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Vibrational electron energy loss spectroscopy in truncated dielectric slabs
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Specially designed instrumentation for electron energy loss spectroscopy (EELS) in a scanning transmission
electron microscope makes it possible to probe very low-loss excitations in matter with a focused electron beam.
Here we study the nanoscale interaction of fast electrons with optical phonon modes in silica. In particular,
we analyze the spatial dependence of EEL spectra in two geometrical arrangements: a free-standing truncated
slab of silica and a slab with a junction between silica and silicon. In both cases, we identify different loss
channels, involving polaritonic and nonpolaritonic contributions to the total electron energy loss, and we obtain
the corresponding energy-filtered maps. Furthermore, we present a comparison of the theoretical simulations
for a silica-silicon junction with experimental results, and we discuss the spatial resolution attainable from the
energy-filtered map considering optical phonon excitations in a conventional experimental arrangement.
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I. INTRODUCTION

Recent instrumentation advances in electron energy loss
spectroscopy (EELS) in the scanning transmission electron
microscope (STEM) [1] have made it possible to record
energy losses in the infrared (IR) energy range [2]. These de-
velopments have stimulated both experimental and theoretical
investigations of the vibrational response of various organic
[3–5] and inorganic [6–10] compounds probed locally by a
tightly focused electron beam.

Despite the high spatial resolution that is routinely
achieved in STEM imaging [11] as well as in core-loss
EELS [12], the information in low-loss EEL spectra is usually
collected from an area significantly beyond the beam focus,
i.e., the beam interacts via the electromagnetic (EM) field with
sample areas that are far away from the actual beam posi-
tion [13,14]. Unless direct impact scattering (when the beam
can interact with both optical and acoustic lattice vibrations
[7,15,16]) takes place, most of the EEL vibrational signal
arises purely from the excitation of optical phonons. The
energy-filtered EEL signal corresponding to optical phonon
losses enables us to achieve (sub)nanometric spatial resolu-
tion only if electrons scattered through significant angles are
collected [6,17–20]. Otherwise, the spatial resolution in EEL
related to the excitation of dipole-carrying optical phonon
modes is typically tens of nanometers [2,8,21], given by the
spatial decay of the EM field accompanying the fast electron
and the EM field induced in the sample. On the other hand,
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the spatial extent of the near-field beam-sample interaction is
useful for recording EEL spectra in “aloof” geometry, with the
electron probe outside the sample. In such an arrangement,
one can avoid radiation damage caused by direct electron
beam penetration, which is especially crucial for organic and
other radiation sensitive samples [3,10,22,23].

The long-range interaction contributing to the EEL signal
can be even more pronounced, when the beam interacts with
samples supporting collective polaritonic excitations, such
as plasmons or optical phonons strongly coupled with elec-
tromagnetic waves (volume and surface plasmon polaritons
and phonon polaritons, respectively [24,25]). Analogously to
EELS studies of plasmon polariton excitations in the visible
spectral range [26–30], spatially resolved EELS character-
ization of propagating [8] or localized [7] phonon polari-
tons has been recently performed in the IR spectral range,
showing a slow spatial intensity decay of polaritonic losses
as a function of the electron beam distance to the sample.
Moreover, similarly to plasmon polaritons, the energy and the
electromagnetic near-field associated with phonon polariton
excitations strongly depend on the geometry of the sample
and on the electron beam position. First experimental and
theoretical studies on phonon polaritons showed that it is
usually necessary to perform numerical calculations or de-
velop analytical models in order to fully understand EEL
spectral features, as well as the spatial dependence of the
signal [7,8,31,32].

In this paper, we calculate the spatial dependence of EEL
spectra for an electron beam scanned across a truncated slab
and a slab with a junction between two materials. We focus
on a truncated thin slab of silica (SiO2), and in particular
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on the emergence of both polaritonic and nonpolaritonic
optical phonon excitations in the region between 90 and
160 meV. Then we analyze the EEL spectra at a silica-silicon
interface. Such geometrical arrangements are very common
in experimental situations and represent benchmarks to test
the spatial resolution of energy-filtered EELS. Furthermore,
thin oxide layers grown on silicon substrates [33] are of
high interest in the semiconductor industry, and in partic-
ular amorphous silica is often exploited as an insulating
material in electronic nanodevices due to its high dielectric
strength [34,35]. Spatial characterization of the vibrational
response together with high-resolution imaging using STEM-
EELS could help better understand heat dissipation in such
nanostructures.

In our calculations, we adopt a theoretical framework based
on the linear dielectric response, successfully applied in the
analysis of valence EELS [36,37]. We note that this theoretical
approach works in the regime of low-momentum scattering
and disregards the possibility of acoustic mode excitation. We
first present analytical models to describe an infinite interface
and an extended thin slab that help to understand the results
from numerical simulations. We identify different types of
losses arising for both sample geometries and discuss the
spatial dependence of the energy-filtered line scans. More-
over, for the silica-silicon junction, we demonstrate excellent
agreement between the simulated spectra and experimental
data [21].

II. CLASSICAL DIELECTRIC RESPONSE THEORY

EELS of low-loss valence and vibrational excitations can
be modeled using classical electrodynamics where the sample
geometry and the local dielectric properties ε(r, ω) determine
the response of the system. The electron energy loss �E can
be calculated as the work W of the induced electromagnetic
field Eind coming from the beam-sample interaction against
the fast-moving electron [13,26],

�E = −W = e

∫
dre · Eind(re, t ), (1)

where the work is integrated along the electron trajectory
re(t ), e is the elementary charge, and t stands for time. If we
neglect the electron beam recoil, which is well justified for
fast electrons [38], we have re(t ) = (b, 0, vt ) for an electron
moving at speed v in the z direction. The electron energy loss
probability �(ω) of losing energy h̄ω, which represents the
EEL spectrum, is defined as �E = ∫∞

0 dω h̄ω �(ω), yielding
[13]

�(ω, b) = e

π h̄ω

∫ ∞

−∞
dz Re

{
Eind

z (re(t ), ω) exp

(
− iωz

v

)}
.

(2)
Hence, to calculate the EEL probability, one needs to know the
z component of the induced electric field along the electron
trajectory. Maxwell’s equations can be solved analytically
for several simple geometrical arrangements, including an
electron moving in an infinite medium [13], along infinite in-
terfaces [30,39], or penetrating through infinite slabs [26,40–
42]. Although in more complex geometries the solution has
to be obtained numerically, it is often possible to understand
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FIG. 1. (a) Schematics of the considered geometry. The sample
is a slab of thickness d infinite in the xy plane with a sharp
interface in the plane x = 0. We consider either a slab with a silica-
silicon interface or a semi-infinite silica slab surrounded by vacuum.
A 60-keV electron (v = 0.446c) is moving in the positive z direction
at the distance b from the silica-silicon or silica-vacuum interface
at x = 0. Negative values of b stand for the beam inside silica.
Considered limiting cases of (b) an infinite interface geometry and
(c) an infinite silica slab.

EEL spectral features by considering limiting geometrical
cases that are solved analytically. For our geometry of interest,
sketched in Fig. 1(a), we will thus start from the solutions of
the response of an infinite interface [Fig. 1(b)] and an infinite
silica slab [Fig. 1(c)].

A. Infinite interface geometry

If we disregard for now the presence of the slab top
and bottom surfaces, the situation would correspond to the
electron moving parallel to an infinite interface between two
media as sketched in Fig. 1(b). For a beam in a medium
characterized by a local dielectric function ε1(ω) passing at an
impact parameter b from a neighboring medium characterized
by a dielectric function ε2(ω), the EEL probability �interface

including retardation effects can be expressed as [30]

�interface = 2de2

4π2ε0h̄v2

∫ qc
y

0
dqy Im

⎧⎪⎪⎨
⎪⎪⎩−1 − ε1β

2

ε1α1︸ ︷︷ ︸
bulk

+e−2α1|b|

×

⎛
⎜⎜⎜⎝

1 − ε1β
2

ε1α1︸ ︷︷ ︸
Begr.

− 2

ε1α2 + ε2α1
+ 2β2

α1 + α2︸ ︷︷ ︸
interface

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (3)
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where ε0 is the vacuum permittivity, β = v/c, c is the speed of
light in vacuum, α1/2 = √

(ω/v)2 + q2
y − ε1/2ω

2/c2, and h̄qy

is the y component of the momentum. The integration above
is performed up to the cutoff qc

y to prevent divergence of the
integral for qy → ∞.1

The nonretarded version of Eq. (3), �NR
interface, is obtained by

letting c → ∞:

�NR
interface = 2de2

4π2ε0h̄v2
Im

⎧⎪⎪⎨
⎪⎪⎩− ln

(
2qc

yv/ω
)

ε1︸ ︷︷ ︸
bulk

+K0

(
2ωb

v

)
⎛
⎜⎜⎜⎝

1

ε1︸︷︷︸
Begr.

− 2

ε1 + ε2︸ ︷︷ ︸
interface

⎞
⎟⎟⎟⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (4)

where K0(x) stands for the zero-order modified Bessel func-
tion of the second kind. The bulk losses were integrated up
to the momentum cutoff, assuming qc

y � ω/v, whereas the
integrals of the remaining loss terms were carried out up to
qc

y → ∞. We also implicitly consider qc
x → ∞. We note that

the classical description using the local dielectric function is
valid only for small scattering angles, where the qx,y wave
numbers are smaller than the inverse of the atomic distances
of the materials [40], which is in principle not fully fulfilled
for both �NR

interface and �interface. Nevertheless, we analyze here
the EELS of optical phonons whose dominant contribution is
at low momenta [8], thus justifying the expressions above.
Only if we aim at properly describing momentum-filtered
experiments or interaction with acoustic phonons would it
be necessary to consider the dispersion of the sample’s re-
sponse and a full description of the phononic density of states
[6,15,16,20,43].

We discuss now the different loss contributions in Eqs. (3)
and (4). We denote the bulk loss as if the electron were
traveling across an infinite medium characterized by ε1(ω).
Notice that the (nonretarded) bulk loss function Im[−1/ε1]
has a pole if ε1(ωb) = 0. This condition is satisfied for silica
in the IR, as observed in Fig. 2(a), where Re[εSiO2 ] (blue line;
also see the corresponding label) is plotted with dielectric
data obtained from Ref. [44]. For energies above 132 meV,
silica exhibits a Si-O-Si asymmetric stretching mode with a
large effective charge (dipole strength) [45,46], which yields
a negative real part of the dielectric response in the shaded
region, where it enables excitation of surface phonon po-
laritons, as in polar crystals [7,8,24]. Re[εSiO2 ] is negative
almost up to the bulk, longitudinal-optical (LO) phonon mode
energy h̄ωSiO2,b = 154 meV, where we observe an intense
peak in the nonretarded bulk loss function Im[−1/εSiO2 ],
shown by the dashed black curve in Fig. 2(b). Another spec-
tral feature appears due to the Si-O-Si symmetric stretch at
about 100 meV [45,46]. However, the corresponding effective
charge is relatively small and there is no pole of εSiO2 around
this region (Re[εSiO2 ] > 0). The symmetric stretching mode

1See Ref. [30] for expressions taking into account the circular
collection aperture.
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FIG. 2. (a) Real and imaginary parts of the dielectric function of
silica εSiO2 together with the real part of the dielectric function of sil-
icon (the imaginary part is four orders of magnitude smaller and thus
negligible). (b) Bulk loss function of silica Im[−1/εSiO2 ] (dashed
black curve) with peak energy at 154 meV, the silica-vacuum in-
terface loss function Im[−1/(εSiO2 + 1)] peaking at 142 meV (solid
blue curve) and a much weaker silica-silicon interface loss function
Im[−1/(εSiO2 + εSi )] with the maximum at 134 meV (dashed-dotted
red curve). Vertical dashed lines mark the corresponding positions of
the loss peaks. The gray shaded area in (b) emphasizes the region of
bulk losses in SiO2.

thus contributes only weakly to the bulk loss and does not
promote polaritonic excitations.

The interface loss function �interface also contains the so-
called “Begrenzungs-effekt” contribution, which is respon-
sible for a reduction of the bulk losses. It has the same
functional dependence as the bulk loss except for the negative
sign and the prefactor that increases for small impact param-
eters b. Therefore, for a close approach of the electron to
the interface, this contribution almost perfectly compensates
for the bulk loss. The “pure” interface losses will become
dominant in such a situation. In the nonretarded case, the
pole of the interface loss function Im[−1/(ε1 + ε2)] would
be at an energy where ε1(ωs) + ε2(ωs) = 0. As Re[εSiO2 ] <

0 and |Re[εSiO2 ]| > Re[εvac] = 1, this condition is approx-
imately fulfilled for the silica-vacuum interface [solid blue
curve in Fig. 2(b) peaking at h̄ωSiO2/vac,s = 142 meV]. The
silica-vacuum interface thus supports the excitation of surface
phonon polaritons. This is not possible at the silica-silicon
interface because of the large and almost constant real value
of the dielectric function of silicon in the spectral region of
interest (plotted by the black line in Fig. 2(a), data taken
from Ref. [47]). As we have |Re[εSiO2 ]| < Re[εSi] ∼ 11.7,
the silica-silicon interface loss function Im[−1/(εSi + εSiO2 )]
exhibits only a weak nonresonant peak at 134 meV (dashed-
dotted red curve in Fig. 2(b) multiplied by factor of 10).
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B. Infinite slab geometry

If we place the beam far from the interface at x = 0 in
Fig. 1(a), i.e., b → ±∞, the geometrical arrangement will be
well described as if the beam were passing through a slab
infinite in the xy plane. Due to the possibility of exciting
surface phonon polaritons at the silica-vacuum interface, we
are particularly interested in such a calculation for the infinite
silica slab as sketched in Fig. 1(c). In the nonretarded approxi-
mation, the slab loss probability can be expressed in a compact
form (for the retarded expressions, see Refs. [40,42]) as

�NR
slab = de2

4π2ε0h̄v2
Im

{
− 1

εSiO2

}
ln

(
Q2

cv
2 + ω2

ω2

)
︸ ︷︷ ︸

bulk

+ e2v2

ε0π2h̄

∫ Qc

0
dQ Im

{
Q2(εSiO2 − 1)2

(Q2v2 + ω2)2εSiO2

×

⎡
⎢⎢⎢⎣

sin2
(

ωd
v

)
εSiO2 + tanh(dQ)︸ ︷︷ ︸

sym.

+ cos2
(

ωd
v

)
εSiO2 + coth(dQ)︸ ︷︷ ︸

antisym.

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

︸ ︷︷ ︸
Begr.+coupled surf.

, (5)

where Q =
√

q2
x + q2

y is the wave number in the perpendicu-
lar direction with respect to the electron trajectory, and h̄Qc

stands for the perpendicular momentum cutoff. Unfortunately,
for the complex dielectric function εSiO2 and an arbitrary slab
thickness, it is not possible to solve the integral in Eq. (5)
in closed form, and the integration has to be performed
numerically.

The loss probability (5) also contains several loss channels:
the bulk loss probability, which would correspond to the losses
of the beam in an infinite medium (but now integrated over
the perpendicular momentum taking account of the cylindrical
symmetry), and the remaining loss term arising due to the
presence of the top and bottom slab surfaces. The latter
will have strong effects on the resulting spectra, especially
in the case of polaritonic materials. For thin slabs, the bulk
loss will be reduced by the negative Begrenzungs contribu-
tion, and importantly, the upper and bottom surfaces become
electromagnetically coupled, giving rise to symmetric and
antisymmetric coupled surface modes [48].

We note that the integrand of Eq. (5) can be understood
as a dispersion of these modes, taking into account the cou-
pling with the field of the fast electron [8]. In particular,
the fast electron excites efficiently the charge-symmetric cou-
pled surface modes [see the term marked as “sym.” in the
last factor of Eq. (5)] [31,49–51], whose electron-excitation
weighted dispersion we observe in Figs. 3(a) and 3(b). To
see the dependence on the slab thickness, we evaluate the
integrand for a silica slab with thickness d = 10 and 100 nm,
respectively. Notice that the optimum of the coupling between
the fast electron and the slab modes shifts to higher energies
for thicker slabs, which can be seen from an analysis of the
last line of Eq. (5). The surface coupling can be neglected
for thick slabs (d � 300 nm for 60-keV electrons and silica),
where the electron would excite independent surface phonon
polaritons (yielding the loss peak approximately at an energy
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FIG. 3. (a,b) Integrands of Eq. (5) evaluated for a 60-keV elec-
tron beam passing through an infinite silica slab of thicknesses 10 and
100 nm, respectively. For better visualization, the magnitude of (a)
was multiplied by 10. (c) The nonretarded [full lines, according to
Eq. (5)] and retarded (dashed lines) loss probability divided by the
slab thickness, evaluated for d = 10/100/1000 nm as denoted in the
plot. The momentum cutoff used in the calculation is Qc = 0.27 Å

−1
.

given by the condition εSiO2 + 1 = 0) at the top and bottom
slab surfaces. However, the surface loss for very thick slabs
will be overwhelmed by the bulk loss.

The calculated loss probability spectra for a silica slab with
different thicknesses are depicted in Fig. 3(c). We compare the
nonretarded calculation using Eq. (5) (full lines) with the fully
retarded solution (dashed lines) for 60-keV electron beam
excitation. The retardation effects in this case introduce only
a small redshift as expected and a slight broadening of the
peaks. In the calculated spectra, we observe three peaks: a
weak peak close to 100 meV coming from excitation of the
symmetric stretch of silica, the peaks in the light-green area
can be assigned to the coupled-surface polaritonic type of
loss, and finally the bulk loss contribution close to h̄ωSiO2,b =
154 meV (light gray area).

The slab thickness determines the relative intensity of
the bulk and coupled-surface losses, as well as the spectral
position of the loss peak due to the symmetric coupled-surface
mode [8], which we could anticipate from Figs. 3(a) and 3(b).
The peak energy h̄ωM can be found analytically from Eq. (5)
for thin slabs of materials with small damping (Im[ε] ≈ 0).
The maximum is then given by the condition

√
3ωMd =

v ln{[ε(ωM) − 1]/[ε(ωM) + 1]} [40], which, however, holds
only approximately for thin silica slabs as Im[εSiO2 ] is not
negligible. The thicker the slab is, the closer the peak appears
to the silica-vacuum surface phonon energy at 142 meV (for
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FIG. 4. Numerically calculated momentum-resolved EEL probability P (qy, ω) for a truncated silica slab (upper row) and a silica-silicon
junction (lower row) for two impact parameters of the beam passing through silica (b = −1000 and −50 nm, respectively) and another
impact parameter at the slab truncation or junction (b = 0 nm). The slab thickness is d = 100 nm. The intensity of the last two plots for the
silica-silicon junction is multiplied by a factor of 2. The overlaying curves are analytically calculated maxima of momentum-dependent loss
probabilities for the infinite silica slab (dashed green), the infinite silica-vacuum interface (solid blue), and the infinite silica-silicon interface
(dashed-dotted red). Solid straight red lines denote the threshold for radiation losses.

d = 1000 nm hidden in the “shoulder” of the bulk loss).2

On the other hand, the weak nonpolaritonic loss at 99 meV,
which does not experience any substantial influence of the
slab surface coupling, stays at the same spectral position for
all slab thicknesses.

III. VIBRATIONAL EELS AT A TRUNCATED SILICA SLAB
AND AT A SILICA-SILICON SLAB JUNCTION

We address now a highly interesting situation in experi-
ments, namely a truncated silica slab and a slab with a silica-
silicon junction. We have implemented numerical EELS cal-
culations in the commercial software COMSOL MULTIPHYSICS,
which employs a finite-element method to numerically solve
Maxwell’s equations (see Appendix A for details). We focus
on the spectral region of the asymmetric Si-O-Si stretch,
where we can expect polaritonic behavior of silica. We define
the momentum-dependent loss probability P (qy, ω), which is
related to the total loss probability as

�(ω) =
∫ qc

y

0
dqy P (qy, ω), (6)

and is obtained by considering the 2D geometry sketched in
Fig. 4. In the simulation, we vary the out-of-plane wave vector
qy [8] so that we enable propagation of a wave E(x, y, z) =
Ẽ(x, z)exp(iqyy) and obtain the momentum-resolved spectra
with a discrete step �qy .

2If the imaginary part (damping) of εSiO2 were smaller, we would
observe two separate peaks in the green region: the first correspond-
ing to the charge-symmetric slab mode, and another peak at the
silica-vacuum surface phonon energy (εSiO2 + 1 = 0 at 142 meV)
[40].

The calculated momentum-resolved spectra for the slab
thickness d = 100 nm are shown in the color plots of Fig. 4,
and they can again be understood as dispersion relationships
obtained by taking into account the coupling with the field of
the fast electron, similarly to the expressions in the integrals
of Eqs. (3) and (5) [the latter evaluated in Figs. 3(a) and 3(b)].
The green dashed line in Fig. 4 shows the maxima extracted
from Fig. 3(b), tracing the dispersion of the charge-symmetric
coupled-surface mode. The solid blue and dashed-dotted light
red lines trace the maxima of the momentum-dependent re-
tarded loss in the integrand of Eq. (3) at an infinite silica-
vacuum and a silica-silicon interface, respectively.

From the plots for the impact parameter b = −1000 nm, it
is clearly noticeable that the situation is close to the infinite
silica slab limit as the numerical result nicely matches the
symmetric coupled-surface mode dispersion (green dashed
curve). A smaller contribution of the bulk loss appears at
higher energies around 155 meV, which becomes the dom-

inant loss channel for higher momenta (qy � 0.01 Å
−1

, not
shown in the plots).

For smaller impact parameters (|b| � 100 nm; with b neg-
ative), the results differ from the infinite silica slab limit. For
the silica truncated slab, we observe an intense excitation of
a mode with a different dispersion. We assign this mode to
the coupled edge mode, with limiting energy h̄ωSiO2,edge =
140 meV for qy → ∞, which is slightly lower than the silica-
vacuum interface loss limit h̄ωSiO2/vac,s. We note that the cou-
pled edge dispersion cannot be reproduced analytically [36].

On the other hand, the momentum-resolved probability
when the electron beam is at the silica-silicon junction (b =
0 nm, bottom plot) resembles the dispersion of the silica-
silicon infinite interface (marked by the dashed-dotted light
red curve). Compared to the vacuum-surrounded silica trun-
cated slab, the coupled edge modes cannot be excited in the
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FIG. 5. Numerically calculated EEL spectra for an electron beam
probing (a) a truncated silica slab and (b) a silica-silicon junction at
varying impact parameter b as displayed in the insets. b is negative
when the beam is inside silica and positive when it is placed either
in vacuum or in silicon. The slab thickness is in both cases d =
100 nm. Spectra are vertically shifted by a constant value for clarity.

SiO2/Si junction due to the presence of the high refractive
index silicon at one of the interfaces. If the beam is slightly
moved from the interface into the silica (b = −50 nm, bottom
plot), we observe both the interface loss and also an additional
loss contribution around 140 meV. In this case, the beam
excites the coupled surface modes across the silica slab that
are influenced by the presence of silicon and can get reflected
at the interface. In particular, when the beam is very close
to the junction, the constructive interference of the reflected
waves and those propagating toward the interface (with short-
wavelength polaritons dominantly involved) determines the
position of the spectral maximum. Therefore, the coupled-
surface loss appears close to the silica surface phonon energy
at 142 meV, which is a large-wave-vector limit of surface
phonon polariton dispersion denoted by the solid blue line.

Now we focus on conventional energy-dependent EELS.
We perform numerical calculations in a 3D geometry, but as
we mentioned, the results can be reproduced also from 2D
calculations according to Eq. (6). We note that the finite size
of the mesh elements in the numerical simulation acts as an
effective momentum cutoff and thus naturally eliminates the
divergence of the losses for high momenta. The average cutoff

in the performed 3D simulations is ∼0.2 Å
−1

.
The spectra calculated for a varying impact parameter both

from the silica-vacuum and from the silica-silicon junction
are plotted in Figs. 5(a) and 5(b), respectively. The spectral
sets exhibit two common features: the bulk loss peak around
154 meV (gray region) and the coupled-surface loss (green

region around 140 meV) appear when the beam is inside
silica, as derived from Eq. (5). As the beam is getting closer to
the interface, we observe a weakening of the coupled-surface
loss peak and a slight continuous shift of its energy toward
the silica surface phonon energy at h̄ωSiO2/vac,s = 142 meV
(denoted by the blue dashed line), which is related to the
momentum dependence discussed above.

The lowest-energy spectral features appearing in the red
region correspond to a strong silica polaritonic coupled edge
mode in Fig. 5(a) and to a weaker nonresonant silica-silicon
junction excitation in Fig. 5(b), respectively (as revealed
also in the momentum-resolved spectra of Fig. 4). The
spectral shape and peak position of the latter contribution
can be described by the silicon-silica interface loss function
Im{−1/(εSiO2 + εSi)}. We have also found that when the beam
goes through silicon, a relatively strong positive background
is produced in the spectra. As silicon has a large refractive
index, it introduces a contribution of radiation losses to the
total energy loss. Radiation losses appear above the light lines
in Fig. 4 and become the dominant loss channel when the
beam goes through silicon (b > 0).

IV. SPATIAL VARIATION OF EEL INTENSITY

We complete our analysis by addressing the spatial varia-
tion of EEL intensity at the energies of the different excita-
tions identified. We also compare the theoretical results with
experimental observations [21].

The impact parameter dependence of the EEL signal fil-
tered at the energies of the loss peaks of the coupled-edge,
coupled-surface, and bulk losses is plotted in Fig. 6(a) for the
silica truncated slab and in Fig. 6(b) for the silica-silicon slab
junction. We further add the intensity of the nonpolaritonic
contribution at 100 meV in (a). Due to the large damping
present in the material response, it is not straightforward to
separate the contributions from the different loss channels, as
they spectrally overlap and are rather blurred (see, e.g., Fig. 4).
However, the plots in Figs. 6(a) and 6(b) provide valuable
insight.

Outside the truncated silica slab (b > 0 nm), we observe
that the coupled edge excitation is dominant [orange points
in Fig. 6(a)]. A smaller portion of the signal at the coupled-
surface loss (green squares) and at the bulk loss (black circles)
arises mostly due to the spectral overlap. As the beam is
scanned across the truncation (b ≤ 0 nm), we observe an
immediate increase in the signal at the bulk loss energy, which
eventually becomes constant. The bulk signal is connected
with higher momentum transfer, and we note that in the
case of no spectral overlap (lower losses in the material’s
response), the bulk signal would exhibit a steplike profile
close to the interface. The coupled-surface loss probability
also increases when the beam is scanned into the material
(negative x direction), and, at larger distances from the trun-
cation, similarly to the bulk loss, it becomes constant (not
shown in the plot). We note that the large damping of silica
hides clear spectral signatures of interference of the coupled-
surface waves propagating toward and backward from the
interface at x = 0 [8], and the energy-filtered intensity is thus
increasing smoothly. The edge-mode excitation probability
shows a maximum for the beam positioned exactly at the edge
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FIG. 6. Spatial dependence of EEL intensity at fixed energies
calculated for a truncated silica slab (a) and at a silica-silicon junction
(b). The energies correspond to the silica bulk loss peak (black
circles), the coupled-surface loss for an infinite 100-nm-thick silica
slab (green squares), the silica edge excitation [orange diamonds
in (a)], and the nonpolaritonic Si-O-Si symmetric stretch signal
[blue triangles in (a), multiplied by 3]. The spatial dependence of
the silicon-silica junction excitation intensity is plotted in (b) (red
diamonds). The peak intensities were obtained from spectra in Fig. 5.
Dashed curves are fits of the decay for b > 0 by K0(2ωb/v) at
100 meV (light blue line, which traces well the calculated points—
triangles), at coupled-edge loss energy (orange line, which deviates
from the diamonds) and junction excitation energy (red line, which
deviates from the diamonds). Graph (c) depicts the total intensity
integrated over an energy window of 120–160 meV for the silica
edge (dark blue circles) and silica-silicon slab junction (dark red
squares). Symbols represent the calculated data, lines are guides
to the eye. The pink dashed line shows the experimental result for
the silica-silicon junction integrated over a 120–180 meV energy
window.

(b = 0, orange diamonds) and smoothly decreases with the
beam distance from the truncation on both sides with different
decay.

We also plot the signal filtered out at 100 meV in Fig. 6(a)
(blue triangles). The spectral overlap with other loss channels
in this region is not that pronounced, and we can thus study the
spatial dependence of this nonpolaritonic contribution. When
the beam is scanned into the silica, the intensity of the 100-
meV loss slightly increases and quickly saturates, similar to
the bulk loss. As the influence of coupling of the silica edges
and surfaces can be neglected at this energy (the excitation has
nonpolaritonic character), the signal drop for the beam outside
the slab approximately follows the infinite-interface decay.
Indeed, a fit by the K0(2ωb/v) dependence [see Eq. (4)]
reasonably traces the result of the numerical simulation (blue
dashed curve), except for the singular behavior close to b = 0.
We emphasize that the functional dependence of the signal
decay strongly depends on the particular type of excitation
and the corresponding induced EM field distribution. In sum-
mary, the signal decay from polaritonic materials can be
approximated by the K0 dependence either for an infinite
interface (d → ∞) or very small impact parameters (b 	 d)
in the cases when retardation effects can be neglected. As we
demonstrate here, K0 fits the decay from thin truncated slabs
only if the excitation is not polaritonic and is not appropriate
for modeling the decay when the coupled-edge modes are
involved [see the orange diamonds versus the dashed orange
curve in Fig. 6(a)]. In such a case, the signal decay has to be
retrieved numerically.

The spatial dependence of the energy-filtered signal
changes substantially when the beam is scanned across the
silica-silicon junction, as shown in Fig. 6(b). Due to the
nonresonant character of the excitation at the silica-silicon
interface at 132.8 meV, we observe only a tiny peak at the
junction (b = 0). The “interface” signal for b > 0 comes
mostly from the radiation, Čerenkov-type losses in silicon,
and therefore slowly decreases with the distance of the beam
to the interface (red diamonds). In this case, retardation effects
(i.e., the constant radiation contribution) make the fitting of
the signal decay by the K0 dependence (red dashed curve)
not suitable. On the contrary, we get an immediate decrease
in the bulk and the coupled-surface loss signal when the
beam crosses the interface toward silicon (black circles and
green squares, respectively). Importantly, the smaller spec-
tral overlap of the loss channels and the suppression of the
coupled edge excitation because of the presence of silicon
make it possible to obtain nanometer spatial resolution by
filtering the signal at the bulk loss or coupled-surface loss
energies.

In the case of materials supporting low-loss phonon-
polariton excitations (e.g., SiC or MgO), filtering the EEL
signal at the LO phonon energy, which involves higher mo-
mentum transfer, should enable us to resolve material in-
terfaces with very high resolution. Otherwise, losses in the
acoustic phonon excitations or special scattering geometries
can be exploited to retrieve (sub)nanometric localization of
the vibrational signal.
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To compare the calculated data with experiments, we need
to take into account the finite instrumental resolution. For this
reason, we plot the EEL intensity integrated over a wider
energy window (120–160 meV) in Fig. 6(c). The integrated
spectral signal corresponding to the truncated silica slab peaks
at b = 0 and then slowly decays for b > 0 (dark blue circles).
The integrated signal for the silica-silicon junction (dark red
squares) exhibits a nearly steplike profile very close to the
interface (|b| < 5 nm) with a smooth increase when the beam
is placed into the silica (b ≤ −5 nm) and a positive radiation
background for b > 0.

In the analyzed cases, the calculations predict that it would
be possible to use either the energy-filtered signal or the
integrated signal (the energy-filtered signal in a larger energy
range) to distinguish the edge boundary with nanometric
precision. However, we expect that the peak at the boundary
of the truncated silica slab (b = 0) will be smeared out in
experiments, since it arises from a perfectly abrupt interface
considered in the theoretical simulations, and it also neglects
the finite convergence angle of the beam. Hence, in such an
arrangement, the nature of the electron-sample interaction will
make it experimentally difficult to distinguish the material
boundary directly from the energy-filtered maps, and thus a
correlation with high-resolution imaging capabilities will be
needed [2].

On the other hand, the interface between silica and silicon
can be well distinguished by filtering the loss at energies of
either bulk or coupled-surface losses, as they are strongly
suppressed close to the junction. As these losses are prevailing
in the overall spectral response, the sudden drop of inten-
sity is also observed in the integrated signal. This is indeed
confirmed by comparing the theoretical prediction with the
experimentally measured data for the same geometrical ar-
rangement [21], where the spectral intensity was integrated
over a 120–180 meV energy window (for details on the exper-
imental setup, see Appendix B). The experimental result [pink
dashed curve in Fig. 6(c)] agrees reasonably well with the
theoretical prediction (dark red squares). The steplike profile
is still present for |b| < 5 nm, and thus we can conclude that
the dielectric screening by silicon helps to distinguish the
interface directly from the EELS line scan.

Finally, in Fig. 7 we show a direct comparison of the
experimental spectra (dashed curves) and the numerically
calculated spectra from Fig. 5(b) convolved with a point
spread function (PSF) to simulate the experimental resolution
(solid curves) [8]. We approximate the PSF by a Gaussian
function with a full width at half-maximum (FWHM) of
20 meV. Unfortunately, such resolution smears out the finer
spectral structure shown in Fig. 5, and only two main peaks
can be observed. We obtain very good agreement between the
theory and experiment in the spectral positions and relative
intensities of the peaks above 130 meV. When the beam is
passing through silicon, the experimental spectra are nois-
ier and we observe that the calculated spectra are narrower
than the experimental ones. We observe that all theoretical
spectra underestimate the strength of the 100-meV Si-O-Si
symmetric stretch. These discrepancies can be caused by a
contribution from impact scattering, the experimental noise,
differences in the sample geometry, including possible mix-
ing of materials, and the finite size of the probe. We note
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FIG. 7. Numerically calculated EEL spectra from Fig. 5 after
convolution with a point spread function (PSF) represented by a
Gaussian function of FWHM 20 meV mimicking the finite exper-
imental resolution (full lines) and experimentally measured spectra
(dashed lines, taken from Ref. [21]). The impact parameters as
denoted next to the plot. The spectra are vertically shifted for clarity.

that a recent experimental EEL study reaching a spectral
resolution of ∼8 meV [52] demonstrates very clearly the
finer spectral details predicted in Fig. 5. One might expect
further advances in vibrational EELS analysis along these
lines in the near future with constantly improving experimen-
tal capabilities [53].

V. SUMMARY

We have thoroughly analyzed the spatial dependence of
EEL spectra for two relevant geometrical arrangements: the
truncated slab of silica and the slab with an interface of
silica and silicon, representing typical geometry for TEM
specimens. We have observed a large contribution to EEL
spectra from the optical phonon polariton modes supported
by silica, whose excitation probability is strongly influenced
by the electron beam position. We have demonstrated the
different spatial decay of the polaritonic signal compared to
the nonpolaritonic contribution, which was not clarified in
previous studies on vibrational EELS, and we discussed the
possibility of distinguishing the material interface at high spa-
tial resolution from the energy-filtered line scans. Although
we studied specific material systems, our findings can be
generalized and serve as an example for correct interpretation
and analysis of experimental data from spatially resolved
vibrational EELS in common experimental geometries.
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APPENDIX A: EELS CALCULATIONS
IN COMSOL MULTIPHYSICS

To perform EELS calculations, we utilize the radiofre-
quency (RF) toolbox in the frequency domain. We employ
either 2D simulations, where Maxwell’s equations are solved
in (x, qy, z) space, or the fully 3D simulation domain in
real (x, y, z) space. The fast electron beam is implemented
as an oscillating “edge current” in a 3D simulation domain
and a “surface current” in a 2D simulation domain. The
current is expressed as I = I0exp(iωz/v) and applied along
a straight line representing the beam trajectory. The EEL
probability is evaluated from 3D calculations according to
Eq. (2) directly with this software using an “edge probe”
along the trajectory. All simulations are performed twice: with
ε(r, ω) corresponding to the probed structure and then with
ε(r, ω) = 1 everywhere, so that only the field of the electron
is present. Afterwards, the loss probability obtained from
these two calculations is subtracted to correct for the finite
length of the electron trajectory and nonzero values of the

fast electron field at the boundaries of the simulation domain
[8,54,55].

APPENDIX B: EXPERIMENTAL DETAILS

A clean-room silicon wafer was thermally oxidized at
900 ◦C to obtain a ∼3 μm surface-film of silica. Specimen
preparation for STEM-EELS analysis involved performing a
lift-out procedure on the oxidized wafer using a Nova 200
NanoLab (FEI) focused ion beam combined with a scan-
ning electron microscope (SEM). The thickness of the lift-
out specimen measured using SEM approached ∼100 nm
near the edges and ∼80 nm near the silica-silicon interface.
STEM-EELS analysis on the specimen was performed using
a NION UltraSTEM 100 aberration-corrected microscope
equipped with a monochromator, operated at 60 kV. The
probe convergence semiangle was 28 mrad, and a 1 mm
spectrometer entrance aperture was used corresponding to a
collection semiangle of 12 mrad. During the monochromated
experiment, the probe size was ∼1.6 nm, the beam current was
∼10 pA, and energy resolution was 16 meV. A dispersion of 1
or 2 meV per channel was used to record EEL spectra, which
were subsequently calibrated and processed using the Gatan
Microscopy Suite. The uncertainty in the energy position of a
vibrational signal was the channel width, i.e., ±1 or ±2 meV.
For background subtraction, a power-law model of the form
AE−r , where E is the energy loss with A and r as constant
parameters, was fitted to two 20 meV windows just before
and after the vibrational signal [56].
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