Pressure–Temperature Dependence of Polymer Segmental Dynamics. Comparison between the Adam–Gibbs Approach and Density Scalings

Gustavo A. Schwartz,*,† Juan Colmenero,‡ and Ángel Alegria†

Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastián, Spain, and Departamento de Física de Materiales UPV/EHU, Universidad de Física Materiales CSIC-UPV/EHU, Facultad de Química, Apartado 1072, 20080 San Sebastián, Spain

Received November 16, 2005; Revised Manuscript Received February 23, 2006

ABSTRACT: By means of dielectric spectroscopy, the segmental dynamics (α-relaxation) of four different polymers (poly(vinyl acetate), poly(vinyl methyl ether), poly(vinyl chloride) and poly(α-chlorostyrene)) was measured over a broad range of frequencies (10⁻¹–10⁷ Hz), pressures (0–300 MPa), and temperatures (240–460 K). Two different approaches were used to analyze the temperature–pressure dependence of the relaxation time: a pressure-extended Adam–Gibbs equation (τ(T,P) = τ₀ exp[C(I/T₅₀(T,P))]) and a particular density scaling (log(τ) ∝ f(TV)), both recently proposed. Both approaches give an excellent description of the experimental data; however, an inconsistency between them was found. We show that other scaling laws can give an equally good description of the experimental data, being therefore possible to improve the consistency between the density scaling and the AG framework.

1. Introduction

The problem of the glass transition has been in the focus of the debate for decades, and it is an important open question in condensed matter physics in general and of polymer science in particular. Historically, the study of the molecular dynamics approaching the glassy state was restricted to mainly analyze the effect of temperature. Thus, measurements of the relaxation time (at atmospheric pressure) as a function of temperature were performed in order to get information about molecular motions. Although much has been learned from these studies, it is not possible to separate thermal and density effects only by varying the temperature. However, the glass transition can also be approached by applying high enough pressure to a supercooled liquid. Both the increase of pressure and the decrease of temperature result in slower molecular motions. These two different ways of approaching the glass transition allow decoupling thermal and volumetric effects. Some of the seminal works in the study of the pressure effects on molecular dynamics of glass-formers were done in the 1960s, and a renewed interest has arisen during the past years. The improvement of the experimental techniques has made possible to obtain large amount of accurate data over broader ranges of pressure, temperature, and frequency and therefore contributes to the better understanding of the involved processes.

In the past years mainly two different approaches have been used to analyze the pressure–temperature dependence of the relaxation times of glass-forming systems. One is based on the Adam–Gibbs (AG) theory and was developed by Casalini et al. They have recently proposed an extended AG equation to describe the behavior of the structural relaxation time, τ, as a function of both pressure and temperature. This equation was derived from the AG theory by writing the configurational entropy, S₅₀, in terms of the excess of both thermal heat capacity and thermal expansion. The second approach is based on a density scaling (log(τ) ∝ f(TV), γ being a material constant) which superposes into a single master curve the experimental data measured at different pressures and temperatures. The material specific constant (γ) has been empirically determined for several glass-formers, including a few polymers, and has also been related to the ratio of the activation enthalpy at constant volume to that at constant pressure. More recently, Roland et al. have proposed a way to calculate the parameter γ only from equation-of-state (EOS) data, without performing any relaxation measurement. Since both approaches have given so far an excellent description of the experimental data, there could be some connection between them. This is a point that has not been yet explored and which could suggest new hints for the mechanisms of the glass transition.

In this work the α-relaxation of four polymers was studied using broad-band dielectric spectroscopy (10⁻²–10⁷ Hz) over a wide temperature range and pressures up to 300 MPa. The temperature–pressure dependence of the experimental relaxation times was found to be very well described using both the extended AG equation, with thermal and expansion coefficients determined from calorimetric and PVT data, respectively, and the previously mentioned density scaling. A connection between both approaches has been explored, showing that the proposed scaling (TV) and the AG frame are not completely consistent within the ranges of pressures and temperatures here explored. We show that a new density scaling provides not only an equivalent excellent description of the experimental data but also a better consistency between both approaches.

2. Theoretical Background

We first briefly summarize the main points of the two approaches we will use in this work to analyze the pressure–temperature dependence of the segmental relaxation time of the four polymers. For a more detailed explanation the reader is invited to look at the references below mentioned.

Adam–Gibbs Theory. The Adam–Gibbs (AG) theory, which is based on the assumption of cooperative rearranging regions, gives an expression that relates the increase of structural

---

*† Donostia International Physics Center.
†‡ Unidad de Física de Materiales CSIC–UPV/EHU.
* Corresponding author: Tel +34 943 015389; Fax +34 943 015600; e-mail schwartz@sw.ehu.es.
relaxation time, \( \tau \), to the reduction of configurational entropy, \( S_c \), by
\[
\tau = \tau_0 \exp \left( \frac{C}{TS_c} \right)
\] (1)
where \( \tau_0 \) is the value of \( \tau \) at very high temperature and \( C \) is a material constant. This quantity is here assumed independent of temperature and pressure, although this assumption has been recently questioned.\(^{15} \)

Since \( S_c \) is not experimentally accessible, it is usually identified with the excess entropy \( S_e = S_{\text{melt}} - S_{\text{crystal}} \). Although some findings seem to suggest a general validity of the proportionality between \( S_e \) and \( S_c \), this meaning of this assumption is still under debate, and no general agreement has been achieved.\(^{16-18} \)

Under this assumption the proportionality constant between \( S_e \) and \( S_c \) (\( g \)) will only affect the value of \( C \) in eq 1. Thus, \( S_c \), at atmospheric pressure, can be estimated as
\[
S_c(T) = g_p S_e(T) = g_p \int_{T_K}^T \frac{\Delta C_p(T)}{T} \, dT
\] (2)
where \( \Delta C_p = C_{\text{melt}} - C_{\text{crystal}} \) is the excess heat capacity at atmospheric pressure and \( T_K \) is the Kauzmann temperature, which used to be of the order of \( T_K \approx 50 \) K, where the excess entropy would vanish. If an inverse temperature is assumed for \( \Delta C_p (\Delta C_p = K T_K) \), the empirical Vogel–Fulcher–Tammann (VFT) equation\(^{19} \) \(( \tau(T) = \tau_0 \exp(\Delta T / (T - T_0)) \) is recovered (with \( \tau_0 = T_K \)). However, this temperature dependence for \( \Delta C_p \) is not always valid, and a linear dependence of \( \Delta C_p \) with temperature is often a better approximation.\(^{20} \)

Recently, Casalini et al.\(^5 \) have proposed an extension of eq 2 for the configurational entropy \( S_e \) by adding a term related to the pressure change. Thus, the temperature dependence of the \( S_c \) is given by
\[
S_c(T,P) = \int_{T_K}^T \frac{\Delta C_p(T)}{T} \, dT - g_p \int_0^P \frac{\Delta V}{T} \, dP
\] (3)
where \( \Delta(\partial V / \partial T) = \Delta(\partial V / \partial T)_P^{\text{melt}} - \Delta(\partial V / \partial T)_P^{\text{crystal}} \) is the difference of the thermal expansivity of the melt and the crystal; if \( g_p \) does not depend on temperature, then the thermal and volumetric contributions to the configurational entropy are fully decoupled.

It is worth noting here that \( S_e \) and \( \Delta(\partial V / \partial T) \) are defined as the difference between the corresponding quantity of the melt with respect to that of the crystal. However, it is sometimes impossible in polymers to get the thermodynamic properties of the crystalline state. In these cases, it is usually assumed that the heat capacity and thermal expansion for the crystal are similar to those of the glass.\(^{21} \)
Thus, we have used for calculations \( \Delta C_p \approx C_p^{\text{melt}} - C_p^{\text{glass}} \) and \( \Delta(\partial V / \partial T)_P \approx \Delta(\partial V / \partial T)_P^{\text{melt}} - \Delta(\partial V / \partial T)_P^{\text{glass}} \).

The AG theory and their assumptions are still under debate, and no general agreement about them has been yet achieved. However, the general agreement between the experimental results and the theory is good enough to assume that the model is, at least, plausible.\(^{22,23} \)

**Density Scaling.** In the past years Tölle et al.\(^{24} \) have shown, based on the analysis of inelastic neutron scattering data under high pressure, that \( o \)-terphenyl (OTP) behaves like a soft-spheres system with a repulsive potential \( r^{12} \). This assumption leads to a description of the relaxation time for the OTP in terms of a single variable \( TV^4 \), where \( V \) is the specific volume (expressed in \( \text{cm}^3/\text{g} \)). Later, Dreyfus et al.\(^{25} \) found that light-scattering data for OTP can also be rescaled into a single master curve when plotted as a function of \( TV^{\gamma} \). However, strong deviations from the proposed \( TV^4 \) scaling were recently found in other systems.\(^{12,13} \) They showed that for several glass-formers the logarithm of the main (or \( \alpha \)) relaxation time, measured at various temperatures and pressures, yields a master curve when plotted against \( TV^\gamma \), where \( \gamma \) is a material-specific constant which was found to vary in the range \( 0.14 \leq \gamma \leq 0.85 \) for the glass-formers investigated to date.

The parameter \( \gamma \) provides a measure of the relative importance of \( V \) compared to \( T \) in the glass-forming dynamics. It is immediately clear that \( \gamma = 0 \) means a purely thermally controlled dynamics; on the other hand, for the hard-spheres limit, \( \gamma \rightarrow \infty \) and the dynamics becomes entirely volume dependent. According to Casalini et al.,\(^{12} \) it is therefore expected that \( \gamma \) correlates with the ratio of the activation enthalpy at constant volume \( E_V = R(\partial \ln(\tau)/(\partial(T^{-1}))_P \) to that at constant pressure \( E_P = R(\partial \ln(\tau)/(\partial(T^{-1}))_P \). The inset shows the correlation between \( \gamma \) and \( E_P/E_V \) for several glass-formers. Recently, Roland et al.\(^{14} \) have shown that the parameter \( \gamma \) ‘can be calculated from EOS data alone, without recourse to actual relaxation measurements’; they also extensively discuss the physical meaning of the parameter \( \gamma \).

**3. Experimental Section**

**Samples.** Four different polymers, having a wide range of \( T_\beta \), were used for this study: poly(vinyl acetate) (PVAc: \([\text{C}_8\text{H}_7\text{O}]_n\), \( M_n = 93\ 080 \text{ g/mol}, M_w = 33\ 200 \text{ g/mol})\); poly(vinyl methyl ether) (PVME: \([\text{C}_8\text{H}_7\text{O}]_n\), \( M_n = 21\ 900 \text{ g/mol}, M_w = 73\ 000 \text{ g/mol})\); deuterated poly(vinyl chloride) (PVdC: \([\text{C}_8\text{D}_7\text{Cl}]_n\), \( M_n = 70\ 000 \text{ g/mol}, M_w = 35\ 000 \text{ g/mol})\); and poly(o-chlorostyrene) (PoCIS: \([\text{C}_8\text{H}_7\text{Cl}]_n\), \( M_n = 225\ 000 \text{ g/mol}, M_w = 132\ 000 \text{ g/mol})\). Deuterated PVC was chosen because it is more stable at high temperatures, and it is therefore possible to measure it within the full temperature range without a significant effect of sample degradation.

**Differential Scanning Calorimetry (DSC).** As mentioned in the previous section, we need to know \( \Delta C_p = C_p^{\text{melt}} - C_p^{\text{glass}} \) as a function of the temperature for each polymer in order to estimate the excess entropy. As shown in Figure 1, the heat capacity can be well described by a linear function both above and below \( T_\beta \) (this is valid for the four polymers investigated). Thus, the excess heat capacity \( \Delta C_p \) can be expressed according to the empirical linear equation \( \Delta C_p = b - mT \). Calorimetric measurements were performed on PVME and PoCIS by using a Q1000 TA Instruments DSC in the modulated mode, using different periods, with amplitude of 0.5 K and underlying cooling rate of 0.1 K/min. We have observed an excellent reproducibility (within 3%) by repeating the measurements several times on the same sample and on different samples of the same polymer. By varying the period of modulation, an extrapolation to zero frequency can be made, and thus the quasi-static value of \( C_p \) be determined for each polymer. Figure 1 shows the heat capacity for PoCIS at three different periods. For each curve a set of values for \( b \) and \( mT \) were obtained. The inset shows the extrapolation of \( b \) and \( mT \) to zero frequency. The extrapolations were done using empirical functions due to the lack of an appropriate theoretical frame. Table 1 shows the corresponding values of \( b \) and \( mT \) for all polymers. Heat capacity data for PVAc and PVdC were taken from refs 26 and 27, respectively, and correspond to quasi-static values (equivalent to zero extrapolated values) of the heat capacity; the corresponding values of \( b \) and \( mT \) are also shown in Table 1.

**Pressure–Volume–Temperature (PVT) Measurements.** To calculate the volumetric contribution to the configurational entropy, we need to estimate \( \Delta(\partial V / \partial T)_P \). The temperature dependence of the volume was measured with \( PVT \) 100 SW/Thermo Haake equipment, for PVdC and PoCIS, at different pressures (20–250 MPa) and temperatures between 30 and 140 °C (and 200 °C), respectively. The corresponding parameters for \( PVT \) data are shown in Table 2. Some curves for PVdC are shown in the inset of Figure...
Finally, values of $\Delta C_P$ (where $\Delta C_P = b - m_1 T$) was estimated at each frequency. The inset shows the extrapolation of $b$ and $m_1$ to zero frequency to estimate the quasi-static value of $\Delta C_P$ as a function of the temperature. The lines in the inset are a guide for the eye.

Figure 1. Reversible heat capacity against temperature, for PoClS, as obtained from modulated DSC at different periods. The curves were shifted vertically for clarity. Heat capacity above and below $T_g$ was approximated by a linear function, and thus $\Delta C_P$ ($\Delta C_P = b - m_1 T$) was estimated at each frequency. The inset shows the extrapolation of $b$ and $m_1$ to zero frequency to estimate the quasi-static value of $\Delta C_P$. Table 3 shows the corresponding parameters.

Table 1. Parameters of the Linear Function Used To Approximate $\Delta C_P$ According to $\Delta C_P = b - m_1 T$.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$b$ [J mol$^{-1}$ K$^{-1}$]</th>
<th>$m_1$ [J mol$^{-1}$ K$^{-2}$]</th>
<th>$T_g$ [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVAc</td>
<td>104 ± 1</td>
<td>0.21 ± 0.01</td>
<td>308 ± 1</td>
</tr>
<tr>
<td>PVME</td>
<td>68.3 ± 0.5</td>
<td>0.16 ± 0.01</td>
<td>247 ± 1</td>
</tr>
<tr>
<td>PVCd</td>
<td>-48.3 ± 0.4</td>
<td>-0.20 ± 0.01</td>
<td>355 ± 1</td>
</tr>
<tr>
<td>PoClS</td>
<td>103 ± 1</td>
<td>0.17 ± 0.01</td>
<td>402 ± 1</td>
</tr>
</tbody>
</table>

$^a$ Calorimetric $T_g$ (at the inflection point) for all the here-studied polymers are also listed. Errors come from the linear fitting procedure. $^b$ Values extrapolated to zero frequency from modulated DSC measurements. $^c$ Quasi-static values calculated from the heat capacity data from refs 26 and 27.

Table 2. Parameters of the Empirical Function $V(P,T) = K_0(P + K_0) + K_1(T(P + K_0))$ Used To Describe PVT Data for Both Glassy and Melt States.

<table>
<thead>
<tr>
<th>Polymer</th>
<th>$K_0$ [cm$^3$ MPa$^{-1}$ g$^{-1}$]</th>
<th>$K_1$ [cm$^3$ MPa$^{-1}$ g$^{-1}$ °C$^{-1}$]</th>
<th>$K_2$ [MPa]</th>
<th>$K_3$ [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVCd</td>
<td>1380 ± 15</td>
<td>0.275 ± 0.005</td>
<td>301 ± 5</td>
<td>1943 ± 15</td>
</tr>
<tr>
<td></td>
<td>glass</td>
<td>1183 ± 12</td>
<td>2.735 ± 0.015</td>
<td>871 ± 9</td>
</tr>
<tr>
<td></td>
<td>melt</td>
<td>1651 ± 16</td>
<td>0.391 ± 0.005</td>
<td>556 ± 5</td>
</tr>
<tr>
<td>PoClS</td>
<td>1575 ± 14</td>
<td>1.478 ± 0.015</td>
<td>365 ± 4</td>
<td>1986 ± 15</td>
</tr>
</tbody>
</table>

$^a$ Errors come from the nonlinear fitting procedure.

$^b$ Errors come from the fitting of the empirical function.

2; from this plot we estimated $\Delta(\partial V/\partial T)_P$ by subtracting the slopes of the $V(T)$ curves above and below $T_g$. Figure 2 shows the pressure dependence of $\Delta(\partial V/\partial T)_P$ so obtained and the best fits to an empirical equation as described below. For PVAc the temperature dependence of the volume was estimated by plotting the specific volume, as given in ref 28, vs temperature and taking the slopes below and above $T_g$, for the different pressures the Tait equation was used with the parameters reported in ref 29 for the glassy state. Finally, values of $\Delta(\partial V/\partial T)_P$ as a function of pressure for PVME were taken from Figure 3.12 in ref 30. The data for these last two polymers are also shown in Figure 2.

For all the here studied polymers the pressure dependence of $\Delta(\partial V/\partial T)_P$ was described empirically according to

$$\Delta(\partial V/\partial T)_P = \Delta(\partial V/\partial T)_{P=0} - A [1 - \exp(-P/P_0)]$$  (4)

Table 3 shows the corresponding parameters.

Dielectric Measurements under Pressure. Dielectric measurements were carried out in a pressure cell (0–300 MPa) supplied by Novocontrol GmbH. The cell, basically a steel cylinder with a hermetic seal, is filled with a fluid which transmits the pressure from the piston to the sample. The sample consists of a very thin disk, 20 mm diameter and 0.1 mm thickness, placed between two gold-plated electrodes. The dielectric loss was measured in the whole frequency range ($10^{-2}$–$10^6$ Hz) with a broad-band Alpha dielectric analyzer (Novocontrol GmbH). The measurements were performed by frequency sweeps at constant temperature, after stabilizing the temperature of the cell for about 2 h, with stability better than ±0.1 K, and constant pressure, with stability better than ±2 MPa. After each frequency sweep the pressure was changed, at constant temperature, to the next value, and once the highest value was reached, the pressure was reduced to the atmospheric value and temperature was changed. The measurements have shown a very good reproducibility after repeating them several times.

4. Results

Dielectric Relaxation Spectra. Figure 3a shows the dielectric loss ($\epsilon''$) for PVAc, as a function of frequency, under atmospheric pressure, at different temperatures as determined using the pressure cell. Isothermal spectra, at various pressures, are shown in Figure 3b. Similar spectra were obtained for the other polymers. The central part of the main peak (i.e., the $\alpha$-relaxation) was described using the Havriliak–Negami (HN) function

$$\epsilon''(\omega) - \epsilon_{\infty} = \frac{\Delta \epsilon}{1 + (i\omega\tau_{HN})^{\alpha\beta}}$$  (5)

where $\Delta \epsilon$ is the relaxation strength, $\tau_{HN}$ is a relaxation time, and $\alpha$ and $\beta$ are shape parameters. For the purposes of this work, the characteristic relaxation time will be that of maximal loss $\tau_r = \tau_{HN} \sin(\pi \alpha / 2) / (2 + 2 \beta)$.

Figure 4 shows the full width at half-maximum (fwhm) of the $\alpha$-relaxation, determined from the corresponding fitting curves, as a function of the corresponding relaxation time for all the studied polymers at different temperatures and pressures.
This behavior is in agreement with previous observations. Apart from PoClS, which will be commented on below, the FWHM increases almost linearly with increasing relaxation times. Although for PVCd the general tendency is also linear, a relatively big dispersion of the experimental data is observed. This is due to the anomalously broad spectra of PVCd which makes more difficult the accurate determination of the maximum and the FWHM. To show that no systematic pressure dependence is involved, the experimental data were plotted into two groups in Figure 4 (half-filled and empty squares for low and high pressures, respectively). It is clear that low- and high-pressure data are homogeneously distributed around the mean value (solid line).

**Relaxation Times at Atmospheric Pressure.** Figure 5 shows the temperature dependence of the maximum relaxation time, \(\tau_{\text{max}}\), of the \(\alpha\)-relaxation for all the polymers at different pressures. Filled and dashed lines represent the corresponding fits as explained below. The experimental data are in very good agreement with those previously published (see open symbols in Figure 5) by O’Reilly and Heinrich and Stoll for PVAc and PVC and by Casalini and Roland for PVME. Data on PoClS are here published, to the best of our knowledge, for the first time.

As mentioned in the previous section, we approximated the excess heat capacity (\(\Delta C_p\)) to the empirical linear equation \(\Delta C_p = b - m_T T\). According with this, the thermal contribution to the configurational entropy is

\[
S_c(T,P=0) = g_T \left( \frac{\Delta C_p(T)}{T} \right) \int dT = g_T \left( b \ln(T/T_k) - m_T(T - T_k) \right)
\]

Thus, by introducing this result in eq 1, the temperature dependence of the relaxation time at atmospheric pressure is given by

\[
\tau(T,P=0) = \tau_0 \exp\left( \frac{C/g_T}{T(b \ln(T/T_k) - m_T(T - T_k))} \right)
\]

By using eq 7 to fit the experimental data at atmospheric pressure, we got the three unknown parameters \(\log(\tau_0)[s]\), \(C/g_T\), and \(T_k\) for all the here-studied polymers. Lowest solid lines in Figure 5 represent the best fit of eq 7 to the experimental data; the corresponding parameters are listed in Table 4.

**Relaxation Times at Different Pressures.** In the previous section we have estimated \(\Delta(\partial V/\partial T)\rho\) as a function of pressure, for the four polymers, and have described its pressure dependence by means of an empirical exponential function (eq 4). Now, we can estimate the pressure contribution to the configurational entropy as

\[
g_T \int_0^P \Delta(\partial V/\partial T)\rho \, dP' = g_T \left[ \Delta(\partial V/\partial T)\rho_{P=0} - A[P - P_0(1 - \exp(-P/P_0))] \right]
\]

By using eq 8 and eq 6 in eq 3 and then by replacing in eq 1, we obtain the following expression for the temperature–pressure dependence of the relaxation time

\[
\tau(T,P) = \tau_0 \exp\left( \frac{C/g_T}{T\left[ b \ln(T/T_k) - m_T(T - T_k) \right]} \right) \cdot \frac{g_T \left[ \Delta(\partial V/\partial T)\rho_{P=0} - A[P - P_0(1 - \exp(-P/P_0))] \right]}{g_T \left[ \Delta(\partial V/\partial T)\rho_{P=0} - A[P - P_0(1 - \exp(-P/P_0))] \right]}
\]
the mentioned success for the PVAc, the pressure for the different polymers by assuming a constant value. Besides $g_P$ Note that the only unknown parameter in this equation is the $g_P$. Figure 5. Temperature dependence of the relaxation time, for all the here-studied polymers, at different pressures (from bottom to top: $P_{atm} = 0.1, 50, 100, 150, 200, 250,$ and $300$ MPa). For PoClS experimental data are available up to $200$ MPa. Filled lines are the best fit of the experimental data by means of eq 9, with a constant $g_{Pl}/g_T$ for PVCd and PVAc and a temperature-dependent $g_{Pl}/g_T$ for PoClS and PVME, respectively. Dotted lines (only for PVME and PoClS at their highest pressure) are the best fit of eq 9 by keeping constant $g_{Pl}/g_T$ (see text). Open circles represent some previously published experimental data points (PVAc, ref 1; PVME, ref 32; and PVC, ref 33).

Table 4. Parameters of the AG Model after Fitting the Experimental Data with Eq 9

<table>
<thead>
<tr>
<th>polymer</th>
<th>$\log(t_0)$ [s]</th>
<th>$C_{RT}$ [J mol$^{-1}$]</th>
<th>$T_k$ [K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVAc</td>
<td>$-14.1 \pm 0.1$</td>
<td>$99094 \pm 537$</td>
<td>$255.5 \pm 0.2$</td>
</tr>
<tr>
<td>PVME</td>
<td>$-13.2 \pm 0.1$</td>
<td>$54808 \pm 2072$</td>
<td>$200.0 \pm 1.0$</td>
</tr>
<tr>
<td>PVCd</td>
<td>$-14.2 \pm 0.2$</td>
<td>$24338 \pm 1186$</td>
<td>$301.5 \pm 2.4$</td>
</tr>
<tr>
<td>PoClS</td>
<td>$-14.3 \pm 0.1$</td>
<td>$111540 \pm 3336$</td>
<td>$325.2 \pm 1.3$</td>
</tr>
</tbody>
</table>

*Errors come from the nonlinear fitting procedure.

Figure 5, Table 4. Parameters of the AG Model after Fitting the Experimental Data with Eq 9

Table 5. Calculated Values of $g_{Pl}/g_T$ by Minimizing the Mean-Square Deviation between Experimental and Predicted Relaxation Times (Eq 9)

<table>
<thead>
<tr>
<th>polymer</th>
<th>$g_{Pl}/g_T$</th>
<th>$(g_{Pl}/g_T)_{T_k}$</th>
<th>$m_g$ [K$^{-1}$]</th>
<th>$\gamma$</th>
<th>$dT/\Delta P$ [K GPa$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVAc</td>
<td>1.05</td>
<td>0.10</td>
<td>2.2</td>
<td>224</td>
<td>250</td>
</tr>
<tr>
<td>PVME</td>
<td>0.71</td>
<td>0.81</td>
<td>$-1.6 \times 10^{-3}$</td>
<td>2.5</td>
<td>170 (177)</td>
</tr>
<tr>
<td>PVCd</td>
<td>0.83</td>
<td>0.05</td>
<td>$0.85 \pm 0.05$</td>
<td>242</td>
<td>189</td>
</tr>
<tr>
<td>PoClS</td>
<td>0.76</td>
<td>0.92</td>
<td>$-1.8 \times 10^{-3}$</td>
<td>1.5</td>
<td>362 (360)$^a$</td>
</tr>
</tbody>
</table>

* The second column shows the values of $g_{Pl}/g_T$ by assuming a constant value. Columns three and four show the parameters of a linear temperature dependence for $g_{Pl}/g_T$ according to $g_{Pl}/g_T = (g_{Pl}/g_T)_{T_k} + m_g(T - T_k)$. The fifth column lists the material-specific constant $\gamma$ used for the thermodynamical scaling. The last column shows the calculated pressure coefficient of $T_k$ in the limit of low pressure (the values in parentheses were taken from ref 14). $^a$ Upper limit for PS.$^{14}$

Note that the only unknown parameter in this equation is the ratio $g_{Pl}/g_T$. We have estimated it by minimizing the mean-square deviation between the experimental data and the relaxation times given by eq 9. It is worth mentioning that most of the parameters of eq 9 can be obtained from DSC and PVT characterization and from the temperature dependence of the relaxation times at atmospheric pressure through eq 7. The only free parameter which has to be obtained from measurements of the relaxation time at higher pressures is $g_{Pl}/g_T$. We have found in a recent work$^{10}$ that a constant value of $g_{Pl}/g_T$ in eq 9 gives an excellent description of the experimental data for PVAc (see upper-left plot in Figure 5). Thus, our first attempt was to calculate $g_{Pl}/g_T$ for the different polymers by assuming a constant value. Besides the mentioned success for the PVAc, the pressure—temperature dependence of the relaxation time of PVCd can also be described with a constant value of $g_{Pl}/g_T$. Figure 5 shows the excellent agreement among experimental data and the predicted values (solid lines) for the relaxation times using eq 9. On the contrary, for PVME and PoClS a systematic deviation between the experimental and predicted points is observed. Dotted lines in Figure 5 are examples of such a deviation.

As pointed out in the Introduction, $g_P$ could depend on temperature and therefore $g_{Pl}/g_T$ could, too. By assuming a linear dependence for $g_{Pl}/g_T$ with temperature, we can write $g_{Pl}/g_T(T) = (g_{Pl}/g_T)_{T_k} + m_g(T - T_k)$ and estimate $(g_{Pl}/g_T)_{T_k}$ and $m_g$ by minimizing the mean-square deviation as previously. The so-obtained parameters are listed in Table 5, together with those calculated by considering a constant value for $g_{Pl}/g_T$. Figure 5 shows the predicted values of the relaxation times (solid lines) for PoClS and PVME by using eq 9, and the proposed temperature linear dependence for $g_{Pl}/g_T$.

**Density Scaling.** Figure 6 shows the relaxation times for the four polymers, measured at different pressures and temperatures, as a function of $TV^{\gamma}$, where $V$ represents the specific volume expressed in cm$^3$/g. The parameter $\gamma$ was adjusted for each polymer to yield a master curve with a minimum mean-square deviation. Table 5 shows the so-obtained values of $\gamma$; for PVME the found value ($\gamma = 2.5$) is in very good agreement with those previously estimated $\gamma = 2.55^{12}$ and $\gamma = 2.7^{13}$ As shown in...
of the coupling model has been recently proposed. Anyway, it is deeply analyzed in a later work.

With other strange features of PoClS like the anomalous pressure dependence for $X$ is much stronger than in the previous cases. This fact together with the weight of the monomeric unit. Whether this evidences a general trend needs further work.

Concerning to the power density scaling of the relaxation time through a single variable of the form $X = TV\gamma$, it has shown to be a simple and effective way to organize and display the large amount of isobaric and isothermal relaxation time data of glass-formers. The resulting master curves, for the here-studied polymers (Figure 6), can be well fitted with an empirical VFT-like equation given by

$$\tau(X) = \tau_0^{\text{AG}} \exp\left(\frac{DX_0}{X - X_0}\right)$$

(10)

where $X = TV\gamma$, $X_0 = T_0\gamma\nu_0$, and $\tau_0^{\text{AG}}$ is the relaxation time at high temperatures obtained by using AG eq 7 (and listed in Table 4). The parameter $D$ is related to a generalized fragility $\gamma$ defined following refs 12, 13 as the steepness of the log($\tau$) vs $X_0/X$ at $X_0$, through $\gamma = d \log(\tau)/d(X_0/X)|_{X_0}$. It is clear that for $\gamma = 0$, i.e., a fully temperature-controlled process, the standard VFT equation is recovered. Solid lines in Figure 6 represent the best fit of the experimental data with eq 10, whereas the obtained parameters are listed in Table 6. A small deviation is observed in Figure 6 for some polymers when the relaxation time is faster than $10^{-7}$ s. This could be because we fixed $\tau_0$ to that obtained by AG (eq 7), and it is well-known that the AG theory does not describe well the temperature behavior at short times, at least for small molecules.35

Figure 6. Maximum relaxation time, measured at different temperatures and pressures, as a function of $TV\gamma$. The value of the parameter $\gamma$ which gives the better master curve for each polymer is shown in Table 5.

Table 6. Parameters of the Generalized VFT Equation ($\tau(X) = \tau_0^{\text{AG}} \exp(DX_0/(X - X_0))$) after Fitting the Master Curves, with Different Scaling Laws, for the Here-Studied Polymers

<table>
<thead>
<tr>
<th>polymer</th>
<th>$T_0$ [K]</th>
<th>$D$</th>
<th>$X_0$ [K]</th>
<th>$\gamma$</th>
<th>$T_0$ [K]</th>
<th>$D$</th>
<th>$X_0$ [K]</th>
<th>$\gamma$</th>
<th>$T_0$ [K]</th>
<th>$D$</th>
<th>$X_0$ [K]</th>
<th>$\gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVAc</td>
<td>2.2</td>
<td>19.2</td>
<td>138.5</td>
<td>2.2</td>
<td>19.0</td>
<td>172.8</td>
<td>3.7</td>
<td>19.2</td>
<td>146.6</td>
<td>2.5</td>
<td>14.4</td>
<td>138.9</td>
</tr>
<tr>
<td>PVME</td>
<td>2.5</td>
<td>14.4</td>
<td>136.7</td>
<td>1.8</td>
<td>14.4</td>
<td>110.3</td>
<td>4.8</td>
<td>14.4</td>
<td>138.9</td>
<td>0.85</td>
<td>2.8</td>
<td>242.9</td>
</tr>
<tr>
<td>PVCd</td>
<td>1.5</td>
<td>16.1</td>
<td>216.6</td>
<td>3.7</td>
<td>15.8</td>
<td>596.0</td>
<td>2.7</td>
<td>15.7</td>
<td>225.3</td>
<td>2.2</td>
<td>19.2</td>
<td>138.5</td>
</tr>
</tbody>
</table>

$\gamma$ The values of $\tau_0^{\text{AG}}$ are those obtained by using AG eq 7 and are listed in Table 4. The specific volume $V$ is expressed in cm$^3$/g.
However, by fixing the value of the specific volume as obtained from calorimetric and PVT data. Dashed and solid lines represent the best fit of the excess entropy data according to $S_{ex}(V) = A(V^\gamma - 0.36)$ and $S_{ex}(V) = a \log(V) + B$, respectively (see text). Note the curvature of the experimental points and that of the power density scaling (dashed line) and logarithm density scaling (solid line).

Equation 10 can be rewritten in a different way according to

$$\tau(T,P) = \tau_0^{AG} \exp \left[ \frac{DT_0}{\frac{V}{V_0^\gamma} - \frac{T}{T_0}} \right]$$  

(11)

A direct comparison of this equation with the AG ones (eq 1) allows us to identify the configurational entropy with the bracket in the denominator of the exponential (in eq 11); thus, it follows

$$S_{ex}(T,V) \propto \left[ \frac{V}{V_0^\gamma} - \frac{T}{T_0} \right] \quad \text{or} \quad S_{ex}(T,V) \propto V^\gamma - \frac{X_0}{T}$$  

(12)

This equation is particularly important since it relates the material-specific empirical parameter $\gamma$ with fundamental quantities like the volume—temperature dependence of the configurational entropy. Thus, trying to test eq 12, we have plotted the excess entropy, obtained from thermodynamic and PVT data, at constant temperature, as a function of volume; Figure 7 shows the so-obtained excess entropy for PVAc at $T = 380$ K. The best fit of the experimental data with the equation $S_{ex}(T_{cont},V) = A(V^\gamma - B)$, leaving $A$, $B$, and $\gamma$ as free parameters, gives $A = 83 \pm 15$ J/(mol K), $B = 0.7 \pm 0.1$, and $\gamma = 0.8 \pm 0.1$. These values are clearly inconsistent with those obtained from the dynamics through the power density scaling ($\gamma = 2.2$ and $B = 0.36$). The value of the exponent $\gamma$ ($0 < \gamma < 1$) was not unexpected due to the curvature of the excess entropy. Similar results were obtained for the other three polymers. However, by fixing the value of $B$ ($X_0/T$) to 0.36, obtained by fitting the PVAc data on Figure 6 with eq 10 (see Table 6), a value of $\gamma = 2.18 \pm 0.01$ is obtained (see dashed line in Figure 7). Although the fit (obtained from the dynamics through the $TV^\gamma$ scaling) is a good approximation of the thermodynamics data, the functional forms of both descriptions are not equivalent because for all the polymers the excess entropy data show a systematic negative curvature (see Figure 7). This suggests that the Adam–Gibbs framework and the power density scaling ($TV^\gamma$) are not fully consistent, at least within the experimental window of pressures and temperatures here analyzed.

One important point to highlight here is that this density scaling ($TV^\gamma$) is not the only one which collapses the isobaric data at different pressures into a single master curve. Recently, Alba-Simionesco et al. [13] have shown that a linear density scaling ($X = T(a \log(V) + 1)$) works as well as the $TV^\gamma$ one, at least for a limited range of $P$ and $T$; over larger ranges of $T$ and $P$ the linear scaling could fail as shown in ref 14. Figure 8a shows the relaxation time as a function of $X = T(a \log(V) + 1)$ for the four polymers. Solid lines represent the best fit to the experimental data with eq 10, whereas the so-obtained parameters are listed in Table 6. It is worth noting in this table that the fragility parameter ($D$), given in eq 10, is specific to the material dynamics and independent of the chosen density scaling and of the $P-T$ path.

On the basis of the curvature of the thermodynamic points in Figure 7, we tested a logarithm density scaling defined as $X = T(a \log(V) + 1)$, which gives both an excellent overlapping of the dynamic data into a single master curve (see Figure 8b) and, as will be shown in the following, a better consistency with the AG frame. The generalized VFT parameters for this scaling are also listed in Table 6. In this case, eq 10 can be written as

$$\tau(T,P) = \tau_0^{AG} \exp \left[ \frac{DX_0}{T[a \log(V) + 1 - \frac{X_0}{T}]} \right]$$

(13)

whereas eq 1 can be written as

$$\tau(T,P) = \tau_0^{AG} \exp \left[ \frac{DX_0}{T[aV + B]} \right]$$
\[ \tau(T,P) = \tau_0^{AG} \exp \left[ \frac{C g_T}{T S_{ex}(T,P)} \right] \]  

(14)

A comparison between eq 13 and 14 gives \( S_{ex}(T,P) \propto a \log(V) + 1 \propto X \sigma / T \), which is valid for the whole range of pressures and temperatures. At constant temperature, and for the range of interest, we can approximate the volume dependence of the excess entropy by \( S_{ex}(T_{\text{const}},V(P,T_{\text{const}})) = A \log(V) + B \), based only on thermodynamic and PVT data. In particular, for PVAc at 380 K, the best fit of the experimental data gives \( A = 127.7 \pm 0.5 \) J/(mol K) and \( B = 21.7 \pm 0.2 \) J/(mol K) (solid line in Figure 7). We can now calculate these parameters from the dynamics data to test the consistency. Equations 13 and 14 lead to \( A = (a C g_T) / D X_0 \) and \( B = (C g_T) / D X_0 (1 - (X_0) / (T_{\text{const}})) \). The values of \( C g_T \) are listed in Table 4, whereas the values of \( D \) and \( X_0 \) can be obtained by fitting the corresponding master curve with eq 10 (solid lines in Figure 8b); the values of \( a \) were obtained from the scaling and are listed in Table 6. The values of \( A \) and \( B \) so obtained (from dynamics data) are \( A = 128.5 \pm 0.7 \) J/(mol K) and \( B = 21.6 \pm 0.4 \) J/(mol K), which are in excellent agreement with those obtained from the fit of the thermodynamic data. Similar results were obtained for the other polymers. Thus, we have a very good consistency between the AG approach and the logarithm density scaling here analyzed.

This is of particular relevance because it implies that the parameter of the density scaling, and therefore the relaxation times, has also shown to give a very good description of different isobaric curves of the temperature dependence of the relaxation times, has also shown to give a very good description of the experimental data. However, we have shown that this scaling is not fully consistent with the Adam–Gibbs framework and that other scalings can also give an excellent description of the pressure–temperature dependence of the relaxation times. We have proposed a logarithm density scaling which not only works as well as that previously mentioned but also improves the consistency between both approaches. Although it is still not clear what the more appropriate density scaling law is, it is expected that further works on other glass-forming systems and broader ranges of pressure and temperature help to solve the question. Finally, it is worth noticing that the generalized dynamic fragility given in eq 10 does not depend on the actual density scaling function.

Acknowledgment. This work has been supported in part by the Spanish Ministry of Science and Technology (MICyT) (project MAT 2004/01617) and by the Government of the Basque Country (project 9/UPV 00206.215-13568/2001). We want also thank Dr. Mertxe Fernandez for the PVT measurements on PVCd and PoCIS.

References and Notes

(31) Kremer, F.; Schönholz, A. Broadband Dielectric Spectroscopy; Springer-Verlag: Berlin, 2003; p 64.