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A B S T R A C T   

Quantitative structure-property relationship (QSPR) is a powerful analytical method to find correlations between 
the structure of a molecule and its physicochemical properties. The glass transition temperature (Tg) is one of the 
most reported properties, and its characterisation is critical for tuning the physical properties of materials. In this 
work, we explore the use of machine learning in the field of QSPR by developing a recurrent neural network 
(RNN) that relates the chemical structure and the glass transition temperature of molecular glass formers. In 
addition, we performed a chemical embedding from the last hidden layer of the RNN architecture into an m- 
dimensional Tg-oriented space. Then, we test the model to predict the glass transition temperature of essential 
amino acids and peptides. The results are very promising and they can open the door for exploring and designing 
new materials.   

1. Introduction 

In the field of quantitative structure-property relationship (QSPR) 
[1–6], machine learning (ML) methods open new routes to investigate 
and explore the physico-chemical properties of materials [6–11]. ML 
methods typically use molecular descriptors or a representation of mo-
lecular structures to predict several material properties. Among the most 
relevant material properties, the glass transition temperature (Tg) stands 
out since it is used in quality control of food and pharmaceutical drugs, 
defining the polymer production process parameters or tuning the me-
chanical properties of compounds [12–14], among many others. The Tg 
of numerous glass formers has been measured using different experi-
mental techniques like differential scanning calorimetry [15,16], 
broadband dielectric spectroscopy [17–19], or rheology [20] and is 
widely reported in the literature. Several theories also model the glass 
transition mechanism [12,21–23], usually involving phenomenological 
parameters that account for still not fully understood processes. 

Among the first attempts to estimate the Tg of glass formers based on 
their chemical structure, we can mention a method developed in the 
polymers field by Weyland et al. [21], which consists of considering the 
glass transition temperature as a sum of weighted group contribution of 

the atoms of the polymer. However, there is no specific way to choose 
these weights. More recent studies use artificial neural networks (ANN) 
and physico-chemical features to predict the Tg of materials but neglect 
the molecular structure and the interaction between atoms [24,25]. 
Also, whereas there are several studies dealing with the glass transition 
temperature of polymers [26–30] and inorganic glasses [25], we have 
found a lack of studies in the literature concerning the use of neural 
networks for predicting the Tg of organic molecular glass formers. These 
are very complex systems presenting a variety of intermolecular in-
teractions that makes necessary a different and innovative approach that 
overcomes the limitations of the standard ANN. 

In this work, we present a recurrent neural network (RNN) capable of 
predicting the glass transition temperature of several molecular glass 
formers (including biomolecules, pharmaceutical molecules, and addi-
tives typically used in the pharmaceutical industry). In particular, we 
show that by using a dataset of individual organic molecules structures 
and a bidirectional long short-term memory (Bi-LSTM) architecture, it is 
possible to achieve a prediction of the Tg with average deviations lower 
than 9%. Furthermore, we show that these networks also capture 
physically meaningful variables underneath the glass transition process 
in molecular glass formers, like the influence of intermolecular forces 
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and molecular weight. Finally, we apply our model to predict the Tg of 
the 20 biologically relevant amino acids and compare the results with 
the experimental measurements of a group of amino acids and peptides. 

2. Materials and methods 

In this section, we define the dataset, the data treatment, and the 
characteristics of the neural network, including the architecture and the 
training options. 

2.1. Dataset 

We have collected a dataset of 501 organic molecules whose exper-
imental glass transition temperature was reported in the literature. The 
dataset includes alcohols, hydrocarbons, sugars, aromatic compounds, 
and pharmaceutical products, spanning a Tg range from 18 K to 450 K. A 
detailed dataset description can be found in Section 1 of the Supple-
mentary Information file (SI). 

2.2. Data treatment 

We identified each molecular structure with their simplified 
molecular-input line-entry system (SMILES) [31] string using the open- 
source cheminformatics software RDkit [32] to get a unique represen-
tation of the molecular structures. We then numerically encoded each 
string using the following dictionary: 

{(, c, 4,F,=,#, n, S,@, 3, I, o, s, 6,N,H,X, 7, + ,Y, 2, d, 5, 1, P,O, ],C, − , /, [, )}

We assigned a number to each symbol according to its position in the 
dictionary (cardinal encoding), obtaining a 1-dimensional numerical 
array for each structure to feed the neural network. We padded the 
SMILES strings by adding a 0 at the beginning of each sequence and 
completing them with 0 s (only one final 0 for the longest string) so that 
all instances have the same length. The scheme in Fig. 1 shows an 
example of the encoding process. 

2.3. RNN’s architecture 

We employed a long short-term memory neural network architecture 
[33,34], constructed using MATLAB. In Fig. 2, we show a schematic 
picture of the whole network, starting with a sequence input (which 
takes as input the SMILES encoded as expressed in the previous section), 
a word embedding layer, which feeds a bidirectional long short-term 
memory (BiLSTM) layer, a batch normalisation layer and finally a 
mean absolute relative error (MARE) regression that outputs the Tg. 

We tested different values of neurons in the BiLSTM layer (from 8 to 
32 nodes) and several values of the word embedding dimension 
(10,20,30). We chose the network architecture for which the value of the 
mean absolute percentage error (MAPE) of the validation set was min-
imum, as shown in Fig. 3. Thus, we finally have 8 neurons in the BiLSTM 
and a word embedding dimension of 20. Note that, as we use a Bidi-
rectional LSTM, the number of neurons doubles to 16 as the network 
reads the sequences in both directions. We selected this set of hyper-
parameters by keeping fixed the training-validation division and 
running the learning algorithm for each architecture 100 times. 

2.4. RNN training and optimisation 

We extracted a test set of 30 elements from the dataset, trying to 
represent its variety of chemical composition as closely as possible. 
Then, we randomly shuffled 100 times the remaining dataset, splitting it 
into a training set of 441 molecules and a validation set of 30 molecules. 
This results in ~90%, 5%, and 5% partition for training, validation, and 
test set, respectively. For each split, we ran the learning algorithm of the 
RNN 100 times, to investigate the sensitivity of the architecture con-
cerning the initial conditions. We used the gradient descent method and 
the Adam optimisation protocol during the training procedure. We 
employed a learning rate of 0.01 and trained each network for 1000 
epochs. We selected a network that satisfied the following requirements:  

• MARE Train <0.06;  
• MARE Train

MARE Val > 0.8;  

• min(MARE Val). 

By fulfilling these requirements, the performance of the RNN on the 
validation set should be similar to that of the training set. Therefore the 
value of the MAPE of the validation set is below 9% (i.e., the perfor-
mance of the selected network can be defined as validation set oriented). 
In Fig. 4, we show the average Tg predicted for 100 runs versus the 
corresponding experimental values, also reporting the mean standard 
deviation of each set. 

3. Results and discussion 

In this section, we show that the network is sensitive to the physically 
meaningful variables of the glass transition process by embedding the 
last activation layer and performing non-supervised clustering analysis 
and dimensionality reduction techniques. In addition, we explore the 
possibility of employing the proposed dataset and architecture to esti-
mate the glass transition temperature of amino acids and short peptides. 

3.1. Characterisation of the network 

Based on the modality described in “RNN training and optimisation”, 
we select a network for which the average error of the validation set is 
similar to that of the training set. In Fig. 5, we show the predicted glass 
transition temperatures as a function of the corresponding experimental 
counterpart. The data lay almost perfectly on the bisector of the Carte-
sian plane, implying a concordance between the experimental and 
predicted Tg values for the molecules in the training (blue), validation 
(orange), and test (yellow) sets. The observed deviations are below 9%. 

Once the RNN has been trained (and optimised) to predict the Tg 
value, we can assume that the activation of the neurons, particularly 
those of the last layer, codify enough chemical information to embed 
molecular structures into a Tg-oriented m-dimensional space. This pro-
cedure allows performing associations among molecules in the dataset 
by applying clusterization algorithms without using molecular finger-
prints or other descriptors. By embedding the molecular structures in 
such high-dimensional space, it is possible to lead mathematical oper-
ations with these representations of the chemical structures. We then 
plotted the activation vectors in 3 dimensions using the principal 
component analysis (PCA) [35]. This dimensionality reduction is needed 
to ensure human-readability since each activation vector contains 16 

Fig. 1. Encoding the SMILES with cardinal encoding. We added a 0 at the beginning of each string and completed them with a padding of 0 s to have the same length 
for all the instances. 
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values (16 dimensions, each corresponding to a neuron’s activation). We 
observed that most of the variance, and therefore most of the chemical 
information (~88%), is contained in the first three components of the 
PCA: PC1 = 75.03%, PC2 = 6.94%, and PC3 = 6.02%. Fig. 6 shows a 3- 
dimensional colour map of the obtained components and the corre-
sponding 2D projection on the main axes (PC1 and PC2), where the 
colours represent the experimental Tg of each compound. The data 
follow a gradient from blue to red colours (i.e., from lower to higher 
glass transition temperatures). 

We performed a non-supervised analysis of the data by clustering 
using the fuzzy-c algorithm [36] on the batch normalisation layer. We 
show the obtained results in Fig. 7 (for the components PC1 and PC2). 
Fuzzy-c algorithm allows knowing the probability with which each 
molecule belongs to a given cluster (i.e., each molecule can participate 
in more than one cluster with a certain probability). Since this algorithm 
requires predefining the number of clusters, we employed the Elbow 
method to determine the optimum parameter (n = 16, we show the 
details in the SI). Clustering can help identify patterns and relationships 
between the molecular structure and the Tg by grouping similar mole-
cules together. This process also helps reveal how the network deals 
with the variables affecting the glass transition temperature, such as the 
molecular weight, intermolecular forces and other chemical 
composition-related factors. Furthermore, clustering can also be used to 
identify potential outliers in the employed datasets, which can be further 
studied to gain insights into the underlying mechanism of the glass 
transition phenomenon and the neural network training processes. 

In Fig. 7, we present chemical structures within different clusters and 

the trajectory these compounds follow on the map. The clusters on the 
bottom right (A) mainly consist of low-molecular-weight, flexible linear 
carbonated chains and weak intermolecular forces. Conversely, the left 
side of the representation (C) is composed of molecules with high- 
molecular weight, more rigid phenyl groups, and strong intermolec-
ular forces. Notably, in the middle section (B), we observe a change in 
the intermolecular forces and the structural composition of the mole-
cules as they progressively become more branched and incorporate 
bulkier molecular groups into their structure. These results show that 
the network can recognise and classify complex features linked to the 
glass transition temperature by learning from the SMILES representation 
of the chemical structure of the molecular glass formers. 

3.2. Tg vs. molecular weight 

The previous analysis can be complemented using known experi-
mental variables such as glass transition temperature and molecular 
weight, which show a well-established trend, as seen in Fig. 8a. It is 
worth noting that the network was only provided with the molecular 
structure expressed as a SMILES string, and no other chemical infor-
mation was given. Therefore, the RNN implicitly learned the general 
trend between Tg and the molecular weight from the chemical structures 
encoded as SMILES strings. 

Fig. 8a can also be interpreted as an indicator of the trained neural 
network’s confidence area for predicting the Tg of new molecular glass 
formers (i.e., where new chemical structures would be well represented 
by the elements in the dataset). Thus, the region enclosed by the dashed 

Fig. 2. The ANN architecture comprises a Sequence Input layer, a Word Embedding layer, a Bidirectional LSTM layer, a Batch Normalisation layer, and a mean 
absolute relative error output layer. It takes as an input the encoded SMILES and outputs the Tg of the molecule(s). 

Fig. 3. Architecture test: we tested different values of neurons in the BiLSTM layer (from 8 to 32 nodes) and several values of the word embedding dimension (10, 
20, 30). 
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Fig. 4. Average prediction of the glass transition temperature for the training (blue), validation(orange) and test(yellow) set. The mean standard deviation for the 
training, validation and test set are 7 K, 13 K, and 9 K, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 

Fig. 5. Performance of the chosen neural network for the training (blue), validation (orange) and test (yellow) sets. The data points lay almost perfectly on the 
bisector axis, indicating an excellent agreement between experimental and predicted Tg. The MAPE values obtained are 3.4%, 3.8% and 8.7% for the training, 
validation and test sets, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

C. Borredon et al.                                                                                                                                                                                                                               



Journal of Non-Crystalline Solids: X 18 (2023) 100185

5

b)
a)

Fig. 6. PCA projection of the batch normalisation layer activations. We use a colour map to enhance the trend of the glass transition temperature, which goes from 
blue colours (low Tg) to red colours (high Tg). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. We clustered the chemical structures within the m-dimensional space using the fuzzy C algorithm. In this way, we can observe the structural changes along 
the trajectory of the PCA, going from low-molecular-weight, linear chains and weak intermolecular forces (A) to high-molecular-weight, a higher concentration of 
more rigid groups and strong intermolecular forces (C). 
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lines represents the chemical space from which the network learned the 
underlying features of the glass transition process. In this plot, at fixed 
molecular weight (going, for example, vertically from point A to point B) 
variations in Tg are due to changes in the molecular structure (at con-
stant molecular weight) most likely because of the increasing of inter-
molecular forces (see Fig. 8b and the next paragraph for more details). 
The colour map on the plot represents the errors of the RNN in pre-
dicting the glass transition temperature of the training set. Therefore, 
the observed homogeneous distribution of red and orange dots indicates 
no bias due to molecular weight or intermolecular forces. For those el-
ements located on the upper side of the general trend, the neural 
network must consider the effect of molecular weight, the flexibility of 
the different groups, and the impact of intermolecular forces. 

In Fig. 8b, we show the same molecular weight dependence of the 
glass transition temperature dividing the molecules into those able to 
form (pink) or not (light blue) H-bond networks (only considering the 
existence of H-bonds donors and acceptors, disregarding the amount and 
location in the molecule). The molecules which lack donors or acceptors 
of hydrogen bond fall into the “no H-bond” category and occupy the 
lower part of the graph. In contrast, the molecules with potential 
hydrogen bonding properties fill the upper part of the plot. 

These results, along with the clusterisation ones, agree with tradi-
tional experimental observations of glass transition temperature trends 
for several glass formers, indicating that the network has effectively 
learnt some features of the underlying physics of the glass transition 
phenomena. 

3.3. Application to biological molecules 

The study of the properties of amino acids is a hot topic in many 
fields, such as biophysics, food, and pharmaceutical industries. Overall, 
measuring the glass transition temperature of amino acids can be com-
plex and challenging due to many factors affecting the measurement, 
including the presence of absorbed moisture, the sensitivity to mea-
surement conditions, and their degradation temperatures. In addition, 
many biomolecules are not “good” glass formers because partial or 
complete crystallization may occur during cooling, or the sample might 
degrade when melting. For these reasons, it is interesting to explore 
numerical routes to estimate the physical properties of biomolecules. 
Therefore, we used our model to predict the glass transition temperature 
of the 20 essential amino acids and a short peptide. Table 1 shows the 

predicted values for the Tg of the essential amino acids [37,38] and the 
corresponding experimental values (for some of them). 

In Fig. 9, we plot the amino acids in the previously analysed Tg versus 
molecular weight map. The red dots represent amino acids for which the 
absolute percentage error on the prediction of the Tg is higher than 10%. 
Noticeably, these compounds are all located outside the model’s pre-
dictive region. On the other hand, blue dots represent the amino acids 
and the peptides for which the prediction error is lower than 7%. These 
molecules, which are closer to the chemical space covered by the 
training set (green dots), have more accurate predictions for Tg. These 
results clearly show that the glass transition temperature of amino acids 
(at least those within the prediction confident area) can be predicted by 
our RNN trained on different chemical families. As a particular test, we 
also included the 3-lysine (3-Lys) data, which has a more complex 
chemical structure but still falls within the model’s confidence area. In 
this case, the agreement between the predicted and the measured value 
of the glass transition temperature is excellent. These findings open the 

a) b) 

Fig. 8. Molecular weight dependence of the glass transition temperature for the training set molecules. The colour map in Fig. 8a represents the absolute percentage 
error (APE) when predicting the Tg of the compound. The area between the dashed lines represents the confidence interval of the neural network. Also, the vertical 
line from point A to point B (fixed molecular weight) indicates the raising of the Tg due to the contribution of intermolecular forces. Fig. 8b shows the hydrogen bond 
distribution over the molecular weight trend. Lines are just a guide for the eyes and indicate approximate regions of low and large intermolecular forces. 

Table 1 
Results of predicting the glass transition temperature of the 20 amino acids and 
oligomer 3-Lys.*Own DSC measurements of 3-Lys samples (see section 3 in SI).  

Molecule number Name Predicted Tg [K] Tg [K] APE [%] 

1 Alanine 284   
2 Arginine 339 362 [37] 6.2 
3 Asparagine 330 466 [37] 29.2 
4 Aspartic acid 312 386 [37] 19.1 
5 Cysteine 314   
6 Glutamine 323 323 [37] 0.1 
7 Glutamic acid 310 330 [37] 6.1 
8 Glycine 229   
9 Histidine 318 408 [37] 22.2 
10 Isoleucine 273   
11 Leucine 278   
12 Lysine 311 317 [38] 1.9 
13 Methionine 281   
14 Phenylalanine 307   
15 Proline 195   
16 Serine 301 337 [37] 10.7 
17 Threonine 275 355 [37] 22.4 
18 Tryptophan 330 433 [37] 23.8 
19 Tyrosine 327 405 [37] 19.3 
20 Valine 284   
21 3-Lys 311 312.5* 0.3  

C. Borredon et al.                                                                                                                                                                                                                               



Journal of Non-Crystalline Solids: X 18 (2023) 100185

7

door to using numerical approaches to estimate the glass transition 
temperature of complex molecular glass formers, especially when its 
experimental determination is difficult or even before synthesizing 
them. 

4. Conclusions 

We have presented in this work a dataset of organic molecular glass 
formers with their Tg,which has been used to train an RNN with a Bi- 
LSTM architecture. We have shown that the network can detect pat-
terns from SMILES strings and correlate them with the corresponding 
molecule’s physical property, in this case, the Tg. We have observed the 
result of such learning by embedding the activations of the neurons of 
the last layer into a Tg-oriented m-dimensional space and analysing them 
by clusterization and PCA. We further have shown that it is possible to 
predict the Tg of other complex molecules and that such predictions are 
accurate when the molecules lay in the confidence area of the model. In 
particular, we have led this analysis on the group of 20 essential amino 
acids and a short peptide (3-Lys). Finally, we have shown that this kind 
of architecture is a powerful tool for exploring and designing new ma-
terials and correlating macroscopic physical properties to the corre-
sponding molecular structure. 
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