
Coupling of Molecular Emitters and Plasmonic Cavities beyond the
Point-Dipole Approximation
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ABSTRACT: As the size of a molecular emitter becomes
comparable to the dimensions of a nearby optical resonator,
the standard approach that considers the emitter to be a point-
like dipole breaks down. By adoption of a quantum description
of the electronic transitions of organic molecular emitters,
coupled to a plasmonic electromagnetic field, we are able to
accurately calculate the position-dependent coupling strength
between a plasmon and an emitter. The spatial distribution of
excitonic and photonic quantum states is found to be a key
aspect in determining the dynamics of molecular emission in
ultrasmall cavities both in the weak and strong coupling regimes. Moreover, we show that the extreme localization of plasmonic
fields leads to the selection rule breaking of molecular excitations.
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The strength of the coupling between molecular electronic
excitations and cavity optical modes is a magnitude of

paramount importance that determines the dynamical proper-
ties of important phenomena such as molecular radiative and
nonradiative decays (Purcell factors),1−7 light-matter strong
coupling,8−18 and other coherent quantum optical pro-
cesses.19−24 The coupling strength between an emitter and an
optical cavity is often estimated as a product of the local
electromagnetic field in the optical cavity, Eloc, and the dipole
moment, peg, of the emitter’s optically allowed electronic
transition, as ℏg ≈ −peg · Eloc, with ℏ, the Planck’s constant.
This coupling is enhanced when the optical cavity mode shows
a large quality factor or a small effective mode volume and/or
when the electronic transition of the emitter possess a large
dipole moment. In this context, the molecular emitter is often
considered to be a point-like dipole, since the dimensions of a
typical optical cavity and thus the extension of its optical modes
are usually orders of magnitude larger than the size of the
emitter. However, nanoscale plasmonic resonators result in a
class of optical cavities that allow for light localization into
deeply subwavelength dimensions, thus reaching effective mode
volumes as small as a few nm3. Under these conditions, emitters
such as quantum dots25−35 and organic molecules36−41 cannot
be described as point-like objects any more, since the spatial

extent of their electronic transition densities are of the order of
the size of the strongly inhomogeneous local fields of the
plasmonic resonator.7

In this Letter, we present a quantum theoretical framework
that allows us to calculate the coupling between strongly
confined plasmonic modes and molecular electronic excitations
of spatially extended molecules, identifying the importance of a
proper quantum treatment of the molecule to accurately obtain
the dynamical properties of the hybrid exciton−plasmon
system.42−44 With the use of two exemplary organic molecules,
we reveal the importance of molecular size both in the weak
and strong coupling regimes, as well as in the atomic-scale
spatial mapping of the coupling strength.
The quantum treatment of the plasmon−exciton coupling

presented here combines the canonical quantization of
plasmons in metallic particles with quantum chemistry
calculations of molecular excitations based on the time-
dependent density functional theory (TDDFT) [quantization
scheme depicted in Figure 1a]. Plasmon modes are treated as
excitations of an incompressible gas of free electrons
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characterized by an electron density, N, and effective electron
mass, me.

13,24,45−49 Its local dielectric response is given by the

standard Drude model as ε ω = −
ω

ω κω+
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as the plasma frequency, e as the electron charge,

κ as the metal intrinsic damping, and ε0 as the vacuum
permittivity. Each nth plasmonic mode of frequency ωn is
characterized by its quantized electric potential ϕn

(±) and surface
charge density σn

(±), obtained from the canonical quantization of
the electrostatic surface modes, with the superscripts (±)
marking the positive and negative frequency part. More details
are given in the Supporting Information. The plasmonic system
can be consequently described by the standard Hamiltonian
that resembles a collection of noninteracting harmonic
oscillators Hpl = ∑nℏωnan̂

†an̂, where an̂ (an̂
†) is the bosonic

annihilation (creation) operators of the nth plasmonic mode.
This framework can be extended to include a nonlocal
description of the quantization of the plasmonic modes;50,51

however, the use of a local classical description can serve to
effectively describe the inhomogeneous screened fields in many
representative plasmonic cavities,52−55 as those considered
here.
As a counterpart to the plasmon modes, we consider the

molecular excitations (excitons) using linear-response TDDFT
at the level of the Tamm−Dancoff approximation in vacuum
(see Supporting Information). From TDDFT calculations, we
obtain the spatial distribution of the oscillating electric charge
over the molecule (position r-dependent), which allows us to
obtain the transition density, ρeg(r), formally defined as the
expectation value of the electronic density operator ρ̂(r) (ρeg(r)
= e⟨e|ρ̂(r)|g⟩), accounting for the electronic transitions between

the ground |g⟩ and the excited |e⟩ states. Throughout this
Letter we consider that the plasmons interact with molecules
that are physisorbed or physically separated from the surface of
the metallic particles by a dielectric spacer and thus neglect the
orbital overlap between the molecular and metal wave
functions.
Within this quantum framework, the coupling gn between the

molecular exciton and the nth plasmonic mode is calculated as
an integral of its associated potential and the molecular
transition density (considering here that the transition density
is real):

∫ ρ ϕℏ = +g r r r( ) ( )dn V neg
( ) 3

mol (1)

where the integral is taken over the molecular volume, Vmol.
The Hamiltonian describing the plasmon−exciton interaction is
Hpl−mol = ℏ∑i,n [gn,i*an̂

†|g⟩⟨ei| + gn,ian̂|ei⟩⟨g|], where |g⟩ (|ei⟩) is
the electronic ground state (excited state i). The interaction
Hamiltonian is derived in the rotating wave approximation
(RWA), which is valid if the coupling rate is smaller than the
excitonic frequency [small Bloch−Siegert shift56,57 ∼ (g2/ωeg)
≪ ωeg] and if the detuning between the plasmon and the
exciton frequency is not too large.
We illustrate the importance of the quantum treatment of the

molecular electronic transitions in two specific cases of dye
molecules: methylene blue (MB) [Figure 1b] and zinc
phtalocyanine (ZnPc) [Figure 1c], due to their relevance in
experimental situations.12,36,37 MB is a molecule with an
electronic transition Sz of a strong dipole transition moment
(optically active) oriented along the z axis, pz = 0.23 e·nm [axes
marked in Figure 1b,c]. ZnPc is a flat molecule with all of the
atoms lying on the xy plane, showing two degenerate optically
active transitions, Sx and Sy, on the same plane, with a transition
dipole moment px,y = 0.17 e·nm. The transition charge densities
of the molecular excitons are shown as isosurface plots in
Figure 1d,e for the Sz transition of MB (d) and the transition Sx
of ZnPc (e), respectively. The positive (red) and negative
(blue) transition charge densities are clearly observable at
opposite sides of both molecules, corroborating the dipole
character of the transitions, continuously distributed over the
entire extent of the molecules (∼2 nm).
We now apply the hybrid quantization scheme to explore the

role of the finite size of the molecule and calculate the dynamics
of the population of the excited electronic state |ce(t)|

2 by
solving the integro-differential equation for the amplitude, ce(t),
based on the Wigner−Weisskopf approach:15,58
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where J(s) is the spectral density characterizing the coupling of
the molecule with the plasmonic system:
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with ωn being the frequency of n
th plasmonic mode and ℏωeg =

2.3 eV (2.8 eV) is the excitation frequency of the ZnPc (MB)
molecule. For convenience, we consider that the plasmon decay
is proportional to the plasma frequency, κ = 0.01 ωp. In
practice, κ phenomenologically accounts for the intrinsic losses
in the metal and can be estimated from the classical dielectric
function of the particle material.59 We have also performed a

Figure 1. (a) Schematics of the plasmonic resonator−emitter system.
The nth plasmonic mode is described as a harmonic oscillation of an
incompressible electron gas. Molecular excitations are addressed as
two-level systems of energy ℏωeg. The plasmon interacts with the
molecular transition density ρeg. (b, c) Atomic structure of (b)
methylene blue (MB) and (c) zinc phtalocyanine (ZnPc). (d, e)
Isosurface plots of the transition densities (MB, ZnPc) corresponding
to the transition between the ground and the singlet excited state
calculated within the TDDFT framework (blue, negative values of the
density; red, positive ones).

Nano Letters Letter

DOI: 10.1021/acs.nanolett.7b05297
Nano Lett. 2018, 18, 2358−2364

2359

http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b05297/suppl_file/nl7b05297_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.nanolett.7b05297/suppl_file/nl7b05297_si_001.pdf
http://dx.doi.org/10.1021/acs.nanolett.7b05297


set of calculations of the system dynamics involving larger
values of κ (accounting for larger losses of conventional
plasmonic materials) to test its influence on the results
presented in this Letter (see Supporting Information). Large
values of κ affect the coherence of the dynamics; however, the
general trends of the results presented here are valid. Note that
in eq 2 we are neglecting the extremely slow intrinsic molecular
decay. We solve eq 2 for the initial condition |ce(0)|

2 = 1, thus
treating the decay of the initially fully excited molecular exciton.
Details of the mathematical solution of this so-called Wigner−
Weisskopf problem are provided in the Supporting Informa-
tion.
We first consider the MB molecule [Figure 1b,d] oriented

perpendicularly to the surface of a spherical metal nanoparticle
of radius R = 5 nm. We plot in Figure 2a,b the spectral density

as a function of the distance, z0, between the center of the
molecule and the particle’s surface. We compare the spectral
density obtained using the full quantum model (FQM) in
which the transition density is obtained within the TDDFT
[Figure 2a], with that obtained with the use of the simplified
point-dipole model (PDM) to describe the molecule [Figure
2b]. The same color scale is used for a straightforward
comparison. For a more quantitative comparison, in Figure
2c,d, we extract the spectral densities for the smallest z0 = 1 nm
(c) and largest z0 = 2 nm (d) within the PDM (black lines) and
FQM (red lines). The spectral density maps calculated within
both models feature the same qualitative behavior, showing
several peaks starting at the frequency of the dipole mode of the
sphere (the Fröhlich frequency ωdip = ωp/√3) and continuing
with a number of higher order modes that build up a strong

resonance at around the frequency of the surface plasmon, ωps

≈ ωp/√2, the so-called pseudomode.14

One of the most striking effects of considering the spatial
distribution of the transition density is revealed in the dynamics
of the exciton decay, |ce(t)|

2. We analyze in Figure 2e this
situation when the MB exciton is resonant with the dipolar
plasmon and in Figure 2f when it is resonant with the
plasmonic pseudomode. In both cases, the molecule is placed at
z0 = 1 nm. When the exciton is resonant with the dipolar mode,
the spectral densities, J(s), of the FQM and the PDM are
almost identical in the spectral region close to the exciton
resonance, thus leading to similar qualitative and quantitative
features of the corresponding decay dynamics within both
models. In the first stages of the decay, the exciton population
shows fast but shallow oscillations that modulate the overall
slower nonexponential decay process driven by low-order
plasmonic modes. We have checked that the fast dynamics
arises mainly due to presence of the pseudomode peak in J(s),
despite its large spectral detuning from the exciton frequency. A
different picture can be observed in Figure 2f when the
pseudomode frequency coincides with the excitonic frequency,
ωps ≈ ωeg. In this case, the decay dynamics feature a clear
coherent exchange of the exciton population with the
plasmonic pseudomode. In this strong coupling regime, we
find that the spectral density is larger in the FQM than in the
PDM [Figure 2d], resulting in about ≈20% faster vacuum Rabi
oscillations due to the proximity of one side of the molecule to
the metallic surface. Notice that the coupling of the molecular
exciton to the pseudomode is much more sensitive spatially
than in the dipolar case due to the extremely localized character
of the pseudomode.
We also consider an alternative situation of coupling by

analyzing the exciton dynamics of a transition of the ZnPc
molecule, which is oriented horizontally with respect to the
metal nanoparticle. The spectral densities obtained from the
two approaches are shown in Figure 3a,b, using the same color

Figure 2. Dynamics of the MB molecular exciton in the proximity of a
spherical plasmonic resonator. (a, b) Spectral densities calculated with
the FQM (a) and with the PDM (b), as a function of the distance z0 of
the center of the molecule to the particle’s surface (radius R = 5 nm).
(c,d) Spectral densities extracted from parts a and b, for z0 = 1 nm (c)
and for z0 = 2 nm (d). (e, f) Selected decay dynamics for the exciton
resonant with the dipolar plasmon (e) and to the pseudomode (f) for
a separation distance of z0 = 1 nm, as marked in part d. FQM results
are displayed with red lines and PDM results with black ones.

Figure 3. Dynamics of the ZnPc molecular exciton near a spherical
plasmonic resonator. (a, b) Spectral densities as a function of the
distance of the molecule to the particle’s surface z0 [see inset in part c]
within the FQM (a) and within the PDM (b). (c) Plasmonic
enhancement of the total decay rate as a function of z0, when the
plasmon resonance is strongly blue-detuned from the molecular
exciton. (d) Dynamics of the exciton for z0 = 0.5 nm when the exciton
frequency corresponds to the pseudomode peak. The red line
corresponds to the FQM and the black line to the PDM.
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scale in both cases. Both the FQM and the PDM exhibit a
single peak at the pseudomode frequency. However, as
opposite to the MB case, the amplitude of this peak is
substantially reduced in the FQM with respect to that obtained
within PDM. This occurs because the higher order plasmon
modes show a high spatial modulation, which exceeds that of
the transition density, thus softening the plasmon−exciton
interaction. For analyzing the dynamics, we first focus on a
situation where the exciton weakly interacts with a far blue-
detuned plasmonic resonance. We select this detuned case by
assuming a value of the plasma frequency (ℏωp ≈ 9 eV), which
locates the frequency of the pseudomode (ℏωps ≈ 6.4 eV) far
away from the ZnPc exciton (ℏωeg = 2.3 eV). We checked that
the RWA also describes correctly the dynamics under these
conditions. In this case, the molecule is weakly coupled to the
plasmonic excitations, so that the exciton decays exponentially,
|ce(t)|

2 = e−γt (Purcell effect). The decay rate γ can be related to
the spectral function of the plasmons as γ = 2πJ(ωeg) (see
Supporting Information), which for the PDM reduces to the

well-known expression γ = ·ℑ ·
ω

ε
p G r r p[ { ( , )} ]

c

2
eg 0 0 eg

eg
2

2
0

(with c

as the speed of light in a vacuum)60 involving the imaginary
part (ℑ ·{ }) of the (quasi-static) electric dyadic Green’s
function G(r0, r0) evaluated at position r0 of the dipolar emitter.
In Figure 3c, we show the dependence of the plasmon-

induced decay rate, γ, normalized to the vacuum decay of the
transition, γ0, as a function of the distance of the molecule (the
central Zn atom) to the surface of the metal nanoparticle, as
calculated with the FQM (red lines) and with the PDM (black
lines). The values of the decay rate enhancement γ/γ0 (the
Purcell factor) reach almost up to 104 for the closest separation

distance (z0 = 0.5 nm) when a point-like dipole is considered.
At this distance, the decay rate calculated with the quantum
model, dominated by the interaction with the pseudomode, is
reduced by a factor of around 2 with respect to the PDM result.
When the distance from the surface increases, the values of the
decay rate from both models become closer, recovering the
limit of the point-dipole approximation from distances of
approximately z0 ≈ 1 nm. In a second scenario, we make the
pseudomode frequency to coincide with the molecular exciton,
ωps ≈ ωeg, also for a distance of z0 = 0.5 nm. Under these
conditions, the plasmon−exciton coupling is strong and the
calculated dynamics of the excited state, |ce(t)|

2, results in clear
Rabi oscillations [Figure 3d]. The comparison of the dynamics
obtained from the FQM (red lines) with that of the PDM
(black lines) yields quantitative differences in the period of the
Rabi oscillations, around 40% smaller in the PDM than in the
FQM.
So far our results demonstrate that it is necessary to use a full

quantum description of the molecular size effect of an exciton
in order to describe quantitatively its interaction with plasmonic
cavities whose associated electromagnetic fields are localized at
the nanometer scale. In some cases, the point-dipole approach
overestimates the coupling (like in the ZnPc case), whereas in
others the exciton−plasmon interaction is considerably larger
than that predicted by the PDM (as in the case of the MB
molecule). Moreover, in many realistic plasmonic cavities, near-
field localization can be achieved by means of complex
morphologies such as protrusions emerging on the facets in
gaps, which lead to extreme field localization at the atomic
scale.61 A similar effect can also be obtained, for instance, in the
gap between a metallic substrate and an atomically sharp tip of

Figure 4. (a) Schematics of the geometry used to map the coupling strength. A plasmonic dimer of radii R = 5 nm with a protrusion of Rs = 0.2 nm
(cone opening angle α = 72.5°) hosts a molecule located at a position (x, y, z = 0) within the gap of width G. MB (G = 2 nm) and ZnPc (G = 1 nm)
molecules are considered. (b−e) Maps of the coupling constant g(r0) between the plasmon dipolar gap mode and the molecular electronic transition
as a function of the lateral displacement of the center of the molecule around the gap (center of the gap at x = y = 0). (b, c) Maps of g calculated for a
vertically oriented MB molecule. (d, e) Maps of effective g for a horizontally positioned ZnPc molecule, which considers both lowest energy
degenerated dipole transitions. Maps to the left obtained within the FQM, and maps to the right within the PDM. (f) Circular cut of g at a distance
of 0.5 nm from the center as indicated with dashed lines in parts d and e. FQM (blue) and PDM (green) are compared.
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a scanning probe microscope.36−38,40,41,62,63 The latter situation
allows us to optically map the magnitude of plasmon−exciton
coupling, as the sharp tip is scanned over the molecule. We
reproduce this situation in a plasmonic dimer with an atomistic
protrusion in the gap, whose geometry is depicted in Figure 4a.
Such model is able to quantitatively reproduce the near-field
distribution around atomic-scale features in plasmonic cavities,
as recently validated by comparison with the TDDFT results.55

In the following, we always choose a plasma frequency such
that the lowest-energy gap plasmon is resonant with the exciton
of the molecule and calculate the coupling strength between the
two as the gap is scanned over the molecule in the horizontal
plane xy, keeping z constant.
We first place into the gap the MB molecule oriented

vertically (electronic transistion Sz), and compare the map of
the coupling strength, calculated within the FQM [Figure 4b]
with that obtained with the PDM [Figure 4c]. The coupling is
maximized when the molecule is positioned at the center of the
gap and reaches values of up to 120 meV, being larger in the
FQM by ≈10 meV than in the PDM. The magnitude of the
coupling decreases as the molecule is displaced off the center,
following the decay of the electric field component along the
dimer axis. The point-dipole approximation [Figure 4c] in this
case reproduces well both the qualitative and quantitative
features of the first-principles calculation [Figure 4b], validating
the use of this approach in this highly symmetric situation.
A more dramatic situation occurs when the ZnPc molecule is

considered (with the plane of the molecule perpendicular to the
dimer axis). As ZnPc has two degenerate transitions, Sx and Sy,
we calculate the map of the effective coupling (gSx(y)

ZnPc(r0) =

{|gSx
ZnPc(r0)|

2 + |gSy
ZnPc(r0)|

2}1/2) [Figure 4d,e] with the FQM (d)
and with the PDM (e). When the molecule is placed at the
center of the cavity, both maps exhibit a minimum (zero)
originated by the vanishing overlap integral between a
rotationally symmetrical plasmon mode and a horizontal
electronic dipolar transition in the molecule. Away from the
center, the C4v symmetry is broken and the map shows a
doughnut-like shape, following the pattern of the radial

component of the electric local field in the proximity of the
atomistic protrusion.39,61,62 Interestingly, whereas the result of
the PDM [Figure 4e] is fully rotationally symmetric, the FQM
map [Figure 4d] acquires the 4-fold symmetry of the molecular
sample (D4h). We highlight this effect by plotting in Figure 4f a
cut along the circular trajectory marked by the blue circle in
Figure 4d and the green circle in Figure 4e. The FQM result
exhibits experimentally accessible oscillations of the coupling
constant, characterized by ≈10% variation, whereas the PDM
yields a constant profile. Importantly, the FQM yields a
coupling constant reaching roughly one-half of the coupling
strength obtained from the PDM. These values are fully
consistent with the experimental ones reported for this kind of
system.40,41

The effect of the extreme field localization in plasmonic
cavities can also have a dramatic impact on the optical selection
rules governing the interaction of the incident light with the
molecular transitions. To demonstrate this, we calculate the
charge transition densities of a degenerate quadrupolar
electronic transition Sxz (Syz) of ZnPc (quadrupolar moment
Qyz = Qxz = ∫ xzρSxzd

3r ≈ 2. 74 × 10−4 e·nm2 and energy ℏωdk

≈ 2.97 eV), which does not carry any dipole moment and is
thus effectively dark (dk) for an incident plane wave in a
vacuum. We show the corresponding transition density ρSxz in
Figure 5a. Following the same procedure as for the degenerate
dipole transitions Sx and Sy, we calculate the spatial map of the
effective coupling constant gSxz(yz)

ZnPc = {|gSxz
ZnPc|2 + |gyz

ZnPc|2}1/2

between the quadrupolar excitonic transitions and the same
bonding dipolar plasmon as in the dimer structure of Figure 4a.
The map of gSxz(yz)

ZnPc is shown in Figure 5b. The spatial distribution

of gSxz(yz)
ZnPc exhibits a 4-fold symmetry, D4h, as was also found for

the dipolar transition. The maximum value of the plasmon−
exciton coupling obtained for this situation reaches ≈0.2 meV,
which sets the interaction into the weak coupling regime.
Nevertheless, the calculated value of gSxz(yz)

ZnPc is large enough to
allow for detection of the originally dark excitonic transition in
the plasmon-enhanced absorption spectrum.

Figure 5. Breaking of optical selection rules for the quadrupolar transition of ZnPc. (a) Isosurface plot of the transition charge density produced by
the quadrupolar electronic transition of the ZnPc molecule. The positive values are red, and the negative values are blue. (b) Map of the plasmon−
exciton effective coupling constant gSxz(yz)

ZnPc, as the plasmonic cavity [depicted in Figure 4a] is scanned across the molecule in the xy plane. (c)

Absorption spectra of the plasmonic cavity with the molecule inside (black line) and of the bare molecule in a vacuum (blue-dashed line). The
broadening of the molecular dark (dk) exciton is considered to be ℏγdk = 0.1 meV. The spectra are normalized to the maximum of the bare-molecule
absorption, sa(ω)/max(sa,mol), and centered with respect to the frequency of the bonding dipolar plasmon ωpl of the cavity. The absorption spectrum
of the coupled molecule−cavity system features a Fano-like dip that results from the plasmon−molecule interaction and therefore serves as an
experimental signal contrast. The absorption spectrum of the bare molecule in a vacuum has a form of a Lorentzian peak of ≈9 orders of magnitude
smaller amplitude compared to the depth of the Fano-like dip.
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To demonstrate this breaking of optical selection rules, we
consider the values of gSxz(yz)

ZnPc obtained for a position of the
molecule in the atomically sharp plasmonic gap at x = 0.4 nm
and y = 0 nm and calculate the optical absorption spectra,64−66

sa(ω), of the coupled system. For this calculation, we assume
that the intrinsic width of the molecular transition is ℏγdk = 0.1
meV, taken as a representative intermediate value of fluorescent
molecules. The actual value of γdk will determine the magnitude
of the absorption dip (see Supporting Information). In Figure
5c, we compare the spectrum of the coupled molecule−cavity
system (black line) with the absorption of the molecule in a
vacuum (blue-dashed line). The spectra are normalized to the
maximal value of the bare-molecule absorption sa,mol(ω). In the
calculation, we assume that the incident electromagnetic wave
is polarized along the axis of the plasmonic dimer and therefore
effectively couples mainly to the bonding dimer plasmon.
Further details of the calculation are provided in the Supporting
Information. The spectrum of the cavity-molecule system
shows the shape of a broad Lorentzian resonance originated
from light absorbed by the bonding dimer plasmon perturbed
by a small spectral dip that emerges due to the ZnPc
quadrupolar electronic transition (Fano-like profile). On the
other hand, the absorption peak of the bare molecule in a
vacuum cannot be resolved on the selected scale and the blue-
dashed line appears to be flat. In the inset of Figure 5c, we
therefore zoom in on the molecular absorption features and
compare their relative spectral intensities. Strikingly, the size of
the absorption dip obtained in the plasmonic cavity is ≈9
orders of magnitude larger than the absorption peak of the bare
molecule, thus making the quadrupolar excitonic transition
accessible to optical absorption spectroscopy.
Finally, it is worthwhile to note that in practical experiments

concerning molecules in atomically sharp plasmonic cavities, as
those considered here, there might be additional effects that
would require more sophisticated treatments of the metal-
molecule interface regarding both the electronic structure as
well as the electromagnetic interaction. The extreme local-
ization in plasmonic cavities often relies on atomic-scale
corrugations at the metal-nanoparticle surface which have
been shown to vary along time due to thermal diffusion of the
metallic surface atoms.39 Low temperature experiments are thus
required under certain circumstances to stabilize the particle
morphology. Additionally, the ground-state geometry as well as
the energies of the molecular excitons will be influenced by
screening effects of the nearby metallic surfaces and, in the case
of experiments performed in air or solvent, also of the wetting
layer present in the plasmonic gap. These effects will generally
modify the quantum-chemical properties of the molecules and
require more complex ab initio modeling. Nevertheless, the
first-principles approach presented in this Letter provides a
good qualitative and quantitative picture of the coupling
between plasmons and single-molecular excitations under well-
controlled conditions.12,40,41

In conclusion, we have shown the importance of considering
the full spatial extent of molecular electronic transitions to
describe the plasmon−exciton coupling at the nanometric and
subnanometric scales. This coupling strength stems from a
delicate balance between the spatial dependence of both the
excitonic transition charge density and the photonic fields, and
therefore, only a quantum model that fully incorporates the
inhomogeneities of the exciton transition charge density can
describe quantitatively this interplay. By using a first-principles

methodology to describe the quantum chemistry of organic
molecules placed inside optical resonators, we have revealed the
limitations of the point-dipole approach to address the exciton
dynamics both in weak and strong coupling regimes. We have
found that each situation requires a detailed analysis as in some
occasions the point-dipole approximation overestimates the
coupling, whereas it underestimates its strength in others. We
have further explored the possibility to optically map the
plasmon−exciton coupling strength of a molecule placed into
an atomically sharp cavity and obtained values nicely
corresponding with experimental results reported in the
literature.12,40,41 Furthermore, we have shown that this type
of cavity is able to produce optical-selection-rule breaking of
molecular excitations. Our findings are of importance in
nanoscale optical spectroscopy, in setting optical paths to
engineer chemical reactivity at the single-molecule level, as well
as in coherent control of the nanoscale light-matter interaction.
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