applications in nanotechnology, it is im-
portant to understand how these modes can be excited and
manipulated in an experiment, both for infinite films that
support propagating plasmons and for localized plasmons
in nanoparticles. The main objective of this paper is thus
to study the selective excitation and control of optical and
acoustic modes in TI thin films and thin disks. We use a
combination of many-body calculations to obtain a nonlocal
conductivity σ characterizing each 2D-FL (along with the
plasmons dispersion of the systems) and classical electromag-
netic calculations that take σ as an input and provide the
optical response under illumination by an external source. This
approach also allows us to study the importance of including
nonlocality when predicting the dispersion relationship of the
systems.

After briefly introducing the dispersion relationship of a thin
film, we analyze the excitation of propagating Dirac plasmons
in such a system by localized pointlike dipolar sources. We
study the influence of the distance between the source and
the film on the efficiency of the excitation of the optical and
acoustic modes, which allows us thus to manipulate the spin
and charge properties of the excited surface wave. The last
section analyzes the excitation of localized acoustic and optical
plasmonic modes in thin disks, at frequencies that strongly
depend on the size of the structures. We are particularly
interested in the tunability of the system when changing the
Fermi energy of the 2D-FLs, for example, by applying an
external voltage. When not stated otherwise, atomic units are
used in the equations, i.e., e = h̄ = me = 1, where e is the
electronic charge, h̄ is the reduced plank constant, and me is
the mass of the electron.

II. SYSTEMS AND CALCULATION METHODS

Figure 1 shows the schematics of the different TI systems,
which are placed in vacuum (relative permittivity ε1 = 1) and
illuminated at angular frequency ω (vacuum wavelength λ

and vacuum wave number k). We first briefly discuss the
dispersion relationship of a semi-infinite substrate [Fig. 1(a)]
and a thin film [Fig. 1(b)], focusing next on the near- and
far-field response of the latter. Notably, acoustic and optical
propagating plasmonic modes can be excited in thin films by
localized sources, with wave number qac

SP and q
op
SP, respectively.

We last discuss the excitation of acoustic and optical localized
plasmonic resonances on finite thin disks [Fig. 1(c)]. For the
near fields, it is convenient to differentiate between the total
Etot and the induced Eind amplitude of the electric fields, where
only the former includes the fields from the illumination source
itself.

FIG. 1. Schematic of the TI structures considered. (a) Semi-
infinite TI substrate supporting a 2D-FL at the interface with the
surrounding vacuum, (b) an infinite TI film of thickness d = 10 nm
(suspended in vacuum) with two interacting 2D-FLs at the interfaces,
and (c) a finite TI thin disk of thickness d = 10 nm surrounded by
vacuum, with a 2D-FL at the upper interface and another one at the
bottom. The 2D systems are characterized by an in-plane conductivity
σ (q,ω). We consider Bi2Se3 as the topological insulator with relative
dielectric permittivity of the bulk εb = 25. The center of the disk is
at (0,0,0), and z = 0 is the horizontal middle plane of the disk and
the film in (b) and (c), in the coordinate system sketched in (c). We
use a Fermi energy of the 2D-FLs EF = 250 meV, unless specified
otherwise.

The semi-infinite TI substrate in Fig. 1(a) supports a 2D-FL
at the interface with vacuum, which would be parallel to the
(111) surface—the natural cleaving face of the considered TI.
The TI thin film [Fig. 1(b)] and thin disk [Fig. 1(c)] has a
thickness d = 10 nm and support two coupled 2D-FLs, one
at each flat interface (upper and bottom). The film extends
infinitely in the lateral dimension, while the disk diameters
considered are D = 40 nm and 300 nm. The flat surfaces
of the film and the disk are perpendicular to the z direction
and parallel to the x-y plane (see axes in the inset). z = 0
corresponds to the central plane of the thin structures, with
(0,0,0) the center of the disk.

We consider a simplified thin TI system surrounded by
vacuum, with the objective of extracting general properties of
the plasmon response under a given excitation. The response
results from the electromagnetic coupling between the 2D-
FLs at the top and bottom interfaces. In this simple model,
we choose a typical value [37–40] for the relaxation time
τ = 500 fs and for the Fermi velocity of the electrons in the
2D-FLs of the TI Bi2Se3, vF = 0.5 × 106 m/s. [41] The bulk
relative dielectric constant is taken as εb = 25, which is a
reasonable approximation for Bi2Se3 in several regions of the
THz spectrum [42–45]. We thus ignore phononic contributions
[20,25,27,46] that may be significant in real experiments but
that can complicate the phenomena of interest for this paper,
i.e., the excitation of optical and acoustic modes. In the case
of the disk calculations, an idealized model has also been
chosen for the lateral sides, which are treated as not presenting
any 2D conductivity. Further, we do not include corrections
to the electromagnetic constitutive equations [47,48] (see
Appendix B). We use a Fermi energy EF of the 2D-FLs equal
to EF = 250 meV, unless another value is specified.

Our approach combines many-body and classical electro-
dynamic calculations. The many-body calculations described
in Appendix A allow us to calculate the dispersion relationship
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of the semi-infinite substrate and thin film and to obtain the 2D
in-plane conductivity σ (q,ω). σ depends on frequency and on
the horizontal (parallel) wave vector in the 2D layer q. The
q dependence of σ (q,ω) captures nonlocal effects [49–52]
that modify the plasmonic response and that, in real space,
describe the dependence of the induced polarization at a given
position on the electric fields at the surrounding region. We
assume that the two 2D-FLs of the film and disk only interact
electromagnetically (see Appendix A for details).

The far- and near-field optical response under a given illumi-
nation is then calculated by solving the Maxwell’s equations,
where each 2D-FL is modeled by the 2D conductivity σ (q,ω).
A dipole of strength 1 e · nm excites the film and disk of 40 nm
diameter, while a plane wave incoming from the top illuminates
the larger disks of 300 nm diameter. We describe here only
the main ideas behind the calculations, which are discussed in
more detail in Appendix B. The effect of the conductivity of the
2D-FLs in this classical framework is to allow the accumulation
of surface charge density (σc) at the interfaces, which affects the
boundary condition [11]. The thin films are always excited by
a point dipole (it is not possible to excite a plasmon in this case
using far-field illumination), and we obtain the induced near
fields using a plane-wave decomposition method. By tracking
the poles of the electromagnetic response (more exactly, the
maximum of the transmission coefficient of the system) we
also obtain dispersion relationships that we compare with the
results from the many-body model. This procedure allows us
to include the exact nonlocal q dependence of the conductivity
on the substrate and thin-film calculations. Furthermore, the
local response can also be obtained by following the same
procedure but always using σ (q = 0,ω). Last, we obtain the
response of the disks under plane-wave or dipolar excitation
using full-wave calculations [53]. Nonlocality is introduced
approximately into the calculations of the disks response by
taking into account that each simulation is dominated by the
response at a single q, corresponding to either the acoustic
(qac

SP) or the optical (qop
SP) mode.

III. EXCITATION OF PROPAGATING DIRAC PLASMONS
IN INFINITE SURFACES

A. Dispersion relationship

We study in this section the excitation of propagating
plasmons in TI systems that are infinite in the lateral direction
(along the x and y directions indicated in the inset of Fig. 1).
We are particularly interested in the thin films depicted in
Fig. 1(b) but, for completeness, we first describe the dispersion
of plasmons in a TI semi-infinite layer [sketched in Fig. 1(a)].
The main panel in Fig. 2(a) and Fig. 2(b) shows the disper-
sion relationship of plasmons in the substrate and thin film,
respectively, for EF = 250 meV. We first obtain it by changing
the angular frequency ω of an incoming (evanescent) plane
wave and tracking which parallel wave vector q of this exciting
field induces the strongest classical electromagnetic response
(maximum in the transmission coefficient of the system). We
consider both the full nonlocal [σ (q,ω), blue solid lines]
and the approximated local [σ (q = 0,ω), green solid lines]

FIG. 2. Dispersion relationship of the propagating surface plas-
mons supported by (a) a semi-infinite TI substrate and (b) a thin
film TI. (a) Results for the semi-infinite substrate, obtained from
maximizing the strength of the classical electromagnetic response
(i.e., the amplitude of the transmission coefficient) in q space using
local (green solid line) and nonlocal (blue solid line) conductivity,
together with the nonlocal dispersion obtained directly from many-
body calculations (blue dots). The inset shows the tunability of the
nonlocal dispersion as a function of the Fermi energy. (b) Optical
(high energy) and acoustic (low energy) branches of the dispersion
relationships of Dirac plasmons in a thin film of thickness 10 nm.
We show the results from maximizing the strength of the classical
electromagnetic response in q space using local (green solid lines)
and nonlocal (blue solid lines) conductivity, as well as the nonlocal
dispersion obtained from many-body calculations (blue dots). For
comparison, the nonlocal plasmon dispersion for a semi-infinite
substrate in (a) is also included in this panel (red solid line). Labels
q

op
SP and qac

SP mark the points of evaluation of the near field in Fig. 3
and charge and spin density in Fig. 4 and Fig. 5. The relative dielectric
function describing the bulk of the TI is εb = 25. The Fermi energy
is EF = 250 meV except in the inset of (a). For reference, the
black short-dash line in (a) and (b) corresponds to ω = vFq, with
vF = 0.5 × 106 m/s the Fermi velocity. The light cone is indicated
by the dashed black line that is almost superimposed to the vertical
axis.
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conductivity. The nonlocal results are in very good agreement
with the dispersion obtained directly from the many-body
calculations [blue dots].

The results for the semi-infinite substrate in Fig. 2(a) reveal
the presence of Dirac plasmons in the infrared-THz region of
the spectrum that are characterized by a very large parallel wave
number qSP (low wavelength λSP = 2π/qSP), compared to the
corresponding value of the incident plane wave. For example,
a surface plasmon excited at λ = 35 μm (≈0.0354 eV) has
a (nonlocal) plasmonic wavelength λSP ≈ 95 nm, showing a
squeezing to λ/370. The field is thus evanescent and extremely
confined in the vertical z direction, i.e., the vertical wave
number at vacuum (k1

z =
√

(2π/λ)2 − q2
SP) and at the TI (kTI

z =√
(2π/λ)2εb − q2

SP) are imaginary and satisfy | k1
z |≈| kTI

z |≈
qSP � 2π/λ. For reference, the light cone is indicated by
the almost-vertical black dashed line in Fig. 2(a), which is
characterized by wave number 2π/λ.

The local and nonlocal dispersions are similar for low ener-
gies. In contrast, for sufficiently high energy (above ≈0.03 eV),
both curves in Fig. 2(a) exhibit important quantitative and
qualitative differences: In the case of the nonlocal approx-
imation, the dispersion relationship becomes approximately
linear, while for the local calculations the resonant energy
is proportional to the square root of qSP. As a result, the
nonlocal slope is ≈3 times larger at the maximum qSP shown,
underlying the importance of using a nonlocal approach to
accurately obtain the response for large energies. Further, the
inset shows the strong dependence of the plasmon dispersion
on the Fermi energy EF of the 2D-FL, studied for the range
EF = 150 meV–350 meV in the nonlocal description. EF can
be experimentally controlled by an external voltage bias, so that
the good tunability of the system constitutes a major advantage
of 2D plasmons [12,54,55].

Figure 2(b) shows nonlocal (blue solid lines) plasmon
dispersion for the d = 10 nm thin TI film. The 2D-FLs at
each interface interact with each other via Coulomb coupling
and two hybridized plasmon modes emerge as two different
branches in the dispersion, as studied in Ref. [35]. The low
and high energy branches of the dispersion fall at each side
of the dispersion curve for the semi-infinite substrate (red
line, corresponding to the nonlocal calculation). The mode
associated with the lower energy branch exhibits an almost
linear dependence between energy and wave number (linear
dispersion relationship). It is usually called acoustic mode,
and we will show that it is characterized by antisymmetric
charges at both interfaces [sketch in Fig. 3(b)]. The acoustic
plasmon is characterized by the largest plasmon parallel
wave number qac

SP (smallest plasmon wavelength) and thus
the strongest confinement (largest |k1

z |). On the other hand,
the larger energy branch corresponds to the optical mode and
present a symmetric charge distribution [sketch in Fig. 3(c)].
The wave number q

op
SP for the optical branch and energies

smaller than ≈0.075 eV is significantly smaller than for the
acoustic mode or for the plasmon of a single interface but
remains much larger than that of a propagating plane wave
in vacuum, so that the electromagnetic field of both acoustic
and optical plasmonic modes are well confined to the TI film.
For energies �0.075 eV the acoustic and optical branches
become similar to the dispersion relationship of a single
interface.

FIG. 3. Fields excited by a dipole illuminating a 10 nm thin TI
film. (a) Maps of the real part of the z component of the electric field
Eind

z induced by a dipole emitting at λ = 35 μm, situated 3 nm above
the film and oriented along the vertical z direction. (b) Real part of
the field in (a) at 3 nm [short-dash lines in (a)] away from the film
minus the corresponding value for 50 nm distance [long-dash lines
in (a)]. This subtracted field Ediff

z is calculated both for fields above
[solid green line in (b)] and below [dashed red line in (b)] the thin
film, following Eq. (1). (c) Real part of the field calculated at 50 nm
distance from the upper (solid green line) and bottom (red dashed line)
surfaces, along the dashed lines in (a). The insets in (b) and (c) indicate
the charge distribution corresponding to the fields of the acoustic and
optical modes, respectively. The Fermi energy is EF = 250 meV, the
dipole strength is 1e · nm, and the field is plotted in S.I. units (Vm−1).

As for the semi-infinite substrate, the dispersion relationship
at low energies change only weakly when comparing the results
obtained using the local σ (q = 0,ω) (green solid line) and
nonlocal conductivity σ (q,ω) (blue solid line). Nonetheless,
nonlocality plays a significant role in the high energy response.
Looking first at the acoustic mode, the wave number qac

SP
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is significantly larger for the local than for the more exact
nonlocal approach. The strong nonlocal effect can be explained
by the conductivity σ (qac

SP,ω) at very large qac
SP being signifi-

cantly different from the local σ (q = 0,ω) value. In the case
of the optical branch, the discrepancy between the local and
nonlocal results becomes important only for energies larger
than ≈0.05 eV, where the local calculation remains relatively
flat as a function of q, with a much weaker slope than for the
nonlocal conductivity.

B. Fields and surface charges induced by a point dipole

Due to their very large wave number qSP � 2π/λ, a plane
wave cannot excite the plasmonic modes in the TI film (or
substrate) even when applying techniques often used to excite
plasmons in flat metallic surfaces, such as exploiting the
evanescent field induced by total internal reflection at the
face of a prism (Otto configuration [56]). We thus use a
pointlike dipolar source, which, as discussed in Appendix B,
can be decomposed as an integral over plane waves of different
horizontal wave number q, with a significant contribution for
a very large range of q values (very broad distribution in q

space). More exactly, we use an electric dipole oriented in the
vertical z direction and emitting at λ = 35 μm.

We first consider a dipole positioned 3 nanometers above
the TI thin film. Figure 3(a) shows the real part of the z

component of the electric field induced by the dipole, Re(Eind
z ),

in the vertical x-z plane. Due to the rotational symmetry of the
dipolar illumination (with respect to the z axis), the induced
electromagnetic fields are rotationally symmetric as well. The
oscillatory behavior of Re(Eind

z ) in the radial x direction is typi-
cal of a propagating surface wave. We observe clear oscillations
near (and inside) the film with periodicity ≈70 nm, very close
to the plasmonic wavelength of the acoustic mode λac

SP obtained
from the dispersion [λac

SP = 2π/qac
SP, with qac

SP indicated by the
blue open circle in Fig. 2(b)]. These fast oscillations clearly
suggest the excitation of the acoustic plasmon.

The fast decay in the vertical z direction of these fast
field oscillations indicate that they are strongly localized to
a thin region near the TI film. The fields also decay along
the direction of propagation (x axis), but a large number of
oscillations can be observed, revealing a large propagation
distance (measured in units of the plasmonic wavelength).
The decay of the plasmon in this direction is both due to the
material losses associated with the relaxation time of the TI
and to the 1/

√
x dependence of the electric field of a lossless

propagating plasmon required by energy conservation (due
to the cylindrical character of the plasmon wavefronts). A
large propagation distance is desired for effective coupling and
information transfer with distant systems.

As implied above, the ≈70 nm periodicity strongly supports
the excitation of the acoustic plasmon [35], characterized
by fields oscillating in phase just above and below the TI
(symmetric field distribution, corresponding to antisymmetric
charges as discussed below). According to the location of the
maxima and minima of Re(Eind

z ) in Fig. 3(a), however, one can
appreciate that the phase of the fields is not exactly identical
at both sides of the film and that the difference becomes larger
in planes further away from the film (comparing the fields at
|z| to those at −|z| for large |z|). Indeed, for planes sufficiently

far away from the TI, the fields oscillate approximately with
opposite phase above and below the film. This asymmetric
field distribution corresponds to the expectation for optical
modes [35].

We attribute this behavior to the simultaneous excitation of
both an optical and an acoustic propagating surface plasmon;
the optical plasmon dominates the fields induced far away from
the film, while the contribution of the acoustic plasmon become
very important near the interfaces. More in detail, the excitation
of the acoustic mode lead to the presence of the fast oscillations
near the film (set by qac

SP) characterized by symmetric field
with respect to the central plane. The large qac

SP implies that the
(evanescent) fields decay very fast in the vertical z direction
(| k1

z |≈ qac
SP), so that it becomes difficult to appreciate these

oscillations for |z| larger than a few tens of nanometers.
In contrast, the optical mode, characterized by asymmetric
field distribution and larger plasmonic wavelength, becomes
dominant at sufficiently large |z| due to its comparatively
smaller | k1

z |≈ q
op
SP < qac

SP.
To confirm the simultaneous excitation of acoustic and opti-

cal modes with opposite field symmetries, we obtain Ez at both
sides of the film, at 3 nm and 50 nm away from it [along the two
short-dash and two long-dash lines in Fig. 3(a), respectively].
Since the acoustic mode decays faster than the optical plasmon
in the z direction, we expect to be able to discriminate the fields
associated with the former by subtracting the fields excited at
the larger distance to those at the smaller, i.e.,

Ediff
z = Eind

z

(
z = d

2
+ 3 nm

)
− Eind

z

(
z = d

2
+ 50 nm

)

Ediff
z = Eind

z

(
z = −d

2
− 3 nm

)
− Eind

z

(
z = −d

2
− 50 nm

)
(1)

above and below the TI, respectively. Indeed, Fig. 3(b) demon-
strates that the fast oscillations of the subtracted signal Ediff

z

above and below the film are in phase, as expected for the
acoustic plasmon, and that the ≈70 nm periodicity is in good
agreement with the value 2π/qac

SP obtained from the acoustic
branch of the dispersion relationship [as marked by the blue
open circle in Fig. 2(b)].

As we evaluate the fields further away from the film the
relative weight of the optical mode increases. We plot in
Fig. 3(c) the real part of Eind

z at a distance of 50 nm above
and below the film [along the long-dash lines in Fig. 3(a)].
The fields have an opposite sign at each side of the film, i.e.,
opposite orientation or π phase difference, with a periodicity of
the oscillations of ≈1000 nm. This antisymmetry corresponds
to symmetric charges (see below) and is typical of an optical
mode in thin TI films [35], and the periodicity matches well
with the value q

op
SP obtained from the corresponding branch

of the dispersion relationship [marked by the blue square in
Fig. 2(b)]. The fields in Fig. 3 are thus consistent with the
excitation of both an acoustic and optical mode, the former
strongly contributing to the fields in the vicinity of the film
and the latter predominating at positions further away.

The field symmetries can be translated into charge symme-
tries through the fields at both sides of each 2D-FL. The surface
charge density σc at the upper σ u

c and bottom σ b
c interfaces (in
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atomic units) are

σ u
c = ε1

4π
Etot

1z

(
z = d

2

)
− εb

4π
Etot

TIz

(
z = d

2

)
(2)

σ b
c = − ε1

4π
Etot

1z

(
z = −d

2

)
+ εb

4π
Etot

TIz

(
z = −d

2

)
,

where Etot
1z (z = ± d

2 ) is the total field along z on the vacuum
side of the interface, and Etot

TIz(z = ± d
2 ) the equivalent value

inside the TI, both evaluated just at the film-vacuum interfaces.
The sign difference between the equations of σ u

c and σ b
c is due

to the dependence of the charge density on the direction of
the surface normal. The antisymmetric Ez field exhibited by
the optical modes thus corresponds to a charge distribution
characterized by equal sign at both interfaces, which explains
the comparatively larger energy of the optical branch in the
dispersion relationship as a consequence of Coulomb repulsion
between equal charges at the upper and bottom 2D-FLs [inset
of Fig. 3(c)]. In contrast, the acoustic modes present charges
of opposite sign at the two TI-vacuum interfaces [inset of
Fig. 3(b)]. As we will see in the next section, these charge
symmetries are the opposite to those of the spin, which
introduces a handle to control the net charge and net spin.
Furthermore, we also note that these charge symmetries are the
opposite to those of the optical and acoustic plasmonic modes
in a thin metallic film [57], where the difference between TIs
and metal films appears because the latter exhibit a screening
effect due to the 3-D electron gas (described by the negative
value of the real part of the permittivity) that is not present
in TIs.

C. Controlled excitation of charge and spin waves
by dipole-sample separation control

Since the contribution to the fields induced by the dipole in
Fig. 3 from the acoustic and optical modes can be dominant
near and far from the TI film, respectively, reciprocity [58]
suggests that the acoustic mode would be effectively excited
by a dipolar source situated near the film, whereas the optical
mode would be predominantly excited when the dipole is far
away from the film. With this in mind, Fig. 4 shows the real
part of the surface charge densities σc induced in the upper and
bottom interfaces by a dipolar source radiating at λ = 35 μm
situated at (a) 5 nm and (b) 150 nm away from the surface of
the film.

When the dipole is at a distance of 5 nm above the 10 nm thin
film [Fig. 4(a)] the induced charges at the upper and bottom
surfaces has opposite sign and a spatial periodicity of ≈70 nm,
indicating as expected the excitation of an acoustic mode. As an
aside, Fig. 3 showed that a dipole near the thin film also excite
an optical mode that contributes to the near fields outside the TI,
but whose contribution to the charge distribution in Fig. 4(a) is
difficult to appreciate; this contrast between field and charges
is possible because σc depends on the (displacement) fields
outside and inside the film [Eq. (2)].

For a dipole placed 150 nm above the surface [Fig. 4(b)],
the charge densities oscillate in phase at both interfaces and
oscillate with the larger spatial periodicity of ≈1000 nm
characteristic of the optical plasmon. The charges are thus
indeed dominated by the acoustic mode for 5 nm distance and

FIG. 4. Real part of the surface charge density in S.I. units calcu-
lated along the x axis at the upper (green solid line) and bottom (red
dashed line) interfaces of a TI thin film of 10 nm thickness. A dipolar
source radiating at wavelength λ=35 μm, placed at x = y = 0
and oriented along the vertical z direction is used to excite the surface
plasmons in the film, for the Fermi energy EF = 250 meV. The charge
densities, plotted for the dipole placed along the z axis (a) 5 nm and
(b) 150 nm above the film, show periodicities of λSP ≈ 70 nm and
λSP ≈ 1000 nm, respectively. The insets in (a) and (b) schematically
show the corresponding charge distributions.

by the optical mode for 150 nm. In consequence, it is possible
to tune the relative strength of the two modes by varying the
dipole-film distance. In this way, we can control not only the
charge but also the spin properties, as we discuss in more detail
below.

We analyze next the response in terms of net charge and net
spin plasmonic waves. The two top panels in Fig. 5(a) show the
real part of the induced charge density oscillations at the upper
(σ u

c ) and bottom (σ b
c ) 2D-FL, excited by the vertical dipole

at 5 nm above the film. As just discussed, the surface charge
density with ≈70 nm period is characterized by opposite phase
at the upper and lower faces, corresponding to the acoustic
plasmon wave. Thus, the total effective charge density σ eff

c ,
defined as σ eff

c = σ u
c + σ b

c , is nearly zero.
Indeed, Re(σ eff

c )/2, shown in the second panel from the
bottom, is only comparable to either Re(σu

c ) or Re(σb
c ) near

the position of the dipole, where many of the evanescent
components of the dipolar excitation contribute to the response,
not only those associated with the excited plasmonic mode. On
the other hand, a dipole at 150 nm above the film, which excites
predominantly the λ

op
SP ≈ 1000 nm optical mode, results in a

strong total effective charge, as the charge densities at both
surfaces of the film oscillate in phase [Fig. 5(b)].

The peculiarity of the TI film, compared, for instance to two
graphene layers coupled electrostatically, is the surface-state
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FIG. 5. Charge and spin waves in a 10 nm thin TI film for a
dipole placed at x = y = 0 at two different distances above the film.
The dipole emits at λ = 35 μm and is oriented along the vertical
z direction. (a) Charge and spin density induced for the dipole
positioned 5 nm above the top surface of the film. The top two
panels show the real part of the charge densities induced at the
upper σ u

c (uppermost panel) and bottom σ b
c (panel below) interfaces.

The bottom two panels represent the real part of half the sum of
the spin density [Re(su

T + sb
T))/2, lowest panel] and charge density

[Re(σ u
c + σ b

c )/2), panel above] at both interfaces, and thus indicate
the behavior of (half) the effective charge (σ eff

c /2) and spin (seff/2)
density oscillations, respectively. (b) as in (a) but for 150 nm distance
between the dipole and the film. (a) and (b) correspond to the same
systems showed in Figs. 4(a) and 4(b). Charge density is shown in S.I.
units. The spin density is plotted in arbitrary units. The Fermi energy
of the 2D-FLs is EF = 250 meV. The values of Re(su

T + sb
T))/2 in (b)

are multiplied by a factor 10.

spin texture with well-defined helicity at the upper and bottom
film surfaces. Thus, these TI films are potentially interesting
for spintronic applications. The spin is parallel to the 2D-
FLs, transverse to the direction of propagation of the excited
plasmon, and its direction depends on the surface normal.
More specifically, the transverse spin polarization density at the
interfaces, of amplitude sT couples with the charge density as
given by s

u,b
T (q,ω) = ∓ ω

vFq
σ u,b

c (q,ω) for the upper (su
T, minus

sign) and bottom (sb
T, plus sign) surfaces [30,35]. Thus, for

the in-phase charge oscillations characteristic of the optical
mode the transverse spin polarization have opposite direction
at the two 2D-FLs. In contrast, the acoustic resonance is
characterized by the same spin-polarization direction at both
interfaces.

To provide a more precise characterization of the behavior
of the effective spin, we calculate the spin density amplitude
as a function of position r by performing the Fourier transform
of s

u,b
T (q,ω). We then plot seff/2 = (su

T + sb
T)/2 in the bottom

panels of Figs. 5(a) and 5(b), which confirms that seff is large
when the net charge density σ eff

c is small and vice versa. In
short, the acoustic and optical modes can be seen as spinlike or
chargelike density waves, respectively, whose relative strength
is controlled by the position of the dipole; specifically, as
the dipole is displaced from very short to very large distance
from the TI film, we transition from exciting spin collective
excitations to inducing charge density waves.

IV. LOCALIZED SURFACE PLASMONS
IN Bi2Se3 NANODISKS

We move next from studying propagating plasmons in infi-
nite TI surfaces to the excitation of localized Dirac plasmons
in finite TI structures, such as the nanodisks of diameter D

depicted in Fig. 1(c). These disks can act as optical nanoanten-
nas enhancing and confining the field, leading for example to
strong interactions with nearby objects or molecules [59–62].
As we illustrate below, the rupture of translational symmetry
also allows the excitation of (optical) plasmonic modes by an
incoming plane wave.

Similarly to what has been studied for metallic structures
[63,64], plasmonic resonances in disks can be understood as
Fabry-Pérot-like cavity modes, for which the reflection of
propagating plasmon at the edges leads to localized resonances
when constructive interference occurs. The disks support many
different resonances [7,65,66], and, for example, the difference
between edge and sheet plasmons in graphene and metallic
disks have been recently studied [6,67,68]. For simplicity, we
focus on configurations where only a few of the possible modes
are excited. More in detail, we choose illumination sources that
induce modes where the charge densities induced at the 2D-FLs
are antisymmetric with respect to the vertical x = 0 plane (not
to be confused with the symmetry with respect to the middle
of the film discussed in the previous section) and present a
cosinelike evolution in the polar direction (in the xy plane). In a
simple model treating the plasmon as a plane-wave-like surface
excitation of well defined wave vector qSP and assuming zero
reflection phase φr of the plasmon at the edges of the disk of
diameter D [69,70], these resonances emerge when qSP verifies

qSP = πn

D
(3)

with n � 1 an odd integer (even values of n describe rota-
tionally symmetric resonances not excited by our illumination
scheme). Equation (3) corresponds to the condition of coherent
interference that occurs when the plasmon accumulate a 2πn

difference in a full round trip. References [71,72] use a related
model in terms of Bessel functions that gives a somewhat
different qSP but does not change the general conclusions
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FIG. 6. Optical response of a thin TI disk of diameter 300 nm
and thickness d = 10 nm that supports localized optical plasmons.
The excitation is a plane wave polarized along the x direction and
incident from the top (z axis), as shown in the schematic (top right).
The coordinate axis indicates the different directions, and the center of
the disk is situated at x = 0, y = 0, z = 0. (a) Extinction coefficient
of the disk, for the Fermi energy EF = 250 meV (blue solid line)
and EF = 350 meV (red solid line) of the 2D-FLs. (b) Maps of the
imaginary part of the z component of the total electric field normalized
to the amplitude of the incoming wave, Im(Etot

z )/E0, at the prominent
lowest-energy spectral peak at λ ≈ 34.3 μm for EF = 250 meV. In
the top panel, the fields correspond to the horizontal plane z = 10 nm,
parallel to the disk and 5 nm over the top interface. The fields in the
bottom panel are obtained in the y = 0 vertical plane passing through
the center of the disk and parallel to the incident electric field. (c) as
in (b) but for the second lowest-energy peak at λ ≈ 25.4 μm in the
EF = 250 meV spectrum.

below. Once qSP is known from Eq. (3), the resonant energy is
obtained via the dispersion relationship. Notice that consider-
ing a nonzero reflection phase φr would modify to some extent
the position of the resonances with respect to the prediction by
this simplified equation. In the following sections, we consider
the thin disks sketched in Fig. 1(c) with thickness d = 10 nm
and diameter D = 40 nm or D = 300 nm.

A. Excitation of localized optical modes with plane
wave illumination

Figure 6(a) shows the extinction coefficient (extinction
cross section normalized by the disk top surface area) of the
disk of 300 nm diameter, when illuminated by a plane wave
of amplitude E0 incident from the top with linear polarization
along x, as schematically shown in the figure. This polarization
imposes antisymmetry of the induced charges in the direction
of polarization, i.e., with respect to x = 0. Due to the symmetry

of the structure with respect to the horizontal plane z = 0 and
the negligible phase shift associated with the propagation of
the plane wave across the small thickness of the disk, the
charge densities at opposite points at the upper and bottom
flat TI-vacuum interfaces must be equal, which corresponds
to the excitation of optical modes. We discuss in Appendix B
how we introduce nonlocality into the full-wave calculations,
under the assumption that only the optical mode is excited, by
using σ (qop

SP), the conductivity evaluated at q
op
SP.

The extinction spectra [Fig. 6(a)] show clear peaks associ-
ated to the localized plasmon resonances. For EF = 250 meV
(blue solid line), the two lowest energy peaks are found at
λ = 34.3 μm and λ = 25.4 μm. For comparison, the simple
Eq. (3) using n = 1,3 predicts resonances at λ = 30.7 μm
and λ = 25.5 μm, in reasonable agreement with the simulated
results. The broadness of a peak at frequency ωPL can be
quantified with the quality factor Q = ωPL/	ω, where 	ω is
the frequency difference corresponding to the full width at half
maximum of the peak. The quality factor of the λ = 34.3 μm
peak is Q = 26.9, comparable to the values found in plasmonic
systems [73]. It is in good agreement with the result of the qua-

sistatic equation [73] Q = ω2 d[Im(σ (qop
SP))/ω]

dω
/(2Re(σ (qop

SP))) ≈
27 (evaluated at the resonant frequency), which only depends
on the real and imaginary part of the conductivity, not on the
exact geometry.

The extinction peaks shift significantly for moderate
changes of the Fermi energy EF [which modifies σ (qop

SP,ω)].
The lowest energy peak, for example, shifts from λ = 34.3 μm
to λ = 29 μm when EF changes from 250 meV (blue solid
line) to 350 meV (red solid line). The energy shift is ≈4 times
the full with at half maximum 	ω of the EF = 250 meV
peak, illustrating the high tunability of plasmonic resonances in
TI disks.

In order to confirm the character of the spectral peaks, we
calculate the electric field distribution around the disk at the
position of the two lowest energy peaks for the EF = 250 meV
spectrum [blue spectrum in Fig. 6(a)]. Figure 6(b) shows the
imaginary part of the z component of the amplitude of the
total electric field, normalized by the amplitude of the incident
plane wave E0, Im(Etot

z )/E0, for the λ = 34.3 μm resonance.
Figure 6(c) presents Im(Etot

z )/E0 for the resonance excited
at λ = 25.4 μm. The fields are calculated in the horizontal
plane 5 nm above the disk (corresponding to z = 10 nm, top
panels) and in the y = 0 plane of incidence of the incoming
illumination going through the center of the disk (bottom
panels). We can see that the fields are symmetric with respect
to the z = 0 horizontal plane. In consequence [see Eq. (2)],
the induced charges are antisymmetric with respect to the
same plane, i.e., same sign at opposing interfaces [insets in
Fig. 6(a)], as anticipated for the excitation of an optical mode.
Furthermore, both the charges and fields are antisymmetric
along x, with a cos-like symmetry in the polar direction.
Last, the field distribution directly over the disk present 1
and 3 nodes along the x axis for the peaks at λ = 34.3 μm
and λ = 25.4 μm, respectively. Therefore, the lowest energy
plasmon at λ = 34.3 μm corresponds to a dipolar optical
mode, and the resonance at λ = 25.4 μm is a higher order
optical mode. Our results thus confirm the excitation of tunable
optical plasmonic resonances in TI disks by an incident plane
wave.
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B. Excitation of a localized acoustic mode by a point dipole

We consider next a disk of almost ten times smaller
diameter D = 40 nm and same d = 10 nm thickness. Using
this smaller diameter allows us to obtain the lowest-energy
acoustic plasmon at a similar frequency as the corresponding
optical mode for the larger disk. We are interested in the
excitation of acoustic modes, so that we use the conductivity
σ (qac

SP,ω) in the full wave calculations (see Appendix B). As
we discuss below, we verify that the modes emerging in the
simulations are indeed acoustic. Furthermore, we have also
verified (not shown) that using σ (qop

SP,ω) in the calculations to
correctly describe the optical modes would not introduce any
additional peak in the wavelength range studied λ > 27.5 μm
(the lowest-energy optical peaks appear at λ = 23.7 μm and
20.2 μm for the two values of the Fermi energy considered).
Thus, using σ (qac

SP,ω) instead of the nonlocal σ (q,ω) should be
adequate for our study of the excitation of acoustic resonances.

As previously discussed, a plane wave exciting the thin disks
cannot efficiently excite the antisymmetric charge distribution
(opposite sign at the top and bottom interface) characteristic of
acoustic modes. Thus, we consider excitation by a dipole 5 nm
above the center of the top surface of the disk, oriented parallel
to this surface (along x). The spectra in Fig. 7(a) shows the
Purcell factor, for the same Fermi energies as those considered
in Fig. 6. The Purcell factor PF is defined here as the power
emitted by the dipole in the presence of the disk normalized
to the corresponding value for the dipole in vacuum, can be
calculated from the induced fields as discussed in Ref. [74] and
does not depend on the dipole strength. A clear peak emerges
in the spectra, broader than for the optical modes in Fig. 6
because the large qac

SP implies proximity to the electron-hole
continuum where losses increase.

For EF = 250 meV (blue solid line) the dominant peak
appears at λ = 34.8 μm and has a quality factor Q =
ωPL/	ω ≈ 7.0. The resonant wavelength is again relatively
close to the prediction λ = 39.7 μm given by Eq. (3). The tun-
ability of the excited resonance as EF changes from 250 meV
(blue solid line) to 350 meV (red solid line) is smaller than for
the optical modes, but remains comparable to the FWHM of
the peaks. The very large Purcell factors (up to more than 107)
indicate that the plasmonic disk couple very efficiently with
the dipole; they are a consequence of the strong localization
of the fields in the horizontal and vertical direction (extremely
low mode volume), as set by the lateral dimensions of the disk
and by k1

z , respectively. Applying the simple equation for the
Purcell factorPF = 3/(4π2)λ3Q/Veff , we estimate an effective
volume Veff ≈ (120 nm)3. Notably, we have assumed in Fig. 7
that the system remains on the weak coupling regime, where
the effect of the nanodisk on a dipolar source is well described
by the Purcell factor. However, such small Veff indicate that it
could be possible to reach the strong coupling regime even for
sources with relatively small dipolar strength [75].

Figure 7(b) shows Im(Etot
z ) for the lowest-energy peak in the

EF = 250 meV spectra. The left and right panels represents,
respectively, the fields in the horizontal plane z = 10 nm (5 nm
above the top interface) and the vertical plane y = 0 panel
(same planes as in Fig. 6). The strength of the dipole is
1e · nm. The main difference between the results obtained for
the larger disks under plane wave illumination (Fig. 6) and

FIG. 7. Optical response of a thin TI disk of diameter 40 nm and
thickness d = 10 nm that supports localized acoustic plasmons. The
excitation is an electric dipole situated 5 nm above the center of the
top surface of the disk (z = 10 nm) and oriented along the horizontal
x direction, as shown in the schematic (top right). The coordinate
axis indicates the different directions and the center of the disk is
situated at x = 0, y = 0, z = 0. (a) Purcell factor calculated for the
Fermi energy EF = 250 meV (blue solid lines) and EF = 350 meV
(red solid lines) of the 2D-FLs. (b) Maps of the imaginary part of the
z component of the total electric field Im(Etot

z ), at the lowest-energy
spectral peak at λ = 34.8 μm for EF = 250 meV. In the left panel,
the fields correspond to the horizontal plane z = 10 nm, parallel to
the disk and 5 nm over the upper interface. The fields in the right
panel are obtained in the y = 0 vertical plane, passing through the
center of the disk and parallel to the dipole orientation. The strength
of the dipole, which does not affect the Purcell Factor in (a), is set to
1e · nm in (b).

for the smaller disk excited by a dipole [Fig. 7(b)] is that the
fields induced in the latter case are symmetric along the vertical
direction, i.e., with respect to the central z = 0 horizontal
plane. According to Eq. (2), the symmetric fields correspond
to antisymmetric charge distribution [sketched in the inset
of Fig. 7(a)] confirming the excitation of acoustic modes.
Furthermore, the charges (as also Eind

z ) are antisymmetric with
respect to x = 0, with the charges excited at the upper interface
forming a dipolelike pattern, which reminds the results for the
large disks in Fig. 6. However, as the sketch in Fig. 7 indicates,
the charges exited at the bottom interface correspond to a
dipolelike pattern of opposite sign than the one at the top. Thus,
the overall distribution of the induced charges is quadrupolar.
A quadrupole is weakly radiative (nonradiative in the ideal
case) which is a different way of arguing why plane waves do
not couple efficiently with this acoustic mode.

We have thus shown that, by choosing adequately the size
and illumination of the disks, we can excite modes that have
either acoustic or optical character. In a similar manner as
shown in Fig. 5 for the propagating waves, these localized
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modes would be dominated, respectively, by the value of the
effective total spin density seff

T or total charge density σ eff
c .

Modifying EF allows us to tune the resonant energy to a
desired value.

V. SUMMARY AND DISCUSSION

We have combined many-body theory and classical elec-
trodynamic calculations to analyze in detail the excitation
of propagating and localized plasmons supported by thin TI
structures. To focus on the pure electrodynamic interactions
between the plasmons at the upper and bottom interfaces,
we consider a simple case where the bulk of the topological
insulator is perfectly transparent. Thus, we do not include
the contribution from bulk plasmons [76] or from phonons
[20,25,27,46]. These effects can increase the losses and modify
the dispersion, possibly introducing coupling between surface
and bulk modes that can lead to phenomena such as Fano
resonances or strong coupling. In the case of thin disks, edge
effects [10,77] and the complex atomic structure of the TI
side surfaces [78], where a 2D-FL may form, could also shift
and broaden the resonances. We also do not consider the
depletion layer [36]. On the other hand, we have introduced
the dependence of the 2D conductivity on the parallel wave
vector q in order to show how the strong nonlocality of the
response affects the optical response.

Thin TI films support optical and acoustic propagating
plasmon modes. Acoustic plasmons are associated with net
effective spin and vanishing total charge densities, while the
optical mode is characterized by net charge oscillations with
insignificant effective spin density. We have studied how to
excite this system, showing that the experimental condition
strongly affects the contribution of these two types of modes
to the total signal. Specifically, by changing the distance
between a pointlike dipolar source and the TI, we are able to
strongly modify the relative weight of the acoustic or the optical
plasmons, and thus to control the spin and charge character
of the propagating surface wave. The dipolar excitation we
considered could come from a 2-level transition in single
photon emitters, but finding appropriate transitions at these
frequencies can be challenging. A tip, a small particle, or
any edge might serve as alternative localized sources [79,80].
It is also worth noting here that the approach of coupling
double-2D-FL structures to control two different properties of
the excitated surface wave can be extended to other situations.
For example, Ref. [81] discusses the separation of purely
magnetic and charge plasmons in two twisted bilayer graphene
structures.

Further, we show that, by controlling the geometry and
illumination, localized acoustic or optical plasmons can be
selectively excited in thin TI disks at well-defined wavelengths.
These modes are confined to very small volumes, as desired for
large coupling strengths and quantum applications [82–84]. We
have focused on separately exciting either acoustic or optical
modes in the thin disks, but we have also verified that it is
possible to excite both types of modes in the same disk at a
similar frequency (for example by excitingD = 95 nm disks in
the λ = 28 μm range with a dipolar excitation). Additionally,
we have assumed that the Fermi energy EF is the same for the
2D-FLs of the thin structures, but it may be also of interest

to explore the case where the applied voltage leads to two
different EF.

Notably, the modes supported by the thin disks are rela-
tively narrow spectrally, and can be easily tuned by changing
the geometry or the external voltage. They thus offer an
attractive path to control the nett spin and charge excited in
nanostructures, by selectively exciting acoustic or plasmonic
modes, or both simultaneously. The possible excitation of a
well-defined net spin is a key difference with respect to other
similar systems, such as bilayer graphene. In summary, we have
demonstrated the large flexibility offered by thin TIs to control
spin and charge properties of plasmonic resonances, making
them an attractive possibility to engineer very compact and fast
[27] optoelectronic and spintronic devices.
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APPENDIX A: MANY-BODY CALCULATIONS

We describe first the many-body calculation of the
conductivity σ (q,ω) required by the classical calculations
(Appendix B) and obtained for a single 2D-FL between the
TI and vacuum. We express the conductivity in terms of the
noninteracting response function χ0

τ (q,ω) of a single 2D-FL
as

σ (q,ω) = iω
χ0

τ (q,ω)

q2
. (A1)

In the relaxation-time approximation, the noninteracting
response function reads [85]

χ0
τ (q,ω) = (1 + i/ωτ )χ0(q,ω + i/τ )

1 + (i/ωτ )χ0(q,ω + i/τ )/χ0(q,0)
. (A2)

For the TI modeled in our study, we choose a relaxation time of
τ = 500 fs [37–40]. Within the random phase approximation,
the response function χ0

τ (q,ω) has the same expression as in
the case of graphene [86,87] but without degeneracy either in
valley or in spin.

We describe next how to get the dispersion relationship
directly from this many-body approach, for a general system
with an arbitrary number of 2D-FLs that interact via Coulomb
coupling. In contrast to the classical electrodynamic formalism
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used in much of this work, where the interaction between
2D-FLs is captured via the full Maxwell’s equations, the many-
body approach ignores retardation of the fields, which should
be valid for the extremely thin systems under consideration.

Each 2D-FL is surrounded by dielectric media with certain
bulk dielectric constant and it is localized in the vertical z

direction, with the localization |λi(z)| (where i runs over the
layers) given by

|λi(z)|2 = 2

hi

sin2

(
π

(
z0
i − z

)
hi

)
θ
(
hi − (

z0
i − z

))
θ
(
z0
i − z

)
.

(A3)

hi is the width of the respective 2D-FL in the z direction, while
z0
i sets its upper plane. The width hi accounts for the extension

of the TI surface state in the direction normal to the surface
plane.

The noninteracting response function of the 2D-FLs as a
function of wave number reads [88]

χ0
τ (q,ω; z,z′) =

∑
i

|λi(z)|2χ0
τ (q,ω)|λi(z

′)|2. (A4)

As a result, the interacting response function can be found as

χτ (q,ω; z,z′) =
∑
i,j

|λi(z)|2χij (q,ω)|λj (z′)|2, (A5)

where

χij (q,ω) = χ0
τ (q,ω)δij + χ0

τ (q,ω)Wij (q,ω)χ0
τ (q,ω) (A6)

with the Kronecker delta δij and the screened interaction
Wij (q) between ith and j th 2D-FLs defined as

Wij (q,ω) = [(
1 − Uχ0

τ

)−1
U

]
ij
. (A7)

Here the matrix χ0
τ is considered as a diagonal matrix with the

elements χ0
τ δij . The elements of the matrix U are given by

[U]ij ≡ Uij =
∫

dzdz′|λi(z)|2φ(q; z,z′)|λj (z′)|2. (A8)

The function φ(q; z,z′) entering this equation is the Coulomb
interaction as obtained from the Poisson equation with the
z-dependent dielectric constant ε(z) corresponding to the
considered geometry. Finally, the energies of the collective
excitations in the set of 2D-FLs are defined by locating
the poles of χτ of Eq. (A5). We find these poles from the
zero crossing of det|1 − Uχ0

τ |. In the case of the semi-infinite
substrate, we place only one 2D-FL with a nonzero thickness
∼10 Å such as its upper plane coincides with the TI surface.
When considering the TI film, we add one more 2D-FL of the
same thickness and charge density on the other side of the film,
where the lower plane of this layer is superimposed with the
bottom of the TI film. Thus, the 10 nm thick TI insulator layer
studied in the text includes the thickness of both 2D-FLs.

APPENDIX B: CLASSICAL CALCULATIONS

We describe next in more details how the classical cal-
culations are performed once σ (q,ω) is obtained from the
many-body results. In the case of thin structures with two
2D-FLs, we assume [89,90] that the layers are sufficiently far

from each other to neglect interlayer transitions, so that we
can directly use the conductivity σ (q,ω) obtained for a single
interface as described in Appendix A. For our symmetric thin
structures σ (q,ω) is the same for both TI-vacuum interfaces.
The 2D-FLs interact via electromagnetic (Coulomb) coupling.

For these calculations, the bulk TI and the surrounding
vacuum are characterized by their permittivity (ε1 = 1 and
εb = 25, respectively), so that we ignore any phononic mode.
We also neglect the correction to the electromagnetic constitu-
tive equations due to induced currents at the 2D-FLs [47,48] as
we expect that this correction will only introduce second-order
effects to the main phenomena studied here [17,91]. For the
calculation of the response of the substrate and thin film
[Figs. 1(a) and 1(b)], which are illuminated by a point dipole,
we use the plane-wave decomposition method, where the
electromagnetic fields of the dipolar source are decomposed as
infinitely many plane waves of different wave numbers [74,92].

The induced fields Eind result from an integral over the
response to each of these plane waves, as calculated from
the reflection and transmission coefficients at each interface,
together with the propagation in the TI and surrounding
vacuum. For the calculation, it is important to take into account
that the 2D-FLs modify the typical Fresnel reflection and
transmission coefficients [11]. To illustrate the influence of
the 2D-FLs on these coefficients, we give next the reflection
rTI between vacuum and the TI for a plane wave with vacuum
wave number k1 (kTI in the TI) and parallel wave number q

rTI(q,ω) = εTIk
1
z − ε1k

TI
z + 4πσk1

z k
TI
z

ω

εTIk1
z + ε1kTI

z + 4πσk1
z k

TI
z

ω

, (B1)

where k1
z =

√
k2

1 − q2 and kTI
z =

√
k2

TI − q2 are the normal com-
ponents of the plane wave at both sides of the interface. This
calculation directly takes nonlocality into account by adopting
the corresponding conductivity σ (q,ω) for each plane wave of
parallel wave number q.

Besides giving the fields at all positions, the plane-wave
decomposition allows us to obtain the dispersion relationship
from the position of the resonances, which we then can
compare with the result from the many-body calculations.
More exactly, we calculate the dispersion relationship from the
classical approach by calculating for each frequency of interest
the parallel plasmon wave number qSP that results in a larger
transmission tp(q,ω) of the full system. With this approach it is
also possible to calculate the dispersion for the often-used local
approximation, by simply using the conductivity σ (q = 0,ω)
for all plane waves.

In the case of the full-wave simulations of the disks [53], it
is possible to include a 2D layer at both the upper and bottom
interfaces. However, the conductivity σ only depends on ω. We
are able to introduce the effect of nonlocality in an approximate
manner because, for the situations under study, the optical
response should be mostly determined by the response at
one particular plasmonic parallel wave number qSP. qSP can
correspond to the parallel wave number of either the optical
(qop

SP) or acoustic (qac
SP) modes (obtained from the dispersion

relationship of the thin film), so that the calculations use
σ (qop

SP,ω) or σ (qac
SP,ω). For simplicity, we only consider the

2D layer at the flat top and bottom interfaces and not at the
lateral side surfaces. The latter correspond to the so-called
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FIG. 8. (a) Dependence with parallel wave number of the absolute
values of the transmission coefficient |tp(q,ω)| characterizing a 10 nm
thin TI layer, for several incident wavelengths. (b) Imaginary part of
the nonlocal conductivity σ (q,ω) as a function of the parallel wave
number q, plotted for the same incident wavelengths as in (a). The
dashed vertical lines in (a) and (b) are visual guides corresponding to
the peaks in (a) associated with the acoustic plasmon. A second peak
appearing in the spectra in (a) at lower q corresponds to the optical
mode. The bulk dielectric constant of the TI is εb = 25 and the Fermi
energy EF = 250 meV.

side faces [other than the (111) surface] of Bi2Se3 (a strong
TI), which have surface state bands characterized by tilted
anisotropic Dirac cones with notably reduced Fermi velocities
and by spin-orbital texture that entirely differs from that of
the (111) surface [93,94]. As a consequence, the disk lateral

sides would be described by a different conductivity and a
possibly shorter relaxation time. To take into account the
specific characteristics of the surface states on strong TI side
faces, a proper approximation to the noninteracting response
function should be developed first. However, we expect that
it may introduce a significant shift on the peak position but
should not affect the main physics described in this paper.

We examine next in more detail our approach to introduce
nonlocality into full-wave simulations. According to the dis-
cussion in the text, the localized acoustic and optical modes
in the disks can be understood in terms of the excitation of
propagating plasmons, which get reflected at the edges and
lead to Fabry-Pérot-like resonances. Thus, to better understand
which wave numbers dominate the response of the disk, we
examine the behavior in q space of the thin films.

With this purpose, we plot in Fig. 8(a) the q dependence of
the absolute value of the transmission coefficient for the 10 nm
thin TI disks, for different illumination wavelengths. Each
spectra displays two peaks, corresponding to the acoustic mode
at the largest q and the optical at the lowest q. If the following
two conditions are verified, we should be able to use in the
full-wave calculations the conductivity at either q

op
SP or qac

SP:
(i) the response should be dominated by the q components of
one of the peaks, and (ii) σ (q) should not change strongly over
the width of the peak.

To fulfill the first condition, we either use a plane wave
to illuminate the structure, which does not excite the acoustic
modes (large disks simulations), or we choose a frequency
region where optical modes are not resonantly excited (calcu-
lations of the smaller disks).

To study in more detail the second condition, Fig. 8(b)
shows the behavior of the imaginary part of σ (q,ω) for the
same excitation wavelengths as in Fig. 8(a) (the real part gives
similar conclusions). In general, the spectra varies relatively
slowly with the parallel wave number, except for the presence
of a clear resonant feature at a q that depends on the excitation
frequency and that is related to the edge of the electron-hole
continuum (smoothed in the presence of nonzero losses). For
excitation wavelengths λ � 50 μm, the relatively flat region
of the conductivity extend over the q values corresponding to
both the acoustic and optical peaks in 8(a). Thus, we expect
our results in Figs. 6 and 7 to be a reasonable approximation
of the nonlocal response.
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