Multiscale Theoretical Modelling of Plasmonic Sensing of Hydrogen Uptake in Palladium Nanodisks

M. Ameen Poyli,†‡ V. M. Silkin,‡¶§ I. P. Chernov,∥ P. M. Echenique,†‡¶ R. Díez Muiño,†‡ and J. Aizpurua*,†‡

Centro de Física de Materiales CFM (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain., Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal, 4, 20018, San Sebastián, Spain., Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080, San Sebastián, Spain., IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain., and Tomsk Polytechnical University, pr. Lenina 30, 634050, Tomsk, Russia.

E-mail: aizpurua@ehu.es

Abstract

We study theoretically the optical properties of Palladium nanodisks during Hydrogen uptake. A combination of an \textit{ab initio} quantum mechanical description of the Pd-H dielectric properties and a full electrodynamical study of light scattering in the H-modified Pd nanodisks allows us to trace the shift of the localized surface plasmon as a function of the H concentration in the Pd-H disk. We follow the evolution of the plasmon peak energy for different admixtures of the Pd-H α and β phases and interpret quantitatively the experimental sensitivity of the

*To whom correspondence should be addressed
†CFM (CSIC-UPV/EHU)
‡DIPC
¶Departamento de Física de Materiales (UPV/EHU)
§IKERBASQUE
∥Tomsk Polytechnical University
plasmon energy shift to the structural inhomogeneity upon H absorption. Our multiscale theoretical framework provides a solid background for plasmonic sensing of structural domains, as well as for identifying H saturation conditions in metal-hydride systems.

Graphical TOC Entry

KEYWORDS: Hydrogen sensing, Hydrogen storage, Palladium hydride, Ab-initio calculations, Plasmonic sensing, Surface plasmon sensing.

Localized surface plasmon resonances (LSPRs) are collective excitations of conduction electrons in finite metallic structures. In nanometer-size systems, LSPRs appear at well-defined energies that depend on size and shape, as well as on the material itself.\(^1,2\) The resonance energy can be also very sensitive to the external environment, making LSPRs a phenomenon extremely attractive for biological and chemical sensing. Standard sensing schemes are usually based on the LSPR shift produced when the nanoparticles are embedded in a given chemical environment.\(^3\) With the help of plasmon-based strong local-field enhancements, sensing of very small amounts of H\(_2\) has been recently achieved.\(^4\) Chemical modifications within a nanosystem can also be monitored in real time through shifts in the LSPR position.\(^5\)–\(^7\)

A quite different and promising outlook in the context of plasmon-sensing is the possibility to oversee the change not only in chemical but also in physical properties, such as structural parameters.\(^5\) Direct nanoplasmonic sensing has proven to be remarkably successful, for instance, in the
study of Hydrogen absorption by Pd nanoparticles.5,6,8,9 Adsorption, absorption and diffusion of H in Pd systems are processes of major importance in a variety of technologically relevant applications. In nanocatalysis for instance, subsurface H atoms substantially increase the efficiency of Pd nanoparticles in the hydrogenation of organic molecules.10 Perfect absorption of visible radiation by Pd nanostructures has been recently explored in the design of novel 2 sensors.11 In fuel applications, metal hydrides are also recognized as an efficient and safe mean for H storage in solid form.12–15 Since better absorption and desorption kinetics of metallic nanoparticles offers faster storage and release of Hydrogen,16–19 real time plasmonic sensing of the absorption and desorption of Hydrogen in Pd nanoparticles becomes a unique tool to obtain understanding of the metal hydride formation process and to improve the capabilities of existing Hydrogen storage and sensing devices.

An accurate interpretation of the experimental trace of Hydrogen uptake in Pd requires a theoretical framework that accounts for the changes in the optical properties of the material as it is structurally modified by the progressive presence of H. The description of the optical properties of the H-Pd system is not a simple task due to (i) the presence of different phases that H can adopt when absorbed in Pd (\(\alpha\) and \(\beta\) phases) and (ii) the different length-scales involved in the Hydrogen uptake process requiring a multiscale approach, i.e., an accurate description of the quantum-mechanical effects associated with structural changes at the atomic scale together with a detailed description of the nanoscale where size, shape and environment affects the optical response of the whole mesoscopic system.

Here we provide a theoretical framework to address the optical response of the mixed-phase Hydrogen uptake in Pd nanodisks where we combine two different state-of-the-art methodologies to tackle both the atomic scale structure of Pd-H and the mesoscopic scale response of the Pd-H disk. Furthermore, an appropriate effective medium dielectric response to address the mixed-phase nature of the Hydrogen uptake is also considered. To address the atomic-scale effect of the H diffusion in Pd we employ the dielectric function of different Pd-H stoichiometric mixtures obtained by means of \textit{ab initio} calculations based on time-dependent density functional theory.
In a second step, classical electrodynamical calculations of the optical response of the Pd-H nanodisks is performed using the boundary element method (BEM) to account for size, shape and environment effects. Finally, to account for the double phase of the Pd-H system, we adopt a dielectric response based on a Bruggeman’s effective medium that goes beyond the simple averaged response of the α (pure Pd domain) and β (Pd-H domain) phases. Comparing our results with recent experimental measurements of LSPR shifts in hydrogenized Pd nanosystems, we identify the structural parameters that better adjust to the spectroscopic output. We thus show that LSPR sensing is not only an excellent tool to monitor H content in metal nanosystems but also a promising candidate to quantitatively determine structural changes and domain distributions in dynamical process.

A sensitive benchmark in the theoretical description of Hydrogen uptake in Pd is the evolution of the plasmon peak energy when H is absorbed. Ab-initio TDDFT-based calculations of the dielectric optical response of bulk stoichiometric homogeneous PdH$_x$, for different x=H/Pd ratios showing an homogeneous distribution of H atoms in the lattice, are shown in Fig. 1(b). These calculations show that the bulk plasmon energy ω_p of PdH$_x$ shifts to lower energies almost linearly with H concentration x, from 7.78 eV in pure Pd to 4.25 eV in PdH. The unit cells of the crystal lattices of pure Pd (PdH$_{x=0}$) and of Pd with H showing a 1:1 stoichiometry (PdH$_{x=1}$) used in these ab initio calculations are illustrated in Fig. 1(a). Absorption of H by a metal causes expansion of the lattice and a change in the dielectric response. The lattice parameters for each PdH$_x$ system with different H concentration x have been obtained from total energy calculations and the values have been found to be close to experimental data. On the other hand, the internal relaxation of the Pd atoms around H atom positions for ratios $x \neq 1$ can be neglected because of the weak influence of this effect on the optical properties.

In Pd nanostructures, a linear shift of the LSPR peak energy when increasing H concentration has been also measured, although the energy range is quite different from that in bulk. To account for this difference, we proceed to perform full electrodynamical calculation of the extinction cross section for PdH$_x$ disks by solving Maxwell’s equations, in which we plug the ab initio bulk
dielectric function and the appropriate boundary conditions. To illustrate the profound effect that
the morphological aspect of the PdH\textsubscript{x} disks as well as the dielectric environment produce on the
plasmonic response of the stoichiometric PdH\textsubscript{x} systems, we first show in Fig. 2(a), the resonance
energy for different geometries of mesoscopic PdH\textsubscript{x} structures as a function of H concentration \(x\).
We display the plasmonic resonance energies of PdH\textsubscript{x} systems for (i) the bulk, (ii) the surface, and
(iii) the dipolar LSPR in a spherical particle in the electrostatic limit when using the correspond-
ing \textit{ab initio} bulk dielectric functions. The bulk plasmon energy is obtained from the position of
the peak in the loss function (Fig. 1(b)). As mentioned before, the bulk plasmon energy of PdH\textsubscript{x}
linearly shifts with \(x\) but always remains in the UV range, even for a fully hydrogenated PdH\textsubscript{x=1}
stoichiometry. The surface response of the vacuum-PdH\textsubscript{x} interface is determined by the surface
response function defined as \(\text{Im}\{((\varepsilon_{\text{PdH}_x} - 1)/ (\varepsilon_{\text{PdH}_x} + 1))\}\), where \(\varepsilon_{\text{PdH}_x}\) is the dielectric fuction of
PdH\textsubscript{x} for different amounts of H, which presents a pole when \(\varepsilon_{\text{PdH}_x} + 1 = 0\). The energy position
of this pole evaluated with the \textit{ab initio} dielectric function \(\varepsilon_{\text{PdH}_x}\) in Fig. 1(b) is displayed as green
squares in Fig. 2(a). The energies of these surface plasmons are slightly shifted to the red com-
pared with the bulk resonances, with a quite constant shift for all H concentrations (slightly less
than about 1 eV). Hence the surface plasmon energies of all H concentrations are also in the UV.
The dipolar plasmon position of the metallic nanoparticle given by \(\text{Im}\{((\varepsilon_{\text{PdH}_x} - 1)/ (\varepsilon_{\text{PdH}_x} + 2))\}\)
presents the resonance for \(\varepsilon_{\text{PdH}_x} + 2 = 0\). These solutions are displayed in Fig. 2(a) as blue squares.
An additional shift is found in this case, bringing energies of the LSPR to a range between 6 eV
for the pure Pd spherical particle and 2.5 eV for a sphere with equal number of H and Pd atoms
(PdH\textsubscript{x=1}).

We also perform full electrodynamical calculations of the extinction cross section of isolated
PdH\textsubscript{x} disks, as a function of the H/Pd ratio. The use of Pd disks is an effective way to lower
the energy of the LSPR in the particles due to the coupling of the top and bottom surfaces of
the disk that produces an extra redshift in the optical response.31 The redshift resulting from the
intraparticle coupling in the disks brings the LSPR energy to the visible region for a 20 nm thick
disk of diameter 190 nm. For an isolated disk, the LSPR runs from 2.2 eV for pure Pd to 1.6 eV
for \(\text{PdH}_{x=1} \), represented by black squares in Fig. 2(a). Additionally, the deposition of the disk on a substrate causes a further reduction in the LSPR energy. The LSPR position is represented in this case as pink squares in Fig. 2(a) showing that the interaction with the substrate causes a reduction in LSPR energy of the disk by approximately 0.5 eV for all H concentrations. The LSPR position can be further tuned by varying the size of the disk. To reveal this, we implement electrodynamical calculations for pure Pd disks supported on SiO\(_2\) (Fig. 2(b)) as a function of disk size. This outlines the effect in the position of the localized surface plasmon. A redshift of the extinction cross section with increase of the disk size can be observed in Fig. 2(c). Indeed, the dependence of the spectral position of the plasmon peak with the disk size can be clearly traced from nanometric sizes up to micrometric ones. The geometrical morphology of PdH\(_x\) structures is thus responsible for the location of the LSPR of the PdH\(_x\) disks in the visible range of the spectrum, providing a unique opportunity for remote optical sensing of the H concentration in nanoscale disks.

In order to further clarify the effect of Hydrogen uptake in the stoichiometric PdH\(_x\) nanodisks, we show in Fig. 3 the extinction cross section of PdH\(_x\) disks on a SiO\(_2\) substrate, as a function of the H/Pd ratio (H concentration) using the \textit{ab initio} dielectric function obtained in Fig. 1(b). A 20 nm thick disk of diameter 190 nm is considered. The LSPR shift from 1.61 eV for pure Pd (green line) to 1.21 eV for PdH\(_{x=1}\) (dashed black line) is conspicuous in Fig. 3.

In reality, however, the PdH\(_x\) systems with \(x > 0 \) are not single-domain crystals but present a mixture of two phases called \(\alpha \) and \(\beta \). The \(\alpha \) phase is characterized by a very small concentration of H atoms. Consequently, the dielectric properties of the \(\alpha \) phase are very close to that of pure Pd. The \(\beta \) phase is characterized by an elevated concentration of H and its dielectric properties can be approximated as those of PdH. One can thus try to understand the dielectric properties of PdH\(_x\) as being a mixture of two media: i) an \(\alpha \) phase (occupying \(1-f_\beta \) space) with \(\omega_p^{\alpha} \sim 8 \) eV, and ii) a \(\beta \) phase (occupying \(f_\beta \) space) with \(\omega_p^{\beta} \sim 4.2 \) eV. In a simple picture, the dielectric properties of such composite system can be characterized by an effective dielectric function \(\varepsilon_{eff} \) defined through the loss function as
\[\varepsilon_{\text{eff}}^{-1} = (1 - f_\beta) \cdot \varepsilon_\alpha^{-1} + f_\beta \cdot \varepsilon_\beta^{-1}. \]

The result of the loss function of this simple effective medium approach for different fractions of the \(\beta \) phase is presented in Fig. 4(a). Here it can be clearly observed that, in a realistic PdH\(_x\) sample composed of \(\alpha \) and \(\beta \) domains, the assumption of a linear downshift of \(\omega_p \) with \(x \) breaks down. Increasing the concentration of H in PdH\(_x\) results in a gradual decrease of intensity of the pure Pd peak at \(\omega_p^\alpha \), together with a gradual development of a fixed plasmon peak of the \(\beta \) phase at \(\omega_p^\beta \). This scenario was already discussed in Ref.,\(^{32}\) based on the experimental plasmonic spectra of bulk PdH\(_x\) systems. The measured evolution of the LSPR peak energy in PdH\(_x\) nanostructures then cannot be explained in terms of a simple linear downshift of the bulk plasmon energy \(\omega_p \) shift when a simple admixture of phases in the bulk loss function is considered, as demonstrated in Fig. 4(a). Therefore we proceed now to properly account for geometrical effects derived from the finite size of the Pd nanodisks as well as to adopt a more complete description of the phases distribution within the bulk response.

Recent experiments that explore this potential of plasmonics to sense the storage of H in metallic particles show that Pd metal gets saturated at fractions of H of about \(x \approx 0.6-0.7 \).\(^{5,6}\) Therefore, two situations would be in principle possible in the diffusion of H in the Pd disks: (i) a homogeneous diffusion of H in Pd, with a constant concentration of H all over the Pd material or (ii) an inhomogeneous distribution of two phases named \(\alpha \) and \(\beta \) phases, consisting of domains of pure crystalline Pd and Pd-H respectively, as customary in bulk systems.\(^{33,34}\) To discriminate between both situations we adopt an effective medium approach to describe the optical response of the whole system composed of both phases. To construct the corresponding effective dielectric function, \(\varepsilon_{\text{eff}}(z) \), (with \(z \) the H/Pd number ratio in the entire effective medium), we take a weighted average of the \textit{ab initio} calculated dielectric functions for Pd (taken here as a representee of the \(\alpha \) phase) and for PdH\(_x\)=0.667 (\(\beta \) phase) following Bruggeman’s effective medium approximation,\(^{35-37}\)
\[
f_{\beta} \left(\frac{\varepsilon_\beta - \varepsilon_{\text{eff}}(z)}{\varepsilon_\beta + 2\varepsilon_{\text{eff}}(z)} \right) + (1 - f_{\beta}) \left(\frac{\varepsilon_\alpha - \varepsilon_{\text{eff}}(z)}{\varepsilon_\alpha + 2\varepsilon_{\text{eff}}(z)} \right) = 0, \tag{2}
\]

where \(\varepsilon_\alpha \) and \(\varepsilon_\beta \) are the dielectric functions of the \(\alpha \) and \(\beta \) phases, \(f_\beta \) is the fraction of the saturated \(\beta \) phase. The dielectric loss function calculated for the Bruggeman’s effective medium can be seen in Fig. 4(b). This effective dielectric function can be also used in the full calculation of the disk response as in Fig. 2(c) and Fig. 3. Fig. 4(c) shows the extinction spectra in the case of a disk of 190 nm diameter and 20 nm thickness on the SiO\(_2\) substrate. A constant redshift of the LSPR of the entire two-phase system is observed as the H/Pd ratio increases, following the increase of the \(\beta \) phase presence \(f_\beta \). We also calculate the extinction for a larger disk of diameter 300 nm obtaining the same trend for the LSPR shift (not shown here).

To get more information about the domain distribution and H saturation in the Pd-H system, we test a different level of saturation for the \(\beta \) phase in Eq. (2) by setting \(x=1 \) (PdH\(_{x=1}\)) in the dielectric function characterising \(\varepsilon_\beta \). The electrodynamical calculations are repeated using this modified effective dielectric function to obtain the disk response for increasing H concentration following an increase of the \(\beta \) phase presence \(f_\beta \). In Fig. 5, the calculated LSPR shift for this saturation (\(x=1 \)) in the case of a disk of 20 nm thickness and 300 nm diameter (blue dots) is compared with the shift obtained with the original saturation adopted for the \(\beta \) phase (PdH\(_{x=0.667}\), red dots) in the effective dielectric function. The LSPR shift for an homogeneous medium (black squares) and the experimentally observed shift from Ref.\(^6\) (green dots) are also displayed for direct comparison.

Our theoretical calculations of the LSPR shift using a saturation value of \(x = 0.667 \) for the \(\beta \) phase (red dots) show excellent agreement with the measured experimental values of the shift, validating the assumption made for the admixture of the \(\alpha \) and \(\beta \) phases. Furthermore, when the \(\beta \) phase is taken as fully saturated, PdH\(_{x=1}\) (blue dots), a strong deviation of the behavior of the LSPR shift can be observed when compared with the experimental values and with the linear tendency obtained theoretically with use of PdH\(_{x=0.667}\). This deviation seems to discard the possibility of full hydrogenation of the \(\beta \) phase domains in Pd-H nanostructures. The LSPR shift
thus provides valuable information about the dynamics of domain formation in Hydrogen uptake by the Pd nanodisks. However this conclusion should be taken with caution as temperature and nanodisk boundaries might influence the observations. Future investigations should take into account these and other possible effects.

Our results may look rather puzzling at first sight: we obtain a linear shift of the LSPR frequency in PdH$_x$ systems when increasing x, without invoking any linear shift of the bulk plasmon energy ω_p. The reason for the linear shift, however, can be easily understood by analysing the evolution of the dielectric loss function $-\text{Im}\{\varepsilon_{\text{eff}}^{-1}\}$ derived from the Bruggemann’s approximation as the H concentration x varies. This evolution is shown in Fig. 4(b) for straight comparison with the simple linear admixture of phases. Contrary to the evolution of the effective loss function in the simple approach in Fig. 4(a), the effective loss function that involves the more complex admixture of phases given by Eq. (2) varies gradually (almost linearly) with x in the energy interval of interest for plasmonic sensing (1-3 eV), being this the reason for the gradual shift of the plasmon response observed. Furthermore, if the excitation energy is tuned by modifying the system size, geometry or environment, strong non-linearities in the LSPR with H concentration would then appear. Slight differences between the simulations and the experimental results can be associated to the large surface roughness caused by the hydrogenation of the Pd disks.

In summary, combining an \textit{ab initio} description of the atomic-level properties of PdH$_x$ with the full electrodynamical calculation of light scattering in nanoscale geometries, we have theoretically demonstrated that plasmonic sensing techniques are sensitive enough to be used as valuable tools for studying the dynamics of structural changes in metal hydrides nanosystems. In the particular case of PdH$_x$ nanodisks, the comparison of our theoretical results with recent experimental measurements validated quantitatively that H saturation takes place at $x \sim 0.667$ in the β phase. The methodology developed here will therefore bring further advance in the understanding of Hydrogen absorption and diffusion in metal nanostructures.
Acknowledgement

This work was supported in part by the Basque Departamento de Educación, Universidades e Investigación (Grant No. IT-366-07), the Spanish Ministerio de Ciencia e Innovación (Grant No. FIS2010-19609-C02-00) and the ETORTEK 2011 project nanoiker of the Dept. of Industry of the Basque government. We thank Prof. I. Zorić at Chalmers University of Technology for providing the experimental data in Ref. 6.
Figure 1: (a) Crystal lattice of pure Pd and fully hydrogenated Pd used in the *ab initio* calculations. H atoms occupy the octahedral interstitial sites in the face-centered cubic lattice of palladium to form PdH. (b) Dielectric loss function, $-\text{Im}\{1/\varepsilon\}$ for bulk PdH, obtained from *ab initio* TDDFT calculations and plotted for different H/Pd concentration values. For pure Pd, the calculated loss function (violet line) agrees with that obtained in energy-loss$^{32,38-40}$ and optical41,42 experiments and other *ab initio* calculations$^{43-46}$ Black dashed line shows the data obtained from the optical measurements.42
Figure 2: (a) Plasmonic resonance energies of the PdH\textsubscript{x} systems for (i) bulk, (ii) surface, (iii) dipolar LSPR in a spherical particle in the electrostatic limit, (iv) isolated disk of 20 nm thick and 190 nm diameter and (v) the same disk deposited on SiO\textsubscript{2} substrate, obtained with use of dielectric functions calculated through the TDDFT as a function of x=H/Pd ratio. The dotted lines are guides to the eye. (b) Schematics of the system used in the BEM calculations to obtain the far-field optical response of the PdH\textsubscript{x} nanodisks. Disks of thickness 20 nm and different diameters and deposited on a 60 nm thick SiO\textsubscript{2} substrate and illuminated by a polarized planewave incident normally from the top. (c) Extinction spectra calculated using the \textit{ab initio} dielectric function for Pd disks of 20 nm thickness for different diameters.

Figure 3: Extinction spectra of PdH\textsubscript{x} disks of 20 nm thickness and 190 nm diameter with uniform stoichiometry placed on SiO\textsubscript{2} substrate evaluated for different x=H/Pd values. The disks are characterized by the dielectric functions as obtained from the TDDFT calculations in Fig. 1(b).
Figure 4: (a) Evolution of the bulk plasmon peaks of PdH$_x$ with H uptake, for Bruggeman’s effective medium constructed using Eq.(1) with β phase taken characterized by PdH$_{x=1}$. (b) Extinction spectra for a PdH$_x$ disk of 20 nm thickness and 190 nm diameter placed on SiO$_2$ substrate calculated using Bruggeman’s effective dielectric functions (Eq.(2)) with a β phase domain characterized as PdH$_{x=0.667}$ for different z = H/Pd ratios of the entire system.

Figure 5: LSPR shifts calculated for a Pd-H disk of 20 nm thickness and 300 nm diameter plotted as a function of z=H/Pd ratio. The resonance shifts are calculated using Bruggeman’s effective dielectric function (Eq.(2)) with the β phase taken as PdH$_{x=0.667}$ (red dots), and as PdH$_{x=1}$ (blue dots). A comparison with experimental results from Ref. 6 (green dots) is shown.
References

