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Resumen

Esta tesis aborda la cuestión de cómo la luz, o con más generalidad, la radiación
electromagnética, interactúa con la materia. En nuestra vida cotidiana estamos
rodeados de ondas electromagnéticas que cubren un amplio rango de energías
desde las ondas de energías bajas, asociadas a las señales de radio, pasando por las
microondas que calientan nuestra comida, y los rayos-x que ayudan a diagnosticar
una pierna rota, hasta llegar a la luz que desvela la belleza del mundo a nuestros
propios ojos. El ser humano ha sentido desde siempre fascinación por los milagros
luminosos de la naturaleza que incluyen desde los agudos destellos producidos por
descargas eléctricas en el cielo, hasta los relámpagos, o los colores vivos del arco
iris. A lo largo de la historia, la humanidad ha desarrollado un control de la luz
gracias a distintas herramientas ópticas que incluyen los telescopios que nos abren
la puerta al universo, o los microscopios que nos permiten descifrar la intrincada
estructura de la materia, base del mundo que nos rodea, así como de nosotros
mismos.

El color de la luz, es decir, las propiedades de su espectro, no solo complace
nuestra vista, sino que también permite analizar la estructura química de la
materia mediante la espectroscopia. Tras iluminar una sustancia desconocida
(la muestra), y detectar la luz transmitida o emitida para cada longitud de
onda (color), es posible identificar las huellas espectrales características de los
elementos químicos que constituyen dicha muestra, y de esta manera, descifrar
la estructura de la misma. Por ejemplo, las vibraciones de las moléculas, al
ser expuestas a radiación electromagnética, pueden absorber ondas infrarrojas
(energía ∼ 100 meV) o, al ser iluminadas con luz visible (energía ∼ 1 eV), dar
origen a picos de la señal vibracional tipo Raman en el espectro de dispersión. La
materia iluminada también puede emitir fotones (fluorescencia) que encuentran
aplicación en microscopía [1–3] y espectroscopia moderna [4], así como en campos
más exóticos como la computación quántica.

Muchos de los logros de la óptica moderna y la espectroscopia de la luz son
posibles gracias al hecho de que la luz interactúa con la materia. La refracción de
la luz en el cristal de una lente óptica, al igual que el reflejo de la luz en un espejo
encuentran sus orígenes en la escala microscópica, donde los electrones y los núcleos
que forman la materia intercambian cuantos de energía con los fotones del campo
electromagnético incidente y emitido. Con el desarrollo de la nanotecnología, ha
sido posible lograr un control de la interacción entre la luz y la materia a una
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Resumen

escala menor que la longitud de onda de la luz visible (λvis ≈ 400 nm - 700nm).
Por ejemplo, la técnica de microscopía óptica de barrido por dispersión del campo
cercano (s-SNOM) utiliza puntas metálicas de unos pocos nanómetros de radio que
concentran el campo cercano de la luz por debajo del límite de difracción de Abbe,
el límite teórico de los dispositivos ópticos habituales. Por otro lado, el desarrollo
de metasuperficies con estructura nanométrica ha permitido manipular la fase de
la luz de una manera controlada y, de este modo, construir dispositivos ópticos de
dos dimensiones que presentan propiedades ópticas que a menudo superan las de
los elementos ópticos convencionales [5].

Cuando la luz interactúa con los electrones de la banda de conducción de
metales contenidos en nanopartículas de dimensiones que apenas alcanzan una
fracción de su longitud de onda, la luz es capaz de excitar resonancias colectivas
del gas electrónico en las interfases metal-aislante, conocidas como plasmones
superficiales. Éstas resonancias constituyen oscilaciones de carga eléctrica en
la superficie del metal que dan origen a campos electromagnéticos localizados
en su proximidad. Los campos electromagnéticos asociados a estas resonancias
presentan amplitudes especialmente intensas en ciertas regiones denominadas hot
spots (puntos electromagnéticos calientes) que son m’as acusados, por ejemplo,
en huecos estrechos entre las superficies de dos partículas cercanas, donde la
interacción de Coulomb entre las densidades superficiales de carga de las dos
partículas es más fuerte, produciendo, por tanto, una especial concentración de
la carga plasmónica en dicha región (efecto nanoantena). Los plasmónes de estas
antenas metálicas (partículas plasmónicas) [6] interactúan muy eficientemente con
los fotones incidentes, y de esta manera, facilitan la interacción entre el haz de luz
incidente y cualquier muestra (moléculas por ejemplo) localizada en la proximidad
de la superficie de la antena. Este mecanismo de aumento de la señal da lugar, por
ejemplo, a un aumento de la huella espectroscópica vibracional incluso de una sola
molécula en la señal de dispersión Raman aumentada por superficie (SERS) [7–19]
alcanzando varios órdenes de magnitud de aumento. El hallazgo del mecanismo
de aumento electromagnético de la señal de SERS ha causado un gran desarrollo
del campo de la plasmónica que, desde entonces, ha experimentado un gran auge.
La capacidad de los plasmones de absorber la luz y producir calor ha logrado
aplicaciones prácticas que incluyen la termoterapia inducida por plasmones, o el
desarrollo de nuevos métodos de purificación del agua [20]. Se ha demostrado
que la excitación de plasmones es capaz de provocar o inhibir reacciones químicas
de moléculas situadas en las inmediaciones de superficies metálicas a través de
varios mecanismos que incluyen el calentamiento local plasmónico, la generación de
electrones calientes [21], o la modificación de la naturaleza de los estados quánticos
de las moléculas tras el acoplamiento fuerte entre la luz y las nanopartículas
metálicas [22].

Las partículas plasmónicas han sido diseñadas, entre otros, para mejorar
el rendimiento de las espectroscopias ópticas e infrarrojas [23] como en SERS,
en espectroscopia infrarroja aumentada por superficie (SEIRS) [24–39] o en
fluorescencia aumentada por superficie (SEF). Aunque todas estas técnicas, SERS,
SEIRS y SEF, aprovechan del aumento del campo cercano producido por las
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partículas plasmónicas, el aumento plasmónico desempeña en cada caso un papel
diferente, que revisamos sucintamente a continuación.

En el caso de la técnica de SERS, las antenas plasmónicas simultáneamente
actúan como (i) receptor de la radiación electromagnética, y (ii) emisor de la luz
dispersada por las moléculas. Este mecanismo de dispersión resulta, por tanto,
en un aumento total de la señal Raman producida en SERS, RSt, de la siguiente
forma:

RSt ∝ |fL
inc|2|fSt

inc|2︸ ︷︷ ︸
Aumento
plasmónico

× |EL
inc|2︸ ︷︷ ︸

Intensidad
incidente

. (1)

En la expresión anterior fL
inc y fSt

inc son el aumento del campo eléctrico cercano
producido por las antenas plasmónicas en la posición de la molécula a la frecuencia
de la luz incidente y de la luz emitida, respectivamente, en forma de fotones Stokes
de energía más baja (dispersodas inelásticamente), y EL

inc es el campo eléctrico
asociado con la luz incidente.

En segundo lugar, en el caso de SEIRS, la situación es diferente a la de SERS,
porque en la técnica de SEIRS la frecuencia del campo emitido por la muestra
coincide con la del campo dispersado por la antena plasmonica (este caso se
describe como dispersión elástica de la luz). Dado que la luz dispersada tanto
por la antena como por la muestra llevan la misma frecuencia, no es posible
discernir la señal de la antena de la señal originada por la muestra mediante
métodos espectroscópicos como en SERS, sin embargo, el detector registra la señal
compuesta por las dos contribuciones de manere combinada. Si la respuesta de
la antena es conocida, las huellas espectrales de la muestra aparecen encima de
las de la antena en forma de interferencia que puede reducir o aumentar la señal
detectada, dependiendo de las condiciones de la interacción. Se puede demostrar
que las huellas específicas de la muestra que aparecen en la señal, AAS , registrada
en el detector, pueden ser expresadas de la siguiente forma:

AAS ∝ |fL
pl|2︸ ︷︷ ︸

Aumento
plasmónico

× |EL
inc|2︸ ︷︷ ︸

Intensidad
incidente

, (2)

donde fL
pl es el aumento del campo cercano plasmónico responsable de la

interacción entre la antena y la muestra.
Finalmente, la técnica de SEF es diferente a las descritas anteriormente ya que

la excitación de los estados electrónicos de la molécula en este caso, no tiene por
qué tener un origen óptico, es decir, la luz emitida puede resultar de la excitación
puramente eléctrica de un estado electrónico molecular [40]. En el marco de la
física quántica, una vez excitado, el estado electrónico de la molécula comienza
a decaer y, durante ese proceso, es capaz de excitar los estados de los modos
electromagnéticos de la luz y de los plasmones de las estructuras metálicas cercanas
a la molécula. Cuantos más estados electromagnéticos interactúen con la transición
electrónica de la molécula, más alto es el ritmo de decaimiento del estado excitado.
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Los plasmones pueden acelerar este proceso de decaimiento de una manera muy
eficiente gracias al aumento del campo cercano, que crea un entorno con alta
densidad local de estados electromagnéticos (LDOS).

Pese a la rapidez de la transferencia de energía de la excitación molecular a
los plasmones, no toda la energía se transforma en luz emitida hacia el campo
lejano donde pueda ser detectada. Gran parte de dicha energía se pierde por
culpa del decaimiento plasmónico no-radiativo que la convierte en calor producido
en el metal. Por tanto, durante el diseño de las estructuras plasmónicas para su
utilización en SEF, es imprescindible no sólo optimizar el aumento del decaimiento
electrónico, sino también procurar evitar las pérdidas plasmónicas.

En esta tesis se abordan varios aspectos de la interacción entre plasmones
y excitaciones moleculares con énfasis en la espectroscopia aumentada por los
plasmones. En la Parte I de la tesis se establece la base teórica tanto de la
descripción quántica, así como de la clásica, de las excitaciones estudiadas. Esta
parte también dedica un apartado importante a la introducción de la teoría
de sistemas quánticos abiertos que son ampliamente aplicados en los capítulos
posteriores de la tesis.

En la Parte II de la tesis se desarrolla y utiliza la teoría dieléctrica clásica más
allá de lo introducido en la Parte I referente a la metodología en el contexto de la
espectroscopia infrarroja, SEIRS. Se presenta un modelo analítico sencillo, pero
muy útil, para describir la interacción entre el modo plasmónico de una antena
metálica y una excitación vibracional molecular en muestras situadas encima de la
superficie de la antena. Se analiza el espectro de extinción de la radiación infrarroja
de dicho sistema (habitualmente medido en modo de transmisión) separando las
contribuciones que provienen de la dispersión y de la absorción del haz incidente.
Así mismo, se explora cómo el contraste de las huellas espectroscópicas de las
moléculas viene determinado por la absorción y la dispersión de la radiación en la
plataforma plasmónica, es decir, la antena. Las antenas más grandes son capaces
de dispersar la radiación de manera más eficaz de lo que la absorben, por lo que
en esta parte, se diseña una serie de antenas lineales de diámetros y longitudes
diferentes, de manera que la resonancia dipolar de éstas se encuentre a la misma
frecuencia que la excitación vibracional, y se estudia la respuesta espectral tanto
de la antena cubierta con las moléculas como sin ellas. De manera notable, se
demuestra empíricamente que los sustratos formados por antenas que dispersan y
absorben la radiación con eficiencias parecidas proporcionan el contraste óptimo
de las huellas espectroscópicas de la muestra [37]. Este resultado tiene una
importancia práctica para el diseño de los sustratos plasmónicos de cara a su
utilización en SEIRS.

En la Parte III se estudia la interacción entre plasmones localizados y
excitaciones electrónicas en moléculas localizadas en la proximidad de antenas
metálicas. En el Capítulo 5 se examinan los detalles microscópicos del
acoplamiento entre plasmones de partículas metálicas, capaces de localizar el
campo electromagnético en la escala de un solo átomo, y las excitaciones
moleculares. En esta situación se cuestiona la aproximación por la que la molécula
se describe como un dipolo puntual que interactúa con el campo electromagnético
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de la cavidad, considerado a su vez homogéneo a lo largo de toda la extensión
espacial de la molécula. Se identifican situaciones en las que la descripción puntual
de la molécula no resulta válida y se muestra cómo se puede aprovechar esta
situación para obtener más información sobre las moléculas. Por ejemplo, se
pueden poner las moléculas objeto de estudio en proximidad a la punta de un
microscopio de efecto túnel de modo que la punta del microscopio y el sustrato
formen una cavidad plasmónica. De esta manera, mediante el desplazamiento de
la punta respeto a la molécula y la medición de la respuesta óptica de la cavidad,
esta configuración puede proporcionar información espacial sobre el acoplamiento
plasmón-exciton de alta resolución, y de esa manera, permitir ver la estructura
de la distribución de carga asociada con dicha excitación molecular. Finalmente,
se muestra teóricamente que la inhomogeneidad de los campos electromagnéticos
puede dar lugar a una ruptura de las reglas de selección ópticas, y hacer que las
transiciones electrónicas moleculares de carácter cuadrupolar interactúen con la
luz.

Si el acoplamiento entre las excitaciones de las moléculas y los plasmones supera
las perdidas intrínsecas del metal y de las excitaciones de la molécula, los plasmones
y los excitones forman nuevas excitaciones híbridas, llamadas polaritones (o
plexcitones). Los polaritones han atraído mucho interés por sus propiedades
especiales que permiten, entre otras, la transferencia de energía a larga distancia, la
condensación de excitaciones, la emisión estimulada, y la generación de reacciones
químicas. En el Capítulo 6 se hace un estudio de la emisión de luz originada por los
polaritones previamente excitados con un láser monocromático. En este capítulo
se demuestra teóricamente la importancia de la interacción entre los polaritones
y las vibraciones internas de las moléculas, demostrando que las vibraciones dan
lugar a una transferencia incoherente de energía entre los polaritones, y por tanto a
una población incoherente predominante de los polaritónes de baja energía. Como
consecuencia de este hecho, los espectros de luz emitida por polaritones plasmon-
excitón muestran con frecuencia una asimetría espectral, tal y como se demuestra
en varios experimentos.

Las vibraciones moleculares pueden desarrollar un papel activo, que va más allá
del rol pasivo discutido anteriormente, por ejemplo en la inducción de reacciones
químicas. Es, por tanto, deseable controlar de manera activa el estado de las
vibraciones moleculares. En la Parte IV (Capítulo 7) de la tesis se explora el
posible uso del mecanismo de espectroscopia de dispersión Raman aumentada por
superficie como herramienta que permita controlar las vibraciones moleculares.
Para describir teóricamente la dinámica del proceso Raman, así como la dinámica
de las vibraciones, se adoptan métodos de la optomecánica cuántica, centrándonos
en el régimen en el que la molécula es estimulada por un láser resonante con una
de sus transiciones electrónicas - proceso Raman resonante. Se identifican las
condiciones de iluminación externa que resultan en un aumento de las poblaciones
de las vibraciones mediante el proceso de estimulación optomecánica. En el
régimen resonante, dicho proceso puede ser selectivo con respeto a la energía de las
vibraciones moleculares, por tanto, el proceso Raman resonante puede posibilitar
el control selectivo de una vibración molecular específica deseada, y dar lugar
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a un aumento de su población para, de esta manera, influir en su reactividad
química. Los procesos optomecánicos dejan sus huellas en los espectros de luz
inelásticamente dispersada, por ello, en el Capítulo 7 de la tesis, se elabora una
descripción teórica detallada de los espectros de luz emitida por estos sistemas y
se identifican efectos novedosos de interferencia e incluso de división de los picos
de los espectros. Por último, la tesis aborda la descripción de situaciones más
exóticas en las que la estructura electrónica de la molécula es modificada por
un láser intenso, o debido al acoplamiento fuerte entre el excitón molecular y
el plasmón de la partícula metálica. En estas situaciones la modificación de la
estructura electrónica de la molécula induce la interacción electrón-vibración en
la misma, la cual puede ser interpretada como una ruptura de la aproximación
de Born-Oppenheimer con la consiguiente influencia en la reactividad química del
sistema.

En resumen, los capítulos de esta tesis tratan sobre la interacción entre
las excitaciones moleculares, los plasmones y la radiación electromagnética, en
un amplio abanico de situaciones que incluyen la interacción entre vibraciones
moleculares y radiación infrarroja, así como la excitación y emisión de transiciones
electrónicas en moléculas colorantes. Para describir la interacción luz-materia se
desarrollan tanto herramientas clásicas como la teoría cuántica. Algunos resultados
de esta tesis, tales como la optimización de la señal producida en la espectroscopia
infrarroja aumentada por superficie, tienen importancia práctica directa, otros
resultados apuntan a aspectos más fundamentes de la interacción entre luz y
materia. Los detalles de la compleja dinámica de las vibraciones moleculares bajo
estimulación óptica, o la dinámica de la emisión de luz involucrando los estados
híbridos de luz y materia, es decir, los polaritones, pueden servir como claros
ejemplos de este último aspecto. Los resultados de esta tesis aspiran a servir
como inspiración de futura investigación teórica y experimental adicional sobre los
fenómenos en ella descritos.
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Chapter 1

Classical and quantum
description of plasmons in
small particles

The plasmon is defined as a quantum of a collective excitation of the electron
gas. In this chapter we introduce the concept of plasmon from the classical theory
of electromagnetism and quantize the oscillations of the electron gas using the
canonical quantization procedure. To that end we first briefly review the classical
electromagnetic theory of light scattering in dielectric media. This more than
hundred-years-old classical approach developed by James Clerk Maxwell proves
useful and accurate to describe the complex electromagnetic interaction between
extended plasmonic antennas and their dielectric environment. In this classical
linear-response theory, plasmons appear as resonances of the metallic structures
described by their respective dielectric function. We employ Maxwell’s equations
to describe the process underlying surface-enhanced infrared spectroscopy in
Part II of the thesis.

Further, we simplify the full machinery of Maxwell’s equations by describing
the interaction of light with small particles. To that end we exploit the concept
of volume-integral equation for electromagnetic-field scattering that yields an
insightful scheme for analytical modelling of the spectral response of small
particles. By assuming that retardation effects connected with the finite speed
of light are unimportant in certain circumstances, we introduce the quasi-static
approximation which allows for a precise definition of localized plasmonic modes
and opens the path towards their canonical quantization. We employ the canonical
quantization of plasmons to study the interaction of particle plasmons with
electronic transitions (excitons) in organic molecules in Parts III and IV of the
thesis.
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Chapter 1. Classical and quantum description of plasmons in small particles

1.1 Maxwell’s equations

The dynamics of interacting charged particles and electromagnetic fields is
described by Maxwell’s equations [41–44]. These equations are formulated
as macroscopic equations that describe the dynamics of electromagnetic fields
in materials described by their dielectric response. For further convenience
we use here Maxwell’s equations in the Fourier domain, where the harmonic
time dependence e−iωt of the fields is assumed even though some numerical
implementations of Maxwell’s equations, such as the Finite Differences in Time
Domain (FDTD) method employed in the thesis, use the time-domain formulation.
The electric charges and currents that emerge due to the dielectric response, both
bound charges and bound currents, are incorporated into the effective response
of the material as constants such as the frequency ω and position r dependent
dielectric function ε(ω, r) and the relative permeability µ(ω, r). Here we have
implicitly assumed that the material response is isotropic, local in space and
nonlocal in time. The material response functions thus depend only on the position
r and on the frequency ω of the respective Fourier component of the field. On
the other hand, the external charge density ρext and current density Jext can
serve as sources of electromagnetic radiation in the dielectric environment. In the
Fourier domain, Maxwell’s equations for the electric field E(ω, r), the magnetic
field B(ω, r), the electric displacement field D(ω, r), and the magnetic H-field
H(ω, r) read

∇×E = iωB, (1.1)
∇×H = −iωD + Jext, (1.2)

∇ ·D =
ρext

ε0
, (1.3)

∇ ·B = 0, (1.4)

and the respective fields are related via the relations

D = ε0E + P, (1.5)

H =
1

µ0
B−M, (1.6)

where P and M are the macroscopic polarization and magnetization density,
respectively, µ0 is the magnetic permeability and ε0 the electric permittivity
in vacuum. In the linear-response regime P and M are connected with the
electromagnetic fields via ε(ω, r) and µ(ω, r) as:

P = ε0[ε(ω, r)− 1]E, (1.7)
M = µ0[µ(ω, r)− 1]H. (1.8)

From now on we assume that the materials in question do not exhibit any magnetic
response and therefore µ(ω, r) = 1 in the whole space. Furthermore, we are
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1.1. Maxwell’s equations

interested in solutions of Maxwell’s equations in regions without any free charges
or currents. In such a case, Maxwell’s equations can be rearranged into the form
of the volume-integral (Lippmann-Schwinger) equation:

E(ω, r) = Eext(ω, r) + k2

∫∫∫
G(ω, r, r′) · [ε(ω, r′)− 1] E(ω, r)d3r′, (1.9)

where k = ω/c with c = 1/
√
ε0µ0 the speed of light in vacuum, Eext is an external

(incident) electric field that drives the system and can be generated by distant
external stimuli, and G(r, r′, ω) is the dyadic Green’s function that is a solution
of the equation

∇×∇×G(ω, r, r′)− k2G(ω, r, r′) = Iδ(r− r′), (1.10)

with I the identity tensor and δ(r− r′) the Dirac’s delta, and assuming radiation
boundary conditions [44]. More explicitly, G(ω, r, r′) in a vacuum reads:

G(ω, r, r′) =
eikR

4πR

[(
1 +

ikR− 1

k2R2

)
I +

3− 3ikR− k2R2

k2R2

RR

R2

]
, (1.11)

where R = r − r′ connects the source point r′ with the observation point r, and
R = |R|.

Equation (1.9) is the basis for the numerical method, the so-called discrete
dipole approximation (DDA), to solve Maxwell’s equations, which results from
the discretization of the volume integral of the right-hand side of the equation.
Nevertheless, the Lippmann-Schwinger equation also sheds light on some more
general properties of light scattering on particles, which we apply in Chapter 4
to describe light scattering on plasmonic antennas electromagnetically interacting
with thin layers of dielectric samples.

Before we proceed with the treatment of light scattering on small particles we
discuss the so-called quasi-static approximation of the Maxwell’s equations often
employed to simplify the complex electromagnetic scattering problem.

1.1.1 The quasi-static approximation

In certain situations retardation effects of the electromagnetic fields caused by
the finite speed of light do not play a significant role. Those situations are
usually occurring when the size of the structures is considerably smaller than the
wavelength of light. The complex machinery of Maxwell’s equations then simplifies
to solving the scalar Poisson’s equation for the quasi-electrostatic potential in the
quasi-static approximation.

The quasi-static approximation is obtained in the classical theory of
electromagnetism in the limit when the speed of light is set to infinity, c → ∞.
The solution for the electric field can then be obtained from the quasi-electrostatic
equations which can be derived, for example, from the Lippmann-Schwinger

5



Chapter 1. Classical and quantum description of plasmons in small particles

equation [Eq. (1.9)] by taking the limit k → 0;

E(r) = Eext(r) +

∫∫∫
K(r, r′) · [ε(ω, r′)− 1] E(r′)d3r′, (1.12)

with the quasi-static dyadic kernel

K(r, r′) =
1

4πR3

(
3RR

R2
− I

)
. (1.13)

Equation (1.12) expresses the intuitive fact that the electric field induced by each
polarized element of matter is distributed as the field around a static point dipole
P(r)d3r = ε0 [ε(ω, r)− 1] E(r)d3r that is self-consistently acting on the material
and producing the total material polarization. The quasi-static approximation
further allows for formulating the electromagnetic scattering problem in terms of
the quasi-static electric potential φ that generates the quasi-static electric field,
E = −∇φ.

The quasi-static fields are solutions of Poisson’s equation:

∇2φ =
ρtot

ε0
, (1.14)

where ρtot = −∇·P+ρext is the total charge density including the induced charges
due to the material polarization, ρind = −∇ ·P, and to the external charges ρext.

The solution of Poisson’s equation can be found using a variety of numerical
and analytical methods, including the quasi-static DDA based on Eq. (1.12) or
the boundary-element method (BEM)[45, 46] based on the boundary-integral
formulation of Poisson’s equation. The boundary-integral formulation of the
theory is particularly useful in the description of the quasi-static modes of
finite dielectric (metallic) particles. In its numerical implementation, BEM also
allows for significant computational simplification as only the interfaces separating
homogeneous materials (i.e. the particle boundaries) have to be discretized,
compared to the volume-integral approach where the whole three-dimensional
particle volume has to be discretized.

In the framework of the boundary-integral formulation, the surface charge σ
of the particle composed of a homogeneous material described by the dielectric
function ε surrounded by a vacuum, related to the particle polarization as
σ(s) = ns ·P(s), fulfils the equation:∫∫

∂Vpl

F(s, s′)σ(s′)d2s′ − 2π
1 + ε

1− ε
σ(s) = −∂φext

∂n
(1.15)

with F(s, s′) = −ns·(s−s′)
|s−s′|3 for s 6= s′ and ns the outer surface normal at point

s of the surface. The integral is evaluated over the particle surface ∂Vpl. The
inhomogeneous term on the right hand side of Eq. (1.15) is the surface derivative
of the external potential, φext, imposed on the particle due to the external charges
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1.1. Maxwell’s equations

ρext, ∂φext

∂n = ns · ∇φext(s).

We use the quasi-static approximation to discuss plasmonic excitations in
metals and define the plasmons as self-sustained oscillations of the conduction
electrons in metals as obtained either from the boundary-integral equation
[Eq. (1.15)] or from the volume-integral equation [Eq. (1.12)] in Section 1.2.1.

1.1.2 Interaction of light with small particles

The Lippmann-Schwinger equation [Eq. (1.9)] allows for a particularly insightful
treatment of light scattering on particles of small size compared to the wavelength
of the incident radiation. In such a case, the integral relationship for the total field
at the position of the particle approximately simplifies into the algebraic form

E(r, ω) ≈ Eext(r, ω) + i
k3

6π
Vpar [ε(ω)− 1] E(ω, r)− L · [ε(ω)− 1] E(r, ω), (1.16)

where Vpar is the volume of the particle, ε(ω) is the dielectric function of the
particle, and we approximate the dyadic Green’s function via its regular part at
the origin:

Im {G(r, r, ω)} = I
k

6π
, (1.17)

and its singular part which yields the depolarization factor L [47]:

L =
1

4π

∫∫
∂Vpar

nseR

R2
d2s. (1.18)

Here the integral is evaluated over the surface of the particle with the outer
normal ns and with eR = R/R the unit vector centred at a fixed point r′ and
pointing to point s on the particle surface. We note that the depolarization
factor in Eq. (1.18) emerges already from the solution of the quasi-static form
of the Lippmann-Schwinger equation [Eq. (1.12)] and is therefore not influenced
by retardation effects [48], which we have neglected for simplicity. The external
field Eext determines the polarization density P in the particle, via Eq. (1.16), as

P = ε0 [ε(ω)− 1] E, (1.19)

which can be integrated to yield the total dipole moment induced in the particle.
By assuming an homogeneous polarization of the particle’s volume, the induced
dipole moment becomes:

p = VparP = α ·Eext, (1.20)
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Chapter 1. Classical and quantum description of plasmons in small particles

where we have defined the (radiation-corrected) polarizability α of the particle:

α =
α0

1− ik3

6πε0
α0

, (1.21)

with the quasi-static polarizability:

α0 = ε0Vpar
ε(ω)− I

[ε(ω)− I]L + I
. (1.22)

The quasi-static polarizability determines the response of the particle to the
field that is homogeneously polarized across the particle volume. Thus, in
this framework only the lowest dipolar excitations of the particles contribute
to the polarizability given by Eq. (1.21). Nevertheless, if the external field Eext

considerably varies in space over the particle’s dimensions, the role of higher-order
modes become important. We discuss a more general approach to the description of
particle’s excitations in Section 1.2.1, where we describe the emergence of collective
plasmonic modes in metallic particles.

The polarizability of a small particle given in Eq. (1.21) holds information about
the particle shape, contained in L, about its material via the dielectric function
ε(ω), and about the particle size via the radiation correction. The value of L
also determines the frequency of the particle’s optical resonances via the condition
(ε − 1)Li + 1 = 0, where Li is an element of the depolarization tensor written in
its diagonal form. Since Li are real positive numbers, Li ∈ (0, 1), the resonances
of the particle appear only if ε(ω) ≤ 0 for some value of ω. We give examples of
such dielectric functions when we discuss plasmons in Section 1.2.1 and phononic
materials in Section 4.2.

1.1.3 Absorption, scattering and extinction of small
particles

Upon illumination by an external electromagnetic field the particle absorbs the
incident light and its induced oscillating dipole moment radiates the scattered
electromagnetic field. Both of these processes contribute to the loss of energy
carried by the incident electromagnetic field and give rise to extinction of the
incident light by the particle (as schematically shown in Fig. 1.1). The extinction
can also be interpreted as the power that the incident field exerts upon the induced
currents in the particle. The latter interpretation allows for a simple and intuitive
derivation of the extinction cross section of a small particle.

The average power exerted by the incident field on the particle is given by

Pext =
1

2

∫∫∫
Vpar

Re { Jind ·Eext} d3r, (1.23)

where Jind is the induced-current density inside the particle and the integration
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1.1. Maxwell’s equations

Figure 1.1: Schematic depiction of absorption, scattering and extinction of light on a small
particle. The particle is illuminated by a source and the transmitted light is recorded by
a detector. Upon illumination, the article absorbs the incident light (schematically shown
by the blue arrow) and scatters the light to the far field (black arrows). The scattered
and absorbed contributions are removed from the incident beam, together yielding the
total extinction of the transmitted light.

is performed over the particle volume, Vpar. Equation (1.23) can be compared to
the expression of the absorption inside of the material:

Pabs =
1

2

∫∫∫
Vpar

Re { Jind ·Etot}d3r, (1.24)

where the external electric field, Eext, is replaced by the total (i.e. external plus
induced) field, Etot, inside the particle. The scattered power, Psca, is then obtained
from the sum rule Psca = Pext − Pabs. The induced current density is connected
with the polarization density inside of the particle as Jind = −iωP and assuming a
homogeneous polarization of the particle leads to the following expression for the
power dissipated due to absorption, scattering and total extinction:

Pabs = σabsI0, (1.25)
Psca = σscaI0, (1.26)
Pext = σextI0, (1.27)

where I0 = cε0|Eext|2/2 is the intensity of a plane wave and σabs, σsca and σext

are the absorption, scattering and extinction cross sections, respectively. For a
point-like isotropic particle these expressions become [49, 50]:

σabs =
k

ε0
Im{α0}

∣∣∣∣ αα0

∣∣∣∣2 ,
σsca =

k4

6πε2
0

|α|2 = σext − σabs,

σext =
k

ε0
Im{α},

(1.28)

(1.29)

(1.30)

The Eqs. (1.28) to (1.30) are consistent with the laws of energy conservation
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Chapter 1. Classical and quantum description of plasmons in small particles

as they include the effect of the radiation reaction introduced by the total
particle polarizability α compared to the quasi-static polarizability α0. When the
particles are small, the scattering cross section becomes negligible compared to the
absorption. In such a situation the absorption and extinction become practically
identical as α ≈ α0, and the quasi-static approximation applies.

Last, we note that although the expressions for the particle polarizability
[Eq. (1.21)] have been derived assuming that the particle consists of a homogeneous
material, the results of this section can be generalized to more complicated systems
as we show in Chapter 4 where the working principle of surface-enhanced infrared
spectroscopy is discussed.

1.2 Plasmons
The free-electron gas has been in the focus of solid-state physicists already
since early 1900’s, when the Drude-Lorentz model of electrical conductivity was
proposed [51, 52]. Surprisingly enough, the physical behavior of the electron
gas, an inherent many-body system of electrons interacting via the long-range
Coulomb force, is in many ways well described by models assuming independent
non-interacting electrons. This independent-electron picture happens to be so
successful thanks to the screening of the electron-electron interaction in metals
which effectively causes that the electrons avoid each other and their collisions are
therefore suppressed to a large extent. Nevertheless, the low-energy excitations of
the electron gas often show a collective character where the electron gas behaves
as an elastic body due to the long-range electron-electron interaction [53–59].
Such excitations are called plasmons and we devote the following chapters to their
description within the framework of the classical and quantum models.

1.2.1 Classical description of plasmons in a Drude-like
metal

The simplest classical description of the optical response of the free-electron gas of
density Ne, charge e and (effective) mass me in metals is provided by the Drude
dielectric function. The Drude model assumes that the conduction electrons in
a metal freely propagate except when they collide with the positive nuclei of the
metal atoms. These collisions are instantaneous and give rise to a damping rate γe.
The resulting dielectric function of the metal is the well-known Drude dielectric
function:

ε = 1−
ω2

p

ω2 + iγeω
, (1.31)

with the plasma frequency ωp =
√
Nee2/(ε0me).

The collective plasma excitations inside a metallic particle described by the
Drude dielectric function, the plasmons, can then be described as self-sustained
oscillations of the polarization density P(r) inside the metal. At this stage
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1.2. Plasmons

Figure 1.2: Schematics of (a) longitudinal bulk plasmons, (b) surface plasmon of a planar
metal-vacuum interface and (c) localized surface plasmon in a metal, all of them described
by a dielectric function ε. (a) The bulk plasmon is a longitudinal oscillation of free-
electron gas polarization P in a bulk metal. (b) The surface plasmon is a wave of surface
charge σ propagating along the metal-vacuum interface [vacuum in region (I) and metal
in region (II)]. (c) The localized surface plasmon is a surface-charge oscillation confined
to the boundary of a metallic particle.

of description we do not consider any interaction of the electrons with the
(transverse) electromagnetic fields of vacuum and we include only the longitudinal
electron-electron interaction [60], as it is commonly done in the many-body
theory of solids. In other words, we treat the plasmons within the quasi-static
approximation (Section 1.1.1). Below we examine some canonical examples of
plasmonic excitations that can be found in the bulk, and on metal-vacuum
interfaces.

Bulk plasmons

The simplest example of a plasmonic excitation is the longitudinal wave of
the electronic density propagating in an infinitely extended metal as shown in
Fig. 1.2 (a). In the bulk metal, the relationship between the electric field and
the plasmonic polarization density can be expressed using the differential form of
Gauss’s law:

∇ ·E =
ρ

ε0
= − 1

ε0
∇ ·P, (1.32)

where ρ = −∇ · P. We further assume the bulk plasmons to be longitudinally
polarized plane waves with a wave vector q and an amplitude Pq of the form

Pq =
q

|q|
Pq exp(iq · r). (1.33)

We further assume the induced electric field to have the form of a longitudinally
polarized wave, Eq, following the oscillating polarization density. The relationship
between the electric field induced by such plane waves and the plasmon polarization
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Chapter 1. Classical and quantum description of plasmons in small particles

density then simplifies to

ε0q ·Eq = −q ·Pq (1.34)

and allows for determination of the relationship between Pq and Eq as ε0Eq =
−Pq, which together with Pq = ε0(ε − 1)Eq leads to the well-known condition
determining the frequency of the bulk plasmons

ε = 0. (1.35)

Assuming that ε, the metal dielectric function, is well described by the Drude
dielectric function (with negligible damping)

ε = 1−
ω2

p

ω2
, (1.36)

the frequency of the bulk plasmons, ωbulk, becomes

ωbulk = ωp. (1.37)

Surface plasmons of a planar metal-vacuum interface

When the bulk metal is cut by a plane (z = 0) and one of the semi-infinite
parts is replaced by a vacuum (z > 0), as shown in Fig. 1.2 (b), a new type of
plasmon excitations arises at the interface. The new excitations are bound to the
metal-vacuum interface and are called surface plasmons. Surface plasmons can be
obtained from the ansatz that assumes that the oscillating charge has the form of
a surface wave:

σq‖(r‖) = σq‖ exp(iq‖ · r‖), (1.38)

with r‖ and q‖ being the component of the position and momentum vectors
in the plane of the interface (xy). The surface-charge density σq‖ produces an
electrostatic potential in (I) the vacuum region (z > 0) and (II) the region filled
with the metal (z < 0):

φ(I)(r‖, z) =
σq‖

2|q‖|ε0
exp(iq‖ · r‖) exp(−|q‖|z), (1.39)

φ(II)(r‖, z) =
σq‖

2|q‖|ε0
exp(iq‖ · r‖) exp(|q‖|z), (1.40)

which must fulfil the boundary condition(
∂

∂z
φ(I)

) ∣∣∣∣
z=0

= ε

(
∂

∂z
φ(II)

) ∣∣∣∣
z=0

. (1.41)
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1.2. Plasmons

This condition is satisfied if ε = −1, yielding the frequency for the surface plasmon
resonance of a planar metal-vacuum interface. From the Drude-like dielectric
function for the metal in Eq. (1.36) the surface-plasmon frequency in a metal-
vacuum interface ωsp can be determined as

ωsp =
ωp√

2
. (1.42)

Localized surface plasmons

Next we consider that the metal is confined into a finite particle surrounded by
a vacuum and search for the surface plasmonic modes sustained by the particle
boundary. Such a situation is schematically depicted in Fig. 1.2 (c). According
to Eq. (1.12) the electric field induced by the plasma oscillations is related to the
polarization density via

ε0E(r) =

∫∫∫
K(r, r′) ·P(r′)d3r′, (1.43)

The self-sustained solutions, Pn(r), of Eq. (1.43) representing the plasmons are
the n−th eigenmodes of the integral operator on its right-hand side:∫∫∫

K(r, r′) ·Pn(r′)d3r′ = −LnPn(r). (1.44)

The eigenvalues Ln are intimately related to the shape of the metallic particle
but are independent of the particle’s size. Once the eigenmodes are found,
the frequency of the plasmonic modes is determined upon comparison of the
right-hand side of Eq. (1.44) with the left-hand side of Eq. (1.43) and using
P(r) = ε0(ε− 1)E(r). One obtains:

Pn(r) = −(ε− 1)LnPn, (1.45)

yielding the condition for the existence of a localized plasmon mode n:

ε =
Ln − 1

Ln
. (1.46)

If we assume that the metal is described by the lossless Drude-like dielectric
function [Eq. (1.36)] the relationship in Eq. (1.46) yields a particularly simple
expression for the localized plasmon frequencies, ωLn :

ωLn =
√
Lnωp. (1.47)

In the search for plasmonic excitations it is often more convenient to take
advantage of different analytical and numerical approaches. A largely exploited
tool that enables an efficient calculation of the plasmonic excitations is the
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Chapter 1. Classical and quantum description of plasmons in small particles

boundary-integral approach introduced in Section 1.1.1. In the boundary-integral
formulation plasmons are defined as self-sustained oscillations of the surface
electric charge, σ, induced on the particle boundary. The boundary-integral
formulation then connects σ with the electrostatic potential φIN inside the particle
induced by the surface charges [46, 61, 62]:∫∫

∂Vpar

F(s, s′)σ(s′)d2s′ + 2πσ(s) =
∂φIN

∂n
4πε0, (1.48)

where F(s, s′) has been defined in Eq. (1.15), and ∂φIN

∂n = ns ·∇φIN(s). The surface
plasmon modes σn are then obtained as solutions of the eigenvalue problem∫∫

∂Vpar

F(s, s′)σn(s′)d2s′ = λnσn(s), (1.49)

where λn are real positive eigenvalues that solely depend on the particle shape and
are independent of the particle absolute size. Importantly, the eigensolutions of
Eq. (1.49), σn, are related to the eigensolutions, Pn, of Eq. (1.44) as σn = Pn · n.
The respective eigenvalues obtained from Eq. (1.49), λn, and from Eq. (1.44), Ln,
are connected via

Ln =
1

2
+
λn
4π
. (1.50)

This result can be reached by substituting ∇φIN
n = LnPn/ε0 and σn = Pn · n, in

Eq. (1.48), and using Eq. (1.49). Furthermore, it can be shown that the plasmonic
modes Pn are mutually orthogonal functions [62] and can be normalized such that∫∫∫

Vpar

P∗n ·Pm d3r = δnm. (1.51)

with δnm the Kronecker delta.

For a certain class of geometries of the plamsonic particles, the plasmonic modes
and frequencies can be found analytically. Such solutions can be obtained if the
particle surfaces can be described as constant-coordinate surfaces in separable
coordinates for the Laplace’s equation. This problematic is described in detail by
Morse and Feschbach [63] on p. 655 et seq. and later used on p. 828 et seq. in the
context of the calculation of the Green’s function fo the Laplace’s and Helmholz’s
equations, and has been e.g. applied by Engelman and Ruppin for the treatment
of phonon-polaritons in finite ionic crystals [64–66]. In Section 5.1.4 we use this
method to find the surface-plasmon modes of a spherical particle.
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1.3. Canonical quantization of localized surface plasmons

1.3 Canonical quantization of localized surface
plasmons

In the classical framework we have defined the surface plasmon modes as the
self-sustained collective oscillations of the electron gas. Nevertheless, we have
considered the eigensolutions either in the form of the surface charge σ [Eq. (1.49)]
or the polarization density P [Eq. (1.44)] and defined a mathematically convenient
normalization condition given by Eq. (1.51) without deeper physical significance.
In this section we introduce the canonical quantization procedure for the localized
surface plasmons that defines the quantum amplitude of a single plasmonic
excitation (the amount of plasmonic quantum fluctuations) and thus completes
the definition of surface plasmons as quanta of the collective charge oscillations.
The quantized surface plasmons are the starting point for further theoretical
developments in Parts III and IV of this thesis.

To quantize the surface plasmons we start with the classical Hamiltonian, H,
expanded into the normal modes of the polarization density, Pn:

Hpl =

∫∫∫
Vpar

∑
n

me

2Nee2
Ṗ2
n +

Ln
2ε0

Pn
2d3r, (1.52)

where Ln is the corresponding eigenvalue [see Eq. (1.44)]. We identify Pn, the
(real) polarization density of the metal related to the plasmonic mode n, and
Πn ≡ me

e Ṗn, as the canonical dynamical variables. We further introduce the
mode functions, fn, which are vector fields defined in the particle volume Vpl, that
describe the displacement of the electron gas at each point (fn ∝ Pn), and are
normalized as: ∫∫∫

Vpar

f∗n · fm d3r = δnm. (1.53)

It is further convenient to divide real functions (x(t)) into their respective
positive (x(+)(t)) and negative (x(−)(t)) frequency parts as x(t) = x(+)(t)+x(−)(t),
with x(+)(t) = x(−)(t)∗ and x(+)(t) =

∫∞
0
x(+)(ω)e−iωt dω. The positive-frequency

part of the polarization density of a mode n can be written as P
(+)
n = Neeu

(+)
n fn,

with u
(+)
n being the positive-frequency part of a scalar amplitude, un, of the

displacement. For convenience, we also define p(+)
n ≡ Neme

du(+)
n

dt . After some
algebra we obtain the Hamiltonian of the plasmonic excitations (since the normal
modes have a harmonic time dependence u(+)

n (t) = u
(+)
n,0 e

−iωLn t):

Hpl =
∑
n

1

2Neme
p2
n +

LnN
2
e e

2

2ε0
u2
n. (1.54)

This Hamiltonian describes a set of harmonic oscillators, where the oscillator
frequency is ωLn =

√
LnNee2/(ε0me). Following the standard quantization
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Chapter 1. Classical and quantum description of plasmons in small particles

procedure based on the correspondence with the quantization of a harmonic
oscillator, we define the creation, â†n, and annihilation, ân, operators of the
plasmonic excitation n and promote the amplitudes to operators to get the position
and momentum operator of each mode as:

ûn =

√
~

2NemeωLn
(ân + â†n), (1.55)

p̂n =− i

√
~NemeωLn

2
(ân − â†n), (1.56)

with the commutation relation [ân, â
†
n] = 1 and ~ the reduced Planck’s constant.

These relationships define our quantum system in terms of the quantized
polarization operator:

P̂ =
∑
n

P̂(+)
n + P̂(−)

n =
∑
n

P(+)
n ân + P(−)

n â†n

= −
∑
n

√
Nee2~

2meωLn
(ânfn + â†nf∗n),

ˆ̇P =
e

me
Π̂ = i

√
~Nee2ωLn

2me

(
ânfn − â†nf∗n

)
,

(1.57)

with P
(−)
n = [P

(+)
n ]∗, which are time independent in the Schrödinger picture.

The result for the polarization operators can be applied to find the quantization
condition for the surface charge density σn and the induced potential, φn (see
AppendixA.1): ∫∫

∂Vpar

φ(+)
n σ(−)

n d2s =
1

2
~ωLn , (1.58)

For completeness, we explicitly write the electrostatic potential operator, φ̂pl
n ,

of mode n, and the surface charge operator of the same mode, σ̂pl
n , as

φ̂pl
n = φ(+)

n ân + φ(−)
n â†n, (1.59)

σ̂pl
n = σ(+)

n ân + σ(−)
n â†n. (1.60)

Finally, the Hamiltonian of the plasmonic modes, Ĥpl, of the particle becomes in
the notation of the creation and the annihilation operators

Ĥpl =
∑
n

~ωLn â†nân, (1.61)

where we have left out the constant factor of
∑
n

1

2
~ωLn .

16



1.4. Summary

1.4 Summary
In this introductory chapter to the methodology we have presented the classical
and quantum approaches to plasmonic excitations in metallic particles. We have
started by reviewing Maxwell’s equations in linear dielectrics to obtain practical
tools allowing us to describe excitations in materials. We have described the
dielectric response of metals via the Drude dielectric function and by using classical
electrodynamics we have derived the conditions for the existence of bulk plasmons
and of surface plasmon polaritons.

Special attention has been paid to the description of surface plasmons in finite
metallic particles. We have discussed a general framework for calculation of the
plasmonic mode functions and frequencies as eigenfunctions and eigenvalues of an
integral operator.

Last, we have taken the classical results and by applying the canonical
quantization procedure, a normalization condition for the plasmonic fields has
been introduced such that their amplitude represents a single quantized plasmonic
excitation.

We have left aside the quantization procedure of electromagnetic fields in
dielectrics introduced by Huttner and Barnett where the material acts as a source
of spatially-dependent fluctuating bosonic currents [67–72]. In this formalism the
dielectric function carries the information about the current fluctuations in the
material via the imaginary part of its dielectric function. Instead, we have opted
in the thesis for a straightforward description of plasmons that emerges from the
treatment of the interacting many-electron gas.
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Chapter 2

Quantum description of
electronic and vibrational
excitations in molecules

One of the main goals of this thesis is to describe theoretically plasmon-
mediated spectroscopy of molecular excitations. Plasmonic cavities are introduced
as a structure that allows probing molecules more efficiently by squeezing
electromagnetic fields down to the molecular scale. In this chapter we present
a brief review of electronic and vibrational excitations in molecules. We start
with the Hamiltonian description of the interacting system of many electrons and
atomic nuclei, representing the molecule, and derive the basic equations governing
the different molecular excitations.

This chapter sets the stage for Parts II, III and IV which describe the
interactions between plasmons and molecular excitations and their manifestation
in plasmon-mediated infrared and optical response of molecules placed into the
plasmonic cavities.

2.1 Hamiltonian of a molecule in a vacuum

The molecule is a highly complex system composed of mutually interacting
negatively charged electrons and positively charged nuclei. In the non-relativistic
limit, such system is generally described by the Hamiltonian (expressed in the
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Chapter 2. Quantum description of molecular excitations

position basis of the electrons [e] and the nuclei [n]):

Hmol = He + Tn, (2.1)

He = −
∑
i

~2∇2
i

2me
+
∑
i,j
i 6=j

e2

8πε0|ri − rj |

+
∑
I,J
I 6=J

QIQJ
8πε0|RI −RJ |

+
∑
Ij

eQI
4πε0|RI − rj |

, (2.2)

Tn = −
∑
I

~2∇2
I

2MI
. (2.3)

where He and Tn are the electronic Hamiltonian (including the inter-nuclear
interaction potential) and the nuclear kinetic energy, respectively, ∇i(I) stands
for the gradient operator in the electronic (nuclear) coordinates ri = [ri,x, ri,y, ri,z]
(RI = [RI,x, RI,y, RI,z]) and we have defined the electron (nucleus) charge, e (QI),
and the mass of electron (nucleus), me (MI). In the summations, the lower-case
indices i, j run over the electrons and the upper-case indices I, J run over the
nuclei. For brevity we will further use a simplified notation in which {r} ({R})
labels the set of all the electronic (nuclear) coordinates. For later convenience we
also define the electronic Hamiltonian free of the nuclear interaction energy, H̃e,
as

H̃e = He −
∑
I 6=J

1

2

QIQJ
4πε0|RI −RJ |

, (2.4)

which is commonly considered as the starting point for the many-body electronic
problem as discussed below.

The standard way how to approach the solution of the Hamiltonian in Eq.
(2.1) is to assume the ansatz in which the total wave function of the system,
Ψ({r}, {R}), is a sum of contributions that are factorized into the part describing
the electronic degrees of freedom, ϕα({r}; {R}), which parametrically depends
on the nuclear coordinates, and the nuclear wave function, χα({R}) (the Born-
Oppenheimer approximation):

Ψ({r}, {R}) =
∑
α

ϕα({r}; {R})χα({R}). (2.5)

The electronic wave functions ϕα({r}; {R}) are defined to be eigensolutions of the
electronic Hamiltonian He:

[He − Eα({R})]ϕα({r}; {R}) = 0, (2.6)

with Eα({R}) the {R}-dependent eigenenergy of the electronic state α.
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2.2. Electronic excitations

The nuclear wave functions χα({R}) obey the coupled equations:{
−
∑
I

~2∇2
I

2MI
+ [Eα({R})− ε]

}
χα

+
∑
β

{
−
∑
I

[
~2

2MI
τ

(2)
I,αβ +

~2

MI
τ

(1)
I,αβ · ∇I

]
χβ

}
= 0, (2.7)

where ε is the sought vibrational eigenvalue and we have defined the non-adiabatic
couplings τ (1)

I,αβ and τ (2)
I,αβ

τ
(1)
I,αβ = 〈ϕα|∇Iϕβ〉r ≡

∫
· · ·
∫
ϕ∗α∇Iϕβ d3Nelr, (2.8)

τ
(2)
I,αβ = 〈ϕα|∇2

Iϕβ〉r ≡
∫
· · ·
∫
ϕ∗α∇2

Iϕβ d3Nelr, (2.9)

with Nel the number of electrons. The contributions of the coupling coefficients
τ

(1)
I,αβ can be shown to be inversely proportional to the difference between the

energies Eα({R}) and Eβ({R}), with τ (2)
I,αβ ∼

(
τ

(1)
I,αβ

)2

. Therefore, in situations
where the energies of the electronic states are well separated, the non-adiabatic
corrections usually become small and can be neglected. This is the so-called
adiabatic Born-Oppenheimer approximation in which the nuclear wave functions
become decoupled and can be obtained from the set of independent equations{

−
∑
I

~2∇2
I

2MI
+ [Eα({R})− ε]

}
χα = 0, (2.10)

where the energies Eα({R}) of the respective electronic states (including the
Coulomb energy of the interacting nuclei), dependent on the nuclear coordinates
{R}, play the role of an effective potential experienced by the nuclear motion,
known as the Born-Oppenheimer potential-energy surface (PES). In the upcoming
section we will address the individual parts of the Hamiltonian that give rise to
the vibrational and electronic excitations.

2.2 Electronic excitations

Practically all molecular properties directly or indirectly derive from the molecular
electronic structure. For example, the vibrational modes of a molecule are defined
by the potential energy surfaces determined by the electronic states. Similarly,
also the interaction of molecules with light is largely determined by the electronic
states of the molecule and the transitions among them. Here we address how the
electronic excitations of the molecule can be obtained in the Born-Oppenheimer
approximation (assuming frozen nuclei).
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Chapter 2. Quantum description of molecular excitations

Due to the quantum nature of electrons, the electronic Hamiltonian H̃e poses a
complicated many-body problem that in general cannot be solved exactly and we
are therefore forced to make use of approximate methods [73]. Some methods rely
on semi-empirical models that result in an effective single-electron Hamiltonian,
such as the Hückel theory of molecular orbitals or the tight binding methods.
On the other hand, ab-initio methods are attempting to solve the electronic
problem starting from the exact many-body Hamiltonian without making the use
of additional input parameters. Approaches such as the Hartree-Fock method with
its extensions (the post Hartree-Fock methods) [73–78] or a class of Monte-Carlo
methods [79, 80] are based on solution of the Hamiltonian, making assumptions
about the electronic wave-function. Other approaches circumvent the use of the
wave-function by deriving the electronic properties from the electronic density.
Such electronic-density based approach is known as the density-functional theory
(DFT) [81–84].

We choose DFT to perform calculations of the molecular electronic structure
as it has become a standard and efficient tool of quantum chemistry.

2.2.1 The Density-Functional Theory

The DFT is based on mathematical theorems bearing their author’s names, the
Hohenberg-Kohn theorems [81], which state that:

(I) The total energy of the many-body system is a unique functional of the
electron density n(r), and

(II) the ground-state energy can be obtained from a variational principle with
the optimal density minimizing the energy functional. The optimal density
is the electron density of the actual electronic ground state.

These theorems allow for defining the ground-state quantum many-body properties
in terms of the electron charge density, however, they do not apply for calculation
of the excited states, for which further extensions of the theory are needed [73, 85].
We address the density-functional approach to the calculation of low-lying excited
states in the next subsection.

The ground-state density n(r) is usually constructed from a set of auxiliary
functions φKS

i (r) termed Kohn-Sham orbitals as

n(r) =
∑
i

φKS
i

∗
(r)φKS

i (r). (2.11)

The Kohn-Sham orbitals then fulfil the Kohn-Sham equation [86] that formally
resembles the single-particle Schrödinger equation and contains an implicit
dependence on the electron density n(r):{

−~2∇2

2me
+ Vs(r)

}
φKS
i (r) = λKS

i φKS
i (r). (2.12)
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2.2. Electronic excitations

Here the first term in the braces represents the single-particle kinetic-energy
operator, Vs(r) = Vs[r;n(r)] plays the role of the density-dependent potential
and λKS

i are the eigenvalues related to the Kohn-Sham orbitals φKS
i . Vs(r) can be

further expressed as

Vs(r) = Vext(r) +

∫
e2n(r′)

4πε0|r− r′|
d3r′ + VXC(r), (2.13)

where Vext(r) is the potential induced by the nuclei combined with the potential of
any other external sources, the second term accounts for the effective screening by
the electrons and VXC is the exchange-correlation potential related to the exchange-
correlation energy functional fXC[n(r)] via the functional derivative:

VXC =
δfXC[n(r)]

δn(r)
. (2.14)

Using this notation, the total electronic energy Eel becomes

Eel[n(r)] =Ts[n(r)] +

∫∫∫
Vext(r)n(r) d3r +

1

2

∫∫∫ ∫∫∫
e2n(r)n(r′)

4πε0|r− r′|
d3r d3r′

+ fXC[n(r)], (2.15)

where Ts[n(r)] = − ~2

2me

∫∫∫
φKS
i
∗
(r)∇2φKS

i (r) d3r, and fXC[n(r)] contains all the
other many-body exchange and correlation contributions so that Eq. (2.15) holds.

The subtlety of the DFT lies in the definition of fXC as the exact functional is
not known. Many different forms of fXC have been developed combining various
analytical and empirical approaches. In this thesis we do not aim at discussing
the broad palette of available functionals and instead refer the interested reader
to specialized literature about the DFT [82, 83, 87]. Nevertheless, the state-
of-the-art exchange-correlation functionals make DFT to be the accurate and
computationally inexpensive tool for quantum chemistry and solid-state physics
as known nowadays.

The ground-state electronic density, n(r), of the molecule is found by self-
consistent solution of the Kohn-Sham equation [Eq. (2.12)]. Once n(r) is
determined, it is possible to calculate the ground-state properties of the molecule,
such as the molecular vibrations by sampling the ground-state nuclear PES.

2.2.2 Time-Dependent Density-Functional Theory

The Time-Dependent Density-Functional Theory (TDDFT) [73, 85, 88, 89] is
based on the generalizing theorems of Runge and Gross [85], which show that
the time-dependent electronic density,

n(r, t) =
∑
i

φKS
i

∗
(r, t)φKS

i (r, t), (2.16)
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Chapter 2. Quantum description of molecular excitations

can be calculated from a time-dependent version of the Kohn-Sham scheme [Eq.
(2.12)] introduced above:

i~
∂φKS

i (r, t)

∂t
=

{
−~2∇2

2me
+ Vs(r, t)

}
φKS
i (r, t), (2.17)

where

Vs(r, t) = Vext(r, t) +

∫
e2n(r′, t)

4πε0|r− r′|
d3r′ +

δAXC[n(r, t)]

δn(r, t)
, (2.18)

where Vext(r, t) contains the potential of the nuclei and any additional time-
dependent external potentials, and AXC is the exchange-correlation part of the
action integral [85]. As in the case of the time-independent theory, the exchange-
correlation term, AXC, is again the key to the accuracy of the method and is not
known in its exact form.

In this thesis we use TDDFT as implemented in NWChem [90] in the form of
the linear-response TDDFT (LR-TDDFT) [73, 91], which allows for calculation of
the lowest-lying excitation energies. In the following we consider that the change
in the electronic density induced due to the external linear perturbation (the
electronic transition density) of frequency ω is of the form

δn(r, ω) =
∑
ai

Xaiφ
KS
a (r)φKS

i

∗
(r) + Yaiφ

KS
i (r)φKS

a

∗
(r), (2.19)

where φKS
p (r) are the Kohn-Sham orbitals of the time-independent problem and we

use the convention in which a, b, . . . run over the unoccupied Kohn-Sham orbitals
and i, j, . . . over the occupied orbitals. The coefficients Xai can be understood in
this context as contributions to the electronic transition density from the single-
electron transitions annihilating an electron in the occupied Kohn-Sham orbitals an
populating an unoccupied orbital, and Yai are responsible for the reverse process.
Without further derivation, we state that the LR-TDDFT in the random-phase
approximation (RPA) consists in solving an eigenvalue (Casida) equation [73, 91]
for the energies of the electronic excitations, W, following:[

A B
B∗ A∗

] [
X
Y

]
=W

[
1 0
0 −1

] [
X
Y

]
, (2.20)

where X and Y are vectors containing the coefficients Xai and Yai, respectively.
We have further defined

Aia,jb = δijδab(λ
KS
a − λKS

i ) + (ia|jb) + (ia|gXC|jb), (2.21)
Bia,jb = (ia|bj) + (ia|gXC|bj), (2.22)

where λKS
a(i) are the energies of the respective Kohn-Sham orbitals (considered as
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2.2. Electronic excitations

real), and

(pq|rs) =

∫ ∫
φKS
p (r1)φKS

q (r1)φKS
r (r2)φKS

s (r2)

4πε0|r1 − r2|
d3r1d3r2, (2.23)

(pq|gXC|rs) =

∫ ∫
φKS
p (r1)φKS

q (r1)gXC(r1, r2)φKS
r (r2)φKS

s (r2) d3r1d3r2. (2.24)

In the expressions above, the integrals identically vanish if any two orbitals with
the same spatial integration coordinate represent electrons of the same spin.
(pq|gXC|rs) depends on the approximation of the exchange-correlation kernel and
is related to AXC [73]. In particular, the exchange-correlation contribution can be
obtained in the adiabatic approximation, where it is assumed that

δAXC

δn
≈ δfXC

δn
, (2.25)

as

gXC(r1, r2) ≈ δ2fXC

δn(r1)δn(r2)
, (2.26)

with fXC being the exchange-correlation functional of the time-independent theory.

The solution of the full Casida equation [Eq. (2.20)] is often simplified by
assuming that the transition electronic density, δn(r, ω), is formed purely by
transitions from the occupied to the unoccupied Kohn-Sham orbitals, neglecting
the often small contribution from Yai:

δn(r, ω) ≈
∑
ai

Xaiφ
KS
a (r)φKS

i (r). (2.27)

This approximation, called the Tamm-Dancoff approximation (TDA) or the
configuration interaction singles (CIS), yields the simplified eigenvalue problem

AX = ωX. (2.28)

Equation (2.28) is usually more tractable computationally for larger electronic
systems than the full Casida equation [Eq. (2.20)] and often yields a satisfactory
accuracy.

Once the electronic excitations are found from Eq. (2.20) or (2.28), the
eigenfrequencies WI and the respective eigenvectors XI and YI can be used
to determine the molecule’s properties in the excited electronic state |eI〉. The
eigenfrequencies can be used to determine the excited-state PESs that, among
others, define the excited-state vibrations of the molecule. The vectors XI and
YI then yield the electronic transition charge density, ρeIg, between the ground
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Chapter 2. Quantum description of molecular excitations

state |g〉 and the excited state |eI〉:

ρeIg = eδnI(r, ω) = e
∑
ai

XI
aiφ

KS
a (r)φKS

i (r) + Y Iaiφ
KS
i (r)φKS

a (r). (2.29)

In Section 5.1.4 we use the transition charge density to calculate the interaction of
the molecular electronic excitations (excitons) with the particle plasmons.

2.3 Molecular vibrations in the adiabatic
Born-Oppenheimer approximation

The nuclear Hamiltonian in Eq. (2.10) is determinant for chemical properties of
the molecules as the PESs represent the energy landscapes of chemical reactions
[92, 93] and determines the vibrational properties of molecules which give rise
to fingerprint signatures in optical and IR spectra. In this chapter we solve the
nuclear Hamiltonian in the limit of small atomic displacements

Our starting point is the vibrational Hamiltonian in the adiabatic Born-
Oppenheimer approximation on top of the PES belonging to the electronic state
of interest

Hvib = −
∑
I

~2∇2
I

2MI
+ E({R}), (2.30)

which we interpret as a Hamiltonian of a set of classical point-like nuclei

Hvib =
∑

I,ζ=x,y,z

1

2
MI

(
ṘI,ζ

)2

+ E({R}), (2.31)

where I runs over the nuclei and ζ runs over the spatial coordinates. We further
assume that the PES can be approximated in the vicinity of the equilibrium
geometry {R}0 as

Eα({R}) ≈ E({R}0) +
1

2

∑
I,J

∑
ζ,ξ=x,y,z

(
∂2

∂RI,ζ∂RJ,ξ
E({R})

) ∣∣∣∣
{R}0

RI,ζRJ,ξ.

(2.32)

It is also convenient to introduce the mass weighted coordinates

q̃I,ζ =
√
MIRI,ζ (2.33)
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2.3. Molecular vibrations in the adiabatic Born-Oppenheimer approximation

and for simplicity define a new indexing convention

q̃a ≡ q̃I,ζ , (2.34)
Ra ≡ RI,ζ , (2.35)
Ma ≡MI,ζ (2.36)

so that we can introduce the mass-weighted (column) vectors (q̃)a = q̃a. Using
the above definitions, we arrive at the following Hamiltonian characterizing the
motion of the nuclei:

Hvib =
1

2

∑
a

˙̃q2
a +

1

2
Uabq̃aq̃b

=
1

2
˙̃qT · ˙̃q +

1

2
q̃T ·U · q̃, (2.37)

where we have defined the dynamical matrix

(U)ab = Uab =
1√

MaMb

∂2E({R})
∂Ra∂Rb

∣∣
{R}0

(2.38)

and (·)T stands for transposition.
We transform now the Hamiltonian in Eq. (2.37) into a diagonal form. To that

end we diagonalize the dynamical matrix U = ST ·Ω2 ·S, where Ω is the diagonal
matrix of frequencies Ωα:

Ω =

Ω1 0 · · ·
0 Ω2 · · ·
...

...
. . .

 , (2.39)

and S is a unitary matrix with each α-th column being an eigenvector of the matrix
U. In the new basis, the Hamiltonian has the form of a sum of non-interacting
classical Harmonic oscillators that we identify with the molecular vibrations:

Hvib =

3N∑
α=1

1

2
q̇2
α +

1

2
Ω2
αq

2
α, (2.40)

where the summation runs over all 3N degrees of freedom of the nuclear motion of a
N -atomic molecule. However, there are only 3N−6 degrees of freedom that lead to
deformation of the molecular geometry which can represent the vibrational modes.
The remaining 6 degrees of freedom contain the rigid translations and rotations of
the entire molecule, which result in six solutions with vibrational frequency equal
to zero (the so-called zero-frequency modes). In the vibrational Hamiltonian of
the molecule we therefore subtract the zero-frequency modes and sum only over
the 3N − 6 vibrational modes.

So far we have obtained a classical Hamiltonian of the molecular vibrations that
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Chapter 2. Quantum description of molecular excitations

has been derived from the originally fully quantum Hamiltonian of the molecule. In
the final step we therefore canonically quantize the molecular vibrations. To that
end we promote the displacements qα and their canonical conjugates pα = q̇α
to operators (qα → q̂α and pα → p̂α) that obey the commutation relations
[q̂α, p̂α] = iµM

α ~, where µM
α is the reduced mass of the mode α. The reduced mass

µM
α is defined as a diagonal element of the transformed mass matrix µM connected

to the original diagonal mass matrix (M)ab = δabMa via µM = ST ·M · S.
The canonical quantization also allows for defining the operators in the basis

of the bosonic creation b̂†α and annihilation b̂α operators of the vibrational mode
α (fulfilling the commutation relation [b̂α, b̂

†
α] = 1):

q̂α =

√
~

2Ωα
(b̂†α + b̂α), (2.41)

p̂α = iµα

√
~Ωα

2
(b̂†α − b̂α) (2.42)

and finally writing the vibrational Hamiltonian as

Ĥvib =

3N−6∑
α

~Ωα

(
b̂†αb̂α +

1

2

)
. (2.43)

Under the Born-Oppenheimer approximation, similar Hamiltonian can be
written for the vibrations sustained by each electronic state |ei〉 of the molecule.
The Hamiltonian of the molecular electronic and vibrational states then becomes

Ĥmol =
∑
i

|ei〉〈ei|

(
Ei +

3N−6∑
α

~Ωi,αb̂
†
i,αb̂i,α

)
, (2.44)

with Ei the energy of the electronic excited state |ei〉 (including the vibrational
zero-point energy), in which the vibrational modes of frequencies Ωi,α are described
by the respective bosonic annihilation (creation) operators bi,α (b†i,α) in each
electronic state. We use this form of the molecular electronic and vibrational
Hamiltonian [Eq. (2.44)] in Section 7.4 to describe the Raman activity of molecules
and to derive the model Hamiltonians describing the interaction of the molecule’s
states with plasmons and with incident light.

2.4 Summary

In this introductory chapter we have provided a brief summary of the physical
origin of the molecular electronic and vibrational excitations. Starting from the
general many-body Hamiltonian describing the interacting system of electrons
and nuclei, we have derived in the Born-Oppenheimer approximation the effective
vibrational and electronic Hamiltonians.
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2.4. Summary

We have concentrated on the treatment of the electronic excitations in
molecules within the framework of (TD)DFT as the (TD)DFT is nowadays a
computationally efficient and accurate tool in quantum chemistry. We use TDDFT
in Section 5.1.4 to describe the interaction of the molecular electronic excitations
with plasmons in metallic particles.

Finally we have solved the effective nuclear Hamiltonian of the molecule in the
approximation of small vibrations and we have derived the classical and quantized
vibrational modes of the molecule. We use these results in Parts II and IV of the
thesis.
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Chapter 3

Quantum Electrodynamics
(QED) description of
plasmonic and molecular
excitations

The spectral signal in plasmon-enhanced spectroscopies is a result of a mutual
interaction between the excitations of the sample and those of the hosting
plasmonic antenna. In this chapter we introduce cavity Quantum Electrodynamics
(QED), as a key quantum methodology that allow for practically treating the
complex interaction between the excitations of the hosting plasmonic antenna,
the excitations of the sample and the incident or emitted light. We build the
theory using the formalism of the open quantum systems that allows for including
incoherent processes, such as decay and decoherence, arising form interactions of
the system with its environment.

In this chapter we first introduce the basic concepts and definitions of cavity
QED, and derive the dynamical equations of the theory. We then discuss a
particular example of a two-level system interacting with electromagnetic modes
in a generically structured environment (the Wigner-Weisskopf theory). Last, we
derive the expressions for the emission and extinction spectra within the QED
formalism.
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Chapter 3. QED description of plasmonic and molecular excitations

3.1 The density matrix and the quantum master
equation

3.1.1 Pure states, mixed states and observables

Any isolated physical system can be characterized by its state |Ψ〉 (using the Dirac
notation) that evolves in time according to the Schrödinger equation:

i~
d

dt
|Ψ〉 = Ĥ|Ψ〉, (3.1)

where the time evolution is determined by the time-independent Hamiltonian
Ĥ of the system. A system that is driven by external stimuli which are not
explicitly quantized (such as classical driving electromagnetic fields) is called a
closed quantum system for which the dynamics of the state |Ψ〉 is governed by
the Schrödinger equation according to the generally time-dependent Hamiltonian
Ĥ(t).

Very often, the exact quantum state cannot be determined for practical reasons,
or an experiment on an ensemble of identical quantum systems needs to be
performed. In such a case, the state of the system (or the average state of the
ensemble) is rather described as a probabilistic mixture of several pure quantum
states |ψα〉, called the mixed state. It is therefore necessary to generalize the
description of a quantum state beyond the pure state vectors |Ψ〉.

The desired statistical operator that combines the purely quantum description
of the quantum state |ψα〉 with the classical probabilities wα to find the system in
the state |ψα〉 is the density operator defined as:

ρ̂ =
∑
α

wα|ψα〉〈ψα|, (3.2)

where wα satisfy
∑
α

wα = 1. The classical probabilities wα introduce the classical

uncertainty about the pure quantum state |ψα〉 of the system. We further assume
that all quantum states are properly normalized, which yields the normalization
condition for the density operator Tr{ρ̂} = 1.

The density operator plays an important role in the theory of open-quantum
systems as well as in the theory of coherence that will become important in the
following chapters. It is therefore necessary to clarify the difference between
the so-called mixed state (introduced by the density operator) and a quantum
superposition of pure states. As an example we consider the density operators of a
quantum superposition of two orthonormal states |g〉 and |e〉, |ψeg〉 = 1√

2
(|g〉+|e〉),

or of a mixed state containing |g〉 and |e〉 with equal classical probabilities. The
corresponding density operator, ρ̂ψeg , of the former can be represented in the basis
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3.1. The density matrix and the quantum master equation

{|g〉, |e〉} by a matrix:

ρψeg
=

1

2

[
1 1
1 1

]
. (3.3)

For the mixed state, on the other hand, the density operator ρ̂mix can be
represented by a matrix:

ρmix =
1

2

[
1 0
0 1

]
. (3.4)

The difference between the two matrix representations is apparent. The matrix
representing the superposition state |ψeg〉 contains nonzero off-diagonal terms
named coherences, whereas the mixed state is expressed by a fully diagonal matrix
where the coherences are absent. Exploiting this nomenclature we can thus say
that |ψeg〉 is a coherent superposition of |g〉 and |e〉, and the mixed state is an
incoherent superposition of the two.

The density operator has a large number of properties that can be found in
standard textbooks [94, 95] and that we omit here for brevity. Like the pure
quantum state, the density operator also determines all observable quantities
(observables) of the system. According to quantum mechanics, the observables
are represented by operators acting on its Hilbert space. The outcome of an
experiment that measures an observable Ô is in quantum mechanics a stochastic
quantity with the mean value given by the well-known formula

〈Ô〉 = 〈ψ|Ô|ψ〉 (3.5)

if the system is in the pure state. In case that the system is described by the density
matrix, the outcome of the measurement is still a stochastic value, determined not
only by the quantum probability of the measurement but also by the classical
probabilities wα. The mean value of the observable is then given by

〈Ô〉 = Tr{ρ̂ Ô}, (3.6)

where Tr{·} denotes the trace.

3.1.2 Time evolution of the density operator

We complete the discussion of the density operator by presenting the differential
equation governing its time evolution. Provided that each pure state |ψα〉 of an
isolated or closed system obeys

i~
d

dt
|ψα〉 = Ĥ|ψα〉, (3.7)
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Chapter 3. QED description of plasmonic and molecular excitations

with Ĥ the system Hamiltonian, the density operator of an isolated (closed) system
can be shown to evolve according to the equation of motion

i~
d

dt
ρ̂ = [Ĥ, ρ̂], (3.8)

where [·, ·] is the commutator. Equation (3.8) is known as the Liouville-von
Neumann equation or the master equation.

The Liouville-von Neumann equation also gives access to the time evolution
of the operator mean values. Using Eq. (3.6) together with Eq. (3.8) it can be
shown that

Tr

{
d

dt
ρ̂ Ô

}
= 〈 ˙̂

O〉 =
1

i~
〈[Ô, Ĥ]〉, (3.9)

where in the last step we made use of the cyclic property of the trace.

3.1.3 Open quantum systems, the quantum master
equation

In practice many systems are not isolated nor closed but instead they interact
with a highly complex environment constituting thus only a part of a larger closed
system. In such situations, the complete knowledge of the state combining the sub-
system of interest as well as the environment would be required to fully describe
the dynamics of the system. This poses a difficult problem that is generally not
tractable due to the excess of environmental degrees of freedom or simply due
to the lack of knowledge about the environment. In this section we present the
equations determining the approximate dynamics of the smaller sub-system of
interest influenced by the environment that is treated as an effective reservoir.

We assume that the state of the total system can be expressed as a direct
product |Si〉 ⊗ |Ej〉 of orthonormal bases of the sub-system |Si〉 and of the
environment |Ej〉. The state of the complete system is then expressed in this basis
with help of its density operator ρ̂T that contains both the information about the
sub-system and the environment. We further define the reduced density operator,
ρ̂S, of the sub-system

ρ̂S = TrE{ρ̂T} ≡
∑
i

〈Ei|ρ̂T|Ei〉, (3.10)

where we have defined the partial trace TrE{ρ̂T} of the density operator ρ̂T over
the environmental states. The reduced density operator ρ̂S contains only the
information about the sub-system of interest, denoted as the open quantum system
S, and has a substantially smaller dimension than ρ̂T. Moreover, the expectation
values of all observables ÔS operating only on the sub-system Hilbert space can
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3.1. The density matrix and the quantum master equation

be obtained from ρ̂S by applying the trace rule

〈ÔS〉 = Tr{ρ̂S ÔS}. (3.11)

It is therefore convenient to derive an effective theory which can solely describe
the physics of ρ̂S and treat the environment only perturbatively.

We start with the general formula for the time evolution of the reduced density
operator ρ̂S that can be derived from Eq. (3.8) by applying the definition in Eq.
(3.10), yielding

i~
d

dt
ρ̂S = TrE

{
i~

d

dt
ρ̂T

}
= TrE{[Ĥ, ρ̂T]}, (3.12)

where the right-hand side is a partial trace of an expression containing the
Hamiltonian of the total system, Ĥ, and the total-system density operator, ρ̂T.
The time evolution of ρ̂S is not generally Hermitian and new incoherent loss
mechanisms, such as population decay or pure dephasing, appear due to the partial
trace. These processes result in time-irreversible dynamics of the system state and
lead to loss of the system coherence. We further write the total Hamiltonian Ĥ in
the form

Ĥ = ĤS + ĤSE + ĤE, (3.13)

where ĤS is the Hamiltonian of the open system, ĤE is the Hamiltonian of
the environment and ĤSE is the interaction Hamiltonian connecting the two.
Next we invoke the interaction picture in which the Hamiltonian transforms as
ˆ̃H = ÛĤÛ†+ i~ ˙̂

UÛ† with Û = exp
(

iĤNI t
)
and ĤNI = ĤS + ĤE. The operators,

including the density operator, acquire the explicit time dependence ˜̂
O = Û Ô Û†.

In the interaction picture, the time evolution of the density operator has the
form

˙̂ρT(t) =
1

i~

[
ĤSE(t), ρ̂T(t)

]
. (3.14)

Eq. (3.14) can be formally integrated

ρ̂T(t+ ∆t) = ρ̂T(t) +
1

i~

∫ t+∆t

t

dt′
[
ĤSE(t′), ρ̂T(t′)

]
(3.15)

and used consecutively to express ρ̂T(t′) in Eq. (3.15), leading to the second-order
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expression

ρ̂T(t+ ∆t)− ρ̂T(t) =
1

i~

∫ t+∆t

t

dt′
[
ĤSE(t′), ρ̂T(t)

]
− 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
ĤSE(t′),

[
ĤSE(t′′), ρ̂T(t′′)

]]
.

(3.16)

The derivation of the effective dynamics of ρ̂S from Eq. (3.16) involves the use
of a series of approximations including the Born approximation and the Markov
approximation.

We assume that the first term on the right-hand side of Eq. (3.16) disappears
because

TrE

{[
ĤSE(t′), ρ̂T(t)

]}
= 0, (3.17)

which follows if we assume that ρ̂T ≈ ρ̂S(t) ⊗ ρ̂E, where ρ̂E is not affected by
the system dynamics. This approximation states that the correlations in the
environment decay fast compared to the time scale of the system-environment
coupling and can be seen as the Born approximation[94, 96]. In order for Eq.
(3.17) to be valid, the interaction between the interesting system and the reservoir
further needs to have vanishing mean-contribution from the reservoir, i.e.

TrE

{
ĤSE(t)ρ̂E

}
= 0, (3.18)

which can usually be achieved by a suitable definition of ĤSE. Equation (3.16)
thus becomes

ρ̂T(t+ ∆t)− ρ̂T(t) ≈ − 1

~2

∫ t+∆t

t

dt′
∫ t′

t

dt′′
[
ĤSE(t′),

[
ĤSE(t′′), ρ̂T(t′′)

]]
,

(3.19)

which can be recast into a more convenient form by a change of the integration
variables (defining τ = t′ − t′′)

ρ̂T(t+ ∆t)− ρ̂T(t)

≈ − 1

~2

∫ ∆t

0

dτ

∫ t+∆t

t+τ

dt′
[
ĤSE(t′),

[
ĤSE(t′ − τ), ρ̂T(t′ − τ)

]]
≈ − 1

~2

∫ ∞
0

dτ

∫ t+∆t

t

dt′
[
ĤSE(t′),

[
ĤSE(t′ − τ), ρ̂T(t)

]]
, (3.20)

where the second step assumes that the integrand becomes negligibly small for
τc � ∆t, i.e. the reservoir correlations disappear on the time scale τc smaller
than ∆t (the course-grained approximation), and we have applied the Markov
approximation by setting ρ̂T(t′′) ≈ ρ̂T(t) [94, 96].
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For concreteness, we now assume that the interaction Hamiltonian is of the
factorized Hermitian form

ĤSE = ~
∑
α

Âα ⊗ B̂α = ~
∑
α

Â†α ⊗ B̂†α, (3.21)

where Âα and B̂α belong to the system and environment Hilbert space,
respectively. In the first step we subtract from the interaction Hamiltonian the
contributions containing non-zero expectation values of the environment operators
〈B̂α〉res with respect to the reservoir reduced density matrix ρ̂E = TrS{ρ̂T}. We
define δB̂α(s) = B̂α(s)− 〈B̂α〉res, and add the Hamiltonian

Ĥav = ~
∑
α

Âα ⊗ 〈B̂α〉res, (3.22)

to the system Hamiltonian ĤS, thus defining Ĥ ′S = ĤS + Ĥav. The remaining part
of the interaction Hamiltonian is then

Ĥ ′SE = ~
∑
α,β

Âαβ(ωα)⊗ δB̂β = ~
∑
α,β

Â†αβ(ωα)⊗ δB̂†β , (3.23)

where Âβ =
∑
α Âαβ(ωα) and Âαβ(ωα) are the eigenoperators of Ĥ ′S defined by

[Ĥ ′S, Âαβ(ωα)] =− ωαÂαβ(ωα), (3.24)

[Ĥ ′S, Â
†
αβ(ωα)] =ωαÂ†αβ(ωα). (3.25)

By substituting Eq. (3.23) into Eq. (3.20), expanding the commutators, performing
the integration1 in Eq. (3.20) and using ρ̂T ≈ ρ̂S(t)⊗ ρ̂E, it can be shown that the
Liouville-von Neumann equation for ρ̂S finally becomes [94, 96]

d

dt
ρ̂S =

1

i~
[ ˆ̃HS , ρ̂S] +

∑
ββ′α

γLin
β′β(ωα)

2

(
2Âαβ ρ̂SÂ†αβ′ − {Â

†
αβ′Âαβ , ρ̂S}

)
. (3.26)

Here γLin
ββ′ are the effective rates which depend on the reservoir two-time correlation

functions

γLin
β′β(ωα) = 2Re

{∫ ∞
0

〈δB̂†β′(s)δB̂β(0)〉eiωαs ds

}
, (3.27)

The Hamiltonian ˆ̃HS in Eq. (3.26) is furthermore generally different from the bare
system Hamiltonian ĤS

ˆ̃HS = ĤS + Ĥav + ĤLamb, (3.28)

1The t′ integration is performed as
∫ t+∆t
t dt′ I(t′) ≈ ∆t · I(t).
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as it contains the contribution Ĥav due to the reservoir averages [Eq. (3.22)] and
the Lamb shift due to the reservoir:

ĤLamb = ~
∑
α

∑
ββ′

SLamb
ββ′ (ωα)Â†αβ(ωα)Âαβ′(ωα), (3.29)

with

SLamb
β′β (ωα) = Im

{∫ ∞
0

〈δB̂†β′(s)δB̂β(0)〉eiωαs ds

}
, (3.30)

where Im{·} is the imaginary part. The effective rates γLin
β′β(ωα) and frequencies

SLamb
β′β (ωα) arise from the τ integration in Eq. (3.20).
In practical calculations it is often possible to neglect the Hamiltonian terms

Hav and HLamb or to incorporate them directly into the system Hamiltonian.
Finally, the last term in Eq. (3.26) represents the damping and decoherence of
the system and is commonly denoted as the Lindblad term (or the Lindblad-
Kossakowski term):

L (ρ̂S) =
∑
ββ′α

γLin
β′β(ωα)

2

(
2Âαβ ρ̂S Â†αβ′ − {Â

†
αβ′Âαβ , ρ̂S}

)
. (3.31)

In practice, the Lindblad terms can be often written as a sum of independent
contributions

L (ρ̂) =
∑
i

L
γOi
Ôi

(ρ̂) (3.32)

of the form:

L
γOi
Ôi

(ρ̂S) =
γOi
2

(
2Ôi ρ̂S Ô†i −

{
Ô†i Ôi, ρ̂S

})
, (3.33)

with Ôi being the respective system operators and γOi the corresponding decay
rates.

Practical construction of the effective Liouville-von Neumann equation

For convenience we provide here a condensed form of the procedure described
above. The practical construction of the effective Liouville-von Neumann equation
for the system density matrix can be summarized in the following practical steps:

• The total Hamiltonian of the interesting system and environment is
conveniently split into the form of Eq. (3.13), with ĤSE = ~

∑
β Âβ ⊗ B̂β .

• The reservoir operators are re-expressed in the form B̂β(s) = δB̂β(s)+〈B̂β〉res

and the average 〈B̂β〉res becomes part of the system Hamiltonian Ĥ ′S =

ĤS + Ĥav, with Ĥav = ~
∑
α,β Âαβ(ωα)⊗ 〈B̂β〉res.
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3.1. The density matrix and the quantum master equation

• The new interaction Hamiltonian is constructed as Ĥ ′SE = ~
∑
α,β Âαβ(ωα)⊗

δB̂β , where Âαβ(ωα) are the eigenoperators of Ĥ ′S.

• The two-time correlators of the environment are calculated to obtain the
effective rates γLin

β′β(ωα) [Eq. (3.27)] and frequencies SLamb
β′β (ωα) [Eq. (3.30)]

to finally construct the Liouville-von Neumann equation [Eq. (3.26)].

Dynamics of the operator mean values

Equation (3.26) represents the central expression of this chapter which becomes
a powerful tool for calculation of incoherent dynamics of open-quantum systems.
With Eq. (3.26) in hand, we can construct differential equations governing the
evolution of the system operator averages 〈ÔS(t)〉 under the influence of the
environment:〈

˙̂
OS

〉
=

1

i~

〈[
ÔS,

ˆ̃HS

]〉
+〈∑

ββ′α

γLin
β′β(ωα)

(
2Â†αβ′ ÔS Âαβ −

{
Â†αβ′Âαβ , ÔS

})〉
. (3.34)

Equation (3.34) generally yields a set of differential equations that are a useful
starting point for further numerical or analytical treatment.

Another approach that leads to a numerically advantageous form of the master
equation [Eq. (3.26)] consists in rewriting the density matrix of the system ρ̂S in
the form of a column vector ~̂ρS and writing Eq. (3.26) formally as

~̇̂ρS = L~̂ρS, (3.35)

where L is the Liouvillian superoperator governing the time evolution of ρ̂S

constructed from the Hamiltonian and the Lindblad terms (see Appendix B.1
for details about the technical implementation).

3.1.4 Two-time averages, the quantum regression theorem

The dynamics of system operators has been introduced in Eq. (3.34). Nevertheless,
it is often necessary to describe correlations of observable quantities measured at
different times. For example, the optical spectra can be retrieved from two-time
(auto-)correlation functions of electromagnetic field operators. Here we briefly
introduce the basic concepts that can be used for calculation of the two-time
correlators and present the quantum regression theorem as a powerful tool that
facilitates their practical numerical and analytical calculation.

The two-time correlation function is conveniently defined in the Heisenberg
picture, in which the quantum states |ψ〉 become time independent and the system
dynamics is carried by the quantum operators Ô(t) [97]. If Ĥ is the Hamiltonian
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Chapter 3. QED description of plasmonic and molecular excitations

of the total system (i.e. containing both the interesting part of the system and the
reservoir), the Heisenberg-picture operators evolve in time as

Ô(t) = eiĤt/~ Ô(0) e−iĤt/~ = Û†(t, 0) Ô(0) Û(t, 0) = Û†(t, 0) Ô Û(t, 0), (3.36)

where on the right side of Eq. (3.36) the operator Ô(0) ≡ Ô is the operator in the
Schrödinger picture, i.e. the time-independent operator.

A two-time correlation function 〈Ô1(t)Ô2(t+ τ)〉 of two operators Ô1 and Ô2

is defined as

〈Ô1(t)Ô2(t+ τ)〉 = Tr
{
Ô1(t) Ô2(t+ τ) ρ̂T

}
(3.37)

= Tr{Ô1 Û
†(t+ τ, t) Ô2 Û(t+ τ, t)

[
Û(t, 0) ρ̂T Û

†(t, 0)
]

︸ ︷︷ ︸
ρ̂T(t)

} (3.38)

= Tr
{
Ô2

[
Û(t+ τ, t) ρ̂T(t) Ô1 Û

†(t+ τ, t)
]}

(3.39)

= TrS

{
Ô2 TrE

{
Û(t+ τ, t) ρ̂T(t) Ô1 Û

†(t+ τ, t)
}}

(3.40)

with ρ̂T the density matrix of the system and we used Û(t+τ, 0) = Û(t+τ, t)Û(t, 0)
[94]. If we further define

P̂ (t+ τ, t) = TrE

{
Û(t+ τ, t) ρ̂T(t) Ô1 Û

†(t+ τ, t)
}

(3.41)

and write

〈Ô1(t)Ô2(t+ τ)〉 = TrS

{
Ô2 P̂ (t+ τ, t)

}
, (3.42)

we notice that the two-time correlation function assumes the form of the average of
the operator Ô2 where the system density matrix ρ̂S is replaced by P̂ (t+ τ, t) that
evolves as a function of τ . In case that the density matrix ρ̂T(t) approximately
factorizes as ρ̂T ≈ ρ̂S⊗ ρ̂E and assuming that Ô1 and Ô2 are the system operators,
the expression in Eq. (3.41) simplifies

P̂ (t+ τ, t) = Û(t+ τ, t) ρ̂S(t) Ô1 Û
†(t+ τ, t). (3.43)

Moreover, if the system density matrix obeys Eq. (3.35), the operator P̂ (t + τ, t)
does so as well (in the vectorized form):

d

dτ
~̂
P (t+ τ, t) = L ~̂P (t+ τ, t), (3.44)

with the initial condition P̂ (t, t) = ρ̂S(t) Ô1. Eq. (3.44) is known as the quantum
regression theorem (QRT). This theorem is also used in an alternate, more general,
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3.2. The Wigner-Weisskopf theory

form. If the mean value of an operator Ô2 follows the dynamics

〈Ô2(t+ τ)〉 =
∑
j

gte
j (τ)〈Ô2j(t)〉, (3.45)

with τ -dependent coefficients gte
j (τ), the two-time average is

〈Ô1(t) Ô2(t+ τ)〉 =
∑
j

gte
j (τ)〈Ô1(t) Ô2j(t)〉. (3.46)

The form of QRT in Eq. (3.46) is especially advantageous for analytical calculations
of two-time correlators.

3.2 Coupling of a two-level system (TLS) to a
continuum of reservoir modes (the
Wigner-Weisskopf theory)

The formalism of the Markovian theory of open quantum systems is powerful for
handling the dynamics and spectral properties of quantum systems that are weakly
interacting with large reservoirs (the environment). Sometimes, however, the
interaction between the system and the reservoir is strong such that the separation
into the system part and the environmental part becomes difficult. Such situation
commonly occurs if the spectral function of the reservoir [i.e. γLin

ββ′(ω) as defined
in Eq. (3.27)] varies rapidly with ω around the eigenfrequency ωα of the system
operators Âαβ .

In this section we focus on the particular example of a two-level system
consisting of the ground |g〉 and the excited |e〉 state, interacting with a continuum
of electromagnetic-field modes and derive the equation of motion for the excited
state amplitude following Ref. [94]. This problem has been originally tackled
by Wigner and Weisskopf in the context of spontaneous decay of an atomic
transition into the electromagnetic modes in vacuum. Here we consider that
the TLS is describing an excitonic transition of a molecule that interacts with
the electromagnetic modes of its environment. The Hamiltonian of such system
becomes

Ĥsys = ~ωegσ̂
†σ̂ +

∑
k

~ωkâ†kâk, (3.47)

with ωeg the molecular transition frequency, σ̂ = |g〉〈e| and âk (â†k) the annihilation
(creation) bosonic operators of the electromagnetic continuum fulfilling [âk, â

†
k′ ] =

δkk′ . The molecular transition interacts with the electromagnetic-field modes via
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the interaction Hamiltonian

ĤI = R̂σ̂† + H.c., R̂ =
∑
k

gkâk, (3.48)

with H.c. standing for the Hermitian conjugate and coupling rates gk.

We solve now the Schrödinger equation describing the time evolution of the
system state with the following ansatz :

|ψ〉 =c0|g, {0ωk}〉+ ce|e, {0ωk}〉+
∑
k

ck|g, {1ωk}〉, (3.49)

where the states |g(e), {0ωk}〉 contain zero excitations of the electromagnetic
field modes and the states |g, {1ωk}〉 contain exactly one excitation of the
electromagnetic mode k and zero excitations elsewhere. With this ansatz, the
Schrödinger equation in the interaction picture

i~
d

dt
|ψ〉 = ĤI|ψ〉 (3.50)

becomes

d

dt
ce(t) = − i

~
∑
k

gk e
i(ωeg−ωk)tck(t),

d

dt
ck(t) = − i

~
g∗k e

−i(ωeg−ωk)tce(t),

d

dt
c0(t) = 0.

(3.51)

Notice that the state |g, {0ωk}〉 becomes decoupled from the rest of the dynamics as
the total Hamiltonian Ĥtot = Ĥsys + ĤI conserves the total number of excitations,
i.e. [Ĥtot, N̂ ] = 0, with N̂ = σ̂†σ̂ +

∑
k

â†kâk.

The system in Eq. (3.51) can be formally solved by eliminating the amplitudes
ck from the second line of Eq. (3.51)

ck(t) = − i

~
g∗k

∫ t

0

e−i(ωeg−ωk)t1ce(t1) dt1 (3.52)

and substituting the result back into the first line of Eq. (3.51)

d

dt
ce(t) = −

∫ t

0

1

~2

∑
k

|gk|2 ei(ωeg−ωk)(t−t1)

︸ ︷︷ ︸
f(t−t1)

ce(t1) dt1. (3.53)

Finally, the equation for the time-evolution of the amplitude ce(t) becomes an
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integro-differential equation

d

dt
ce(t) = −

∫ t

0

f(t− t1)ce(t1) dt1. (3.54)

We further note that the kernel f(t − t1) can be expressed using the operator R̂
as

f(t− t1) = Trem

{
R̂(t)R̂†(t1)ρ̂em

}
eiωeg(t−t1), (3.55)

where the trace is taken with respect to the electromagnetic modes and
ρ̂em is the density matrix of the electromagnetic modes in the vacuum
state. Equation (3.55) becomes useful in cases when the correlation function
〈R̂(t)R̂†(t1)〉 = Trem

{
R̂(t)R̂†(t1)ρ̂em

}
can be calculated by other means than the

explicit summation of Eq. (3.53). It is particularly useful to define the so-called
spectral function Jem(ω) via the expression for the kernel f(t− t1) as:

f(t− t1) ≡
∫ ∞
−∞

Jem(ω) ei(ωeg−ω)(t−t1) dω. (3.56)

The spectral function Jem(ω) then combines the information about the molecule-
continuum coupling strength and the spectral structure of the continuum, and
can bring an intuitive picture into the otherwise highly complex problem of the
non-Markovian dynamics of the excited state of the molecule.

Equation (3.54) can be solved by standard mathematical methods involving
the Laplace transform or direct numerical integration. In this thesis we adopt the
general numerical approach suitable for integration of Eq. (3.54) with Jem(ω) in
a general form. The specifics of the numerical method are further described in
AppendixB.2.

3.3 Emission and extinction spectra of quantum
systems

We revise here the spectral response of quantum systems. The extinction and
emission spectra are often the most accessible information about a quantum
system, as implemented in optical experiments. In this chapter we derive the
expressions for the emission and extinction spectra of quantum systems and define
the spectral line shapes that we use in later chapters.

3.3.1 Photon emission spectrum

In this thesis we are be mostly interested in the calculation of emission spectra
of systems involving a plasmonic particle and a molecule pumped by an incident
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laser. We further assume that the direct radiation of the molecule into the far-field
is negligible compared to the indirect emission enhanced by the plasmonic particle.
We show now that in such situations the emission spectrum can be obtained from a
two-time correlation function of the plasmon annihilation and creation operators.

To that end we define the emission spectrum as the rate of absorption of the
far-field photons that are emitted by the plasmonic particle in the detector. We
further assume that the detector is composed of a series of absorbers, each of
them sensitive to a particular frequency ω. We adopt this particular model of
the detector for simplicity of the derivation, which can be performed in different
ways [94, 97, 98]. In the linear regime, such detector can be realized as a set
of harmonic bosonic absorbers of the respective frequencies ω. We assume each
detector’s absorber of frequency ω is described by the Hamiltonian Ĥdet,ω,

Ĥdet,ω = ~ωd̂†ωd̂ω, (3.57)

with d̂ω the annihilation operator of the absorber. We further assume that the
detector mode of frequency ω interacts with the incident field via the detector-
photon interaction Hamiltonian Ĥdet−ph

Ĥdet−ph(ω) ∝ Ê(−)d̂ω + Ê(+)d̂†ω, (3.58)

where Ê(+) [Ê(−)] is the operator of the positive (+) [negative (−)] frequency
part of the electromagnetic field measured at the position of the detector. The
interaction between the measured field Ê(+) [Ê(−)] and the detector perturbs the
density matrix of the total system and, in the linear response limit, within the
interaction picture defined by the system and detector uncoupled Hamiltonian, it
gives rise to the contribution

δρ̂ ≈ 1

i~

∫ t

−∞

[
Ĥdet−ph(t1), ρ̂

]
dt1, (3.59)

where ρ̂ is the density matrix of the non-interacting system and the detector. The
rate of the photon absorption by the detector at the respective frequency ω,W (ω),
proportional to the intensity measured at frequency ω, is then given by the increase
of the detector’s mode population with time:

W (ω) ∝ d

dt
〈d̂†ωd̂ω〉 =

i

~

〈[
Ĥdet−ph, d̂

†
ωd̂ω

]〉
. (3.60)
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In the linear-response regime, by using Eq. (3.59) this rate becomes

W (ω) ∝ Tr

{∫ t

−∞

[
Ĥdet−ph(t), d̂†ωd̂ω

] [
Ĥdet−ph(s), ρ̂

]
ds

}
∝ Tr

{∫ t

−∞

[
Ê(−)(t)d̂ωe

−iωt − Ê(+)(t)d̂†ωe
iωt
]

×
[
Ê(−)(s)d̂ωe

−iωs + Ê(+)(s)d̂†ωe
iωs, ρ̂

]
ds

}
.

(3.61)

We assume that the detector is initially in the ground state and thus 〈d̂ωd̂ω〉 =

〈d̂†ωd̂†ω〉 = 〈d̂†ωd̂ω〉 = 0 and 〈d̂ωd̂†ω〉 = 1, which yields for W (ω):

W (ω) ∝ Tr

{∫ t

−∞

[
Ê(−)(t)Ê(+)(s)eiω(s−t) + Ê(−)(s)Ê(+)(t)eiω(t−s)

]
ds

}
= Tr

{∫ ∞
0

[
Ê(−)(t)Ê(+)(t− τ)e−iωτ + Ê(−)(t− τ)Ê(+)(t)eiωτ

]
dτ

}
=

∫ ∞
0

[
〈Ê(−)(t− τ)Ê(+)(t)〉eiωτ + H. c.

]
dτ

= 2Re

{∫ ∞
0

〈Ê(−)(t− τ)Ê(+)(t)〉eiωτ dτ

}
= 2Re

{∫ ∞
0

〈Ê(−)(t)Ê(+)(t+ τ)〉eiωτ dτ

}
.

(3.62)

In the last step we used the identity 〈Ê(−)(t− τ)Ê(+)(t)〉 = 〈Ê(−)(t)Ê(+)(t+ τ)〉,
which follows from the properties of the two-time correlation functions. In the
steady state we set t = 0 and finally obtain the emission spectrum se(ω) ∝ W (ω)
in the form

se(ω) ∝ Re

{∫ ∞
0

〈
Ê(−)(0)Ê(+)(τ)

〉
eiωτ dτ

}
. (3.63)

The electromagnetic field at the detector is generated by the radiation of
the particle plasmon (assuming that the molecule radiates dominantly via the
plasmon) and can be connected to the annihilation, Ê(+) ∝ â, and creation
Ê(−) ∝ â† operators of the radiative plasmonic mode. We are therefore led to
define the plasmon emission spectrum as

se(ω) ≡ 2Re


∫ ∞

0

dτ
〈
â†(0)â(τ)

〉︸ ︷︷ ︸
ge

eiωτ

 , (3.64)

where for further convenience we have introduced the two-time correlation function
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ge. Equation (3.64) does not include the effect of the electromagnetic-field
propagation from the plasmonic particle to the detector. The signal that is actually
measured at the detector Se(ω) thus contains an additional prefactor that reflects
the spatial dependence of the plasmon radiation pattern and also encompasses the
frequency-dependent factor I(r, ω) originating from the density of states of the
radiating electromagnetic fields

Se(ω) = I(r, ω) se(ω). (3.65)

For a radiating dipolar plasmon in vacuum, the frequency dependence of I(r, ω)
is I(r, ω) ∝ ω4/|r|2. In this thesis we will keep the convention of presenting the
spectra in the more symmetrical form given by se(ω) [Eq. (3.64)], free of far-field
radiation effects.

3.3.2 Extinction spectrum

The linear extinction spectrum of a weak probe can be evaluated in close analogy
with the emission spectra using the two-time correlation functions of the system
operators [99–101]. We can calculate the extinction as the power that the probe
field dissipates to drive the probed system.

We follow the argument of Mollow [100] that starts by defining the interaction
of the system with the weak probe beam in the form

ĤP = ~EPâ†e−iωPt + H.c., (3.66)

with EP the amplitude of the interaction of the system with the probe of frequency
ωP that is assumed to be close to the system resonance frequency such that
the rotating-wave approximation applies. The system is represented by the
annihilation (creation) operator â (â†), which can be in general substituted by
another system operator that appropriately describes the interaction with the
probe. The weak driving represented by ĤP induces a small change in the density
matrix δρ̂ of the probed system which is given by the following approximate
expression within the lowest order of perturbation theory:

δρ̂ ≈ 1

i~

∫ t

−∞

[
ĤP(t1), ρ̂

]
dt1, (3.67)

where ρ̂ is the unperturbed density matrix of the system in the steady state. On
the other hand, the probing field drives the system and therefore dissipates its
energy. We derive the rate of the energy dissipation by explicitly quantizing the
probe field and introduce the probe-field Hamiltonian ĤPR

ĤPR = ~ωPĉ
†ĉ, (3.68)

where ĉ (ĉ†) are the bosonic annihilation (creation) operators. We further assume
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that the probing field is in a coherent state |EP(t)〉, with EP(t) = EPe−iωPt and

ĉ |EP(t)〉 = EP(t)|EP(t)〉. (3.69)

Using Eq. (3.69), the probe-system coupling Hamiltonian in Eq. (3.66) can be
formally written as

ĤP = ~(ĉ†â+ ĉâ†), (3.70)

which becomes identical to Eq. (3.66) if the Hamiltonian (3.70) is averaged with
respect to the probe degrees of freedom 〈EP(t)|ĤP|EP(t)〉. The power dissipated
by the probe, i.e. absorbed by the system, can then be found as

Pabs = −~ωP
d

dt
〈ĉ†ĉ〉. (3.71)

From Eq. (3.9) we find the rate of dissipation of the probe energy as

d

dt
〈ĉ†ĉ〉 =

i

~

〈[
ĤP, ĉ

†ĉ
]〉
, (3.72)

which, using Eq. (3.71) and applying the average with respect to the probe
coherent state, leads to

Pabs = i~ωP〈E∗PeiωPtâ− EPe−iωPtâ†〉 ≡ 〈ĤPW〉, (3.73)

where the average is defined with respect to the perturbation of the density matrix
δρ̂ and we have defined

ĤPW(t) = i~ωP

(
E∗PeiωPtâ− EPe−iωPtâ†

)
. (3.74)

The probe absorption Pabs is thus

Pabs = Tr
{
ĤPW(t)δρ̂

}
=

1

i~

∫ t

−∞
Tr
{
ĤPW(t)

[
ĤP(t1), ρ̂

]}
dt1

=
1

i~

∫ t

−∞
Tr
{[
ĤPW(t), ĤP(t1)

]
ρ̂
}

dt1. (3.75)

We further substitute Eqs. (3.66) and (3.74) into Eq. (3.75) and obtain the
expression for the absorbed power

Pabs ≈~ωP|EP|2
∫ t

−∞
Tr
{[
â(t)â†(t1)e−iωP(t1−t) − â†(t)â(t1)eiωP(t1−t)

]
ρ̂
}

dt1+

H.c., (3.76)

where we have disregarded the fast-rotating terms of the form â(t)â(t1)eiωP(t+t1).
Notice also that the trace in Eq. (3.76) contains the steady-state density matrix
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ρ̂ and the absorbed power is therefore expressed as a property of the unperturbed
system. We now define t1 = t+ τ and assume that the absorption is a stationary
process

Pabs ≈ ~ωP|EP|2
∫ 0

−∞

〈
â(t)â†(t+ τ)e−iωPτ − â†(t)â(t+ τ)eiωPτ

〉
dτ + H.c.

= ~ωP|EP|2
∫ 0

−∞

〈[
â(t+ τ), â†(t)

]〉
eiωPτdτ + H.c.

= ~ωP|EP|2
∫ ∞

0

〈[
â(t+ τ), â†(t)

]〉
eiωPτdτ + H.c.

= ~ωP|EP|22Re


∫ ∞

0

〈[
â(t+ τ), â†(t)

]〉︸ ︷︷ ︸
gta

eiωPτdτ

 .

= ~ωP|EP|22Re


∫ ∞

0

〈[
â(τ), â†(0)

]〉︸ ︷︷ ︸
gta

eiωPτdτ

 .

(3.77)

Where we have defined the two-time correlation function gta = ga−ge that carries
a component representing the pure absorption of the probe by the system

ga = 〈â(τ)â†(0)〉 (3.78)

and a part representing the emission into the probe-field

ge = 〈â†(0)â(τ)〉 (3.79)

that we have introduced in the previous section and that we have shown to yield
the emission spectrum se(ω)

se(ω) = 2Re

{∫ ∞
0

〈
â†(0)â(τ)

〉
eiωτdτ

}
.

In the context of weak-probe absorption, se(ω) is the emission stimulated by the
probe field. Using the above results we can define the direct probe-absorption
spectrum sa(ω) as

sa(ω) ≡ 2Re

{∫ ∞
0

〈
â(τ)â†(0)

〉
eiωτdτ

}
, (3.80)

where we disregard the pre-factors appearing in Eq. (3.77).

The full expression for the absorption spectrum derived in Eq. (3.77) can be
used to calculate the weak-probe absorption even in the case that the quantum
system is driven by external stimuli. In such a case, the total probe absorption
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has to contain the part representing the direct absorption sa(ω) as well as the
stimulated emission se(ω). In case that the latter contribution prevails, the total
absorption spectrum sta(ω)

sta(ω) = sa(ω)− se(ω), (3.81)

can be negative, implying that the system provides an overall gain.

3.4 Summary
The main purpose of this chapter is to provide a basic introduction to the concepts
and expressions of the open-quantum system’s theory in a compact way that we can
later apply to study plasmon-assisted fluorescence in Part III and Raman scattering
in Part IV of the thesis. This chapter also has the ambition to practically guide the
reader through the theory as it does not pay too much attention to formal proofs
but rather discusses the working principles of the quantum-mechanical tools that
can be directly transfered to applications.

We have derived the basic equations that govern the dynamics of a system
density matrix for closed and open quantum systems which is a starting point for
the quantum-mechanical treatment of interacting systems relevant to plasmon-
enhanced spectroscopies.

As this thesis deals mainly with optical and infrared molecular spectroscopy,
special attention has been paid to the derivation of photon emission and extinction
spectra of quantum systems interacting with light. We have provided these full
derivations that allow us to express the system spectral response in terms of
one-sided Fourier transforms of the system operators, often omitted in standard
textbooks.
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Part II

Surface-Enhanced Infrared
Spectroscopy
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Chapter 4

Dielectric theory of
Surface-Enhanced Infrared
Spectroscopy

The ability of nanometer- and micrometer-scaled metallic particles to squeeze
incident electromagnetic field at their surface and thus strongly enhance the
interaction of light with samples in their close vicinity has found applications in
a broad range of plasmon-enhanced spectroscopic methods [23] including Surface-
Enhanced Raman Spectroscopy (SERS) [8, 11, 15, 18, 102–110], Surface-Enhanced
Infrared Spectroscopy (SEIRS, alternatively called Surface Enhanced Infrared
Absorption: SEIRA) [24–39], Surface-Enhanced Fluorescence (SEF) [111–115]
spectroscopy or optical absorption spectroscopy. In this chapter we focus on the
classical description of the working principle standing behind SEIRS.

SEIRS is an extension of the conventional infrared (IR) absorption spectroscopy
[116], where the incident infrared radiation is absorbed by infrared active
vibrational modes of the sample (often molecules), and the absorption feature is
manifested in the far-field optical absorption spectrum as a resonance peak. As the
vibrational modes of molecules carry information about the molecular structure,
the set of these vibrational absorption peaks can be used as a fingerprint which can
unambiguously identify specific chemical substances and their bonding in different
chemical compounds and materials [117–120]. This chemical fingerprinting finds
its application in a broad range of fields ranging from basic research to applied
science and industry.

Nevertheless, the interaction strength (the spectral cross-section) of molecules
is usually extremely weak which in the conventional IR spectroscopy hinders the
detection of the vibrational fingerprints of small amounts of molecules. In SEIRS
this situation can be overcome by placing the molecules in the vicinity of metallic
surfaces that support plasmonic resonances in the IR. The strongly enhanced
interaction of the molecule with the incident light then allows for accessing the
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molecular vibrational fingerprints even for minute sample quantities [34].
In the following sections the basics of the IR activity of molecules is first

outlined and then the focus is placed on the electromagnetic mechanism leading
to SEIRS enhancement. In Section 4.4 we study a particular example of plasmonic
structures utilized in SEIRS and perform a numerical study of their performance
for enhancement of molecular signals in the IR.

4.1 IR activity of molecules

IR and Raman spectroscopy exploits the fact that molecular vibrations are able
to interact with incident electromagnetic waves revealing fingerprint vibrational
signatures in their respective spectra. However, not all molecular vibrations
efficiently interact with probing light being spectrally active. Here we discuss the
basic principles standing behind the vibrational spectral activity of molecules in
infrared absorption spectroscopy.

IR spectroscopy is based on the direct excitation of molecular vibrations by
the incident electromagnetic radiation. In the point-dipole approximation of the
molecule, the vibrational modes interact with radiation via their ground-state
dipole moment, d(q), which parametrically depends on the coordinate q1 of a
given vibrational mode. More precisely, the ground-state dipole moment of the
molecule can be expressed as:

d(q) =

∫
r e n(r; q) d3r +

∑
i

Ri(q)Qi, (4.2)

with n(r; q) the position-dependent ground-state electron density parametrically
depending on the vibrational coordinate q, e the electron charge, Ri(q) the q-
dependent position and Qi the charge of nucleus i. For a molecular vibration to
be IR active, the derivative of the molecular dipole moment with respect to q
must be non-vanishing. The condition for the IR activity of a molecular vibration
therefore is:

∂d(q)

∂q

∣∣∣∣
q=0

6= 0. (4.3)

An electromagnetic wave then upon interaction with the molecule creates an

1The real space displacements Ri,A(qα) of atom A in direction i ∈ {x, y, z} of mode α are
constructed from the mass-weighted coordinate qα as

Ri,A(qα) =
1

√
MA

Sαi,Aqα, (4.1)

where MA is the mass of the atom and Sαi,A are elements of a unit vector,
∑
i,A(Sαi,A)2 = 1,

that arise from the diagonalization of the vibrational dynamical equations in the mass-weighted
coordinates.
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induced dipolar moment, δd, that is proportional to the amplitude of the incident
electromagnetic field, E(t), via the molecular vibrational polarizability tensor αvib

as

δd(+) = αvib ·E(+)(t), (4.4)

where δd(+) and E(+) are the positive-frequency parts of the respective variables.
The polarizability tensor αvib carries information about the IR active vibrational
modes and yields the experimentally observable extinction signal σext:

σext =
k

ε0
Im

{
1

3
Tr [αvib]

}
, (4.5)

where the trace Tr{·} arises from averaging over all molecular orientations and
k = ω/c.

The vibrational polarizability tensor αvib emerges from the dynamics of the
vibrational mode driven by the incident electromagnetic wave. We can describe the
coupling of the vibration with the incident radiation by the interaction potential
energy Vvib−rad(q):

Vvib−rad(q) = −d(q) ·E(t). (4.6)

In the harmonic approximation, the molecular vibration is described as a harmonic
oscillator of eigenfrequency Ω with kinetic, Tvib(q̇), and potential, Vvib(q), energy:

Tvib =
1

2
q̇2,

Vvib =
1

2
Ω2q2.

(4.7)

Eq. (4.6) together with Eqs. (4.7) can be combined into the Lagrangian L(q, q̇, t)
of the driven vibration as

L = Tvib − Vvib − Vvib−rad, (4.8)

which yields the Euler-Lagrange equation of motion

d

dt

(
∂L

∂q̇

)
= −∂L

∂q
. (4.9)

We further approximate d(q) ≈ d0 + ∂d
∂q

∣∣
q=0

q and obtain the differential equation

q̈ = −Ω2q +
∂d

∂q
·E(t), (4.10)

where for brevity we write ∂d
∂q ≡

∂d
∂q

∣∣
q=0

. We further assume that the incident
electromagnetic light has a harmonic time dependence E(t) = E(+)(t) +E(−)(t) =
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E
(+)
0 e−iωt + E

(−)
0 eiωt, with E(+) [E(−)] the positive (negative) frequency part

defined so that E(+) =
[
E(−)

]∗
. We further add into Eq. (4.10) the

phenomenological damping force, Fdamp = −γvq̇, where γv is the damping
coefficient of the particular vibration, and solve it for the particular solution given
by the positive-frequency part of the driving field. To that end we assume a
positive-frequency particular solution of q in the form q(+) = q

(+)
0 e−iωt and obtain

an algebraic equation for the amplitude q(+)
0

(Ω2 − ω2)q
(+)
0 − iγvωq

(+)
0 =

∂d

∂q
·E(+)

0 , (4.11)

which yields

q
(+)
0 =

∂d
∂q ·E

(+)
0

(Ω2 − ω2)− iγvω
. (4.12)

The positive frequency part of the induced dipole moment, δd(+) = δd
(+)
0 e−iωt

(with d
(+)
0 a time-independent amplitude), is then related to the vibrational

displacement as δd(+) = ∂d
∂q q

(+), which leads to:

δd
(+)
0 =

(
∂d
∂q ⊗

∂d
∂q

)
(Ω2 − ω2)− iγvω︸ ︷︷ ︸

αvib

·E(+)
0 , (4.13)

where ⊗ stands for the Kronecker product. From Eq. (4.13) we identify the
polarizability tensor of the molecular vibrational mode as:

αvib =
F

(Ω2 − ω2)− iγvω
, (4.14)

with

F =

(
∂d

∂q
⊗ ∂d

∂q

)
.

The polarizability in Eq. (4.14) has the character of a Lorentz-like resonance
with a resonance frequency ≈ Ω, and can be brought into the more standard
Lorentzian form by further approximation. If one completes the square in the
denominator in Eq. (4.14) and neglects the contributions of order O(γ2

v), one
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obtains:

αvib =
F

(Ω2 − ω2)− iγvω

≈ F[
Ω− (ω + iγv2 )

] [
Ω + (ω + iγv2 )

]
=

F

2Ω
[
Ω− (ω + iγv2 )

] +
F

2Ω
[
Ω + (ω + iγv2 )

]︸ ︷︷ ︸
off-resonant

≈ F

2Ω
(
Ω− ω − iγv2

) , (4.15)

Where in the last step we have dropped the off-resonant term as we are interested
only in the polarizability evaluated close to the vibrational resonance. The final
form of αvib in Eq.(4.15) has the sought form of the Lorentzian resonance, i.e.,

Im {αvib} ≈
γvF

4 Ω
[
(ω − Ω)2 +

(
γv
2

)2] , (4.16)

and the extinction cross section of the IR active vibrational mode, Eq. (4.5), thus
becomes:

σext =
k

ε0

γvTr [F]

12 Ω
[
(ω − Ω)2 +

(
γv
2

)2] . (4.17)

The IR-active vibrational mode thus appears in the absorption spectrum as a
Lorentzian peak positioned at the frequency of the molecular vibrational mode
and its intensity is given by the IR activity of the mode contained in the oscillator
strength F.

4.2 Molecular layers and phononic materials

So far we have described the interaction of a single molecule with light.
Nevertheless, in SEIRS we usually study an ensemble of molecules forming a layer
on top of the surfaces of plasmonic antennas. In practise it is therefore more
convenient to describe the material composed of the individual molecular samples
as a continuous dielectric medium characterized by an effective dielectric function
εS. The polarizability of a single molecule can be related to the dielectric function
of the effective material via the Clausius-Mossotti relation [42, 121]. The Clausius-
Mossotti relation self-consistently evaluates how a single molecule is polarized
inside of a homogeneously polarized continuous medium composed of molecules
of the same type. The permittivity of the effective homogeneous medium is then
connected with the single-molecule polarizability, αvib (for simplicity considered
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Figure 4.1: (a) Real (Re{εSiO2} - red line) and imaginary (Im{εSiO2} - blue line) part
of the experimentally measured dielectric function εSiO2 of SiO2 [122]. In the frequency
region where Re{εSiO2} < 0 (region marked by the shaded area), structures fabricated
of the phononic material can sustain collective surface-phonon modes. (b) An example
of a system of a plasmonic antenna covered with a shell of a sample phononic material
[e.g. described by the dielectric function shown in (a)]. Both the phononic sample
and the plasmonic antenna can sustain collective surface-phonon and surface-plasmon
modes, respectively. An example of such surface modes is schematically depicted as the
positive (+) and negative (−) induced surface charges on the boundaries of the respective
structures.

here as isotropic), via

εS ≈
3ε0 + 2Nd

molαvib

3ε0 −Nd
molαvib

, (4.18)

where Nd
mol is the density of the molecules and ε0 is the vacuum permittivity.

Another class of materials that yields a strong infrared response are phononic
solids [64–66, 123–130]. Phononic materials are often crystalline, polycrystalline or
amorphous solids whose structure contains infrared-active bonds. Similarly to the
infrared-active molecules, the infrared-active bonds of the phononic materials are
able to change the local polarization of the material and thus induce an interaction
with the electromagnetic field. A typical example of such a phononic crystal is
silicon oxide, whose Si – O bond oscillation induces a strong change of polarization
that gives rise to strong IR response [131]. We plot an experimentally measured
dielectric function of SiO2, εSiO2

, in Fig. 4.1 (a) [122].
In the following we describe the bulk properties of generic phononic materials

and of molecular materials on the same footing via the dielectric formalism by
considering a model dielectric function, which has the from of a Lorentz oscillator:

εS(ω) = ε∞ +
ω2

OS

ω2
TO − ω2 − iγvω

, (4.19)

where ε∞ is the background permittivity, ωOS is the oscillator strength, ωTO
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is the frequency of the transverse-optical (TO) phonon and γv is the resonance
broadening. The parameters of the dielectric function are commonly determined
from experimental data. Nevertheless, in the following we use model parameters
to freely tune the properties of a phononic sample in order to study the behavior
of the phononic modes when interacting plasmonic antennas, such as in SEIRS.

4.2.1 Localized phononic resonances

Similar to the case of plasmonic resonances (see Chapter 1.2.1), if a vibrationally
active material is shaped into a finite particle, the dielectric response of the particle
results from its self-consistent interaction with the electromagnetic fields [64–
66, 123–125]. Especially in case of strongly IR-active phononic crystals, this can
give rise to localized surface phonon (phonon-polariton) resonances appearing at
frequencies that fit into a range where the real part of the phononic dielectric
function is negative [Re{εS} < 0 - shown for the example of SiO2 as the shaded
area in Fig. 4.1 (a)]. The spectral features emerging in the infrared response of such
samples deposited on plasmonic antennas [as schematically shown in Fig. 4.1 (b)]
must be thus understood as a result of the interaction between the plasmonic
modes of the metallic structure and the sample’s localized collective phonon-
polariton modes [129, 130].

4.3 Surface-Enhanced Infrared Spectroscopy
(SEIRS)

As the direct interaction of molecules with electromagnetic radiation is usually
very weak, the signal emerging from a few molecules is practically undetectable
due to experimental noise. SEIRS provides a way to enhance the spectroscopic
signal of molecules by placing them into the vicinity of plasmonic structures, which
enhance the effective interaction of the molecule with the incident radiation.

Here we describe the underlying mechanism leading to the electromagnetic
enhancement of the signal in SEIRS, which can be understood in the framework of
scattering of an electromagnetic wave on a pair of point-like scatterers representing
the molecule and the plasmonic particle. We develop here a classical model to
describe this interaction and apply it to analyze the spectral response of a realistic
system consisting of a linear plasmonic antenna and a sample in the form of a
small material patch located on the antenna surface.

4.3.1 Interaction of plasmons with IR active molecular
vibrations

When there is direct spectral overlap of the antenna plasmonic resonance and
the molecular vibrational resonance, the spectral line shapes of SEIRS exhibit
interference features that are often described as Fano-like resonances [132–135],
where a pseudo-continuum of electromagnetic modes represented by a broad dipole
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resonance of the infrared antenna interferes with the narrow vibrational resonance
of the analyzed molecules.

We introduce here an analytical model that yields closed-form analytical
expressions for typical SEIRS spectra of a plasmonic antenna covered with a
molecular sample. To that end we develop a coupled-dipole model, treating the
plasmonic antenna and the molecular sample as two point-like polarizable objects,
and describe the scattering of incident IR radiation on the antenna-sample system.
We attribute to both the antenna and the sample an isotropic polarizability αA

and αS, respectively, following the prescription of the previous section:

αA(S) =
fA(S)

Ω2
A(S) − ω2 − iγA(S)ω

, (4.20)

with fA(S) being the antenna (sample) oscillator strength, γA(S) the antenna
(sample) intrinsic damping and ΩA(S) the antenna (sample) resonance frequency.
The quasistatic polarizability in Eq. (4.20) has the form of a Lorentzian-like
resonance whose central frequency and line width are in principle established by
the material properties and geometry of the respective scatterer. Note that the
macroscopic polarizability αA(S) is generally determined by the full self-consistent
solution of the Maxwell’s equations for the antenna (sample) in vacuum defined
by its shape and dielectric function. The sample polarizability αS thus reduces
to the single-molecule polarizability only if the sample is represented by a single
molecule. The coupled-dipole equations describing the scattering of the IR plane-
wave on the antenna-sample system can be expressed by means of the antenna
and sample dipoles, dA and dS placed at their respective positions rA and rS, as:

dA = αA

(
E0(rA) +

k2

ε0
G(rA, rS) · dS +

k2

ε0
Im {G(rA, rA)} · dA

)
, (4.21)

dS = αS

(
E0(rS) +

k2

ε0
G(rS, rA) · dA

)
, (4.22)

where G(r, r′) is the dyadic Green’s function in vacuum [Eq. (1.11)], k is the
vacuum wave number of the incident radiation and E0 is the incident plane-
wave amplitude at the position of the respective scatterer. In Eq. (4.21) we have
introduced the self-interaction term that is responsible for the radiation damping
of the large plasmonic antenna ∝ Im{G}, but we have neglected the radiation
damping of the weakly polarizable molecular sample that is effectively dark for
the incident radiation. Eqs. (4.21) and (4.22) can be solved for the respective
dipole moments:

dA =
[
I− Im{GAA} (I− αAGASαSGSA)

−1
αA

]−1

(I− αAGASαSGSA)
−1 (

αAEA
0 + αAGASαSES

0

)
, (4.23)

dS = αSES
0 + αSGSAdA. (4.24)
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Here we have introduced the notation k2

ε0
G(rI, rJ) ≡ GIJ and E0(rI) ≡ EI

0.
We further simplify the tensorial character of the antenna-sample coupling, e.g.,
assuming that the two scatterers are suitably aligned with respect to each other and
with respect to E0, and introduce the scalar form of Eq. (4.23) for this particular
configuration:

dA =

αAE
A
0

1− αAαSG2

1− ik3

6πε0

αA

1− αAαSG2︸ ︷︷ ︸
Direct driving

+

αAGαSE
S
0

1− αAαSG2

1− ik3

6πε0

αA

1− αAαSG2︸ ︷︷ ︸
Indirect driving

, (4.25)

where GIJ = GJI = G (the interaction is real in the quasi-static limit) is the
relevant component of GIJ. Assuming that the sample molecules are only weakly
interacting with the incident radiation, so that |GαS| � 1, we can neglect the
indirect driving term in Eq. (4.25) with respect to the direct driving term. We
then identify the effective polarizability of the plasmonic antenna in the presence
of the molecular sample as

αeff =

αA

1− αAαSG2

1− ik3

6πε0

αA

1− αAαSG2

≡ αAS
eff

1− ik3

6πε0
αAS

eff

, (4.26)

where we have defined the quasi-static effective polarizability of the antenna, αAS
eff ,

which accounts for the antenna-sample interaction:

αAS
eff ≡

αA

1− αAαSG2
. (4.27)

For completeness we also define the effective polarizability of the sample, αSA
eff .

Assuming that the molecular sample is dominantly excited by the near field of the
plasmonic antenna, the induced dipole moment of the sample thus approximately
becomes:

dS ≈

αSGαAE
A
0

1− αAαSG2

1− ik3

6πε0

αA

1− αAαSG2

, (4.28)

from which we can define the effective polarizability of the sample as:

αSA
eff ≡

αSGαA

1− αAαSG2

1− ik3

6πε0

αA

1− αAαSG2

. (4.29)
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We remark that the results of the coupled dipole model can be generalized to
extended objects in the form of a coupled-mode model [136] that leads to analogous
physical conclusions. In this thesis we thus use the results derived in this point-
dipole approximation to gain deeper understanding of the spectral response of the
antenna-sample system.

Once the polarizability of the antenna is known, the absorption, extinction
and scattering spectra can be calculated from the following relationships (see
Chapter 1.1.3):

σabs ≈
k

ε0
Im{αAS

eff }
∣∣∣∣ αeff

αAS
eff

∣∣∣∣2 ,
σext ≈

k

ε0
Im{αeff},

σsca ≈
k4

6πε2
0

|αeff |2 = σext − σabs.

(4.30)

(4.31)

(4.32)

In Eqs. (4.30), (4.31) and (4.32) we have neglected the contributions to
the absorption, extinction and scattering emerging directly from the vibrational
sample. Therefore, in our theory, the spectra result only from the absorption and
scattering processes taking place on the antenna influenced by the presence of the
sample’s dark (or effectively dark) resonance.

The spectra of a typical antenna interacting with a molecular sample are
plotted in Fig. 4.2 (a) for absorption (blue line), scattering (black line) and
extinction (red line). The parameters of the model are chosen such that the
antenna scattering dominates over the absorption and both the antenna and
sample’s resonances are made to spectrally overlap. The specific values of the
parameters defining the system are given in the caption of Fig. 4.2. The spectral
profiles of the absorption, scattering and extinction contain a Fano-like feature due
to the molecular resonance that we further highlight in Fig. 4.2 (b), where we zoom
in the spectra of Fig. 4.2 (a) and normalize them to the spectral response of the bare
antenna (antenna’s absorption, σA

abs, extinction, σ
A
ext, and scattering, σA

sca). The
extinction and the scattering spectra feature a clear spectral dip at the position of
the sample resonance. This dip, however, is not present in the absorption spectrum
which exhibits a positive bump on top of the broad antenna resonance. The
appearance of the positive feature in the absorption is rather surprising, inasmuch
as in experimental SEIRS absorption dips are observed even for strongly scattering
antennas [30, 34, 37, 39, 119, 137]. This seemingly paradoxical situation stems from
the fact that in experiments it is the antenna extinction that is measured and not
the antenna absorption.

We show in the following section how the line shapes of the respective spectra
can be understood with help of the model presented above. We consider several
modes of antenna operation depending on the ratio between the antenna intrinsic
and radiation losses.
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Figure 4.2: (a) Absorption, σabs, scattering, σsca, and extinction, σext, spectra calculated
with the use of the analytical model presented in Section 4.3.1 assuming dominant
radiation losses of the antenna and ΩA = ΩS = 1250 cm−1. A symmetric dip is observed
at the position of the sample resonance in the extinction and in the scattering spectrum,
whereas the absorption spectrum exhibits a positive bump. (b) Relative change of the
absorption, scattering and extinction spectra induced by presence of the dark mode. (c)
The asymmetry parameter qF plotted as a function of sample resonance frequency ΩS.
(d) Amplitude of the Lorentzian curve added to the conventional Fano line, BF, for
scattering (Bsca = β), extinction [Bext = β(1 + δF)] and absorption [Babs = β(1 + δ′F)]
spectra as a function of sample resonance frequency ΩS. The amplitude Bsca = β never
exceeds unity at the antenna resonance frequency and is represented by the lowest lying
line. Close to the antenna resonance, the radiation corrected amplitude Bext = β(1 + δF)
is below unity which causes diminishing of the Fano dip in the extinction. The amplitude
Babs = β(1 + δ′F) exceeds unity leading to reversal of the original antiresonance towards
positive resonance in the absorption. We used the following parameters to generate the
plots: fA = 1 × 10−22 F ·m2 · cm−2, fS = 6 × 10−28 F ·m2 · cm−2, γA = 60 cm−1 and
γS = 6 cm−1.

4.3.2 Spectral line shapes of σabs, σsca and σext

The spectral response of a system of coupled modes is usually understood in terms
of the Fano resonances [132, 138, 139]. The effectively dark mode of the sample
coupled solely to the so-called bright mode of the antenna causes constructive or
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Figure 4.3: Corrected Fano spectral lineshape σCF for qF = −0.5, 0 and 0.5, and different
values of BF: (a) BF = 0, (b) BF = 0.5, (c) BF = 1, and (d) BF = 1.5. The value of the
Fano asymmetry parameter qF modifies the symmetry of the profile, showing a perfectly
symmetric dip for qF = 0 and BF < 1, and an asymmetric dip for qF 6= 0. For qF = 0 and
BF = 1 the Fano spectral feature completely disappears and for qF = 0 and BF = 1.5
the spectral dip turns into a positive peak on top of the background.

destructive interference leading to the formation of the characteristic asymmetric
Fano line shape. It has been shown by Gallinet and Martin [140] that the original
Fano formula must be corrected for the case of coupled electromagnetic modes and
that in the formula for the spectral line shape, σCF, there appears a new parameter,
BF, responsible for smoothing off the resonance feature. The expression for the
line shape is:

σCF ∝
(κ+ qF)2 +BF

κ2 + 1
=

(κ+ qF)2

κ2 + 1︸ ︷︷ ︸
Fano

+
BF

κ2 + 1︸ ︷︷ ︸
Lorentzian

. (4.33)

Here κ is the frequency parameter and qF is the Fano asymmetry parameter. The
corrected Fano profile, σCF, thus contains the original Fano line and a Lorentzian
peak of amplitude BF. We plot σCF for different values of qF and BF in Fig. 4.3.
The Fano line shape has the form of a generally asymmetric peak, which for the
case of qF = 0 (green lines in Fig. 4.3) becomes a perfectly symmetric (Lorentzian)
dip whose bottom reaches exactly zero and thus completely splits the spectrum.
The Lorentzian contribution then mitigates the depth of the spectral dip which
for 0 < BF < 1 only shallowly perturbs the constant spectrum [Fig. 4.3 (a,b)].
When BF = 1 the Fano dip is perfectly cancelled and the spectrum σCF becomes
constant for qF = 0 [Fig. 4.3 (c)]. Interestingly, by further increasing BF to values
1 < BF, it is possible to completely reverse the Fano dip into a positive peak on
top of the constant background as shown in Fig. 4.3 (d).

In this section we show how the spectral response in absorption, extinction and
scattering leads to different Fano-like line shapes and connect the parameters of
the Fano curves to the actual physical parameters of the coupled-dipole model. We
first derive the line shape induced by the coupling of the dark mode with the bright
mode for the simplest and practically measured situation: the extinction spectrum.
The extinction spectrum is given by the imaginary part of the total polarizability
of the antenna coupled to the molecular vibrational modes [Eq. (4.31)]. We insert
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the formula for the polarizability of the antenna interacting with the sample from
Eq. (4.26), using the bare antenna and sample polarizabilities from Eq. (4.20), into
Eq. (4.31) and obtain the expression for the extinction spectral line shape:

σext ≈ k Im{αeff}

= k Im

{
fA

cF + idF

[aFcF − fAfSG2 − yFdF] + i[cFyF + aFdF]

}

=
−kfAyF

a2
F + y2

F

c2F + fAfSG
2dF

yF
+ d2

F

(cF −∆F)2 + Γ2
c + d2

F + 2ΓcdF

=
−kfAyF

a2
F + y2

F

(κ+ qF)2 + β(1 + δF)

κ2 + 1

= σA
ext

(κ+ qF)2 + β(1 + δF)

κ2 + 1
. (4.34)

where for convenience we use a simplified notation for the Lorentzian-like
oscillators and define the real parameters aF = Ω2

A−ω2, bF = −γAω, cF = Ω2
S−ω2,

dF = −γSω, and yF = bF −RFfA with RF = k3/(6πε0). We have further defined,
following the notation of reference [140], the reduced frequency, κ = (cF−∆F)/Γ,
the asymmetry parameter, qF = ∆F/Γ, the parameter β = d2

F/Γ
2 and its

correction δF = fAfSG
2/(yFdF). We have also used the following definitions:

Γ = Γc + dF having Γc = yFfAfSG
2/(a2

F + y2
F) and ∆F = aFfAfSG

2/(a2
F + y2

F).
The expression in the last line of Eq. (4.34) represents a product of the bare
antenna extinction spectrum, σA

ext, and a Fano-like spectral profile. By analogous
algebraic manipulation we derive the line shape of the scattering spectrum:

σsca ≈
k4

6πε2
0

|αeff |2 =
f2

A

a2
F + y2

F

(κ+ qF)2 + β

κ2 + 1

= σA
sca

(κ+ qF)2 + β

κ2 + 1
(4.35)
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and of the absorption spectrum:

σabs ≈ k Im{αAS
eff }

∣∣∣∣ αeff

αAS
eff

∣∣∣∣2 =
−kfAbF
a2

F + b2F

a2
F + b2F
a2

F + y2
F

Γ′2

Γ2

(κ′ + q′F)2 + β′(1 + δ′F)

κ2 + 1

= σA
abs

Γ′2

Γ2

(κ′ + q′F)2 + β′(1 + δ′F)

κ2 + 1

= σA
abs

(κ+ qF)2 + β(1 + δ′F)

κ2 + 1
.

(4.36)

In the definition of the primed parameters, instead of the total damping yF (i.e.
the damping including radiation), we use only the intrinsic (quasi-static) antenna
damping bF. The explicit definitions are: δ′F = fAfSG

2/(bFdF), Γ′ = Γ′c + d, Γ′c =
bFfAfSG

2/(a2
F + b2F), κ′ = (cF−∆′F)/Γ′, q′F = ∆′F/Γ

′, ∆′F = aFfAfSG
2/(a2

F + b2F),
β′ = d2

F/Γ
′2. The final expressions for the scattering and absorption in Eqs.

(4.35) and (4.36), respectively, have the form of a generalized Fano-like profile,
but they differ in the correction parameter BF. For the extinction Bext = β, for
the scattering Bsca = β(1 + δF), and for the absorption Babs = β(1 + δ′F).

The symmetry of the pure Fano line shape is determined by the parameter
qF, which we plot in Fig. 4.2 (c) as a function of the sample frequency ΩS at
ω = ΩS. We note that the asymmetry parameter qF has the same value for all of
the spectra and its value depends on the detuning between the antenna and the
sample ΩA−ΩS. The asymmetry parameter changes its sign from negative, below
the antenna resonant frequency, to positive, above the antenna frequency, marking
thus a change of the symmetry of the molecular Fano-like spectral signature. If the
eigenfrequency of the sample is tuned to the resonance of the antenna (ΩA = ΩS),
the pure Fano line features a fully symmetric antiresonance. The Fano line is
further accompanied by the term in the form of a Lorentzian resonance with
amplitude BF ∈ {Bext, Bsca, Babs} centred exactly at the position of the Fano
dip. If the amplitude of the additional Lorentzian curve exceeds unity, the original
Fano antiresonance is switched towards a positive resonance. We see in Fig. 4.2 (b),
(d) that this situation occurs in the absorption spectrum for the set of parameters
selected for our system, Babs(ΩS = ΩA) > 1. On the other hand, the parameters
Bext and Bsca diminish the antiresonance of the extinction and scattering spectra,
respectively, but do not exceed unity and hence for ΩA = ΩS, both the extinction
and the scattering profiles preserve the Fano-like dip.

We now show that for the exact tuning ΩA = ΩS the positive feature can
appear only in the absorption spectrum and that the extinction and the scattering
always exhibit a spectral dip. It is interesting to rewrite the expression for the
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amplitudes Bext, Bsca and Babs in terms of the original oscillator parameters for
practical relevant situations usually exploited in SEIRS, ΩA ≈ ΩS [28], and setting
ω ≈ ΩS, we get:

Bsca(ω ≈ ΩS ≈ ΩA) = β =
d2

Fy
2
F

(fAfSG2 + yFdF)2
, (4.37)

Bext(ω ≈ ΩS ≈ ΩA) = β(1 + δF) =
yFdF

yFdF + fAfSG2
, (4.38)

Babs(ω ≈ ΩS ≈ ΩA) = β(1 + δ′F) =
yFdF

yFdF + fAfSG2︸ ︷︷ ︸
F1

bFdF + fAfSG
2

yFdF + fAfSG2

yF

bF︸ ︷︷ ︸
F2

. (4.39)

We immediately observe that the amplitudes Bsca and Bext are limited for the
case of the exact tuning and can never reach unity. The flip into the positive
peak is therefore forbidden for the scattering and for the extinction. Note that
this statement is not true for arbitrary antenna-sample detuning as Bext can be
larger than one for ΩA 6= ΩS [see Fig. 4.2 (d)]. In the detuned situation, the
Lorentzian contribution superposes with an asymmetric Fano line which in turn
yields an asymmetric shape of the resulting spectrum [28]. The situation is more
complicated for Babs as it contains a product of terms that we denote as F1 and F2

and that are manifestly smaller and larger than one, respectively. The magnitude
of Babs thus results from the interplay of these two terms and its bounds, Babs ≶ 1,
cannot be determined generally. To get further insight we thus assume that the
coupling term between the antenna and the sample fAfSG

2 is small and we Taylor
expand Eq. (4.39) as

β(1 + δ′F) ≈ 1 + fAfSG
2 yF − 2bF
bFyFdF

+ . . . (4.40)

When the coupling is weak, the sign of the first order coefficient decides whether
the spectral antenna-sample interaction results in a positive resonance or a negative
antiresonance in the absorption spectrum. We find the condition for the formation
of the positive resonance as |yF| > 2|bF| by requiring the sign of the first order
coefficient to be positive (note that by definition yF, bF and dF are negative).
In other words, the positive resonance occurs when the sample weakly couples
with the antenna whose total damping is at least twice larger than the intrinsic
damping, i.e., the radiation damping of the antenna is larger than its intrinsic
damping. Furthermore, if the condition |yF| = 2|bF| is satisfied, the absorption
spectrum is, to the first order, virtually unperturbed by the sample resonance.

Such behavior of the absorption spectrum can be understood in terms of
coupling regime of the antenna-electromagnetic field as defined in the coupled
mode theory, as described by Adato et al. [137]. In this context, the antenna
is seen as a resonator coupled to the incident and reflected fields. Depending on
the antenna parameters, the regime of the antenna-field coupling can be classified
as under-coupled (|yF| < 2|bF|), over-coupled (|yF| > 2|bF|) or as critical-coupling
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regime (|yF| = 2|bF|). In the critical coupling, the antenna absorption efficiency
is maximized [137, 141, 142] and decreases towards both under- and over-coupled
regimes when the antenna intrinsic damping is varied. If the sample is placed into
the vicinity of the antenna, the antenna intrinsic damping is effectively increased
for frequencies close to the sample resonance, which can be identified from the
expression for the antenna quasi-static polarizability in Eq. (4.27) combined with
Eq. (4.20) and considering αS(ΩS) = ifS/(γSΩS):

αAS
eff (ΩS) =

fA

Ω2
A − Ω2

S − i [γAΩS + fAfSG2/(γSΩS)]
, (4.41)

where fAfSG
2/(γSΩ2

S) is the effective increase of the antenna damping due to
the coupling with the sample. The antenna-sample coupling then results either
in enhancement or suppression of the antenna absorption in the narrow spectral
range around the sample resonance. Depending if the bare antenna is in the over-
coupled regime or in the under-coupled regime, the interaction of the antenna with
the sample thus gives rise to the absorption positive feature or the negative dip,
respectively. We demonstrate this behavior on an particular example of a linear
plasmonic antenna later in Chapter 4.4.2.

4.3.3 Validation of the analytical model by numerical
simulations: consequences of the model

In order to corroborate the validity of the analytical model we numerically calculate
the spectra of a gold linear cylindrical spherically-capped plasmonic antenna
(3.2 µm long, diameter 100 nm) with two kinds of phononic samples, a large
patch coupled with the antenna providing medium strength of antenna-sample
interaction (mildly interacting patch) and a thin patch leading only to much
weaker coupling between the sample and the antenna (the weakly interacting
patch). We model the sample as a cylindrical patch of thickness 7.5 nm in the
case of the weakly interacting patch and of thickness 15 nm in case of the mildly
interacting patch. The patches are constructed by intersecting a cylindrical capsule
with spherical caps of length 180 nm (mildly interacting patch) or 150 nm (weakly
interacting patch) by the body of the antenna as shown in Fig. 4.4 (a). We use the
gold dielectric function by Palik [143]. The patch dielectric function is modelled
as a single Lorentz oscillator [Eq.(4.19)] with ε∞ = 2.14, ωOS = 969 cm−1,
ωTO = 1085 cm−1 and γv = 10 cm−1, mimicking a phononic mode in the sample.

In the following we study interaction of the lowest dipole plasmonic mode
(resonant at about ΩA ≈ 1250 cm) of the antenna with the excitations of the
sample. The near-field distribution of the dipole mode of the bare plasmonic
antenna, |E|, excited on resonance by an incident plane wave polarized along x
and propagating in the z direction is shown in Fig. 4.4 (b). The plasmonic near field
is strongly localized at the surface of the antenna and increases in magnitude from
the centre of the antenna towards the antenna’s extremities where the plasmonic
hot spots are localized.
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Figure 4.4: (a) The vibrational patch is modelled as a cylindrical object with
hemispherical caps of length L and diameter D and is hollow in the centre as the
body of the antenna passes through it. For the weakly interacting patch we used
L = 150 nm, D = 115 nm and for the mildly interacting patch we used L = 180 nm,
D = 130 nm. The length of the antenna is LA = 3.2 µm with diameter DA = 100 nm.
(b) Normalized amplitude of the near field of the plasmonic antenna (LA = 3.2 µm,
DA = 100 nm) illuminated by a monochromatic plane wave polarized along x and of
frequency ≈ 1250 cm−1, which is resonant with the lowest dipole mode of the antenna.
The near field amplitude increases from the centre of the antenna towards the antenna’s
extremities where it is maximized in the plasmonic hot spots.

We place the samples on top of the antenna onto different positions along the
antenna’s long axis and observe the changes in the total spectral response of the
antenna-sample system. Finally we fit the analytical model to the numerically
calculated spectra in order to obtain the model parameters as a function of the
sample position. A commercial-grade simulator based on the Finite-Difference
Time-Domain (FDTD) method was used to perform the numerical calculations
[144]. We obtain the model parameters by fitting the scattering spectra and
use them to calculate the absorption and the extinction. We choose to fit the
scattering as it originates almost purely from the large antenna’s dipole moment
and practically does not contain any contributions from the direct scattering of
the sample. The scattering, unlike the absorption and hence also the extinction,
thus best complies with the assumption of the analytical model, which neglects the
direct contribution of the sample absorption and scattering to the overall antenna-
sample spectral response.

The waterfall plots of the numerically calculated extinction [Fig. 4.5 (a,b)],
scattering [Fig. 4.5 (c,d)] and absorption [Fig. 4.5 (e,f)] spectra (black lines) of the
antenna-sample system for gradually increasing the coupling between the sample
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Figure 4.5: Numerically calculated (black lines) and model fit (red dashed lines) spectra
[(a,b) absorption, (c,d) scattering and (e,f) extinction] of the plasmonic antenna with
a patch of phononic material positioned along the antenna longitudinal axis onto a
distance x from the antenna center. The model parameters are obtained from the fit
to the scattering spectrum of the bare antenna and used for calculation of the absorption
and extinction spectra. (a,c,e) Spectra calculated for a patch of small sample volume
causing only slight perturbation to the original spectrum of the antenna (the weakly
interacting patch). (b,d,f) Spectra calculated for a patch of larger sample volume (the
mildly interacting patch); the dip in scattering spectrum almost completely splits the
original antenna scattering peak. The antenna parameters obtained from the fit are:
fA = 9.97 × 10−23 F ·m2 · cm−2, ωA = 1269 cm−1 and γA = 67 cm−1. We further use
the following fixed parameters for the phononic sample: fS = 1.15× 10−26 F ·m2 · cm−2,
ΩS = 1255cm−1 for the weakly interacting sample and ΩS = 1247cm−1 for the mildly
interacting sample, γS = 13 cm−1. The only parameter modified for the different
position of the patches is the coupling strength G which was increased up to G =
3.25 × 1028 F−1 ·m−2 for the weakly interacting sample and G = 5.76 × 1028 F−1 ·m−2

for the mildly interacting sample.
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and the antenna together with the results from the model fit (red dashed lines) are
displayed in Fig. 4.5 (a, c, e) for the weakly interacting patch and in Fig. 4.5 (b, d,
f) for the mildly interacting patch. The results from the model almost perfectly
fit the scattering spectra [Fig. 4.5 (c,d)], but the absorption calculated from the
fit parameters is somewhat underestimated [Fig. 4.5 (e,f)]. We attribute this to
the simplified form of the initial expressions used for the calculation of the spectra
[Eqs. (4.30)], which are derived for point-like polarizable objects. Despite this,
the spectra obtained from the analytical model match those from the numerical
calculations with remarkable accuracy.

We have chosen the parameters of the antenna such that the scattering
spectrum of the bare antenna strongly overwhelms its absorption spectrum. The
resonance feature that appears on top of the broad antenna spectrum at the
frequency of the sample resonance is thus a positive bump in the absorption and
an anti-resonance both in the scattering and in the extinction. When the mutual
coupling between the antenna and the sample is increased, for example by moving
the phononic patch towards the antenna extremities where its near field is larger,
the originally almost unperturbed spectrum of the antenna displays a gradual
increase of the spectral fingerprint of the sample resonance.

To understand this trend we calculate the antenna’s normalized near-field
amplitude |EA| and intensity ∝ |EA|2 along the antenna axis and plot them in
Fig. 4.6 (a) for the weakly interacting sample and in Fig. 4.6 (b) for the mildly
interacting sample as red and blue lines, respectively. The dominantly radially
polarized antenna near-field amplitude increases approximately linearly with the
distance from the antenna center (x = 0 µm) towards the antenna’s extremities.
Alongside with the near fields we show the fitted antenna-sample coupling constant
G (black crosses) obtained for the different positions of the sample along the
antenna. We normalize all the quantities to the value obtained at the antenna
extremity. The fitted coupling constant G almost perfectly reproduces the spatial
distribution of the antenna’s near-field amplitude for both the weakly and the
mildly interacting sample. This can be understood if we realize that the coupling
G is proportional to the overlap integral between the normalized distribution of
the polarization P̃S(r) = PS(r)/max[PS(r)] inside the sample at the frequency
of the phononic resonance and the antenna’s near-field distribution EA(r), G ∝∫∫∫

EA(r;x) · P̃S(r)d3r, as has been shown using more general theory elsewhere
[136]. Since the distribution of P̃S(r) is independent of the sample position, the
spatial dependence of G is thus determined by the near-field distribution at the
antenna, in agreement with the result in Fig. 4.6.

The role of the coupling parameter G for practical sample sensing is however
more challenging to interpret. We therefore investigate, as a spectroscopic figure
of merit, the size of the spectral feature induced by the presence of the sample,
when the sample’s position is shifted along the infrared antenna. We subtract the
spectral line of the bare antenna from the spectra of the total interacting system
and plot in Fig. 4.6 (a,b) the difference between the maximum and minimum of the
normalized spectral line as the spectroscopic contrast measured in the absorption
(blue squares), scattering (black circles) and extinction (red triangles). We observe
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Figure 4.6: Comparison of the normalized size of the spectral contrast [see the inset
in (a)] calculated in the absorption, scattering and extinction with the profile of the
antenna near-field amplitude |EA| and intensity |EA|2, as a function of sample position
along the antenna axis measured from the antenna center. The results are displayed
for the weakly interacting sample (a) and for the mildly interacting sample (b). The
coupling constant G obtained from the fit of the analytical model to the numerical data
corroborates the prediction that the antenna-sample coupling is proportional to the bare
antenna’s near-field amplitude.

that the spectral contrast increases as both the weakly and the mildly interacting
patch moves along the antenna axis out from the antenna centre. However, a closer
look at the spectral contrast reveals strong discrepancies between the results for
the weakly and the mildly interacting sample.

The spectral contrast of the weakly interacting sample follows a profile which
is similar to the spatial variation of the near-field intensity |EA|2 in all the signals.
The explanation of this behavior follows directly from the analytical form of the
model spectra, in which the spectral contrast is dependent on the square of the
coupling parameter, G2. The Taylor expansion for the weak antenna–sample
interaction therefore emerges in the form of a quadratic lowest-order term and
gives rise to the quadratic dependence of the signal on the coupling G. Hence the
observed tendency corroborates the commonly accepted enhancement mechanism
of SEIRS for weakly interacting samples, which can understood as a succession of
two steps: first, the sample interacts with the incident radiation which is enhanced
by the infrared antenna on its surface (mediated by G) and then, the polarized
sample scatters the infrared radiation via the radiative channels of the antenna
to the far field (mediated again by G). More precisely, this double-scattering
mechanism can be derived from Eqs. (4.21) and (4.22) by an iterative solution (the
so-called multiple-scattering series) terminated in the second order in G (contained
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in GAS(SA)). For the dipole moment of the antenna, pA we obtain:

pA︸︷︷︸
∝ EA

= αAEA
0︸ ︷︷ ︸

∝ EBG

+αAGASαSGSAαAEA
0 + . . .︸ ︷︷ ︸

∝ EAS

(4.42)

The electric field scattered by the antenna to the far field is proportional to the
antenna’s dipole moment, EA ∝ pA. In the far field, the signal resulting from
the antenna-sample interaction, EAS, interferes with the background radiation
including the response of the bare antenna, EBG, and leads to the spectral contrast
as follows:

Signal ∝ |EA|2 = |EBG + EAS|2 ≈ |EBG|2︸ ︷︷ ︸
Antenna spectrum

+ 2Re{E∗BGEAS}︸ ︷︷ ︸
Spectral contrast

. (4.43)

The first term is proportional to the original spectrum of the bare antenna. The
second term represents the interference between the background scattering and
the scattering due to the sample and leads to the formation of the characteristic
spectral contrast. The spectral contrast is linearly proportional to the field
emerging from the antenna-sample coupling, EAS, which results in the quadratic
dependence of the spectral contrast on the antenna near-field amplitude, as
described above.

If the mutual coupling between the antenna and the sample is enhanced by
increasing either G, or the sample oscillator strength fS (for example by increasing
its volume), the lowest order Taylor’s approximation is not valid any more. In such
a case, saturation effects which can be intuitively understood as a consequence
of the electromagnetic multiple scattering between the sample and the antenna
appear.

These saturation effects are responsible for the dependence of the signal
contrast on the position of the sample, as calculated for the mildly interacting
sample. The signal contrast starts to increase, roughly following a parabolic
dependence when the sample is positioned close to the antenna center. When the
sample is moved closer to the antenna apexes and the antenna-sample coupling
increases, the signal contrast deviates significantly from the parabolic profile. This
is more apparent when the signal contrast is measured in the absorption spectrum.

Last we remark that a further increase of the antenna-sample coupling would
eventually lead to a splitting of the antenna peak due to the formation of new
hybrid modes, as a result of the combined excitation of antenna and sample [130].
This limiting situation of fully developed hybridization is very interesting but
will not constitute the object of current study, as our analyzis is focused on the
enhancement signal originated by minute quantities of sample.
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4.4 Optimization of linear plasmonic antennas for
SEIRS

In the pioneering SEIRS experiments the sample molecules were adsorbed on
surfaces of metal nanoparticle aggregates that were small enough to permit an
interpretation of the observed absorption signals within the effective medium
theory, where radiation losses were neglected [145]. In later developments it has
been demonstrated that SEIRS can be significantly increased if metallic antennas
are engineered to be resonant with the detected vibrational resonances [24, 26, 28–
30, 32–35, 129, 146–149]. To that end plasmonic antennas in the form of linear
metal wires of micrometer length and diameter of the order of ≈ 100 nm have been
proposed. Such large metallic structures can experience large radiation damping
and their radiation losses often prevail over the intrinsic damping and must be
therefore correctly included in the description of the antenna’s scattering. As by
now, not much attention has been paid to the influence of the hosting antenna’s
radiation and intrinsic losses on the properties of the characteristic spectral feature,
the SEIRS signal, that appears on top of the broad antenna resonance. Here we
perform such a study.

We consider the representative case of a single linear gold nanoantenna (or
arrays of them with large enough space between the antennas) illuminated by
light polarized parallel to the antenna axis. We first examine the properties
of the scattering and absorption of the bare IR resonant nanoantennas. After
that, we study the influence of the scattering and absorption of radiation by the
hosting linear plasmonic antennas on the on the fingerprint spectral contrast of
the IR-active samples. Our findings, based on a combination of results obtained
from finite-difference in time-domain (FDTD) simulations, corroborate a simple
and practical rule for designing the optimal linear plasmonic antenna for SEIRS
applications. The implementation of this rule requires a careful inspection of
the scattering and the absorption cross sections of the plasmonic antenna, as
key contributions of the total extinction cross section obtained in typical SEIRS
experiments.

4.4.1 Extinction, scattering and absorption of linear
plasmonic antennas

Localized plasmonic resonances usually experience large intrinsic and radiation
losses. The intrinsic losses of plasmonic antennas are mostly given by the
bulk material properties of the metal, which can be incorporated in the metal
dielectric function, and arise due to the scattering of the metal conduction
electrons on impurities, lattice oscillations (phonons), or due to electron-electron
scattering. Other intrinsic loss mechanisms can emerge from the scattering of the
metal electrons onto the surfaces of the metallic particles or from the electron
confinement when the particles are small (. 5 nm). The dimensions of the
plasmonic antennas considered in this chapter make suitable a description of
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Figure 4.7: Scattering and absorption properties of individual linear plasmonic antennas
of variable diameter DA and length LA tuned to show the same lowest-dipole resonance
ΩA ≈ 1250 cm−1. (a) The length of the plasmonic antennas LA (blue circles) and the
scattering-absorption ratio extracted from the maxima of the antenna scattering and
absorption spectra (black circles) as a function of antenna diameter DA. The antenna
aspect ratio decreases with increasing antenna size, as the radiation reaction redshifts the
resonances of larger antennas. The increasing importance of the antenna radiation is also
reflected on the increasing antenna scattering-absorption ratio for larger antennas. (b)
Maxima of the antenna absorption (blue), scattering (black) and extinction (red) cross
sections calculated for the lowest dipole resonance, for the different antenna sizes given in
(a), here represented by the scattering-absorption ratio. The absorption of the antenna
is maximized when the scattering and the absorption of the antenna are approximately
equal, whereas the scattering and the total extinction grow with increasing antenna size.

the metal dielectric response via its bulk properties. In this section we perform
a full electromagnetic calculation of the scattering, absorption and extinction
of linear metallic antennas of different sizes and study the dependence of the
contributions from the intrinsic and radiation losses to the total antenna damping
and subsequently the performance of such antennas for SEIRS sensing.

To evaluate the contribution of the intrinsic and radiation loss channels to the
antenna damping we calculate the spectral response of the antenna in absorption
and in scattering. The absorption spectrum is a measure of the energy that is
lost due to the intrinsic loss mechanisms in the antenna’s material and can be
thus used to quantify the antenna’s intrinsic losses. On the other hand, the
scattering spectrum represents the flux of energy radiated away off the metallic
antenna and thus gauges the antenna radiative losses. In SEIRS experiments,
the signal is usually detected in transmission where the total extinction of the
incident power containing both absorption and scattering losses of the antennas is
recorded. To obtain the final measured signal we therefore sum up the absorption
and scattering spectra into the experimentally relevant extinction spectrum and
present it alongside with its constituents.

In particular, we design a series of cylindrical spherically capped linear
plasmonic antennas of different geometrical size (length LA and diameter DA)
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with the lowest dipole resonance kept at approximately the same frequency
ΩA ≈ 1250 cm−1, but differing in their scattering and absorption efficiency. The
antennas of the smallest volume dominantly absorb the incident radiation, but
have too small radiative dipole moment to significantly scatter light into the far
field. On the other hand, large antennas are able to re-radiate the incident field into
the far field at the expense of the light absorption in the material of the antenna.
The dimensions of the antennas, their diameter DA and length LA, are depicted in
Fig. 4.7 (a) as blue dots. The length of the antenna depends monotonically on the
antenna diameter, but the functional dependence shows that the antenna aspect
ratio LA/DA decreases when the antenna size increases, despite the expectation
arising from the quasi-static description in which LA/DA fully determines the
antenna resonance. Indeed, the smallest antenna considered has a diameter of
DA = 25 nm and a corresponding length of LA = 2.05 µm with aspect ratio of
LA/DA = 82, compared to the largest antenna that has DA = 120 nm with
LA = 3.24 µm and aspect ratio LA/DA = 27. This large difference of LA/DA

with increasing antenna size is closely related to the radiation reaction of larger
antennas, which aside of broadening the spectral peaks also red-shifts the quasi-
static antenna resonances.

For each antenna we also calculate the absorption, σabs(ω) and the scattering,
σsca(ω), spectra, and in Fig. 4.7 (a) the ratio of the scattering and absorption
maxima obtained for the antenna’s lowest dipole resonance, the scattering-
absorption ratio, is shown:

Scattering-Absorption Ratio ≡ max[σsca(ω)]/max[σabs(ω)] (4.44)

as black dots. The scattering-absorption ratio is monotonically increasing with
antenna size, being practically negligible for the small, almost purely absorbing
antenna, and reaching a value of ≈ 4 for the largest antenna. The designed
antennas thus cover a broad range of operation regimes for which the antennas
can be under-, over- or critically coupled as described in Section 4.3.2.

It is also interesting to study the dependence of the maxima of the antenna’s
absorption, scattering and extinction cross sections as a function of antenna size,
here represented by the scattering-absorption ratio, which we plot in Fig. 4.7 (b).
As the antenna size is increased, the antenna dipole plasmonic mode interacts more
strongly with the radiation fields and thus gives rise to the monotonic increase of
the scattering (black connected dots). On the other hand, the absorption of the
antennas exhibits a resonance at around a value for which the antenna absorption
and scattering are approximately equal (scattering-absorption ratio = 1). The
maximized absorption that occurs for antennas whose radiation and intrinsic losses
are even, which is known as the critical-coupling regime [137, 141, 142]. The
antenna size is thus another important parameter that has to be taken into account
for the design of SEIRS substrates. In the following section we thus explore the
role of the antenna size (represented through the scattering-absorption ratio) for
sensing of vibrational samples placed into the proximity of the plasmonic antennas.
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Figure 4.8: Absorption (blue), scattering (black dashed) and extinction (red) spectra
of (a,d) a dominantly absorbing antenna (LA = 2.45 µm, DA = 35 nm), (b,e) a
larger antenna that is approximately equally scattering and absorbing (LA = 2.97 µm,
DA = 60 nm) and (c,f) a large antenna that is dominantly scattering (LA = 3.2 µm,
DA = 100 nm). The resonance frequency of the lowest dipole mode of the hosting antenna
is fixed to approximately 1250 cm−1 in all cases. In (a-c) the antennas are covered by
a homogeneous (t = 10 nm thick) layer of a vibrationally active material and in (d-f)
a pair of phononic spheres with diameter DA = 30 nm are placed close to the antenna
apexes, such that the gap between the antenna and the sphere is 5 nm. The signal of the
vibrationally active sample appears on top of the broad antenna resonance in the form
of a dip in the extinction and scattering spectra, and as a dip or a positive bump in the
absorption.

4.4.2 Importance of the scattering-absorption ratio of the
plasmonic antenna for the SEIRS signal

We use the antennas introduced in Fig. 4.7 as a substrate for SEIRS and study
the influence of the antenna’s scattering-absorption ratio on the signal of the
vibrationally active sample. To this end we choose the vibrational sample either in
the form of a layer homogeneously covering the antenna’s surface, which represents
a layer of vibrationally active molecules, or in the form of spherical particles placed
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close to the extremities of the plasmonic antennas, which can represent e.g. small
phononic crystals [64–66] (see the inset in Fig. 4.8). The spherical particle can
also represent arrangement where the tip of a scattering-type near-field optical
microscope probes the antenna’s near field. We consider that the molecular
layer has thickness t = 10 nm and the gap between the particle of diameter
Dphc = 30 nm and the antenna apexes is 5 nm. The material of both the layer and
the spherical particles is modeled via the dielectric function containing a single
Lorentzian resonance [Eq. (4.19)], where the parameters are chosen to represent
a weak vibrational oscillator in the case of the layer (ε∞ = 1, ωOS = 56 cm−1,
ωTO = 1248 cm−1 and γv = 10 cm−1) and to represent a strong phononic
response (e.g of a SiO2 crystal) for the phononic spherical particles (ε∞ = 2.14,
ωOS = 1033 cm−1, ωTO = 1157 cm−1 and γv = 10 cm−1). The parameters of the
respective dielectric functions are chosen such that the resonance of the sample
approximately matches the maximum of the antenna’s dipole resonance peak and
the effects of the background dielectric function ε∞ are suppressed. The relatively
strong phononic response of the spherical samples ensures that even the relatively
small spherical samples can produce an observable spectral feature on top of the
antenna’s spectrum.

In Fig. 4.8 we plot the absorption (blue), scattering (black dashed) and
extinction (red) spectra of antenna covered with the thin molecular layer (a-c)
and of antenna with the pair of the identical spheres positioned at the antenna’s
extremities (d-f). We display the spectral response for three selected antenna
sizes, representing (a,d) a small antenna that dominantly absorbs light, (b,e)
a medium-sized antenna that approximately equally absorbs and scatters the
incident radiation and (c,f) a large antenna that dominantly scatters the incident
radiation. The geometrical parameters of the respective antennas are given in the
caption of Fig. 4.8. On top of the broad resonance of the antenna, a characteristic
vibrational feature of the sample is clearly observable. In the extinction and
scattering this feature has the form of a spectral dip for all antenna sizes. In
the absorption spectra there appears a dip slightly modifying the spectrum of the
small antenna (a,d) which practically disappears for the medium-sized antenna and
flips into a positive bump for the large, dominantly scattering, hosting antenna.
This characteristic flip of the absorption dip into absorption bump is a signature of
the behavior described in Section 4.3.2, where we showed that the presence of the
sample’s resonance leads to a decrease of the antenna’s absorption, and hence to a
formation of the dip, when the antenna is in the under-coupled regime. However,
the absorption is enhanced when the antenna is over-coupled, as shown in Fig. 4.8.

Next we analyze the size of the characteristic spectral fingerprint of the sample
as defined previously (the depth of the spectral dip or height of the spectral bump
measured with respect to the smoothened spectrum of the antenna). We normalize
the signal contrast to the volume of the phononic layer or the phononic spheres and
plot the result in Fig. 4.9, obtained from the absorption (blue), scattering (black)
and extinction (red), as a function of the scattering-absorption ratio of the hosting
antennas. In Fig. 4.9 (a) the signal contrast is plotted for the antenna covered by
the homogeneous layer of the vibrational sample and in (b) for the antennas with
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Figure 4.9: The vibrational signal contrast in the absorption (blue), scattering (black)
and extinction (red) measured as the size of the characteristic spectral dip or the positive
bump and normalized to the volume of the sample. The signal contrast is plotted in (a)
for the antenna covered by a homogeneous layer of thickness t = 10 nm and in (b) for
the antenna with a pair of identical spheres at the antenna apexes as a function of the
bare antenna’s scattering-absorption ratio. The normalized signal contrast has a different
functional dependence in the absorption, scattering and extinction spectra as discussed
in the main text.

the two phononic spheres nearby.
In the case of the layer [Fig. 4.9 (a)] the signal contrast measured in the

scattering and extinction first increases until it reaches a maximum value, and then
starts decreasing for larger antennas. The decreasing tendency of the scattering
signal can be explained as an effect of the smaller near-field enhancement provided
by the large antennas with high radiative losses. Interestingly, the signal contrast
in the scattering and in the extinction is optimized for different antenna sizes. From
Fig. 4.9 (a) we can observe that the extinction signal is maximal for a scattering-
absorption ratio of the antennas around ≈ 1, whereas the optimal scattering
signal emerges for larger antennas. This is because the contribution of the large
scattering dip is diminished by the positive absorption feature for large antennas.
In the absorption, the initially large spectral dip practically disappears for the
critically coupled antennas and flips into a positive bump for highly scattering
antennas. This leads to the paradoxical situation in which the optimal SEIRS
signal measured in the extinction almost exclusively emerges from the scattering
of the hosting antenna.

A similar picture can be observed when we consider the samples of phononic
spheres in Fig. 4.9 (b). In this case the optimal value of the signal contrast is
encountered for antennas having slightly larger values of the scattering-absorption
ratio. This is due to the relatively large geometrical size of the spheres that are
exposed to the highly inhomogeneous field of the antennas. Nevertheless, as for
the vibrationally active layer, the signal contrast measured in extinction spectra is
maximized for antennas that are approximately equally scattering and absorbing.
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In this optimal situation, again the spectral contrast is dominantly emerging from
the dip of the scattering signal.

The straightforward observation from the results above is thus that the
antennas whose scattering and absorption cross sections are approximately equal,
σabs ≈ σsca, provide the best sensing performance in SEIRS. The flat maximum
of the extinction signal suggests that a relatively broad range of antenna sizes is
able to provide a satisfactory signal contrast. Paradoxically, under the conditions
when σabs ≈ σsca, the extinction signal contrast emerges almost exclusively from
the plasmonic scattering of the hosting antenna. These findings can be used
as a practical rule to design hosting antennas for SEIRS. For optimal sensing,
the sample should be positioned onto the plasmonic hot spot of the antenna,
i.e. onto the position where the antenna near-field enhancement is the largest,
and the antenna resonance should be tuned to the vibrational resonance of the
detected sample. Moreover, as we have demonstrated here for linear plasmonic
antennas, the size of the antennas should be chosen such that the scattering and
the absorption of the antenna are approximately equal. This condition can be
in practice most easily verified by numerical simulations, e.g. using the FDTD
method.

4.5 Summary

This chapter has presented the underlying mechanisms behind the formation of
the spectral fingerprints from a sample onto the spectra of plasmonic antenna that
allow for sensitive identification of molecular vibrations. After having discussed
the IR activity of a bare molecule, materials composed of many molecules and ionic
solids, we have presented the coupled dipole model that allows for understanding
the mechanism of the SEIRS signal enhancement.

We have further dissected the spectral response of the antenna-sample system
into its scattering and absorption contributions. We have shown that in situations
where the antenna scattering and absorption are similar, the SEIRS signal (the
spectral fingerprint) in the extinction spectrum is given almost exclusively by the
antenna-sample scattering. In such a situation, the sample fingerprint practically
disappears in the absorption spectrum.

We have applied an analytical model to analyze the fully numerically calculated
spectral response of a realistic system consisting of a single linear-rod antenna
covered with a patch of a vibrationally active sample. The analytical modeling
has allowed for interpreting the system’s spectral response and extract information
about the spatial dependence of the antenna-sample coupling and the vibrational
spectral contrast observed in the absorption, scattering, and extinction.

Full numerical calculations verify that in common situations where tiny
quantities of biomolecules are to be detected, the signal measured in any of the
spectra follows a quadratic dependence on the mutual antenna-sample coupling
parameter and hence linearly follows the near-field intensity in the surrounding
of the plasmonic antenna. This conclusion, however, breaks for stronger antenna-
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sample coupling where saturation effects start to play role, due to the increasing
importance of the multiple scattering between the sample and the antenna.

Linear plasmonic antennas have served us as a canonical example of a plasmonic
hosting structure for SEIRS. We have performed an extensive numerical study of
the antenna’s scattering and absorption properties based on their geometrical size
and established a simple rule that leads to the optimal antenna’s performance for
sensing.

Using numerical calculations we have empirically shown that the optimal
extinction spectral contrast of a sample’s vibrational fingerprint is found when
the scattering and absorption of the hosting antennas are approximately equal.
However, the exact optimal condition may slightly vary depending on the spatial
distribution of the vibrational sample. Under these conditions, the extinction
fingerprint arises predominantly due to the antenna’s scattering in full accordance
with the theory introduced in Section 4.3.2.

The findings of this chapter are of a practical importance for the experimental
design of SEIRS-based sensors. In addition to the standard positioning of the
sample into a plasmonic hot spot, i.e. positions of high plasmonic near-field
enhancement, these results point out towards the requirement that the size of
the antennas also needs to be adjusted such that σabs ≈ σsca.

The generalization of this optimization scheme requires further numerical and
analytical studies, however, a similar result can be expected for antennas of more
general shapes. In practice, general distribution of the sample layer over the surface
of the antenna influences the optimal antenna geometry (compare the results for
a homogeneously covered antenna and the antenna interacting with the spherical
sample shown in Fig. 4.9).
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Chapter 5

Coupling of molecular emitters
and plasmonic cavities beyond
the point-dipole approximation

Upon interaction with an external electromagnetic field, an emitter can undergo a
transition from the ground electronic state to an excited electronic state, produced
by the absorption of a quantum of the driving field at the frequency of the
respective electronic transition. This absorption event yields a characteristic
spectral fingerprint which identifies the electronic transition in the measured
absorption spectrum. Conversely, the excited state of the emitter can decay
into the ground state and give rise to the emission of light, the so-called
photoluminescence, at the specific frequency of the emitter’s electronic transition.
Both the emitter’s absorption and emission properties are modified when the
emitter couples with the electromagnetic modes of an optical cavity [150]. This
coupling is enhanced when the quality factor of the cavity is high or the effective
cavity mode volume is small, and when the electronic transition of the molecule
possess a large transition dipole moment. In this context, the transition dipole
moment of the molecules is usually considered to be point-like as the extent of
the cavity modes is often large and the spatial variation of the cavity field occurs
on scales much larger than the geometrical size of the emitters. Nevertheless,
nanoscale plasmonic cavities represent a class of optical resonators that are able to
squeeze the electromagnetic fields into deeply subwavelength dimensions, reaching
effective mode volumes as small as a few nm3. Under such conditions, emitters such
as quantum dots [151–161] or organic molecules [162–170] cannot be approximated
as point-like objects since the fields of the cavity modes vary considerably on
the scale of the emitter’s geometrical size [171]. In this chapter we present a
formalism that allows for describing the coupling of the spatially extended excitonic
transitions in organic molecules (molecular excitons) with the strongly confined
modes of plasmonic cavities.
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We describe the molecule as an electronic two-level system (TLS) interacting
with the electromagnetic modes of the plasmonic environment. As a key quantity
that steers the regime of plasmon-exciton coupling and determines the dynamical
response of the system containing the plasmons and the exciton, we calculate
the Jaynes-Cummings [172] plasmon-molecule coupling strength g. In the point-
dipole approximation, g is usually estimated as the scalar product of the molecular
transition dipole moment d0 and the local electric field Ẽ of the quantized cavity
mode, as

~g ≈ −d0 · Ẽ. (5.1)

Here we go beyond this approximation and evaluate g from a more complete
quantum description of the plasmon-exciton coupling that fully considers the
extension of the molecular exciton in the inhomogeneous plasmonic field.

To set the stage for the treatment of the plasmon-exciton interaction, we first
briefly review the physics of the interaction between the molecular electronic
excitations (excitons) and an incident electric field. After that we introduce
the quantum formalism of the plasmon-exciton coupling which combines the
description of the molecular excitons at the level of TDDFT with the canonical
quantization of the localized plasmonic modes. Using this model we approach
the problem of spatial mapping of the coupling g between the particle plasmon
and a single-molecule’s exciton, which is closely related to experiments where
single molecules placed into the gap formed under the tip of a scanning tunneling
microscope (STM) are electrically excited and emit photons into the far-field
[165–167, 169, 170]. We further apply the model to demonstrate that the strong
inhomogeneities of the plasmonic electromagnetic field can lead to breaking of the
standard optical selection rules governing the interaction of the incident light with
the molecular exciton and the exciton’s radiation properties. Moreover, as the
interaction strength between the plasmons and the molecular excitons is usually
large, it significantly modifies the dynamics of the molecular excitons via the
Purcell effect or, if the coupling between the plasmons and the exciton overcomes
the system losses, even leads to the formation of new hybrid states combining
molecular excitons and plasmons into the so-called plexcitons [173]. Using the
quantum model we also show situations where the spatial extent of the molecule’s
excitons becomes important for a correct qualitative and quantitative description
of the plasmon-exciton dynamics.

5.1 Coupling of a molecular electric-type
electronic transition with a cavity mode

The scheme of the coupling between a molecular emitter and a cavity described
in this section is schematically shown in Fig. 5.1. The simplest approach to the
interaction of the molecule with light treats the molecule as a point-like two level
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5.1. Coupling of a molecular electronic transition with a cavity mode

Figure 5.1: Coupling of a molecular electric-dipole electronic transition with a cavity
mode. (a) Schematic of a plasmonic cavity interacting with a point-dipole emitter. The
cavity is described as a bosonic mode described by Fock states |0〉, |1〉 . . . with energy
spacing ~ωc given by the cavity-mode frequency. The emitter is described as a TLS
with excitation energy between the ground, |g〉, and excited, |e〉, state ~ωeg. In the
point-dipole approximation, the coupling between the cavity mode and the emitter’s
exciton is given by the scalar product of the emitter’s transition dipole moment d0 and
the electric field of the cavity mode Ẽ at the emitter’s position. (b) The decay of the
emitter’s population into the mode of the cavity, as given by Eq. (5.20) for g = 0.1γa,
(red dashed line), 0.25γa (blue solid line) and γa (black dash-dotted line), with γa the
decay rate of the mode of the cavity. (c) Energy diagram of the states of the cavity and
the emitter (assuming ωc = ωeg) if the coupling g is switched off (left) and after the
coupling is turned on (right) as discussed in the main text. The blue frame marks the
single-excitation manifold where either the cavity or the emitter are singly excited.

electronic system described by the Hamiltonian Ĥe

Ĥe = ~ωeg|e〉〈e|, (5.2)

with ~ωeg the energy of the electronic excitation measured with respect to the
ground-state energy. We further assume that this transition carries an oscillating
transition dipole moment d0 associated with the electric-dipole-allowed electronic
transition between the two electronic levels of the molecule: the ground state, |g〉,
and the excited state of interest, |e〉:

d0 = 〈g|d̂|e〉. (5.3)

Here d̂ = er̂ is the electron dipole-moment operator with e the electron charge
and r̂ the position operator.

We assume that the molecule interacts with a single mode of a cavity that is
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described by the Hamiltonian Ĥc

Ĥc = ~ωcâ
†â, (5.4)

where â and â† are the bosonic annihilation and creation operators, respectively.

The interaction Hamiltonian, Ĥc−e, between the single electromagnetic mode
of the cavity and the exciton is expressed in the point-dipole approximation in the
form of the potential energy of the transition dipole of the molecule exposed to
the electric field of the mode:

Ĥc−e = −d̂ · Ê, (5.5)

where Ê is the operator of the electromagnetic field evaluated at the position of
the molecule. In the basis of the molecular ground and the excited state, the
transition-dipole operator becomes

d̂ = 〈g|d̂|e〉|g〉〈e|+ H.c. = d0σ̂ + H.c., (5.6)

where we have assumed that the molecule’s charge density does not carry a dipole
moment in the ground nor in the excited state and we have defined the TLS
lowering operator σ̂ ≡ |g〉〈e|. The electric field operator of the cavity mode can be
expressed using the bosonic annihilation and creation operators as

Ê = Ẽ (â+ â†), (5.7)

with Ẽ the quantum amplitude of the electric field of the cavity mode. In cavity
quantum electrodynamics (QED), the quantum amplitude of the cavity mode is
usually associated with the mode’s effective volume Veff [150, 174–178] as

Ẽ =

√
~ωc

2ε0Veff

E(rmol)

max{|E(r)|}
, (5.8)

where ωc is the resonance frequency of the cavity mode and E(r) is the spatial
distribution of the mode’s electric field with rmol being the position of the molecule.
For simplicity we now assume that both the electric field E(rmol) at the position of
the molecule and the transition dipole moment d0 are real and write the interaction
Hamiltonian as

Ĥc−e ≡ ĤRabi = ~g(â+ â†)(σ̂ + σ̂†), (5.9)

where ~g = −d0 · Ẽ is the point-dipole approximation for the Jaynes-Cummings
coupling constant. The Hamiltonian in Eq. (5.9) represents the Rabi interaction
term between the bosonic cavity mode and the TLS and is usually approximated
in the rotating-wave approximation (RWA). The RWA consists in neglecting the
terms that contain the simultaneous creation or annihilation of both a quantum of
the cavity excitation and the electronic excitation, ~gâσ̂ and ~gâ†σ̂†, respectively,
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5.1. Coupling of a molecular electronic transition with a cavity mode

resulting in the Jaynes-Cummings coupling Hamiltonian:

ĤJ−C = ~g(âσ̂† + â†σ̂). (5.10)

The RWA is used under the assumption that the coupling rate is smaller than the
excitonic frequency [small Bloch-Siegert shift [179, 180] ∼ (g2/ωeg)� ωeg ], and if
the detuning between the plasmon and the exciton frequency is not too large (i.e.
ωeg − ωc � ωeg + ωc).

The total Hamiltonian of the emitter coupled with the cavity mode can then
be expressed as:

Ĥtot = Ĥc + Ĥe + ĤJ−C, (5.11)

known as the Jaynes-Cummings model.
The Hamiltonian in Eq. (5.11) describes the coherent dynamics of the coupled

cavity-emitter system. However, in practice, both the cavity and the emitter
experience incoherent losses that are commonly added into the system’s master
equation [Eq. (3.26)] for the density matrix ρ̂, via the Lindblad terms [Eq. (3.33)]

L γa
â (ρ̂) =

γa
2

(
2âρ̂â† −

{
â†â, ρ̂

})
, (5.12)

L γσ
σ̂ (ρ̂) =

γσ
2

(
2σ̂ρ̂σ̂† −

{
σ̂†σ̂, ρ̂

})
, (5.13)

where L γa
â (ρ̂) and L γ0

σ̂ (ρ̂) represent the losses of the cavity and the emitter,
respectively, with γa the cavity decay rate and γσ the intrinsic decay rate of the
molecule. The relationship between the system losses, represented by the decay
rates γa and γσ, and the coupling constant, g, determines the coupling regime
between the cavity and the emitter. In most common situations, the losses of the
cavity (e.g. a plasmonic mode) are much larger than the coupling constant g and
than the internal losses of the emitter, γσ. In such a case we can say that the
cavity and the emitter are in the weak-coupling regime (or if γa � g � γσ in the
bad-cavity limit). The emitter states and the cavity states then represent a good
basis for the description of the system and the interaction g only perturbatively
influences the emitter’s dynamics. On the other hand, if the coupling g overcomes
the system losses (g > γa, γσ) the system is said to be in the strong-coupling
regime. In the strong coupling regime the emitter states hybridize with the cavity
states and form a new set of so-called polariton states (if the cavity mode is a
plasmon the new states are also called plexcitonic states).

5.1.1 The weak-coupling regime
In the weak-coupling regime, the effective dynamics of the emitter in the presence
of the cavity can be described as an irreversible decay of the exciton into the
cavity mode. The cavity mode thus effectively acts for the emitter as an incoherent
reservoir and can be eliminated using the method described in Section 3.1.3. The
effective decay of the molecule into the plasmonic mode (the Purcell effect),
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assuming that the plasmon cavity is not incoherently populated, can then be
expressed by the following Lindblad term:

L Γeff

σ̂ (ρ̂) =
Γeff

2

(
2σ̂ρ̂σ̂† −

{
σ̂†σ̂, ρ̂

})
, (5.14)

with the decay rate

Γeff = 2g2Re

{∫ ∞
0

〈â(τ)â†(0)〉eiωegτdτ

}
, (5.15)

which, assuming that the plasmon obeys a dynamics unperturbed by the presence
of the molecule, yields

Γeff =
g2γa

(ωc − ωeg)2 + (γa/2)
2 . (5.16)

The interaction of the emitter with the cavity mode also yields a shift of the
emitter’s resonance frequency which vanishes for ωeg = ωc, and we neglect it
here for simplicity. After elimination of the cavity, the emitter dynamics can be
described by the Hamiltonian Ĥe, accompanied by the Lindblad terms L Γeff

σ̂ (ρ̂)
and L γσ

σ̂ (ρ̂). The effective dynamics of the emitter’s excited state |e〉 is then
obtained from the equation of motion for the operator’s average 〈σ̂†σ̂〉 = 〈|e〉〈e|〉,
following Eq. (3.34):

d

dt
〈σ̂†σ̂〉 = −(Γeff + γσ)〈σ̂†σ̂〉, (5.17)

which yields an exponentially decaying population of the emitter

〈σ̂†σ̂〉(t) = 〈σ̂†σ̂〉(0)e−(Γeff+γσ)t, (5.18)

with 〈σ̂†σ̂〉(0) the initial value of the operator’s average. This enhanced decay of
the emitter due to the interaction with the cavity mode is the so-called Purcell
effect.

5.1.2 The vacuum strong-coupling regime

When the coupling constant g is sufficiently large, the cavity mode can reversibly
interchange energy with the emitter and thus give rise to Rabi oscillations. We
show now how the Rabi oscillations emerge from the Jaynes-Cummings model
[Eqs. (5.11), (5.12) and (5.13)] and discuss the criteria for the vacuum strong-
coupling regime on more rigorous grounds. To obtain the effective dynamics of the
strongly coupled system we use again Eq. (3.34) (under the simplified conditions
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which assume: ωeg = ωc and γσ � γa) to arrive at:

d

dt


〈σ̂†σ̂〉
〈âσ̂†〉
〈â†σ̂〉
〈â†â〉

 ≈


0 −ig ig 0
−ig −γa/2 0 ig
ig 0 −γa/2 −ig
0 ig −ig −γa



〈σ̂†σ̂〉
〈âσ̂†〉
〈â†σ̂〉
〈â†â〉

 . (5.19)

Eq. (5.19) yields the solution

〈σ̂†σ̂〉(t) = e−
γa
2 t

(
4Ω̃2 − 8g2

)
cos(Ω̃t) + 2γaΩ̃ sin(Ω̃t) + 8g2

4Ω̃2
, (5.20)

with Ω̃ =

√
4g2 −

(
γa
2

)2, and assuming that initially 〈σ̂†σ̂〉(0) = 1 and 〈âσ̂†〉 =

〈â†σ̂〉 = 〈â†â〉 = 0. The solution for the emitter’s population 〈σ̂†σ̂〉(t) has a
character of an exponentially decaying oscillation of frequency Ω̃, which for g � γa
approximately yields the well known Rabi frequency Ω̃ ≈ 2g. The criterion of the
vacuum strong coupling,

g ≥ γa/4, (5.21)

then ensures Ω̃ to be real. We plot the dynamics of the emitter’s excited state in
Fig. 5.1 (b) for three different values of g: g = 0.1γa (red dashed line), g = 0.25γa
(blue solid line), and g = γa (black dashed-dotted line). For the smallest coupling
the emitter’s population exponentially irreversibly decays into the cavity mode.
When the coupling reaches the strong-coupling condition, g = γa/4, the dynamics
still has the form of an exponential decay as Ω̃ = 0. When we set the coupling
equal to the decay rate of the cavity, the dynamics dramatically changes into an
oscillation of the population between the emitter and the cavity, which is known
as the Rabi oscillation.

Assuming that g � γa, we can see the strong coupling as a hybridization
of the original cavity and emitter states into new polariton states. The new
polariton states inherit the nonlinearity of the two-level emitter and form the
so-called Jaynes-Cummings ladder in the energy diagram. The Jaynes-Cummings
ladder is sketched in Fig. 5.1(c) together with the levels of the uncoupled system,
assuming ωc = ωeg for simplicity. In the case that the cavity-mode-exciton
interaction is switched off, the system can be represented in the basis of eigenstates
|N, g(e)〉 = |N〉 ⊗ |g(e)〉 (with ⊗ the direct product), combining the cavity mode
number states |N〉 and the electronic ground (excited) state |g(e)〉 of the emitter.

For ωeg = ωc and negligible interaction g, the states |N − 1, e〉 and |N, g〉
are degenerate and their energies form an equally spaced ladder (on the left of
the scheme). When g overcomes the system losses, the system enters the strong
coupling regime and the degeneracy is lifted, resulting in a new set of hybrid
polaritonic states |N,+〉 and |N,−〉 [ |N,±〉 = (|N − 1, e〉 ± |N, g〉)/

√
2 shown

on the right]. The energy splitting between these pairs of states, ∆EJ−C(N), is
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proportional to the square root of the number of cavity-mode excitations present
in the system and to the coupling constant g via ∆EJ−C(N) = 2

√
N~g and

therefore the system exhibits nonlinear optical response upon strong illumination
[181, 182] and leads to effects such as photon blockade [183, 184]. Nevertheless,
many physical phenomena, such as the decay of the initially fully excited emitter
into the cavity mode discussed above, can be described within the so-called single-
excitation manifold (marked in Fig. 5.1 (c) by the blue frame), where either the
molecule or the cavity mode are singly excited. Among others, also the optical
absorption and photon emission of the Jaynes-Cummings system illuminated by a
weak probing field is correctly captured by the dynamics of the ground state and
the single-excitation manifold. We use this in Chapter 6 to describe the absorption
and emission properties of coherently driven exciton polaritons.

5.1.3 Setting the regime of coupling between a single
plasmonic mode and a single molecule’s exciton

As we have seen, to correctly describe the dynamics of the system of a molecular
excitonic emitter coupled with a plasmonic cavity, it is of utmost importance
to establish the relation between the plasmon-exciton coupling and the internal
system losses. To that end we briefly estimate the parameters that can be achieved
in the configuration when a single molecule is placed into a plasmonic cavity using
the point-dipole approximation.

The Jaynes-Cummings coupling constant g can be estimated as a product of
the maximal quantized field amplitude of a plasmonic mode and the transition
dipole moment of a common molecular emitter, d0. The latter usually reaches
values of the order of |d0| ∼ 0.1 e·nm. The amplitude of the plasmonic electric
field can be estimated from the mode volume achieved in the plasmonic cavity
and the frequency of the plasmonic mode. The plasmonic energy usually reaches
values of units of eV and for the estimation we choose ~ωc ≈ 2 eV. The mode
volumes of plasmonic modes squeezed into plasmonic gaps can be as small as
Veff ∼ 10 nm3 [168, 174, 177, 185, 186]. Using these values we estimate that g can
reach values of up to approximately ~g ∼ 100 meV. This value must be compared
with the intrinsic losses of the plasmonic cavities that are often large. The cavity
losses are usually expressed in the form of the quality factor Q ≈ ωc/γa, which for
plasmonic cavities commonly ranges around Q ∼ 10− 20, yielding γa ∼ 100 meV,
or even smaller values Q ∼ 1 for bad cavities formed, e.g., under the tip of a
scanning tunneling microscope, giving γa ∼ 1 eV. Nevertheless, higher quality
factors, Q ∼ 60− 70, have been reached for silver particles [174].

The regime of the plasmon-exciton coupling thus balances on the edge between
the strong and the weak couping, depending on the type of the cavity used or the
position and orientation of the emitters in the cavity. It is therefore important to
correctly estimate the coupling constant g between the plasmonic modes and the
molecule’s excitons. Moreover, the morphology of the plasmonic particles causes
distorsion of the electromagnetic fields in the proximity of their surface which
spatially vary on a scale similar to the geometrical size of the molecule, which
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often hinders the use of the point-dipole approximation to estimate g. Below we
therefore describe how the plasmon-exciton coupling g can be estimated beyond the
point-dipole approximation taking into account the spatial extent of the molecule’s
excitonic transitions.

5.1.4 Model of plasmon-exciton coupling beyond the
point-dipole approximation

To describe the interaction between plasmons and the excitons of organic molecules
we use a quantum treatment that combines the canonical quantization of plasmons
with first-principles calculations of the molecular electronic excitations based on
TDDFT, as schematically depicted in Fig. 5.2 (a). Plasmonic modes are considered
as harmonic oscillations of the incompressible free electron gas characterized by
an electron density, Ne, and effective electron mass me [45, 53, 57, 187–190]
that is contained in the metallic nanoparticles. The dielectric function describing
the response of the corresponding bulk metal is thus given by the Drude model
(Section 1.2.1). Each n-th plasmonic mode of frequency ωn of the nanoparticle is
then characterized by its quantized electric potential φ(+)

n [φ(−)
n ] and surface charge

density σ(±)
n , obtained from the canonical quantization of surface modes introduced

in Section 1.3, with the superscripts (+) [(−)] labelling the positive (negative)
frequency part. Such a plasmonic system can be described by a Hamiltonian, Ĥpl,
resembling a set of non-interacting harmonic oscillators:

Ĥpl =
∑
n

~ωnâ†nân, (5.22)

where ân (â†n) are the bosonic annihilation (creation) operators of the nth

plasmonic mode. In principle, this model can be extended to the quantization of
non-local plasmonic modes [191, 192], nevertheless, the local classical description
adopted in this thesis can effectively describe the inhomogeneous screened fields
in many representative plasmonic cavities [193–196].

We consider the molecular excitations (excitons) using linear-response TDDFT
at the level of the Tamm-Dancoff approximation in vacuum (see also Section 2.2.2).
From the TDDFT calculations we obtain the transition density, ρeg(r), which
describes the oscillating electric charge associated with the electronic transition
of the molecule. The transition-charge density can be formally defined as the
expectation value of the electronic-density operator ρ̂c(r) (ρeg(r) = e〈e|ρ̂c(r)|g〉),
accounting for the electronic transitions between the ground |g〉 and the excited
|e〉 states. The transition-charge density is defined in relation with the TDDFT in
Section 2.2.2. Throughout the thesis we consider that the plasmons interact with
molecules physisorbed or physically separated from the surface of the metallic
particles by a dielectric spacer and thus neglect the orbital overlap between the
molecular and metal wave functions.

Within this quantum framework, the coupling gn between the molecular exciton
and the nth plasmonic mode is calculated as a convolution integral of the plasmonic
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Figure 5.2: (a) Schematics of the plasmonic resonator-emitter system. The plasmon
is described as a harmonic oscillation of an incompressible electron gas. Molecular
excitations are addressed as two-level systems of energy ~ωeg. The plasmon interacts
with the molecular transition density ρeg. (b) Schematics of the geometry used to map
the coupling strength (left). A plasmonic dimer of radii Rd = 5 nm, with a protrusion
of Rs = 0.2 nm (cone opening angle α = 72.5◦) hosts a molecule located at position
(x, y, z = 0) within the gap of width G. MB (G = 2 nm) and ZnPc (G = 1 nm)
molecules are considered. Surface charge distribution of the bonding-dimer plasmonic
mode considered for the mapping of the molecular excitons (right). The surface charge
density is highly concentrated in the gap around the sharp protrusion, as shown in the
zoom. (c,d) Atomic structure of (c) methylene blue (MB) and (d) zinc phtalocyanine
(ZnPc). (e,f) Isosurface plots of the transition densities (MB, ZnPc) corresponding to
the transition between the ground and the singlet excited state calculated within the
TDDFT framework (blue: negative values of the density, and red: positive ones).
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potential and the molecular transition density (considering here that the transition
density is real):

~gn =

∫
ρeg(r)φ(+)

n (r) d3r, (5.23)

where the integral is evaluated over the distribution of the molecular transition-
charge density. The Hamiltonian describing the plasmon-exciton interaction is:

Ĥpl−mol = ~
∑
i,n

[
g∗n,iâ

†
n|g〉〈ei|+ gn,iân|ei〉〈g|

]
, (5.24)

where |g〉 (|ei〉) are the electronic ground state (excited state i).

5.2 Spatial mapping of g for realistic organic
molecules

In many practical plasmonic cavities the near-field can be highly confined due
to particle special morphologies such as protrusions emerging on the facets inside
gaps, leading to extreme field localization at the atomic scale [197]. A similar effect
can be also obtained, for instance, in the gap between a metallic substrate and an
atomically sharp tip of a scanning probe microscope [165–167, 169, 170, 198, 199].
The latter situation allows to optically map the magnitude of plasmon-exciton
coupling, as the sharp tip is scanned over the molecule. We reproduce this situation
in a plasmonic dimer with an atomistic protrusion in the gap whose geometry is
depicted in Fig. 5.2(b). Such a model is able to quantitatively reproduce the near-
field distribution around atomic-scale features in plasmonic cavities, as recently
validated by comparison with TDDFT results [196]. In the following, we use the
plasma frequency ωp as a parameter that allows us for tuning the low-energy
bonding-dipole plasmon of the dimer [the surface charge density of the mode is
shown in Fig. 5.2(b), on the right] with frequency ω1 ≡ ωpl, to be resonant with
the exciton of the molecule, and calculate the coupling strength between the two
as the gap is scanned over the molecule in the horizontal plane xy, while keeping
z constant.

We illustrate the importance of the quantum treatment of the molecular
electronic transitions in two specific cases of dye molecules: methylene blue (MB)
[Fig. 5.2 (c)] and zinc phtalocyanine (ZnPc) [Fig. 5.2 (d)], due to their relevance
in experimental situations [165, 166, 186]. MB is a molecule with an electronic
transition Sz of a strong dipole transition moment (optically active) oriented
along the z axis, dz = 0.23 e·nm [axes marked in Fig. 5.2 (c,d)]. ZnPc is a flat
molecule with all the atoms lying on the xy plane showing two degenerate optically
active transitions, Sx and Sy, on the same plane, with transition dipole moment
dx,y = 0.17 e·nm. The transition charge densities of the molecular excitons
are shown as isosurface plots in Fig. 5.2 (e,f) for the Sz transition of MB (e)
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and the transition Sx of ZnPc (f), respectively. The positive (red) and negative
(blue) transition charge densities are clearly observable at opposite sides of both
molecules, corroborating the dipole character of the transitions, continuously
distributed over the entire extent of the molecules (∼ 2 nm).

We first place into the gap the MB molecule oriented vertically (electronic
transistion Sz), and compare the map of the coupling strength, calculated within
the full quantum model (FQM) [Fig. 5.3 (b)] with that obtained with the point-
dipole model (PDM) [Fig. 5.3 (c)]. The coupling is maximized when the molecule
is positioned at the center of the gap and reaches values of up to 120 meV, being
larger in the FQM by ≈ 10meV than in the PDM. The magnitude of the coupling
decreases as the molecule is displaced off the center, following the decay of the
electric field component along the dimer axis. The point-dipole approximation
[Fig. 5.3 (c)] in this case reproduces well both the qualitative and quantitative
features of the first-principles calculation [Fig. 5.3 (b)], validating the use of this
approach in this highly symmetric situation.

A more dramatic situation occurs when the ZnPc molecule is considered (with
the plane of the molecule perpendicular to the dimer axis). As ZnPc has two
degenerate transitions, Sx and Sy, we calculate the map of the effective coupling
defined as:

gZnPc
Sx(y)

(r0) =
√
|gZnPc
Sx

(r0)|2 + |gZnPc
Sy

(r0)|2. (5.25)

We show the corresponding maps in Figs. 5.3 (d,e) calculated using the FQM
(d) and the PDM (e), respectively. When the molecule is placed at the center
of the cavity, both maps exhibit a minimum (zero) originated by the vanishing
overlap integral between a rotationally symmetrical plasmon mode and a horizontal
electronic dipolar transition in the molecule. Away from the center, the C4v

symmetry is broken and the map shows a doughnut-like shape, following the
pattern of the radial component of the electric local field in the proximity of the
atomistic protrusion [168, 197, 198]. Interestingly, whereas the result of the PDM
[Fig. 5.3 (e)] is fully rotationally symmetric, the FQM map [Fig. 5.3 (d)] acquires
the four-fold symmetry of the molecular sample (D4h). We highlight this effect
by plotting in Fig. 5.3 (f) a cut along the circular trajectory marked by the blue
circle in Fig. 5.3 (d) and the green circle in Fig. 5.3 (e). The FQM result exhibits
experimentally accessible oscillations of the coupling constant, characterized by
≈ 10% variation, whereas the PDM yields a constant profile. Importantly, the
FQM yields a coupling constant reaching roughly one half of the coupling strength
obtained from the PDM. These values are fully consistent with the experimental
ones reported for this kind of systems [169, 170].
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5.3. Breaking of optical selection rules in plasmonic cavities

Figure 5.3: (a) Schematics of the molecular orientation in the plasmonic gap. The MB
is oriented vertically (top) and the ZnPc molecule horizontally (bottom). The plasmonic
cavity is scanned in the xy plane. (b-e) Maps of the coupling constant g(r0) between
the plasmon dipolar gap mode and the molecular electronic transition as a function of
the lateral displacement of the center of the molecule around the gap (center of the gap
at x = y = 0). (b,c) Maps of g calculated for a vertically oriented MB molecule. (d,e)
Maps of effective g for a horizontally positioned ZnPc molecule, which considers both
lowest-energy degenerated dipole transitions. Maps to the left obtained within the FQM,
and maps to the right within the PDM. (f) Circular cut of g at a distance of 0.5 nm from
the center as indicated with dashed lines in (d,e). FQM (blue) and PDM (green) are
compared.
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Figure 5.4: Breaking of optical selection rules for the quadrupolar transition of ZnPc. (a)
Isosurface plot of the transition charge density produced by the quadrupolar electronic
transition of the ZnPc molecule. The positive values are red, the negative values are blue.
(b) Map of the plasmon-exciton effective coupling constant gZnPc

Sxz(yz)
, as the plasmonic

cavity is scanned across the molecule in the xy plane (see inset). (c) Absorption
spectra of the plasmonic cavity with the molecule inside (black line) and of the bare
molecule in vacuum (blue-dashed line). The broadening of the molecular excitation is
considered to be ~γdk = 0.1meV. The spectra are normalized to the maximum of the bare-
molecule absorption, sa(ω)/max(sa,mol). The absorption spectrum of the bare molecule
in vacuum has a form of a Lorentzian peak of ≈ 9 orders of magnitude smaller amplitude
compared to the depth of the Fano-like dip in the absorption of the coupled plasmon-
exciton system. (d) Absorption spectra of the particle-molecule system normalized to
the maximum of the absorption spectrum of the bare plasmonic dimer, sa(ω)/max(sa,0),
for ~γdk = 0.01meV, 0.1meV and 1meV. The magnitude of the absorption dip reaches
≈ 20% of the absorption maximum for ~γdk = 0.01meV (red solid line), gets shallower
but still visible for ~γdk = 0.1meV [the value used in (c)], with a magnitude of ≈ 2.5%
of the absorption maximum (black dashed line), and almost completely disappears for
~γdk = 1meV (blue dotted line).
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5.3. Breaking of optical selection rules in plasmonic cavities

5.3 Breaking of optical selection rules in
plasmonic cavities

The effect of the extreme field localization in plasmonic cavities can also have a
dramatic impact on the optical selection rules governing the interaction of incident
light with molecular transitions. To demonstrate this, we calculate the charge
transition densities of a degenerate quadrupolar electronic transition Sxz (Syz)
of ZnPc (quadrupolar moment Qyz = Qxz =

∫
xzρSxzd

3r ≈ 2.74 × 10−4 e · nm2

and energy ~ωdk ≈ 2.97 eV) which does not carry any dipole moment and is thus
effectively dark for an incident plane wave in vacuum. We show the corresponding
transition density ρSxz in Fig. 5.4 (a). Following the same procedure as for the
degenerate dipole transitions Sx and Sy in the previous section, we calculate the
spatial map of the effective coupling constant gZnPc

Sxz(yz)
=
√
|gZnPc
Sxz
|2 + |gZnPc

Syz
|2

between the quadrupolar excitonic transitions and the same bonding dipolar
plasmon as in the dimer structure of Fig. 5.3(a). The map of gZnPc

Sxz(yz)
is shown

in Fig. 5.4 (b). The spatial distribution of gZnPc
Sxz(yz)

exhibits four-fold symmetry
D4h, as was also found for the dipolar transition. The maximum value of the
plasmon-exciton coupling obtained for this situation reaches ≈ 0.2meV, which sets
the interaction into the weak coupling regime. Nevertheless, the calculated value
of gZnPc

Sxz(yz)
is large enough to allow for detection of the originally dark excitonic

transition in the plasmon-enhanced absorption spectrum.

To demonstrate this breaking of optical selection rules we consider the values of
gZnPc
Sxz(yz)

obtained for a position of the molecule in the atomically sharp plasmonic
gap at x = 0.4 nm, y = 0 nm, and calculate the optical absorption spectra [99–
101], sa(ω), of the coupled system and that of the bare molecule in vacuum. We
describe the plasmonic excitations by the Hamiltonian in Eq. (5.22) and treat the
dark (dk) excitation of the molecule as a two-level system with ~ωdk = Eedk −Eg.
This Hamiltonian can be expressed as:

Ĥdk
mol ≈ Eg|g〉〈g|+ Eedk

|e〉〈e| ≡ ~ωdkσ̂
†σ̂, (5.26)

where we assume that only one excited state |edk〉 actively contributes to the
absorption. To simplify the notation, on the right-hand side of Eq. (5.26) we
have rewritten the Hamiltonian Ĥdk

mol in terms of the Pauli operators, setting
Eg = 0, without loss of generality. In this notation, the plasmon-exciton coupling
Hamiltonian is:

Ĥdk
pl−mol = ~

∑
i,n

[
gdk
n

∗
â†nσ̂ + gdk

n ânσ̂
†
]
, (5.27)

where gdk
n is the exciton-plasmon coupling constant as defined above for the dipole

electronic transitions.

We further add the broadening of the plasmons, γa, and of the dark exciton,
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γdk, via the master equation [Eq. (3.26)] for the density matrix ρ̂,

˙̂ρ =
1

i~
[Ĥdk

mol, ρ̂] +
∑
n

L
γan
ân

(ρ̂) + L γdk
σ̂ (ρ̂), (5.28)

with the Lindblad superoperators

L
γan
ân

(ρ̂) =
γan
2

(
2ânρ̂â

†
n − {â†nân, ρ̂}

)
, (5.29)

L γdk

σ̂ (ρ̂) =
γdk

2

(
2σ̂ρ̂σ̂† − {σ̂†σ̂, ρ̂}

)
. (5.30)

We set the intrinsic broadening of the molecular resonance ~γdk = 0.1meV and
that of the plasmonic modes ~γan = ~γa = 50meV for all n modes.

We calculate the probe-absorption spectrum of the plasmon [99–101] (dropping
the pre-factors) by generalizing Eq. (3.80) as the one-sided Fourier transformation
of the plasmonic dipole operator’s two-time auto-correlation function 〈D̂(τ)D̂†(0)〉

sa(ω) =2Re

{∫ ∞
0

〈D̂(τ)D̂†(0)〉eiωτ dτ

}
= 2

∑
mn

DmDnRe

{∫ ∞
0

〈âm(τ)â†n(0)〉eiωτ dτ

}
, (5.31)

where the plasmonic dipole operator D̂ =
∑
nDnân, with Dn the projections of the

respective plasmon dipole moments along the assumed polarization of the incident
light. We assume that the plasmonic mode n couples to an incident probing
plane wave of amplitude E0 and for the calculation of the absorption spectra, we
consider the plasmon-probe coupling constant ∝ −Dn, normalized to the incident
light amplitude. We neglect here the direct and much weaker coupling of the
molecular quadrupolar transition with the incident light.

To show the effect of selection rules breaking in a specific situation, we calculate
the probe-absorption spectrum of the dimer cavity with an atomistic protrusion
in the gap [Fig. 5.2 (b)] and assume that the probing light is polarized along the
z axis of the dimer and therefore effectively couples mainly to the bonding dimer
plasmon. The dipole moments Dn are then defined as

Dn =

∫∫
∂V

σ(+)
n z d2s, (5.32)

where σ(+)
n is the quantized surface-charge density of the plasmonic mode n and

the integration is performed over the surfaces of the plasmonic particles.

In order to evaluate the two-time autocorrelation function 〈âm(τ)â†n(0)〉
we apply the quantum regression theorem (see Section 3.1.4) which allows for
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5.3. Breaking of optical selection rules in plasmonic cavities

obtaining the correlation functions as solutions of the set of differential equations:

d〈âi(τ)â†j(0)〉
dτ

= (−iωi − γa/2)〈âi(τ)â†j(0)〉 − igdk
i 〈σ̂(τ)â†j(0)〉,

d〈σ̂(τ)â†j(0)〉
dτ

= (−iωdk − γdk/2)〈σ̂(τ)â†j(0)〉 − i
∑
i

gdk
i 〈âi(τ)â†j(0)〉.

(5.33)

Assuming that the plasmon and the exciton are in the ground state when the
probing field is not present, the initial conditions become:

〈âm(0)â†n(0)〉 = δmn, (5.34)

〈σ̂(0)â†m(0)〉 = 0, (5.35)

with δmn the Kronecker delta. We solve the set of Eqs. (5.33) numerically and
perform the one-sided Fourier transformation to obtain the absorption spectrum.
The set of equations yields

sa(ω) = 2Im

∑
mn

 DmDnδmn
∆m − iγa/2

+

gdkm DmDng
dk
n

(∆m−iγa/2)(∆n−iγa/2)

(δ − iγdk/2)−
∑
k

gdkk
2

∆k−iγa/2

 , (5.36)

where ∆n = ωn − ω, δ = ωdk − ω, and Im{·} stands for the imaginary part.

For comparison we additionally calculate the probe-absorption spectrum of
the molecular quadrupolar mode in a vacuum (i.e. without the plasmon). To do
that, we calculate the normalized coupling strength of the quadrupolar excitonic
transition in the molecule, Emol, for an incident plane-wave with z−polarized
electric field of unit amplitude, propagating in the x direction as

Emol ≈ −ik

∫∫∫
zxρdk d3r, (5.37)

with k = 2π/λinc, where λinc is the vacuum wavelength of the incident light that
is resonant with the molecular transition, and ρdk the transition-charge density of
the dark (dk) quadrupolar exciton (carrying zero net dipole moment).

The absorption spectrum of the bare molecule, sa,mol(ω), is then calculated as
in the case of the plasmonic particle, but now assuming that the incident probe
directly interacts with the molecule:

sa,mol(ω) = 2|Emol|2Re

{∫ ∞
0

〈σ̂(τ)σ̂†(0)〉eiωτ dτ

}
. (5.38)

We resolve the two-time correlation function from the differential equation

d〈σ̂(τ)σ̂†(0)〉
dτ

= (−iωdk − γdk/2)〈σ̂(τ)σ̂†(0)〉, (5.39)
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with the initial condition

〈σ̂(0)σ̂†(0)〉 = 1. (5.40)

The absorption spectrum of the bare molecule in vacuum can be finally obtained
in the form

sa,mol(ω) =
|Emol|2γdk

(ωdk − ω)2 + (γdk/2)2
. (5.41)

For this calculation we assume that the intrinsic width of the molecular
transition is ~γdk = 0.1meV, taken as a representative intermediate value
characterising fluorescent molecules. In Fig. 5.4 (c) we compare the spectrum of
the coupled molecule-cavity system (black line) with the absorption of the molecule
in a vacuum (blue dashed line). The spectra are normalized to the maximal value
of the bare-molecule absorption sa,mol(ω). The spectrum of the cavity-molecule
system shows the shape of a broad Lorentzian resonance originated from light
absorbed by the bonding dimer plasmon perturbed by a small spectral dip that
emerges due to the ZnPc quadrupolar electronic transition (Fano-like profile). On
the other hand, the absorption peak of the bare molecule in a vacuum cannot be
resolved on the selected scale and the blue dashed line appears to be flat. In the
inset of Fig. 5.4 (c) we therefore zoom in the molecular absorption features and
compare their relative spectral intensities. Strikingly, the size of the absorption
dip obtained in the plasmonic cavity is ≈ 9 orders of magnitude larger than the
absorption peak of the bare molecule, thus making the quadrupolar excitonic
transition accessible to optical absorption spectroscopy.

Nevertheless, in practice, the value of the excitonic broadening γdk determines
the magnitude of the absorption dip. To demonstrate this effect we compare
the absorption dip calculated for the quadrupolar excitonic transition of ZnPc
considering three different values of the intrinsic broadening: ~γdk = 0.01meV,
0.1meV and 1meV. The respective spectra, normalized to the maximum of the
plasmonic absorption without the molecule, sa,0, are shown in Fig. 5.4 (d). For
~γdk = 0.01meV the magnitude of the molecular Fano-like absorption dip reaches
≈ 20% of the plasmonic-peak amplitude. For ~γdk = 0.1meV, the value used in
Fig. 5.4 (c), the dip reaches ≈ 2.5% of the plasmonic absorption maximum and
could be still experimentally observed. When the intrinsic molecular broadening is
considered relatively large, ~γdk = 1meV, the spectral dip practically disappears.

In conclusion, we have shown that plasmonic cavities that highly localize
electromagnetic fields are able to enable optical spectroscopy of molecular excitons
that are otherwise dark to standard optical methods. The dark excitations can
manifest themselves in the extiction spectra of the plasmonic system in the form
of Fano-like dips, whose visibility, however, strongly depends on the broadening of
the molecular excitations.
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5.4. Plasmon-exciton dynamics beyond the point-dipole approximation

5.4 Dynamics of molecular excitons in plasmonic
cavities beyond the point-dipole
approximation

So far we have discussed the position dependence of the plasmon-exciton coupling
that arises due to the distribution of the transition-charge electronic density of
the molecular excitons. The coupling of the excitons to the plasmonic cavity also
results in a modification of the temporal evolution of the molecular excited states
that we address in this section.

To that end we apply the hybrid quantization scheme to explore the role of
the finite size of the molecule and calculate the dynamics of the population of the
excited electronic state |ce(t)|2 by solving the integro-differential equation for the
amplitude, ce(t), based on the Wigner-Weisskopf approach that we introduced in
Section 3.2 [94, 200]:

ċe(t) = −
∫ t

0

∫ ∞
−∞

Jem(s)ei(ωeg−s)(t−τ)ce(τ) dsdτ, (5.42)

where Jem(s) is the spectral density characterizing the coupling of the molecule
with the plasmonic system:

Jem(s) =
γa
2π

∑
n

|gn|2

(ωn − s)2 + (γa/2)2
, (5.43)

with ωn being the frequency of nth plasmonic mode and ~ωeg = 2.3 eV (2.8 eV)
is the excitation frequency of the dipole transition (Sx, Sy, Sz) in the ZnPc (MB)
molecule. For convenience we consider that the plasmon decay is proportional to
the plasma frequency, γa = 0.01ωp. In practice, γa phenomenologically accounts
for the intrinsic losses in the metal and can be estimated from the classical dielectric
function of the particle material [174]. In AppendixD we have also performed a set
of calculations of the system dynamics involving larger values of γa (accounting for
larger losses of conventional plasmonic materials) to test its influence on the results
presented here. We have found that large values of γa affect the coherence of the
dynamics, however, the general trends of the results presented here are generally
valid. Note that in Eq. (5.42) we are neglecting the extremely slow intrinsic
molecular decay. We solve Eq. (5.42) for the initial condition |ce(0)|2 = 1, thus
treating the decay of the initially fully excited molecular exciton.

We first consider the MB molecule [Fig. 5.2(c,e)] oriented perpendicularly to
the surface of a spherical metal nanoparticle of radius Rd = 5 nm. We plot in
Fig. 5.5(a,b) the spectral density as a function of the distance, z0, between the
center of the molecule and the particle’s surface. We compare the spectral density
obtained using the full quantum model (FQM) in which the transition density
is obtained within TDDFT [Fig. 5.5(a)], with that obtained with the use of the
simplified point-dipole model (PDM) to describe the molecule [Fig. 5.5(b)]. The

103



Chapter 5. Plasmon-exciton coupling beyond the point-dipole approximation

Figure 5.5: Dynamics of the MB molecular exciton in the proximity of a spherical
plasmonic resonator. (a,b) Spectral densities calculated with the FQM (a) and with the
PDM (b), as a function of the distance z0 of the center of the molecule to the particle’s
surface (radius Rd = 5 nm). (c,d) Spectral densities extracted from (a) and (b), for
z0 = 2 nm (c) and for z0 = 1 nm (d). (e,f) Selected decay dynamics for the exciton
resonant with the dipolar plasmon (e) and with the pseudomode (f) for a separation
distance of z0 = 1 nm, as marked in (d). FQM results are displayed with red lines and
PDM results with black ones.

same color scale is used for straightforward comparison. For a more quantitative
comparison, in Fig. 5.5 (c,d) we extract the spectral densities for the smallest
z0 = 2 nm (c), and largest z0 = 1 nm (d) within the PDM (black lines) and FQM
(red lines). The spectral density maps calculated within both models feature the
same qualitative behavior, showing several peaks starting at the frequency of the
dipole mode of the sphere (the Fröhlich frequency ωdip = ωp/

√
3), and continuing

with a number of higher-order modes that build up a strong resonance at around
the frequency of the surface plasmon, ωps ≈ ωp/

√
2, the so-called pseudomode.[201]

One of the most striking effects of considering the spatial distribution of
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the transition density is revealed in the dynamics of the exciton decay, |ce(t)|2.
We analyze in Fig. 5.5(e) this situation when the MB exciton is resonant with
the dipolar plasmon, and in Fig. 5.5(f) when is resonant with the plasmonic
pseudomode (tuning ωp of the metal). In both cases, the molecule is placed at z0 =
1 nm. When the exciton is resonant with the dipolar mode, the spectral densities,
Jem(s), of the FQM and the PDM are almost identical in the spectral region
close to the exciton resonance, thus leading to similar qualitative and quantitative
features of the corresponding decay dynamics within both models. In the first
stages of the decay, the exciton population shows fast but shallow oscillations that
modulate the overall slower non-exponential decay process driven by low-order
plasmonic modes. We have checked that the fast dynamics arises mainly due
to presence of the pseudomode peak in Jem(s), despite its large spectral detuning
from the exciton frequency. A different picture can be observed in Fig. 5.5(f), where
the pseudomode frequency coincides with the excitonic frequency, ωps ≈ ωeg. In
this case, the decay dynamics features a clear coherent exchange of the exciton
population with the plasmonic pseudomode. In this strong coupling regime, we
find that the spectral density is larger in the FQM than in the PDM [Fig. 5.5(d)]
resulting in about ≈ 20% faster vacuum Rabi oscillations due to the proximity of
one side of the molecule to the metallic surface. Notice that the coupling of the
molecular exciton to the pseudomode is much more sensitive spatially than in the
dipolar case due to the extremely localized character of the pseudomode.

We also consider an alternative situation of coupling by analyzing the exciton
dynamics of a transition of the ZnPc molecule, which is oriented horizontally with
respect to the metal nanoparticle. The spectral densities obtained from the two
approaches are shown in Fig. 5.6 (a) and (b), using the same color scale in both
cases. Both the FQM and the PDM exhibit a single peak at the pseudomode
frequency. However, opposite to the MB case, the amplitude of this peak is
substantially reduced in the FQM with respect to that obtained within PDM. This
occurs because the higher order plasmon modes show a high spatial modulation
which exceeds that of the transition density, thus softening the plasmon-exciton
interaction. For analyzing the dynamics, we first focus on a situation where
the exciton weakly interacts with a far blue-detuned plasmonic resonance. We
select this detuned case by assuming a value of the plasma frequency (~ωp ≈ 9
eV) which locates the frequency of the pseodomode (~ωps ≈ 6.4 eV) far away
from the ZnPc exciton (~ωeg = 2.3 eV). We checked that the RWA also describes
correctly the dynamics under these conditions. In this case the molecule is weakly
coupled to the plasmonic excitations, so that the exciton decays exponentially,
|ce(t)|2 = e−Γeff t (Purcell effect). The decay rate Γeff can be related to the spectral
function of the plasmons as γ = 2πJem(ωeg), which for the PDM reduces to the

well-known expression Γeff =
2ω2

eg

c2ε0
[d0 · Im{G(r0, r0)} · d0] (with c the speed of

light in vacuum) [44] involving the imaginary part (Im{·}) of the (quasi-static)
electric dyadic Green’s function G(r0, r0) evaluated at position r0 of the dipolar
emitter.

In Fig. 5.6 (c) we show the dependence of the plasmon-induced decay rate, Γeff ,
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Figure 5.6: Dynamics of the ZnPc molecular exciton near a spherical plasmonic resonator.
(a,b) Spectral densities as a function of the distance of the molecule to the particle’s
surface z0 [see inset in (c)] within the FQM (a) and within the PDM (b). (c) Plasmonic
enhancement of the total decay rate as a function of z0, when the plasmon resonance
is strongly blue-detuned from the molecular exciton. (d) Dynamics of the exciton for
z0 = 0.5nm when the exciton frequency corresponds to the pseudomode peak. The red
line corresponds to the FQM and the black line to the PDM.

normalized to the vacuum decay of the transition, γ0, as a function of the distance
of the molecule (the central Zn atom) to the surface of the metal nanoparticle, as
calculated with the FQM (red lines) and with the PDM (black lines). The values of
the decay rate enhancement Γeff/γ0 (the Purcell factor) reach almost up to 104 for
the closest separation distance (z0 = 0.5 nm) when a point-like dipole is considered.
At this distance, the decay rate calculated with the quantum model, dominated
by the interaction with the pseudomode, is reduced by a factor of around 2 with
respect to the PDM result. When the distance from the surface increases, the
values of the decay rate from both models become closer, recovering the limit of
the point-dipole approximation from distances of approximately z0 ≈ 1nm. In a
second scenario, we make the pseudomode frequency to coincide with the molecular
exciton, ωps ≈ ωeg, also for a distance of z0 = 0.5 nm. Under these conditions the
plasmon-exciton coupling is strong and the calculated dynamics of the excited
state, |ce(t)|2, results in clear Rabi oscillations [Fig. 5.6 (d)]. The comparison of
the dynamics obtained from the FQM (red lines) with that of the PDM (black
lines) yields quantitative differences in the period of the Rabi oscillations, around
40% smaller in the FQM than in the PDM. Hence, the FQM reveals the limitations
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of the PDM to address the exciton dynamics both in weak and strong coupling
regimes.

Importantly, we have found that each particular geometrical configuration
of the molecule with respect to the plasmonic cavity requires a detailed
analysis of the plasmon-exciton coupling, as in some occasions the point-dipole
approximation overestimates the coupling, as shown for the ZnPc molecule,
whereas it underestimates its strength in others, as in the case of the vertically
oriented MB molecule.

5.5 Summary

We have studied the interaction between plasmonic excitations in metallic particles
and molecular excitons within the framework of cavity QED. We have extended
the description of the plasmon-exciton coupling beyond the standard point-dipole
approximation and discussed the consequences of treating the molecule as a
spatially extended object.

We have found that the more complete quantum model, describing the
plasmon-exciton interaction as an overlap of the excitonic transition-charge density
of the molecule and the quantized electric potential of the plasmons, nicely
corresponds with the experimentally reported photon maps of molecular excitons
measured in electroluminescence of STM [169, 170].

Furthermore, we have shown that the interplay of the spatial distribution of
the plasmonic potential and the excitonic transition-charge density of the molecule
can lead to breaking of the optical selection rules governing the light-exciton
interaction. The originally dark excitations (e.g. electric quadrupolar transitions)
can become bright if their interaction with light is mediated by the highly confined
fields of cavity plasmons. The spectral signatures of these excitons can be thus
observed in the far-field spectra as Fano-like features on top of the broad optical
response of the plasmons.

Finally, it has been found that the plasmonic environment strongly modifies the
temporal evolution of the molecular excited states. We have identified situations
where a correct excitonic dynamics is obtained only if the full spatial distribution
of the molecular excitonic transition-charge density is considered. In other cases
the commonly assumed point-dipole approximation may be sufficient to account
for the physics of the plasmon-exciton couping. Each geometrical arrangement of
the molecule in a plasmonic cavity thus requires specific inspection.

The model introduced in this chapter is a first step towards a more complex
description of the plasmon-molecule interaction. As for now, the model assumes
that the molecular geometry and hence also its excitations are described correctly
by the vacuum properties of the molecule. It is worthwhile to note that in
practical experiments concerning molecules in atomically-sharp plasmonic cavities,
as those considered here, there might be additional effects that would require
more sophisticated treatments of the metal-molecule interface regarding both
the electronic structure as well as the electromagnetic interaction. The extreme

107



Chapter 5. Plasmon-exciton coupling beyond the point-dipole approximation

localization in plasmonic cavities often relies on atomic-scale corrugations at the
metal-nanoparticle surface which have been shown to vary along time due to
thermal diffusion of the metallic surface atoms [168]. Low temperature experiments
are thus required under certain circumstances to stabilize the particle morphology.
Additionally, the ground-state geometry as well as the energies of the molecular
excitons will be influenced by screening effects of the nearby metallic surfaces and,
in the case of experiments performed in air or solvent, also of the wetting layer
present in the plasmonic gap. These effects will generally modify the quantum-
chemical properties of the molecules and require more complex ab-initio modelling.
Nevertheless, we believe that the first-principles approach presented here provides
a good qualitative and quantitative picture of the coupling between plasmons and
single-molecular excitations under well-controlled conditions [169, 170, 186].
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Chapter 6

Effects of a dephasing reservoir
in photon emission of
coherently driven organic
exciton-polaritons

When placed into optical (plasmonic) cavities, excitons in organic molecules can
strongly interact with the cavity modes and form new mixed exciton-photon
(plasmon) excitations, so-called exciton polaritons [57, 178, 202–230], as described
in Chapter 5. Exciton polaritons have been broadly analyzed in connection with
their fluorescence properties, cavity-induced (photo)chemistry [219, 220, 231–235],
polariton lasing and polariton condensation [236–244], and polariton-mediated
energy transfer [245, 246].

The inelastic photon emission from the polariton modes has been found to
exhibit spectral asymmetries that favour the emission from the lower polariton
branch, while often suppressing the emission from the upper polariton [203, 218,
247–249]. This asymmetry has been attributed to vibrationally driven decay
processes between the polaritonic states [250]. It has been shown that the
vibrational states of the molecules play a key role in the formation of new vibron-
polariton states that lead to the appearance of new peaks in the emission spectra
[223, 224, 226, 228, 229, 251, 252]. The excitons in organic molecules are also
exposed to interactions with their local environment (the solvent) that produces
additional exciton dephasing. The interaction with the solvent molecules also
contributes to significant solvent-dependent Stokes shift of the photoluminescence
induced by the reorganization of the solvent molecules when the solute molecule
changes the electronic state [253, 254]. It is therefore necessary to correctly treat
the interaction of the polariton states with the dephasing reservoir when describing
the strong coupling between a cavity mode and molecular excitons.
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In this chapter we address the inelastic light emission spectra of polaritonic
systems pumped by a coherent monochromatic laser. We present a quantum-
optical model based on the solution of the quantum master equation [94] that
describes the spectral asymmetries observed experimentally in the polariton
emission and action (excitation) spectra [203, 218, 249]. We show that the
dominant emission from the lower polariton state is a consequence of the
interaction between the excitons and the dephasing reservoir, which in principle
includes both the effects of the internal molecular vibrations and the solvent.

We first introduce the theoretical model in Section 6.1. In Section 6.2 we
demonstrate consequences of the model on an example of a single molecule in
a cavity. We address the more general case of Nmol molecules in a cavity in
Section 6.3.

6.1 Open quantum system theory of (collective)
exciton-cavity mode coupling

We describe the molecules as two-level electronic systems with a ground, |g〉,
and an excited state, |e〉, interacting with their respective reservoirs, including
both the internal molecular vibrational modes and the fluctuations of the local
environment of each molecule [254]. The local environment of the molecule is
responsible for the electronic dephasing processes [e.g. vibrations of the molecule
or the environment [250, 251, 255–259], fluctuations of solvent polarization etc.],
as schematically represented in Fig. 6.1. The excitonic term of the Hamiltonian of
the i−th molecule is

Ĥe,i = ~ωegσ̂
†
i σ̂i, (6.1)

where σ̂i is the two-level-system lowering operator between the many-body excited
state, |ei〉, and the many-body ground state, |gi〉, of the i−th molecule, σ̂i =
|gi〉〈ei|, and ~ωeg is the energy of |ei〉 with respect to |gi〉, considered equal for all
molecules. Each molecule interacts with its local dephasing reservoir described by
the Hamiltonian

Ĥres,i = ~ΩRB̂
†
i B̂i, (6.2)

with ~ΩR the effective energy of the mode of the reservoir, via the exciton-reservoir
interaction Hamiltonian

Ĥe−res,i = dRΩRσ̂
†
i σ̂i(B̂

†
i + B̂i). (6.3)

Here B̂i are the bosonic annihilation operators of the collective reservoir mode i
interacting locally with the exciton of the i−th molecule [253, 257, 259–263], and
† stands for the Hermitian conjugate. We have assumed that the reservoir modes
have the same frequency ΩR,e,i = ΩR,g,i = ΩR in the excited state (ΩR,e,i) and
the ground state (ΩR,g,i). The equilibrium position of the reservoir mode is rigidly
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Figure 6.1: Schematic representation of the cavity containing a bosonic mode (with â
the bosonic annihilation operator of the cavity excitation) of energy ~ωc interacting with
a series of molecules modelled as electronic two-level systems. Each i-th molecule is
composed of its ground, |gi〉, and excited, |ei〉, electronic state separated by energy ~ωeg

(with σ̂i = |gi〉〈ei|), which further interact with a dephasing reservoir that is modelled
as an effective bosonic mode of energy ~ΩR, independently for each molecule (B̂i being
the respective bosonic annihilation operator).

displaced in the electronic excited state of the i−th molecule by a dimensionless
constant dR with respect to its equilibrium position in the ground electronic state.

We describe the inter-molecular excitonic interactions through the Hamiltonian

Ĥe−e =
∑
ij

Gij σ̂
†
i σ̂j + H.c., (6.4)

where Gij are coupling constants that generally depend on the spatial distribution
of the individual molecules as well as on their mutual orientation.

The molecular excitons interact with a single bosonic cavity mode of frequency
ωc

Ĥc = ~ωcâ
†â, (6.5)

where â (â†) is the bosonic annihilation (creation) operator of the cavity mode.
The i-th molecule interacts with the cavity mode via the coupling Hamiltonian

Ĥe−c,i = ~giσ̂†i â+ H.c., (6.6)

where gi is the respective cavity-mode-exciton coupling constant. The total
Hamiltonian describing the cavity and molecular excitations thus becomes

Ĥtot = Ĥc + Ĥe−e +
∑
i

(
Ĥe,i + Ĥres,i + Ĥe−res,i + Ĥe−c,i

)
. (6.7)

The Hamiltonian Ĥtot contains information about the coherent dynamics of the
system, but also accounts for the the coupling of molecular excitons with their
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respective dephasing reservoirs. Importantly, Ĥtot does not account for exciton
decay and photon leakage. To properly account for this, we describe the dynamics
of the system via the master equation for the density matrix ρ̂, including the
effects of the environment via the phenomenological Lindblad terms of the form
L

γOi
Ôi

(ρ̂) =
γOi

2

(
2Ôiρ̂ĉ†i − {Ô

†
i Ôi, ρ̂}

)
, with Ôi the (annihilation) operator of the

respective excitation, the phenomenological damping constants of the respective
excitations γOi , and with {·, ·} the anticommutator. The quantum master equation
that includes all the necessary Hamiltonian and Lindblad terms becomes:

˙̂ρ =
1

i~

[
Ĥtot, ρ̂

]
+
∑
i

L
γOi
Ôi

(ρ̂), (6.8)

where Ôi depends on the model under consideration. In the following we address
the dynamics encompassed in Eq. (6.8) and analyse the spectral features arising
in the optical response of the strongly-coupled system influenced by the coupling
to a dephasing reservoir.

6.2 Single molecule in a cavity

6.2.1 Reservoir-induced incoherent processes for a single
molecule

In the strong coupling regime the plasmon-exciton interaction gi = g becomes so
significant that it overcomes the intrinsic electronic (γσi) and cavity (γa) decay
rates and leads to the formation of new hybrid states, polaritonic states. The
simplest situation arises when a single cavity mode couples with a single two-
level electronic system (we omit the index i to denote the molecule’s excitations
when considering a single molecule) in the single excitation manifold, where only
the bare states |g, 0〉, |e, 0〉 and |g, 1〉 are considered, with 0 (1) the number of
cavity excitations. The new polaritonic eigenstates |+〉 and |−〉 become a coherent
admixture of the exciton and the cavity excitation depending on the magnitude of
the coupling strength and the detuning of their respective frequencies:

|+〉 = cos θ|e, 0〉+ sin θ|g, 1〉,
|−〉 = − sin θ|e, 0〉+ cos θ|g, 1〉,

(6.9)

tan(2θ) =
2g

ωeg − ωc
and 0 < 2θ < π. (6.10)

The scheme of the newly arising energy level structure is drawn in Fig. 6.2 (a).
The operators of the three-level system consisting originally of the states |0〉 =
|g, 0〉, |2〉 = |e, 0〉 and |3〉 = |g, 1〉 can be more conveniently expressed in the new
basis {|0〉, |+〉, |−〉} with help of Eq. (6.9). Most importantly, the operator σ̂†σ̂
responsible for the interaction with the dephasing reservoir in Ĥe−res becomes
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Figure 6.2: Role of the dephasing processes on the light emission from a single exciton
strongly coupled with a cavity mode. (a) Schematic level diagram of the exciton in a
cavity that is decoupled (left) and after the coupling is turned on (right) within the
Markovian-bath model (MBM). The cavity-exciton coupling gives rise to new polariton
states, |+〉 and |−〉, and opens new incoherent decay paths between |+〉 and |−〉 with
respective rates γσ−+ > γσ+− . (b) Energy level diagram marking the incoherent
population transfer between the polariton states as in (a), but for the Jaynes-Cummings
model (JCM) where the rates γσ−+ and γσ+− are equal (γσ−+ = γσ+−). (c) Spectral
density J(ω) of the bath given by Eq. (6.22) for parameters ~γR = 400 meV, ~ΩR = 400
meV (chosen such that the reservoir spectral function J(ω) spans the range of vibrational
frequencies of the molecule) and dR = 0.173 (for which ~J(0) ≈ 20meV). Calculations
of selected emission and absorption spectra for smaller values of ΩR are shown in
AppendixE. The vertical lines mark the positions where the spectral density is evaluated
to obtain the values of the Markovian decay rates γσ+− , γσ−+ and γφ.

[259] (approximated in the single-excitation subspace):

σ̂†σ̂ ≈ |2〉〈2|= cos2 θ|+〉〈+|+ sin2 θ|−〉〈−|
− sin θ cos θ (|−〉〈+| + |+〉〈−|) . (6.11)

We further introduce the simplifying notation σ̂ξζ = |ξ〉〈ζ|, with ξ, ζ ∈ {+, −},
and rewrite the electron-vibration coupling Hamiltonian as:

Ĥe−res = ~dRΩRσ̂
†σ̂(B̂† + B̂) = ~σ̂†σ̂F̂

= ~
[
cos2 θσ̂++ + sin2 θσ̂−− − sin θ cos θ (σ̂−+ + σ̂+−)

]
F̂ , (6.12)

where we have defined F̂ = dRΩR(B̂† + B̂).

Following the standard procedure [94] (see also Section 3.1.3), we now eliminate
the dephasing reservoir and derive the incoherent dynamics of the strongly coupled
system. To that end we notice that the operators σ̂+−, σ̂−+, σ̂++, and σ̂−−
are eigenoperators of the polaritonic Hamiltonian Ĥpol = Ĥc + Ĥe + Ĥe−c

(eigenoperator Ôeig of Hamiltonian Ĥpol defined as [Ĥpol, Ôeig] = λOeigÔ with
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λOeig a complex number) and in the interaction picture of Ĥpol, these operators
have the following time dependence:

σ̂+− = σ̂+−(0)e−i(ω+−ω−)t, (6.13)

σ̂−+ = σ̂−+(0)e−i(ω−−ω+)t, (6.14)
σ̂++ = σ̂++(0), (6.15)
σ̂−− = σ̂−−(0), (6.16)

where σ̂+−(0), σ̂−+(0), σ̂++(0), and σ̂−−(0) are the Schrödinger picture operators,
and with

ω± =
ωeg + ωc

2
±
√
g2 +

(ωeg − ωc)2

4
(6.17)

the frequency of the upper (ω+) and lower (ω−) polaritons, respectively.

In the secular approximation, the incoherent processes are represented by the
Lindblad terms describing the dephasing of the polariton states, L

γφ
σ̂++−−

(ρ̂), the

decay of |+〉 to |−〉, L
γσ−+

σ̂−+
(ρ̂), and the reverse process, L

γσ+−
σ̂+−

(ρ̂). For brevity
we have defined σ̂++−− = cos2 θσ̂++ + sin2 θσ̂−−. The respective dephasing and
decay rates, γφ = γσ++−− , γσ−+

and γσ+− , are determined from the properties of
the dephasing reservoir characterized by its spectral density J(ω):

γσ−+
= cos2 θ sin2 θJ(ω+ − ω−), (6.18)

γσ+− = cos2 θ sin2 θJ(ω− − ω+), (6.19)
γφ = J(0). (6.20)

The spectral density of the reservoir [253, 257, 261–263] is obtained as the
Fourier transform of the reservoir’s two-time correlation function 〈F̂ †(t+ s)F̂ (t)〉
[94] (calculated for the reservoir decoupled from the system),

J(ω) = 2Re

{∫ ∞
0

ds eiωs〈F̂ †(t+ s)F̂ (t)〉
}
. (6.21)

In particular, J(ω) emerging from Eq. (6.2) and Eq. (6.3) together with the
Lindblad term L γB

B̂
(ρ̂) (damped harmonic-oscillator reservoir [253, 262] with

damping rate γB) calculated for zero temperature, T = 0K, is

J(ω) =
2γBd

2
RΩ2

R

(ΩR − ω)2 + γ2
B

. (6.22)

The spectral density J(ω) of the considered vibrational bath [Eq. (6.22)] is shown
in Fig. 6.2 (c). J(ω) has the form of a broad Lorentzian peak positioned at the
positive side of the frequency axis. This stems from the condition T = 0K, for
which the polariton decay can result only in spontaneous generation of excitations
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(vibrations) in an otherwise unpopulated reservoir. We note that for T > 0K (a
situation not considered here), when the reservoir acquires thermal population,
processes including absorption of a thermal reservoir excitation (appearing for
negative ω) would also contribute to J(ω) [259, 264–267]. The model parameters
used in our study are given in the caption of Fig. 6.2. As J(ω) is not symmetrical
with respect to the zero frequency, the transition |+〉 → |−〉 given by the rate
γσ−+ = cos2 θ sin2 θJ(2|g|) is therefore favored compared to the |−〉 → |+〉
transition occuring with rate γσ+− = cos2 θ sin2 θJ(−2|g|), [marked by the vertical
lines in Fig. 6.2(c)]. We stress that this asymmetry is a general property of
dephasing reservoirs and robustly appears in a wide range of non-Markovian
dephasing models [257, 260, 261, 263].This imbalance of the transfer of energy
between the polariton states gives rise to the asymmetries observed in the emission
spectra [203, 218, 249] that we address below.

Last, in strong coupling we employ the polariton Lindblad operators L
γσ+
σ̂+

(ρ̂)

and L
γσ−
σ̂−

(ρ̂) (σ̂+ = |0〉〈+| and σ̂− = |0〉〈−|), where the decay rates of the upper,
γσ+

, and the lower, γσ− , polariton are defined as

γσ+ = γa sin2 θ, (6.23)

γσ− = γa cos2 θ, (6.24)

where γa is the decay rate of the bare cavity decoupled from the molecules.
The phenomenological Lindblad terms L

γσ+
σ̂+

(ρ̂) and L
γσ−
σ̂−

(ρ̂) can be related to
the commonly assumed phenomenological Lindblad superoperator describing the
decay of the bare cavity, L γa

â (ρ̂). Under the strong-coupling condition we write
the photon annihilation operator â in terms of the polariton operators σ̂+ and σ̂−
(in the single-excitation subspace):

â ≈ sin θ σ̂+ + cos θ σ̂−, (6.25)

and apply the secular approximation. Under such conditions, the Lindblad
superoperator L γa

â (ρ̂) transforms into the pair of Lindblad terms, L
γσ+
σ̂+

(ρ̂) and

L
γσ−
σ̂−

(ρ̂):

L γa
â (ρ̂)→ L

γσ+
σ̂+

(ρ̂) + L
γσ−
σ̂−

(ρ̂). (6.26)

We also phenomenologically include the intrinsic molecular losses via L γσ
σ̂ (ρ̂),

considering γσ � γa.

6.2.2 Polariton light emission spectra under coherent
driving conditions for a single molecule

In the following we consider several different approaches to the implementation of
the dephasing due to the reservoir. First, we implement explicitly the reservoir
defined by Ĥres, Ĥe−res [Eq. (6.2) and Eq. (6.3)] and L γB

B̂
(ρ̂) into the master

115



Chapter 6. Effects of dephasing in photon emission of organic exciton-polaritons

Figure 6.3: Photon emission spectra normalized to the incident laser intensity |E|2 as a
function of the excitation frequency ωL within (a) the explicit-bath model (EBM), (b)
the Markovian-bath model (MBM) and (c) the Jaynes-Cummings model (JCM). In all
calculations we have considered the parameters ~ωeg = ~ωc = 2 eV, ~γa = 150 meV,
~γσ = 2 × 10−2 meV and ~g = 100 meV. The pure dephasing constant for the JCM
is γφ = J(0). The parameters of the bath are: ~γB = 400 meV, ~ΩR = 400 meV and
dR = 0.173.

equation as a part of the simulated system (the explicit bath model - EBM)
and solve it for the spectral emission response (See AppendixE for details about
the implementation of the reservoir degrees of freedom). In the second approach
we approximate the EBM and eliminate the dephasing reservoir from Eq. (6.8)
using the Born-Markov and secular approximations, as described in the previous
section, and introduce the effective dephasing and damping terms via the Lindblad
superoperators L γσ

σ̂ (ρ̂), L
γσ+
σ̂+

(ρ̂), L
γσ−
σ̂−

(ρ̂), L γφ
σ̂++−−

(ρ̂), L
γσ−+

σ̂−+
(ρ̂) and L

γσ+−
σ̂+−

(ρ̂)

(the Markovian bath model - MBM). The effective rates are schematically depicted
in Fig. 6.2 (a). As a third approach we consider the commonly adopted Jaynes-
Cummings model (JCM) where the effective dephasing and decay rates are first
defined for the exciton of the molecule and the bare cavity mode, which are
mutually decoupled. Note that this is in contrast with the MBM where the
incoherent dynamics is derived in the polariton basis. The decay of the cavity
and the molecular exciton are described in the JCM by L γa

â (ρ̂) and L γσ
σ̂ (ρ̂), as

defined earlier, and the pure dephasing is implemented via

L
γφ
σ̂†σ̂

(ρ̂) =
γφ
2

(
2σ̂†σ̂ρ̂ σ̂†σ̂ − {σ̂†σ̂, ρ̂ }

)
. (6.27)

In the JCM the interaction with the reservoir given in Eq. (6.2) and Eq. (6.3) is
not considered. Upon transformation into the polariton basis, the dephasing term
in the JCM model yields (among others) interaction terms between |+〉 and |−〉,
with equal rates for the |+〉 → |−〉 and |−〉 → |+〉 transitions, as schematically
depicted in Fig. 6.2 (b).

As we are interested in the response of the system under illumination by a
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monochromatic laser light, we introduce the driving term

Ĥpump = E
(
â†e−iωLt + âeiωLt

)
, (6.28)

with E the amplitude of the laser pumping and ωL the laser frequency. We make
sure that the pumping amplitude is small enough to conform with the single-
excitation approximation.

We calculate the absorption spectra sA(ω) of the system (assuming that
only the cavity interacts with the radiation field) and the inelastic emission
spectra sE(ω;ωL) for different frequencies ωL of the incident pumping laser. The
spectra are calculated from the quantum regression theorem as one-sided Fourier
transforms of the two-time correlation functions (see also Section 3.3)

sa(ω) = 2Re

∫ ∞
0

〈〈â(τ)â†(0)〉〉ss eiωτd τ, (6.29)

se(ω;ωL) = 2Re

∫ ∞
0

〈〈â†(τ)â(0)〉〉ss e−iωτd τ, (6.30)

where the double-angle brackets are defined as

〈〈â†(τ)â(0)〉〉ss = 〈a†(τ)â(0)〉ss − lim
τ→∞

〈â†(τ)â(0)〉ss. (6.31)

The calculated emission spectra for the reservoir spectral density considered
in Fig. 6.2 (c) are shown in Fig. 6.3 within both the EBM and the MBM and are
compared to the result obtained from the JCM. To simplify the discussion, in the
following we concentrate on the special case when the energies of the plasmonic
and excitonic transition are matched (ωc = ωeg). In Fig. 6.3 (a-c) we plot the
emission spectra of the strongly coupled single-molecule exciton with the cavity
mode as a function of the excitation frequency ωL within (a) the EBM, (b) the
MBM, and (c) the JCM. For both the EBM and the MBM, the color maps offer the
same qualitative and very similar quantitative result. The inelastic emission arises
mainly from the transition of the lower polariton to the ground state and thus
leads to a clear dominance of the lower polariton emission peak. Contrarily, the
JCM yields a fully symmetrical result independently of the excitation frequency,
which contradicts the experimental evidences of molecular emission [203, 218, 249].
The implementation of the dephasing within the JCM is thus unable to correctly
describe the imbalance in the population transfer between the polaritonic states
driven by the dephasing.
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Figure 6.4: (a) Schematic representation of the polariton incoherent dynamics. The
strong coupling leads to the formation of bright upper, |+〉, and lower, |−〉, polaritons
that are decoupled from the dark states, |Di〉. The coupling of the polariton and the dark
states with the dephasing reservoir gives rise to the incoherent transfer of populations
from the higher-energy states to the lower energy states. The bare cavity incoherently
decays with rate γa, the excitons of the bare molecules incoherently decay with rates
γσi = γσ. The bright polariton states |+〉 and |−〉 then experience the incoherent decay
into the ground state |0〉 with rates γS+ and γS− , respectively. The dark polaritons
decay to the ground state with equal rates γSi = γσ. Finally, population transfer
among the polariton branches occurs with rates γ

S
†
DS+

, γ
S
†
−SD

and γ
S
†
−S+

, as marked
in the schematic. The population transfer is accompanied by the dephasing processes
(not shown). (b) Emission (black line) and absorption (blue dashed line) spectra of
four molecular excitons (Nmol = 4) coupled to the cavity mode. The emission from
|−〉 prevails over |+〉 emission due to the incoherent population transfer caused by
the dephasing reservoir. The absorption spectrum, on the other hand, contains both
|+〉 and |−〉 peaks of similar intensity. Last, the emission and the absorption spectra
contain a peak appearing close to the frequency of the decoupled molecules that arises
from the dark polariton states |Di〉 that are now coupled to the bright polaritons
|+〉 and |−〉. (c-f) Emission spectra as a function of the excitation energy ~ωL for
Nmol = 2, 3, 4, 5 molecules, respectively. In all cases (b-f) the molecular excitons of
equal energies ~ωeg = 2 eV are perfectly tuned to the cavity resonance ~ωc = 2 eV and
interact with the cavity mode via ~gi = ~g = 100meV. The system is pumped by a laser of
amplitude ~E = 0.1meV. The additional parameters are ~γa = 150meV, ~γB = 400meV,
~γσ = 2× 10−2 meV, dR = 0.173, ~ΩR = 400meV.
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6.3 Nmol molecules in a cavity

6.3.1 Reservoir-induced incoherent processes for Nmol

molecules

Strong-coupling between a single-molecule exciton and a cavity mode is
fundamentally important but in realistic systems the cavity is usually coupled
to several molecular samples [186]. We therefore extend our description to cavities
containing Nmol molecules and transform the system Hamiltonian Ĥtot into the
picture of collective polariton excitations. To that end we introduce a new set of
operators Ŝi =

∑
α ciασ̂α, where ciα are coefficients that are elements of a unitary

matrix such that (ci1, ci2, . . . , ciNmol
) form a set of Nmol orthonormal vectors. It

is convenient to make the choice

(c11, c12, . . . , c1Nmol
) =

1√∑
α |gα|2

(g1, g2, . . . , gNmol
) (6.32)

and the remaining vectors orthonormal to the first vector. With this choice, Ŝ1

becomes fully coupled to the plasmonic cavity via a new effective coupling constant
geff =

√∑
α |gα|2. In the following we consider that all the coefficients gα = g are

equal (c1α = 1/
√
Nmol) and recover the result geff =

√
Nmolg. We further consider

the low-excitation limit where the new operators Ŝi become approximately bosonic
and independent

[Ŝi, Ŝ
†
j ] ≈ δij , (6.33)

with the transformation rules∑
α

σ̂†ασ̂α =
∑
i

Ŝ†i Ŝi, (6.34)

∑
α

σ̂αρ̂σ̂
†
α =

∑
ij

(∑
α

cαicαj

)
Ŝiρ̂Ŝ

†
j =

∑
i

Ŝiρ̂Ŝ
†
i , (6.35)

where in the second line we used the orthogonality of the coefficient vectors that
we assumed to be real.

The transformation rules allow for rewriting the Hamiltonian as:

Ĥtot =
∑
i

~ωegŜ
†
i Ŝi + ~ωcâ

†â+ geff

(
Ŝ1â
† + Ŝ†1â

)
+
∑
α

~ΩRB̂
†
αB̂α

+ ~dRΩR

∑
ij

[∑
α

cαicαj

(
B̂α + B̂†α

)]
Ŝ†i Ŝj

+
∑
ij

∑
αβ

Gαβcαicβj

 Ŝ†i Ŝj + H.c. (6.36)
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The Lindblad terms of the excitons of the individual molecules transform in the
collective picture as ∑

α

L
γσα
σ̂α

(ρ̂) =
∑
i

L
γSi
Ŝi

(ρ̂). (6.37)

As in the case of a single molecule, we can proceed to diagonalize the
Hamiltonian part involving the bright excitonic mode strongly coupled with the
cavity [neglecting for now the inter-molecular coupling in the last line of Eq. (6.36)].
We thus generate a new set of annihilation operators of the lower, Ŝ−, and the
upper, Ŝ+, polaritons

Ŝ+ = cos θeff Ŝ1 + sin θeff â, (6.38)

Ŝ− = − sin θeff Ŝ1 + cos θeff â, (6.39)

with θeff defined in analogy with the single-exciton case [Eq. (6.10)]:

tan(2θeff) =
2geff

ωeg − ωc
and 0 < 2θ < π. (6.40)

To simplify the discussion we further denote the bright polaritons in analogy
with the single-molecular case as |+〉 and |−〉 (such that in the single-excitation
approximation Ŝ+ = |0〉〈+| and Ŝ− = |0〉〈−|), and the dark polariton states |Di〉
(such that Ŝi = |0〉〈Di| for i > 1). The level diagram of the polaritonic system is
schematically depicted in Fig. 6.4 (a).
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In the polaritonic picture, the system Hamiltonian Ĥtot becomes:

Ĥtot = ~ω+Ŝ
†
+Ŝ+ + ~ω−Ŝ†−Ŝ− +

Nmol∑
i=2

~ωegŜ
†
i Ŝi +

∑
α

~ΩRB̂
†
αB̂α (6.41a)

+ ~dRΩR

[∑
α

cα1cα1

(
B̂α + B̂†α

)]
×
[
cos2 θeff Ŝ

†
+Ŝ+ + sin2 θeff Ŝ

†
−Ŝ− − sin θeff cos θeff(Ŝ†+Ŝ− + Ŝ†−Ŝ+)

]
(6.41b)

+

[
~ cos θeff dRΩR

Nmol∑
i=2

[∑
α

cαicα1

(
B̂α + B̂†α

)]
Ŝ†i Ŝ+ + H.c.

]
(6.41c)

−

[
~ sin θeff dRΩR

Nmol∑
i=2

[∑
α

cαicα1

(
B̂α + B̂†α

)]
Ŝ†i Ŝ− + H.c.

]
(6.41d)

+ ~dRΩR

Nmol∑
i,j=2

[∑
α

cαicαj

(
B̂α + B̂†α

)]
Ŝ†i Ŝj (6.41e)

+

Nmol∑
j=2

∑
αβ

Gαβcα1cβj

[cos θeff Ŝ
†
+ − sin θeff Ŝ

†
−

]
Ŝj + H.c.

 (6.41f)

+

[∑
αβ

Gαβcα1cβ1

[cos θeff Ŝ
†
+ − sin θeff Ŝ

†
−

] [
cos θeff Ŝ+ − sin θeff Ŝ−

] ]
(6.41g)

+

Nmol∑
ij=2

∑
αβ

Gαβcαicβj

 Ŝ†i Ŝj . (6.41h)

Here ω+ and ω− are defined as:

ω± =
ωeg + ωc

2
±
√
g2

eff +
(ωeg − ωc)2

4
. (6.42)

The coupling of the various polaritonic modes with the dephasing reservoir is
given by (6.41b) to (6.41e). The interaction with the reservoir leads to population
transfer among |+〉, |−〉, and the dark polaritons |Di〉. The coherent laser
pumping is included in (6.58). The term in (6.41f) of the transformed Hamiltonian
introduces mixing of the dark states with the bright modes. Equation (6.41h)
represents additional interactions among the dark modes that are weak for the
selected parameters.

The incoherent damping of the dephasing reservoir is included via L
γBα
B̂α

(ρ̂),
with γBα = γB . The intrinsic damping of the molecules is included via
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∑
i L

γσi
σ̂i

(ρ̂) =
∑
i L

γSi
Ŝi

(ρ̂). The transformation into the basis of the polariton
states further changes the form of the incoherent damping of the cavity. In the
secular approximation, the cavity damping Lindblad term, L γa

â (ρ̂), transforms as

L γa
â (ρ̂) ≈ L

γS+

Ŝ+
(ρ̂) + L

γS−

Ŝ−
(ρ̂), (6.43)

with the respective decay rates

γS+ = sin2 θeffγa, (6.44)

γS− = cos2 θeffγa. (6.45)

The contribution of the intrinsic molecular decay γσ to the decay of |+〉 and |−〉
can be neglected compared to the large cavity losses γa. Last we remark that
the model outlined above, including explicitly the reservoir modes B̂i is further
denoted as the explicit bath model – EBM.

6.3.2 Reservoir-induced incoherent processes in
Born-Markov approximation

To bring an intuitive insight into the reservoir-induced incoherent population
transfer among the polariton states, we now eliminate the reservoir degrees
of freedom in the Born-Markov and secular approximation and introduce
effective incoherent Lindblad terms. For simplicity, we further assume that the
intermolecular coupling is negligible and only weakly perturbs the dynamics given
by Eq. (6.41a) to Eq. (6.41e). We eliminate the reservoir whose dynamics is
given by the Hamiltonian term Ĥres =

∑
α ~ΩRB̂

†
αB̂α and the Lindblad terms∑

α L
γBα
B̂α

(ρ̂), with γBα = γB by standard methods of the theory of open-quantum
systems using the secular approximation [94].

Equation (6.41b) represents incoherent interaction between the upper, |+〉,
and the lower, |−〉, polariton, in close analogy with the single-excitonic case,

and leads to the Lindblad terms L
γ
S
†
+
S−

Ŝ†+Ŝ−
(ρ̂) and L

γ
S
†
−S+

Ŝ†−Ŝ+
(ρ̂). We further define

F̂α = dRΩR(B̂α + B̂†α) (F̂α = F̂ as the reservoir modes are equivalent) and note
that

〈F̂ †α(t+ s)F̂β(t)〉 = δαβ〈F̂ †α(t+ s)F̂α(t)〉 = δαβ〈F̂ †(t+ s)F̂ (t)〉 (6.46)

as the respective bath modes are locally interacting with each molecule and are
assumed to be uncorrelated. The respective rates then become

γS†∓S±
=

sin2 θeff cos2 θeff

Nmol
J(ω± − ω∓), (6.47)
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where either the upper or the lower signs apply. This result can be found from

γS†∓S±

sin2 θeff cos2 θeff

=

= 2Re


∫ ∞

0

ds ei(ω±−ω∓)s

〈∑
α

cα1cα1F̂
†
α(t+ s)

∑
β

cβ1cβ1F̂β(t)

〉
= 2Re

{∫ ∞
0

ds ei(ω±−ω∓)s

〈∑
α

c2α1c
2
α1F̂

†
α(t+ s)F̂α(t)

〉}

=
∑
α

c2α1c
2
α1J(ω± − ω∓) =

1

Nmol
J(ω± − ω∓), (6.48)

where we have used the definition of the coefficients cα1 = 1/
√
Nmol and

J(ω) = 2Re

{∫ ∞
0

ds eiωs〈F̂ †(t+ s)F̂ (t)〉
}

(6.49)

to obtain the final result.

From Eq. (6.41c) we obtain for the decay of the upper polariton into the dark
polaritons (and vice versa) the terms:

L
γ∑Nmol

i=2
S
†
i
S+∑Nmol

i=2 Ŝ†i Ŝ+

(ρ̂) ≈
Nmol∑
i=2

L
γ
S
†
i
S+

Ŝ†i Ŝ+
(ρ̂), (6.50)

L
γ∑Nmol

i=2
S
†
+
Si∑Nmol

i=2 Ŝ†+Ŝi
(ρ̂) ≈

Nmol∑
i=2

L
γ
S
†
+
Si

Ŝ†+Ŝi
(ρ̂), (6.51)

where we have neglected the Lindblad superators containing the cross-terms. In
analogy with γS†∓S± , the respective rates are:

γS†i S+
≡ γS†DS+

=
cos2 θeff

Nmol
J(ω+ − ωeg), (6.52)

γS†+Si
≡ γS†+SD

=
cos2 θeff

Nmol
J(ωeg − ω+), (6.53)

where we have defined γS†DS+
and γS†+SD

assuming that the dark polaritons are
equivalent. In close analogy, from Eq. (6.41d) we get for the decay of the dark
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polaritons into the lower polariton (and vice versa):

L
γ∑Nmol

i=2
S
†
−Si∑Nmol

i=2 Ŝ†−Ŝi
(ρ̂) ≈

Nmol∑
i=2

L
γ
S
†
−Si

Ŝ†−Ŝi
(ρ̂), (6.54)

L
γ∑Nmol

i=2
S
†
i
S−∑Nmol

i=2 Ŝ†i Ŝ−
(ρ̂) ≈

Nmol∑
i=2

L
γ
S
†
i
S−

Ŝ†i Ŝ−
(ρ̂), (6.55)

The respective rates are

γS†−Si
≡ γS†−SD

=
sin2 θeff

Nmol
J(ωeg − ω−), (6.56)

γS†i S−
≡ γS†DS− =

sin2 θeff

Nmol
J(ω− − ωeg), (6.57)

where we have defined γS†DS− and γS†−SD
.

Last, in the Markovian model we also obtain the pure dephasing and energy
transfer among the dark polariton states. These terms, however, do not contribute
to the population decay that we discuss later and we will not consider them in the
following.

In summary, we have obtained effective rates of incoherent transfer of
populations among the polariton states in the Born-Markov approximation. The
obtained decay rates all feature ∝ 1/Nmol dependence, γS†+S− , γS†−S+

, γS†−SD
,

γS†DS−
, γS†+SD

, γS†DS+
∝ 1/Nmol, and are proportional to the reservoir spectral

function J(ω) evaluated at the frequency corresponding to the difference between
the respective energies of the involved polariton states. Hence, the transitions
from polaritons of higher energy towards polaritons of lower energy ( |+〉 → |−〉,
|+〉 → |Di〉, and |Di〉 → |−〉 ) are favoured with respect to the reverse processes
due to the asymmetry of J(ω) [J(−|ω|) < J(|ω|)] discussed above.

6.3.3 Polariton light emission spectra under coherent
driving conditions for Nmol molecules

We now calculate the absorption and emission spectra of the system including
Nmol molecules as defined in Eq. (6.29) and Eq. (6.30) using the EBM. We assume
that the cavity is coherently pumped via the Hamiltonian term Ĥcol

pump:

Ĥcol
pump = ~E

([
sin θeff Ŝ+ + cos θeff Ŝ−

]
eiωLt +

[
sin θeff Ŝ

†
+ + cos θeff Ŝ

†
−

]
e−iωLt

)
.

(6.58)
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In the following we also assume the inter-molecular coupling of the form

Gij =
G0

|i− j|3
for i 6= j and

Gij = 0 for i = j

(6.59)

and set

~G0 =
d2

0

4πε0r3
0

, (6.60)

with the transition dipole moment of the exciton d0 = 0.2 e·nm, the effective
intermolecular distance r0 = 2 nm and ε0 the vacuum permittivity. This choice
of Gij describes a set of interacting molecules whose dipoles are arranged along
a line (e.g. in the x direction) with constant spacing r0 and with parallel dipole
moments d0 (e.g. oriented along z). The intermolecular interaction given by
Eq. (6.59) weakly perturbs the polariton structure given by the collective cavity-
mode-exciton Hamiltonian, however, it breaks the symmetry of the Hamiltonian
(makes the molecules inequivalent). Due to this symmetry breaking, the originally
dark polariton states |Di〉 couple with the cavity mode and become observable in
the spectra. We note that the symmetry of the system Hamiltonian can be broken
in different ways, for example by introducing disorder into the system.

As an illustrative example we calculate the emission and absorption spectra of
four mutually interacting molecules that are coupled to the cavity with ~gi = ~g =
100meV. The system is pumped at the upper polariton frequency ~ωL = 2.2 eV.
The result is shown in Fig. 6.4 (b) for Nmol = 4 molecules interacting with the
cavity mode. The emission spectrum (black solid line) shows a dominant peak
originating from the lower polariton |−〉 (appearing at ≈ 1.8 eV) as in the single-
molecular case. Another sharp emission peak of low intensity, which was not
present in the single-molecular case, emerges at a frequency around that of the
decoupled molecules ≈ 2 eV. This new peak is a signature of the polariton states
|Di〉 that are dark in the collective-coupling model where the excitons do not
interact directly among themselves, but become bright after introducing the inter-
molecular coupling in Eq. (6.4). Experiments where large numbers of molecules
couple with a cavity show that the dark-polariton photoluminescence peak can
have comparable intensity to the emission peak of the lower polaritons [218, 249].
On the other hand, the absorption spectrum (blue dashed line) features two
absorption peaks of similar intensity at frequencies of the polariton branches |+〉
and |−〉. As a result of the inter-polariton transfer induced by the reservoir, the
lower-polariton peak has slightly higher spectral intensity and is narrower than the
upper-polariton peak, since the upper-polariton peak is broadened by the decay
processes induced by the dephasing reservoir [259].

Finally, in Fig. 6.4 we present the two-dimensional maps containing the
emission (vertical axis) and excitation (horizontal axis) spectra of systems
containing (c) Nmol = 2, (d) Nmol = 3, (e) Nmol = 4 and (f) Nmol = 5 molecules
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(considering ~g = 100meV). The emission pattern is in all the cases similar to
the single-molecule case [Fig. 6.3(a,b)], exhibiting a doublet of the emission peaks
originating from |+〉 and |−〉 that are split by the collectively enhanced coupling
geff =

√
Nmolg. Between the |+〉 and |−〉 polariton peaks, in this collective scenario

there appears an additional feature corresponding to the dark polaritons in both
the emission and the excitation spectra (although hardly distinguishable in the
spectral maps). The dominance of the lower-polariton peak in all the calculated
spectra is in accordance with the mechanism of incoherent population transfer
in strongly-coupled systems discussed above. We can observe that the inelastic
emission is most efficient from the lower polariton branch when the upper polariton
is pumped. In this case, the interaction with the reservoir efficiently incoherently
populates |−〉 which in turn emits the inelastic photons. We now briefly analyze
the polariton dynamics in the collective scenario that gives rise to the asymmetry
of the inelastic photon emission.

6.4 Polariton dynamics in the collective scenario

We have shown that the dephasing reservoir gives rise to incoherent transitions
between the polariton states that preferentially lead from the states of higher
energy towards the states of lower energy (|+〉 → |Di〉, |+〉 → |−〉 and |Di〉 → |−〉).
This phenomenology has been addressed in details by other authors [259, 264–
267]. Here we focus on the dynamics of these decay processes and calculate the
time evolution of the polariton populations n+ = 〈Ŝ†+Ŝ+〉, n− = 〈Ŝ†−Ŝ−〉 and
nD = 1

Nmol−1

∑
i〈Ŝ
†
i Ŝi〉, where Nmol is the number of molecules, assuming that

the populations evolve according to the master equation [Eq. (6.8) with Eq. (6.26)]
that explicitly includes the dephasing reservoir (the EBM). We compare the EBM
population dynamics with a rate-equation model (REM) based on the diagram
of levels and decays displayed in Fig. 6.4 (a). The effective polariton dynamics
derived in Section 6.3.2 leads to the following rate equations (we do not consider
the coherent driving term Ĥcol

pump): ṅ+

ṅD

ṅ−

 =

 γn+ (Nmol − 1)γS†+SD
γS†+S−

γS†DS+
γnD

γS†DS−
γS†−S+

(Nmol − 1)γS†−SD
γn−


 n+

nD

n−

 , (6.61)

(6.62)

with

γn+ = γS+ + γS†−S+
+ (Nmol − 1)γS†DS+

, (6.63)

γnD = γSD + γS†−SD
+ γS†+SD

, (6.64)

γn− = γS− + (Nmol − 1)γS†DS−
+ γS†+S−

. (6.65)
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6.4. Polariton dynamics in the collective scenario

Figure 6.5: Decay of polariton populations n+ (upper polariton - black), n− (lower
polariton - red) and nD (dark polariton - blue), in logarithmic scale, as a function
of time assuming that initially n+ = 1 and n− = nD = 0. (a) The full calculation
(EBM - dashed lines) is compared to the rate-equation model (REM - full lines) for
Nmol = 4 molecules and g = 100meV. (b) The populations calculated from the REM
for Nmol = 1000 molecules, using

√
Nmolg = 200meV. The remaining parameters are

~γa = 150meV, ~γB = 400meV, ~γσ = 2× 10−2 meV, dR = 0.173, ~ΩR = 400meV.

In the REM, only the incoherent dynamics of the populations of the respective
states is studied (the population decay) and processes related with the pure
dephasing are not considered. We calculate the dynamics assuming that the
upper polariton is initially fully populated n+ = 1 and n− = nD = 0 and then
spontaneously decays (the coherent driving [Eq. (6.28)] is switched off) into the
ground state |0〉 and into the other polariton states, |−〉 and |Di〉.

In Fig. 6.5 we plot the polariton populations in logarithmic scale as a function
of time obtained from the numerical time evolution of the full system-reservoir
density matrix (EBM - dashed lines) together with the solution of the REM (full
lines) for (a) Nmol = 4 molecules and (b) Nmol = 1000 molecules (using REM
only). For Nmol = 4, the REM matches well with the results from the EBM with
only slight deviations from the exact population dynamics. n+ (black) exhibits a
rapid decay with total rate γn+

from its original population into the ground state,
|0〉 (γS+

), but also into the lower polariton, |−〉 (γS†−S+
), and the dark polaritons,

|Di〉, with rate [(Nmol − 1)γS†DS+
], which pumps the lower polariton population

(n− - red lines) and dark polariton population (nD - blue lines). After this initial
impulse, the dark polariton population starts to steadily decay into the ground
state (γSD) and into the lower-polariton state (γS†−SD

). Similarly to the dark
polaritons, the lower polariton first gets populated due to the fast-decaying upper
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polariton. After that |−〉 rapidly decays into the ground state (γS−), but only
until it reaches the regime when n− is dominantly pumped by the slowly decaying
dark-polariton (γS†−SD

). In this regime, the decay of n− becomes limited by the
pumping and resembles that of the dark polaritons [the bottleneck effect, red lines
in Fig. 6.5 (a)].

We have shown that the decay rates connecting the polariton states are
inversely proportional to the number of molecules, γS†+S− , γS†−S+

, γS†−SD
, γS†DS− ,

γS†+SD
, γS†DS+

∝ 1/Nmol. Since the upper and the lower polaritons in our model
decay fast to the ground state (γS+ , γS− ∝ γa) regardless of Nmol, the initial stages
of their respective population dynamics are practically independent of the number
of molecules. However, as Nmol is increased, the dark polariton decay rate into the
lower polariton becomes progressively smaller (γS†−SD

∝ 1/Nmol) until it becomes
fully limited by the intrinsic rate γσ for Nmol → ∞. This tendency is apparent
in Fig. 6.5 (b), where we plot the population decay for Nmol = 1000 molecules as
obtained from the rate-equation model. In this case the bright polariton, |+〉,
initially decays into the dark polariton states, |Di〉, which only slowly decay into
the lower polariton |−〉.

Finally we remark that the model described in this chapter is able to address
the dynamics of population transfer among the polaritonic states, but does not
explain the long lifetime of the lower polariton state that has been reported in
the literature [250, 259, 268–270]. In our approach, the terminal slow decay of n−
arises due to the bottleneck in the form of a slowly decaying dark polariton states.
The explanation of the long lower-polariton lifetime requires further modelling of
the microscopic decay mechanisms of coupled cavity mode and molecular excitons.

6.5 Summary

In summary, we have demonstrated that the dephasing reservoir in strongly
coupled cavity-mode-exciton systems can lead to asymmetries in the observed
emission spectra, favouring light emission from the lower polariton and suppressing
the upper polariton emission. The asymmetry in the inelastic light emission from
a cavity arises naturally from the model which explicitly considers the dephasing
bath as an effective damped harmonic oscillator. The coupling with the reservoir
in the strong coupling regime naturally favours the transfer of the population of
the higher-energy polaritons towards the polaritons of lower energy (|+〉 → |Di〉,
|+〉 → |−〉 and |Di〉 → |−〉), including the dark polaritons if many molecules
are considered. This process leads to the prevalence of the inelastic photon
emission from the lower polariton |−〉 and considerably shorter lifetime of the upper
polariton |+〉. Moreover, if many mutually interacting molecules are coupled to the
cavity, the dark polariton states can become bright and give rise to a new peak in
the polariton emission spectrum. This new peak is then positioned approximately
at the frequency of the uncoupled excitons, which is consistent with experimental
observations of light emission from molecules [203, 218, 249].
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6.5. Summary

The results of this chapter have been obtained for a relatively small number
of molecular samples due to the limitations of the approach based on the solution
of the quantum master equation. Other approaches have been considered in
the literature [252] which allow for treating a large number of molecules within
the effective Hamiltonian approach that takes advantage of the tensor-network
description of the excitonic and vibrational states, but do not allow for calculation
of the steady-state emission properties under coherent laser pumping. It would
be desirable to implement the tensor-network approach within the open-quantum
system approach and apply it to more realistic systems where large numbers of
molecules couple with optical cavities.

Nevertheless, the results of this chapter provide an intuitive view of the
processes that stand behind the experimental observations of light emission from
molecules in optical cavities and can serve as a guideline for future implementations
of dephasing in strongly-coupled systems.
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Part IV

Surface-Enhanced Raman
Scattering
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Chapter 7

Optomechanical approach to
resonant Surface-Enhanced
Raman Scattering

Surface plasmon excitations in metallic particles are able to squeeze and enhance
electromagnetic fields down to the nanometric scale and thus dramatically enhance
the interaction of nearby molecules with the incident light. The plasmonic
near-field enhancement has been exploited in plasmon-enhanced spectroscopies,
particularly in the Surface Enhanced Raman Spectroscopy (SERS) [7–19], which
enables detection of minute quantities of molecular samples. The improved design
of plasmonic cavities has allowed for spectroscopic investigation of even single
molecules that are placed into ultranarrow plasmonic gaps [9, 165]. Current
experimental strategies have taken advantage of the properties of plasmonic cavity
modes that allowed reaching the plasmon-exciton strong-coupling regime with
single molecules [186], as well as intramolecular optical mapping of single-molecule
vibrations in SERS [165] or in electroluminescence [167]. These results suggest
the possibility to push the use of plasmonic modes to further and actively control
the quantum state of a single molecule and thus influence its chemistry [271–
276]. Recent theoretical and experimental studies [168, 277–280] have revealed
that off-resonant SERS can be understood as a quantum optomechanical process
[277, 278, 281] where the single plasmon mode (sustained in a plasmonic cavity)
of frequency ωc plays the role of the macroscopic optical cavity and the molecular
vibration of frequency Ω plays the role of the macroscopic oscillation of the mirror.
The description of such process requires development of concepts and methods
beyond the standard classical description of SERS [168, 277–280].

In this chapter we address a quantum mechanical theory of resonant SERS
(r-SERS), where an optical plasmonic mode supported in a metallic nanostructure
resonantly excites a nearby single molecule described as an electronic two-level
system (TLS), coupled to a vibrational mode. We discuss the similarities
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and differences between the r-SERS Hamiltonian and the off-resonant quantum
optomechanical Hamiltonian, which has been described previously. To that
end we adopt a range of the optomechanical parameters available in typical
resonant situations. We then show that novel phenomena emerge in r-SERS
under intense laser illumination, when the non-linearities of the molecule can
trigger the coherent coupling of molecular electronic and vibrational degrees of
freedom [57, 178, 182, 282–285]. We further exploit the analogy with quantum
optomechanics to propose a mechanism of on-demand frequency-selective pumping
of molecular vibrations [7, 10, 12, 13, 16] via the coherent laser illumination.
Last, we expand the theory of molecular optomechanics to address r-SERS under
conditions of strong coupling between the plasmon and the molecular electronic
excitations. These phenomena may provide a means to drive plasmon-enhanced
vibrational spectroscopy to the realm of the single-molecule selective chemistry
or engineering of single-molecular optomechanical systems involving molecular
vibrations on demand.

7.1 Optomechanical description of off-resonance
Raman scattering

The standard theoretical approach to Raman scattering on molecules consists
in performing a perturbative expansion of the molecular polarizability in the
scope of the Placzek’s or Albrecht’s theory [286]. In this thesis we tackle the
problem of plasmon-enhanced Raman scattering on molecules by applying the
methodology of the quantum cavity optomechanics. We follow recent studies
[168, 277–280, 287] that have shown that off-resonant SERS can be understood
as a quantum optomechanical process [281] where the single plasmon mode (the
plasmonic cavity) of frequency ωc plays the role of the macroscopic optical cavity
and the molecular vibration of frequency Ω plays the role of the oscillating mirror.
Here we extend the analogy between optomechanics and SERS and describe
the r-SERS by means of cavity quantum electrodynamics (QED) as a hybrid-
optomechnical process [288, 289].

In quantum optomechanics, the mirrors of optical cavity sustaining an
electromagnetic mode are attached to a mechanical oscillator in such a way that
the frequency of the optical mode ωc(q) depends on the displacement of the mirror,
q, as schematically depicted in Fig. 7.1. The mechanical oscillations of the mirror
are characterized by a frequency Ω which is constant. In quantum optomechanics,
this dependence of the cavity frequency on the position leads to an interaction
between the mode of the optical cavity and the mechanical mode of the mirror
as follows. The Hamiltonian of the cavity Ĥc = ~ωc(q)â†â (â and â† being the
bosonic annihilation and creation operators, respectively) is expanded in q and
only the first-order term of the Taylor expansion is kept:

Ĥc ≈ ~ωc(0)â†â+ ~
∂ωc(q)

∂q

∣∣
q=0

q â†â. (7.1)
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Figure 7.1: (a) Schematics of a typical optomechanical cavity. One of the cavity mirrors
is attached to a mechanical oscillator of frequency Ω. The cavity supports a photonic
mode of frequency ωc(q), dependent on the displacement of the oscillating mirror, q. The
q-dependence of the cavity mode then gives rise to the optomechanical coupling gom,
which can be also expressed in terms of the oscillation frequency Ω and a dimensionless
displacement dom of the mirror equilibrium position when one excitation is created in
the cavity (as described in the main text). (b) In molecular optomechanics, the localized
plasmonic mode of a metallic particle interacting with a molecule plays the role of the
optical cavity and the molecule’s vibrations play the role of the mechanical oscillation.
(d) Example of off-resonant SERS spectra calculated using the quantum optomechanical
formalism for three different temperatures: T = 0 K (red dashed line), 300K (blue line)
and 2000K (black line), and normalized to the maximum. The spectra exhibit two peaks,
the Stokes peak (St), red detuned from the laser frequency ωL, and the anti-Stokes peak
(aSt), blue detuned from ωL. The anti-Stokes peaks is practically absent when T = 0 K.
As the temperature increases, the anti-Stokes peak gains on intensity and for T = 2000 K
becomes comparable to the Stokes peak.

The displacement of the mechanical vibration is then promoted to an operator
q → q̂, with q̂ = q0(b̂† + b̂). Here b̂ (b̂†) is the bosonic annihilation (creation)
operator and q0 is the zero-point amplitude of the mirror’s oscillation. The
Hamiltonian Ĥc thus becomes:

Ĥc ≈ Ĥc,0 + Ĥc−vib = ~ωc(0)â†â+ ~
∂ωc(q)

∂q

∣∣
q=0

q0︸ ︷︷ ︸
≡Ωdom≡−gom

â†â(b̂† + b̂), (7.2)

where Ĥc,0 is the bare-cavity Hamiltonian and

Ĥc−vib = −~gomâ
†â(b̂† + b̂) (7.3)

is the optomechnical Hamiltonian that contains the non-linear interaction between
the cavity photons and the quanta of the mechanical vibration. We have also
defined the optomechanical coupling constant gom that can be alternatively
expressed in terms of the optomechanical displacement parameter dom, as discussed
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below.
The optomechanical Hamiltonian describing off-resonant SERS reads in close

analogy with quantum optomechanics [277–280]

Ĥom = Ĥpl + Ĥvib + Ĥpl−vib + Ĥpump, (7.4)

where
Ĥpl = ~ωcâ

†â

Ĥvib = ~Ωb̂†b̂

Ĥpl−vib = −~gomâ
†â(b̂† + b̂)

Ĥpump = ~E
[
â exp(iωLt) + â† exp(−iωLt)

]
.

(7.5)

Here operators â (â†) and b̂ (b̂†) are the annihilation (creation) operators for
plasmon and vibrations, respectively, E is the photon-plasmon coupling constant
(with |E|2 proportional to the laser intensity) that characterizes the interaction
Hamiltonian between the plasmon mode and the classical laser illumination of
frequency ωL, and gom is the optomechanical coupling constant.

In the field of molecular optomechanics, the coupling constant gom can be
connected to the Raman tensor, ∂αeg/∂q, of the molecule (with αeg the molecule’s
electronic polarizability) interacting with the plasmonic cavity [277–279]. We do
not discuss the details of this connection in the thesis. Instead, in what follows it
will be convenient to interpret the optomechanical interaction as a displacement of
the vibrational mode by a dimensionless value nPLdom, dependent on the number of
excitations (plasmons) in the cavity, nPL. This becomes apparent after rearranging
the bare optomechanical Hamiltonian, Ĥbom = Ĥpl +Ĥvib +Ĥpl−vib, into the form

Ĥbom =~(ωc − Ωd2
omâ

†â)â†â

+ ~Ω(b̂† + domâ
†â)(b̂+ domâ

†â), (7.6)

with the dimensionless displacement dom = −gom/Ω. The first line of Eq. (7.6) is
the non-linear Hamiltonian of the cavity excitations (plasmons). In the limit of a
weakly populated cavity and dom � 1 we can neglect the small non-linear term
−~Ωd2

omâ
†â†ââ, and we re-define the plasmon frequency as [~ωc − Ωd2

om] ≡ ~ω′c
and recover the linear plasmon Hamiltonian ~ω′câ†â, so that:

Hbom ≈~ω′câ†â+ ~Ω(b̂† + domâ
†â)(b̂+ domâ

†â). (7.7)

The second line in Eq. (7.6) has the sought form of a vibrational mode displaced
by an amount that depends on the number of plasmonic excitations in the cavity
â†â.

The level structure of the bare optomechanical Hamiltonian Ĥbom [Eq. (7.7)]
can be visualized as shown in Fig. 7.2 (a). The large grey dashed parabola
illustrates an effective potential supporting the plasmonic mode. The vibrational
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7.1. Optomechanical description of off-resonance Raman scattering

potential is represented by the small parabolas that are displaced along the
dimensionless normal coordinate q by a magnitude nPLdom proportional to the
plasmonic number state |nPL〉 [290, 291]. The energies of the plasmon Hamiltonian
form an equidistant ladder, schematically drawn for the three lowest plasmon
number states |nPL〉, and contain a fine-structure of vibrational sub-levels.

In realistic systems, the cavity excitations and the vibrations also undergo
decay, pumping and dephasing processes. We consider losses and thermal
pumping in the dynamics of the system by solving the master equation for the
density matrix, ρ̂, (see Section 3.1.3) with incoherent damping introduced via the
phenomenological Lindblad terms for the plasmon and the vibration:

L γa
â [ρ̂] =

γa
2

(
2âρ̂â† −

{
â†â, ρ̂

})
, (7.8)

L γb
b̂

[ρ̂] = [nvib(T ) + 1]
γb
2

(
2b̂ρ̂b̂† −

{
b̂†b̂, ρ̂

})
, (7.9)

L γb
b̂†

[ρ̂] = nvib(T )
γb
2

(
2b̂†ρ̂b̂−

{
b̂b̂†ρ̂

})
, (7.10)

where γb is the vibrational decay rate and γa the plasmonic one, respectively, and

nvib(T ) =
1

exp
(

~Ω
kBT

)
− 1

(7.11)

is the thermal population of the molecule’s vibrational mode at temperature T
where kB is the Boltzmann constant. We do not consider the thermal population
of the plasmonic mode as usually ~ωc � kBT .

7.1.1 Off-resonant SERS spectra

As an illustrative example, we apply the off-resonant SERS model to calculate
a typical Raman emission spectrum of a molecule interacting with a plasmonic
cavity. To that end we choose a broad plasmonic cavity, setting ~ωc = 2 eV,
~γa = 500meV and ~gom = 1 meV for the cavity, and ~Ω = 50 meV. We assume
that the cavity is illuminated by an incident monochromatic laser of frequency
~ωL = ~ωc = 2 eV of amplitude E = 0.1 meV, which represents weak illumination
conditions under which the laser only mildly perturbs the equilibrium of the
molecular excitations.

The Hamiltonian in Eq. (7.4) can be further manipulated to simplify the
calculations. First, we bring the Hamiltonian Ĥom into a form that does not
contain any explicit time dependence by transforming it into the appropriate
interaction picture as Ĥom → ÛωL

ĤomÛ
†
ωL
− i~ÛωL

˙̂
U†ωL

with ÛωL
= exp(iâ†âωLt).

After that we redefine the plasmonic creation and annihilation operators:

â→ â+ αS,

â† → â† + α∗S,
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Plasmonic 
particle

Molecule

Incident laser
Molecule

a)

b)

Plasmonic 
particle

Incident laser

Off-resonant SERS

Resonant SERS

Figure 7.2: Schematics of (a) the off-resonant SERS process in a plasmonic particle and a
vibrating molecule, and (b) the r-SERS process, both depicted with their corresponding
level structure. (a) The plasmonic number states |nPL〉 have equidistant energies ~nPLω

′
c

(vertical axis) and vibrational fine-structure for each |nPL〉. The vibrational parabolas
are displaced by nPLdom along the dimensionless normal coordinate q depending on
the number of plasmonic excitations. (b) The r-SERS system consists of a plasmonic
particle interacting with a molecule described by an electronic (two-level) and (bosonic)
vibrational degrees of freedom: the potential energy surfaces (PES) for the vibrations
of the ground electronic state, |g|, Eg(q), and for those of the excited state, |e〉, Ee(q),
for the vibrations depend on the electronic states and are shifted with respect to the
dimensionless normal coordinate q by a displacement d. The plasmon mode is excited
by coherent laser illumination of frequency ωL ≈ ω′c.
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where αS = −E
∆−i γa2

. This choice of αS leads to a new form of the Hamiltonian

Ĥom:

Ĥom = Ĥpl + Ĥpl−vib + Ĥvib (7.12)

with

Ĥpl = ~∆â†â

Ĥvib = ~Ωb̂†b̂

Ĥpl−vib = −~gom(â† + α∗S)(â+ αS)(b̂† + b̂),

(7.13)

with ∆ = ωc − ωL. Under these transformations the Lindblad terms remain
formally the same as in Eqs. (7.8) to (7.10). The optomechanical coupling
Hamiltonian can be further simplified by assuming that 〈â〉SS, evaluated in the
steady state, is small (〈â〉SS � 1):

Ĥpl−vib = −~gom(â† + α∗S)(â+ αS)(b̂† + b̂) ≈ −~gom(α∗Sâ+ αSâ
†)(b̂† + b̂).

(7.14)

The approximated form of the optomechanical coupling Hamiltonian in Eq. (7.14)
is nothing but a Rabi coupling term between the molecular vibrations and the
cavity mode that is parametrically dependent on the amplitude of the driving
laser via αS.

Having simplified the Hamiltonian, we calculate the incoherent photon emission
spectra of the cavity mode following the prescription of Section 3.3:

se(ω) = 2Re

∫ ∞
0

〈〈â†(0)â(τ)〉〉ss eiωτd τ, (7.15)

where we use the notation 〈〈O1O2〉〉 = 〈O1O2〉 − 〈O1〉SS〈O2〉SS, where O1 and O2

are generic operators. This definition of the emission spectrum does not contain
the coherent delta-peaked Rayleigh scattering at the frequency of the incident laser
ωL.

The resulting spectra normalized to their respective maximum values are
plotted in Fig. 7.1 (c) for varying temperature T =0K (red-dashed line), 300K
(blue line) and 2000K (black line). The spectra are plotted as a function of
frequency, normalized to the vibrational frequency Ω, and centred around ωL. All
the spectra exhibit a dominant Raman-Stokes peak at ω − ωL = −Ω, which is
apparent even for T = 0K when the vibrational state is thermally unpopulated.
As the temperature is increased and the vibrational thermal population, nvib(T ),
appears, the Raman anti-Stokes peak becomes apparent in the spectrum. At room
temperature (T = 300 K) the anti-Stokes peak is much weaker than the Stokes
peak as the ratio of the two peak intensities is approximately se(−Ω)/se(Ω) ≈
[nvib(T ) + 1]/nvib(T ). For a rather high temperature of T = 2000 K, the Stokes
and anti-Stokes peaks become comparable in magnitude as nvib(T ) + 1 ≈ nvib(T ).
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In the high-temperature limit the quantum model recovers the classical result
that the Stokes and the anti-Stokes peaks should be equal in magnitude. Also,
the increasing temperature results in a broadening of the emission peaks which
follows from the dependence of the line broadening on the thermal population of
the vibrations as nvib(T )γb.

7.1.2 Resonant SERS

We complete the previous picture of SERS by addressing the scenario where the
frequency of the incident laser approaches the molecular electronic resonance.
In r-SERS we describe the molecule as a TLS, composed of a ground, |g〉, and
an excited, |e〉, electronic state, that interacts with the vibrational modes via a
polaronic coupling term [223, 224, 253, 288, 292], and with the plasmonic cavity via
the Jaynes-Cummings coupling term [see Fig. 7.2 (b)]. The molecular vibrations
are modelled as bosons within the Born-Oppenheimer approximation, where the
effective harmonic vibrational potential is given by the ground state [Eg(q)] and the
excited state [Ee(q)] potential energy surfaces (PESs) along a normal vibrational
coordinate q, respectively [92, 93, 219, 220]. We consider that the vibrational
energies of the molecule, ~Ω, are the same for the ground and for the excited state.
The Hamiltonian describing the molecular vibrational end electronic excitations
[see Eq. (2.44) in Section 2.3] thus simplifies to

Ĥmol = |g〉〈g|(Ee + ~Ωb̂†gb̂g) + |e〉〈e|(Ee + ~Ωb̂†eb̂e). (7.16)

We further consider that the vibrations in the excited state are displaced with
respect to the ground-state vibrations as b̂e → b̂g + d and define b̂g ≡ b̂.
The parameter d is the dimensionless displacement between the minima of the
ground and excited state PESs, which is related to the Huang-Rhys factor
[92, 93, 223, 224, 293], S, as S = d2, and is a measure of the coupling between the
molecular vibration and the excitonic transition.

The Hamiltonian of the r-SERS system, Ĥres
om, using the rotating wave

approximation, can be thus expressed as [288, 293–295]:

Ĥres
om = Ĥpl + Ĥmol + Ĥpump + Ĥpl−e, (7.17)

with
Ĥmol =[Ee − Eg]σ̂†σ̂

+ ~Ω(b̂† + σ̂ed)(b̂+ σ̂ed),

Ĥpl−e =~gâσ̂† + ~g∗â†σ̂

(7.18)

with Ĥpl and Ĥpump as defined in Eq. (7.4). Here the operator σ̂ = |g〉〈e|
(σ̂† = |e〉〈g|) is the lowering (raising) operator of the TLS, with σ̂e = σ̂†σ̂ the
TLS number operator. The interaction of the localized plasmon excitation and
the molecular electronic levels is mediated by the coupling constant g.
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7.2. r-SERS in the plasmon-exciton weak coupling regime

The level diagram describing the r-SERS Hamiltonian Ĥres
om [Eq. (7.17)] is

sketched in Fig. 7.2 (b). Strikingly, both the off-resonant Hamiltonian, Ĥbom, and
the molecular Hamiltonian in r-SERS, Ĥmol, can be represented as a series of
mutually displaced harmonic vibrational PESs. The electronic states in r-SERS
thus play the role of the plasmon number states in the off-resonant case, an analogy
which can be identified from the comparison of the Hamiltonians in Eqs. (7.18)
and (7.7). In the limit of single-photon optomechanics [290, 291, 296], where the
plasmon Hilbert space is spanned by the vacuum state and the singly excited state,
the molecular Hamitonian Ĥmol and Ĥbom become formally identical. However,
as we detail later, if the incident laser is strong, the non-linear character of the
excitonic TLS Hamiltonian [Eq. (7.18)] leads to novel physical phenomena which
cannot be achieved in the off-resonant SERS situation [Eq. (7.7)].

Finally, as in the off-resonant case, we can introduce incoherent processes into
the dynamics of the cavity and molecule excitations via the Lindblad terms. On
top of the terms introduced in Eqs. (7.8)-(7.10), we consider the decay of the
molecule’s electronic excitation via

L γσ
σ̂ [ρ̂] =

γσ
2

(
2σ̂ρ̂σ̂† −

{
σ̂†σ̂, ρ̂

})
, (7.19)

where γσ is the electronic decay rate.
Assuming that the cavity interacts with the molecular electronic transition in

the weak-coupling regime, we further include into the model the pure dephasing of
the molecular electronic excitations in the form of a Lindblad term [94, 182, 297],
as:

L
γφ
σ̂z/2

(ρ̂) =
γφ
4

(
2σ̂z ρ̂σ̂

†
z − {σ̂†zσ̂z, ρ̂}

)
, (7.20)

with σ̂z = σ̂†σ̂ − σ̂σ̂†.

7.2 r-SERS in the plasmon-exciton weak coupling
regime

As already discussed in Section 5.1.3, the decay of state-of-the-art plasmonic
cavities γa is ultimately limited by the material properties of the metal [174–
178]. In plasmonic systems commonly reaches small quality factors, Q = ωc/γa,
in the range of Q ≈ 1 − 20. As an example of a representative generic plasmonic
resonator, we consider in this chapter a plasmonic cavity of energy ~ωc = 2 eV
and broadening ~γa = 500 meV. Such parameters can represent, for instance, the
leaky gap mode formed between a tip of a scanning tunnelling microscope and a
metallic substrate, often used for single-molecule spectroscopy [165–167, 169, 170],
and regarded as an example of a low-Q plasmonic cavity.

On the other hand, a typical decay rate of molecular excitations decoupled from
the plasmonic cavity is usually much smaller than that of plasmons (as small as
~γσ ∼ 10−2 meV� γa). The line width of the molecular resonance is thus mostly
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limited by the pure dephasing γφ which strongly scales with temperature and is
highly dependent on the environment surrounding the molecule (see Chapter 6 for
a study of this aspect in molecular fluorescence). It is thus possible to engineer
the conditions (low temperature vacuum experiment) under which pure dephasing
becomes small and the line width of the molecular electronic excitation decreases
below < 10meV and may even be limited only by the spontaneous decay. In
this chapter we thus describe the molecule using the parameters Ee − Eg = 2 eV,
~γσ = 0.02 meV and vary the value of the molecule’s pure dephasing γφ.

We consider the bad cavity limit (or weak coupling if γφ > g) where the
plasmon-exciton coupling g is small compared to the plasmonic losses ~γa but
large with respect to the intrinsic decay γσ (γσ � g � γa). In particular, in this
chapter we use two different values of relatively large coupling strengths between
the plasmon and the molecular TLS (~g =13 meV and ~g =50 meV), although still
small enough to be in the bad cavity limit [57, 186]. These two selected values allow
us to explore different regimes of plasmon-assisted interaction between molecular
excitons and vibrations, as we detail below.

In the bad cavity limit, the parameter determining the regime of the off-
resonant optomechanical coupling, dom, and that defining the exciton-vibration
coupling, d, in the resonant model, formally describe the same physical phenomena
under weak-illumination conditions. In off-resonant SERS, the condition |domΩ| >
γa/2 sets the so-called optomechanical strong coupling when the optomechanical
non-linearity −Ωd2

omâ
†â becomes relevant and the system thus becomes interesting

for quantum applications. It has been estimated that dom ∼ 10−1 in most
molecular species [277].

On the other hand, in r-SERS, for relevant dye molecules with electronic
excitations in the visible, d ranges from d ∼ 10−1 for rigid molecules (such as
porphyrines [298]) up to values of d ∼ 1 for soft organic molecules [224, 299]. r-
SERS might thus offer relatively high optomechanical coupling strengths even for a
single organic molecule. Moreover, for small molecular dephasing, the broadening
of the excitonic resonance, γtot

σ ≈ γσ + γφ + Γeff , containing the effects of pure
dephasing but also other broadening mechanisms such as the Purcell effect due to
the coupling to the plasmon (Γeff), becomes much smaller than the plasmon line
width (γtot

σ /2 � γa/2) and r-SERS may open the possibility to achieve large
optomechanical coupling compared to the relevant line width: |dΩ| > γtot

σ /2
(strong optomechanical coupling).

In the following we describe the inelastic emission spectra and vibrational
pumping in r-SERS for (i) the linear response regime (relatively weak laser
illumination) and (ii) strong laser illumination where the molecular levels are
dressed by the intense laser field and form a qualitatively new set of light-matter
states.
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7.2.1 Photon emission spectra in the linear regime of
r-SERS

We first discuss the spectral response and the physics of hybrid-optomechanical
vibrational pumping in r-SERS systems in the limit of weak incident laser
intensities, for which the system can be treated within the linear-response theory
(further denoted as weak illumination).

For convenience, we define the detuning parameters ∆ = ωc − ωL and
δ = ωeg − ωL (with the exciton frequency ωeg = [Ee − Eg]/~) and define
the coherent amplitude of the plasmon annihilation operator induced by the
incident monochromatic illumination αS = −E

∆−iγa/2
. We perform a similar set of

transformations as performed for off-resonant SERS in Section 7.1.1. The solution
of the dynamics of the hybrid optomechanical Hamiltonian and the respective
Lindblad terms with the parameters described above allow for calculating the
emission spectrum in such a system from the quantum regression theorem (QRT):

se(ω) = 2Re

∫ ∞
0

〈〈â†(0)â(τ)〉〉ss eiωτd τ.

As before, we remove the elastic scattering contribution from the spectrum.
To illustrate the emission properties of typical molecules we plot in Fig. 7.3 (a)

the inelastic spectra in a r-SERS system [normalized to se(ωeg) and vertically
shifted], calculated for weak illumination, ~E = 0.01meV, of a monochromatic laser
of frequency ~ωL = 1.975 eV (green dashed line) and exciton-plasmon coupling
~g = 13meV. The excitonic energy is ~ωeg = 2 eV. We calculate the spectra for
two large values of d = 1, 0.5 (top spectra) representing soft organic molecules and
for a small value of d = 0.1 corresponding to a rigid molecule (two bottom spectra).
We choose ~γφ = 20meV for the three top spectra to demonstrate the effect of pure
dephasing on the emission of molecules interacting with a decoherence-inducing
environment. In the bottom spectrum no dephasing is considered, ~γφ = 0 eV.

The bottom spectrum in Fig. 7.3 (a), calculated for weak exciton-vibration
coupling, d = 0.1, and considering an absence of pure dephasing (~γφ = 0meV),
features two sharp emission peaks. The fluorescence peak appears at frequency
ω = ωeg regardless of the incident laser frequency. The second peak, appearing
at ω = ωL − Ω, is the Raman-Stokes emission line. The anti-Stokes line is
not visible because the vibrations are not populated for T = 0K. The Raman
(SERS) line always appears at a constant detuning from the laser frequency
which facilitates its identification in the spectrum. When the pure dephasing
is increased, the fluorescence line starts to broaden and increase in intensity [note
that the spectra are normalized in Fig. 7.3 (a)]. The SERS emission becomes
hardly distinguishable on top of the strong fluorescence background for d = 0.1.
As d increases, the fluorescence background becomes asymmetrical and broadens
towards lower energies due to radiative transitions allowed by a simultaneous
exchange of energy between electronic and vibrational states (hot luminescence).
This so-called vibrational progression of the luminescence spectrum thus consists
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Figure 7.3: Inelastic emission spectra and vibrational populations of a r-SERS process
where the molecular exciton is weakly coupled to the plasmon. (a) Normalized inelastic
emission spectra se(ω)/se(ωeg) for different values of pure dephasing γφ (for the three
top spectra ~γφ = 20meV, for the bottom spectrum ~γφ = 0meV) and dimensionless
displacement d (from the top: d = 1, 0.5, 0.1, 0.1). The blue dash-dotted line indicates
the position of ωeg and the green dashed line marks the excitation frequency ωL. The
spectra are vertically shifted for clarity. The vibrational frequency is ~Ω = 50meV.
(b) Inelastic emission spectra as a function of detuning δ = ωeg − ωL of the incident
laser frequency ωL from the exciton frequency ωeg. The white dashed line marks the
laser frequency in each emission spectrum. In (a,b) ~g = 13meV. (c) Population of
the vibrational mode in the ground electronic state calculated numerically, 〈σ̂g b̂

†b̂〉SS

(black line), and an effective incoherent vibrational population calculated analytically,
〈b̂†b̂〉SS,in (red dashed line), as a function of laser detuning δ for illumination amplitude
~E = 0.01meV and different values of plasmon-exciton coupling g. In the left panel
~g = 13meV, and the molecule effective broadening Γeff due to the Purcell effect is similar
to the line-width of the vibrational Raman lines γb. In the right panel ~g = 50meV, a
larger value of plasmon-exciton coupling that ensures Γeff > γb.

of a series of broad peaks, each peak positioned at frequency ωeg − nΩ (with n a
positive integer), with its amplitude determined by the overlap of the vibrational
wave functions in the electronic ground and excited states, respectively (Franck-
Condon factors) [92, 93, 290, 291, 296]. The Raman-Stokes lines appear on top of
the fluorescence peaks at frequencies ωL−nΩ. The strength of the Raman lines is
determined from a combination of the Franck-Condon overlaps, as in the case of
the hot luminescence, and is further enhanced due to the proximity of the molecular
electronic resonance that (i) enhances the interaction of the incident laser with the
molecular transition and (ii) boosts the efficiency of the Raman-Stokes emission.
The Raman peaks are also notably narrower than the fluorescence peaks when
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dephasing is large (~γφ = 20 meV), which facilitates their identification on top of
the broad and intense fluorescence background.

The difference between the physical origin of the r-SERS lines and the
fluorescence lines becomes clearer if we plot the emission spectra as a function of
the laser detuning from the exciton frequency, δ = ωeg−ωL. The emission spectra
are shown in Fig. 7.3 (b) for a rigid molecule (d = 0.1) with no dephasing, similar
to the bottom spectrum in Fig. 7.3 (a). The molecule is pumped by an incident
laser of amplitude ~E = 1× 10−2 meV and we consider a smaller exciton-plasmon
coupling, ~g = 13meV. The incident laser frequency is marked in the spectra as
a white dashed line diagonally crossing the color plot. The color plot with the
spectra shows both the Raman-Stokes peaks that appear red-detuned from the
incident-laser frequency ωL by nΩ (diagonal bright lines), and the fluorescence
peaks emerging at the energy of the excitonic transition regardless of δ (vertical
bright lines).

Furthermore, the emission shown in Fig. 7.3 (b) is enhanced when ~δ = 0 eV
or ~δ = −~Ω = −50meV at the frequency of the first-order Raman-Stokes line,
ω = ωL − Ω. When the laser frequency is tuned to the molecular exciton (with
~δ = 0 eV), the incident laser coherently (coherent population ncoh

σ = |〈σ̂〉SS|2)
and incoherently (incoherent population nincoh

σ = 〈σ̂†σ̂〉SS−|〈σ̂〉SS|2) populates the
electronic excited state. Thereafter, the molecule efficiently emits both the Raman-
Stokes (∝ ncoh

σ ) and the hot luminescence (∝ nincoh
σ ) photons at ω = ωeg −Ω. On

the other hand, when ~δ = −~Ω = −50meV, the spectral position of the Raman-
Stokes line coincides with the resonance frequency of the molecular exciton. In
this case, the molecular fluorescence, now spectrally coinciding with the Raman-
Stokes line, is suppressed as the molecule is not pumped resonantly. The off-
resonance illumination does not efficiently populate the excited electronic state in
this case and the emission peak appears mainly due to the SERS mechanism.
Both mechanisms of SERS enhancement are closely related to the process of
optomechanical vibrational pumping, as described for the off-resonant case [277–
280].

Finally we remark that the spectral map in Fig. 7.3 (b) also features lines
appearing due to higher-order Raman scattering and hot luminescence. These
lines show much lower intensity than the lines of lower orders discussed above, but
they exhibit the same mechanism of emission enhancement, as it is apparent from
the spectral map.

7.2.2 Optomechanical vibrational pumping in the linear
regime

Numerical calculations

Inasmuch as the emission of Raman-Stokes photons is accompanied by the creation
of a vibrational quantum, the enhanced Raman-Stokes emission can be monitored
through the steady-state vibrational population of the electronic ground state
〈σ̂gb̂

†b̂〉SS (σ̂g = |g〉〈g|). To elucidate the role of Raman-Stokes scattering in the
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process of vibrational pumping of r-SERS, we plot in Fig. 7.3 (c) the vibrational
population of the electronic ground state as a function of incident laser detuning
for two values of plasmon-exciton coupling (black lines). The panel to the left
corresponds to ~g = ~

√
γbγa/6 ≈ 13meV, for which the broadening of the

electronic resonance due to the plasmonic Purcell effect Γeff (see also Section 5.1.1),

Γeff ≈
g2γa[(

γa
2

)2
+ (δ −∆)2

] , (7.21)

becomes comparable to the broadening of the vibrational line, γb, and in the panel
to the right we use ~g = 50meV, ensuring that Γeff > γb (with Γeff = 20meV).
In the calculations we set ~E = 0.01meV to make sure that we stay in the
linear regime. The numerically calculated values of 〈σ̂gb̂

†b̂〉SS (black lines) are
qualitatively similar in both cases. A set of peaks are clearly observed which
correspond to the enhancement of the Raman-Stokes emission for detunings of
~δ = 0 eV, ~δ = −~Ω = −50meV, and higher orders (δ = −nΩ, n > 1),
respectively. The effect of a larger plasmon-exciton coupling g (right panel) is
to broaden the peaks and to smear off the maxima of the populations associated
with the enhancement of higher-order Raman-Stokes emission (δ = −nΩ, n > 1).

Analytical approximation

To shed light on the mechanism of the vibrational pumping in r-SERS, we
derive the effective vibrational dynamics which results from the elimination of
the plasmon and the TLS dynamics, following standard methods from the theory
of open quantum systems [94], in close analogy with the procedure developed
in hybrid quantum optomechanics [295]. Upon elimination of the plasmon, the
effective reduced TLS-vibrational Hamiltonian, Ĥred, becomes

Ĥred = ~δσ̂†σ̂ − ~
1

2
Eplσ̂x + ~Ω(b̂† + σ̂ed)(b̂+ σ̂ed), (7.22)

where Epl = −2gαS (with αS = −E
∆−i γa2

) is the coherent coupling of the molecule
mediated by the plasmon, σ̂x is the Pauli x operator and σ̂e = σ̂†σ̂. Moreover,
in the bad cavity limit, the molecular excitonic TLS is effectively broadened due
to the plasmon via the Purcell effect. The total TLS decay rate thus becomes
γσ → Γtot = Γeff + γσ.

By further eliminating the TLS from the vibrational dynamics, by assuming
|dΩ| � Γtot, we obtain an effective vibrational Hamiltonian that includes the
coherent pumping due to the TLS excited-state population

Ĥred
vib = ~Ωb̂†b̂+ ~dΩ〈σ̂e〉SS(b̂† + b̂), (7.23)

together with the effective incoherent damping Γdec
v and pumping Γpump

v rates,
which need to be added to the intrinsic vibrational dissipation rate (described by
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the original Lindblad term) via new Lindblad terms:

L
Γdec
v

b̂
[ρ̂] =

Γdec
v

2

(
2b̂ρ̂b̂† −

{
b̂†b̂, ρ̂

})
(7.24)

for the effective damping, and

L
Γpump
v

b̂†
[ρ̂] =

Γpump
v

2

(
2b̂†ρ̂b̂−

{
b̂b̂†, ρ̂

})
(7.25)

for the effective pumping. These rates are defined as Γdec
v = 2 (Ωd)

2
Re{S̃(Ω)} and

Γpump
v = 2 (Ωd)

2
Re{S̃(−Ω)}, respectively, where Re{·} indicates the real part, and

S̃(s) =

∫ ∞
0

〈〈σ̂e(τ)σ̂e(0)〉〉eisτdτ (7.26)

is the spectral function corresponding to the one-sided Fourier transform of the
correlation function of the TLS for a generic frequency s, calculated for the
TLS decoupled from the vibrations (details about the analytical calculation of
S̃(s) are provided in AppendixF). Finally, the incoherent steady-state vibrational
population, 〈b̂†b̂〉SS,in , induced by the effective pumping of the vibrations via the
TLS becomes in this approximation:

〈b̂†b̂〉SS,in =
Γpump

v

γb + Γdec
v − Γpump

v

≈ Γpump
v

γb
∝ Re{S̃(−Ω)}, (7.27)

where the last approximation assumes that under weak pumping γb � Γdec
v −

Γpump
v . We note that in the linear regime 〈b̂†b̂〉SS,in ≈ 〈σ̂gb̂

†b̂〉SS,in which allows
for direct comparison of the vibrational population calculated numerically and the
one obtained analytically. From Eq. (7.27) it follows that the behavior of the
spectral function S̃(−Ω; δ) as a function of the incident laser frequency (i.e. δ)
determines the conditions for which the vibrational pumping occurs. In the linear
regime we can simplify the expression for Re{S̃(−Ω)}, in exact analogy with the
off-resonant model [277–280]:

Re{S̃(−Ω)} = Re

{∫ ∞
0

〈〈σ̂e(τ)σ̂e(0)〉〉e−iΩτdτ

}
≈ |〈σ̂〉SS|2Re

{∫ ∞
0

〈〈σ̂(τ)σ̂†(0)〉〉e−i(Ω−ωL)τdτ

}
≈ |Epl|2

4(δ2 + (Γtot/2)2)︸ ︷︷ ︸
S̃R

coh

Γtot/2

(δ + Ω)2 + (Γtot/2)2︸ ︷︷ ︸
S̃R

incoh

. (7.28)
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The two terms,

S̃R
coh ≈ |〈σ̂〉SS|2 (7.29)

and

S̃R
incoh ≈ Re

{∫ ∞
0

〈〈σ̂(τ)σ̂†(0)〉〉e−i(Ω−ωL)τdτ

}
, (7.30)

can then be interpreted as the efficiency of the coherent driving (S̃R
coh resonant

at δ = 0) and the efficiency of the spontaneous Stokes-Raman emission (S̃R
incoh

resonant at δ = −Ω), respectively.

The effective vibrational dynamics and its steady-state values derived in this
section are an accurate approximation to the exact problem only if the decay
rate, Γtot, of the dressed TLS is significantly larger than the intrinsic vibrational
decay rate γb, and the exciton-vibration coupling is weak (moderate values of d).
Some experimental situations in molecular spectroscopy might not satisfy these
conditions. In such a case it is necessary to adopt a numerical treatment to obtain
accurate results. Nevertheless, the properties of the TLS spectral function reveal
the origin of the vibrational population associated with the pumping even beyond
the limits of validity of the analytical-model.

We plot the analytical result for the evolution of the vibrational populations
〈b̂†b̂〉SS,in as a function of detuning δ as a red dotted line in Fig. 7.3 (c).
These analytical vibrational populations share with their numerically calculated
counterparts (black lines) the same dominant peaks, i.e. peaks appearing for zero
laser detuning from the exciton frequency, δ = 0, and for detuning δ = −Ω, when
the frequency of the first-order Raman-Stokes line coincides with the excitonic
frequency. These two values of the laser detuning also lead to an enhancement
of the Raman-Stokes emission [Fig. 7.3 (b)], i.e. creation of cavity photons, which
gives rise to the optomechanical vibrational pumping.

Although the analytical model nicely describes the main features of the fully
numerically calculated vibrational populations, it cannot explain the presence
of the weaker higher-order peaks. This is due to the Markov approximation
leading to (7.23), (7.24) and (7.25) which treats the exciton-vibration interaction
perturbatively. In the full model, the vibrational pumping mechanism is present
even for the vibrational transitions responsible for higher-order Raman scattering
and hot luminescence. Moreover, in the case that ~g = 13meV, the analytical
model overestimates the vibrational populations induced by the optomechanical
amplification for ~δ = −~Ω = −50meV, since the effective broadening of the TLS,
Γtot = Γeff + γσ, is similar to the vibrational broadening γb, and the Markov
approximation becomes less accurate in such situations. For ~g = 50meV, the
effective broadening Γtot > γb and the analytical model describes the low-order
features of the vibrational populations accurately.
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Figure 7.4: (a,b) Photon emission spectra of a plasmon coupled to molecular electronic
and vibrational excitations as a function of incident laser amplitude E , for d = 0.1.
The molecule is coupled to the plasmonic cavity with (a) ~g = 50 meV and (b)
~g = ~

√
γbγa/6 ≈ 13 meV. The inset in (b) shows a detail of the peak splitting due

to the hybridization of the Mollow triplet side peak and the Raman line. (c,d) Cuts
of the spectral map shown in (a,b) along the white dashed lines, corresponding to (c)
~E = 125 meV and (d) ~E = 480 meV. The red lines indicate the position of the elastic
Rayleigh peak, not included in the emission spectra.

7.2.3 Photon emission spectra for strong laser intensities

Let us explore in the following the regime where the system is illuminated by a
strong power incident laser, which induces the non-linear response of the molecule,
and thus requires a treatment beyond the standard optomechanical description.

The influence of the incident laser amplitude E is shown in Fig. 7.4 (a,b), where
color maps of the emission spectra are displayed as a function of E . The incident
laser frequency is tuned to the TLS electronic transition, and we consider the
results for d = 0.1, which show the well-known Mollow triplet, a spectral structure
resulting from the resonance fluorescence (RF) of the dressed TLS [284, 285, 300–
303]. The Mollow triplet consists of a strong emission line centered at the incident
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laser frequency and two side spectral peaks of similar spectral width that shift
away as the laser intensity is increased [Figs. 7.4 (a) and (b)]. At a specific pumping
amplitude E [white dashed lines in Fig. 7.4 (a) and (b)], the detuning of the Mollow
triplet side peaks matches the vibrational frequency ±Ω of the molecule and thus
coherent effects emerge due to the interaction between the electronic RF and the
vibrational Raman scattering. The visibility and nature of these effects depends
on the width of the lines, which is dominated by the Purcell effect and hence
on the coupling g. We thus consider again the two representative situations
of interaction analysed in this chapter: (i) ~g = 50 meV, where the electronic
peak is spectrally broader than the vibrational line, as the Purcell factor strongly
broadens the former [Figs. 7.4 (a), (c)], and (ii) ~g = 13 meV, a situation where
the broadening of the electronic peaks is approximately equal to the vibrational
broadening [Figs. 7.4 (b), (d)].

For clarity, the emission spectra for the selected values of E that provide the
matching (~E =125 meV for ~g =50 meV, and ~E =480 meV for ~g ≈ 13 meV)
are shown in Fig. 7.4 (c) and (d), respectively. When the RF peak is much broader
than the width of the Raman line [Fig. 7.4 (c)], the interference results in small
but sharp features that might be detectable in experimental spectra and remind
of Fano-resonances[132]. On the other hand, when the linewidth of the RF is
similar to the linewidth of the Raman lines, the two spectral lines exhibit a
clear anticrossing [inset in Fig. 7.4 (b)] that results in a splitting of the spectral
features of each branch of the Mollow triplet [Fig. 7.4 (d)]. This splitting occurs
as a result of the strong coupling between the molecule’s electronic (TLS) and its
vibrational degrees of freedom [288], as predicted in the context of light emission
from semiconductor quantum dots [304].

The onset of strong coupling between the electronic and vibrational degrees of
freedom, and thus the clear line splitting, can be understood with the help of a
simplified Hamiltonian of the system. This Hamiltonian is a result of an effective
elimination of the plasmon cavity from the original Hamiltonian. Disregarding the
vibrational part in (7.22), the simplified Hamiltonian ĤTLS becomes

ĤTLS = ~
1

2
δσ̂z − ~

1

2
Eplσ̂x + ~

1

2
δ. (7.31)

Here Epl = −2gαS ∝ E again corresponds to the amplitude of the plasmon-
enhanced electric field. The Hamiltonian in Eq. (7.31) can be diagonalized by
a unitary transformation that rotates the TLS Pauli matrices in the x− z plane,
(σ̂x, σ̂z → σ̂′x, σ̂

′
z):

σ̂z =
δ

λTLS
σ̂′z +

Epl

λTLS
σ̂′x,

σ̂x = − Epl

λTLS
σ̂′z +

δ

λTLS
σ̂′x.

Under those operations, the simplified Hamiltonian describes the dynamics of an
effective electronic TLS dressed by the incident coherent illumination with an
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effective frequency λTLS = (E2
pl +δ2)1/2. According to this simplified Hamiltonian,

the effective electronic frequency λTLS can be tuned by either changing the
intensity of the incident laser (i.e. Epl ∝ E) or by detuning the incident laser
frequency δ. This dressed TLS interacts with the molecular vibrations via the
resonant Rabi interaction term [288]

~
1

2
Ωdσ̂z(b̂

† + b̂)→ ~
1

2
Ωd
Epl

λTLS
σ̂′x(b̂† + b̂)︸ ︷︷ ︸

Rabi term

+ residual polaronic coupling, (7.32)

which becomes resonant if λTLS ≈ Ω, the condition for the Mollow side peaks to
coincide with the spectral position of the SERS lines.

On top of the effect of dressing the molecular levels, the plasmonic cavity
increases the effective damping rate Γeff of the TLS by means of the Purcell effect
(causing the broad peaks of the Mollow triplet). The condition to reach strong
coupling in this situation can be derived by relating the decay rate of the molecular
vibration and that of the dressed electronic transition with the exciton-vibration
coupling strength:

Ωd
Epl

λTLS
' |3Γtot/4− γb/2|. (7.33)

This condition is at the origin of the strong coupling observed in the peaks of
Fig. 7.4 (d) (~g = 13meV), but it is not reached in the case presented in Fig. 7.4 (c)
(~g = 50meV) where Fano-type features appear as a sign of weak coupling. When
the strong-coupling between the vibrational Raman emission and the resonance
fluorescence is reached, the peak-splitting in the emission spectra in Fig. 7.4 (d) can
be also interpreted using the dressed-(atom)molecule picture originally introduced
by Cohen-Tanoudji [305, 306]. The dressed-atom picture allows for interpreting
the splitting of the Raman and resonance-fluorescence in terms of the coherent
interaction among molecular vibronic states, induced by the incident coherent
laser illumination. This approach shows that the final emission peaks emerge from
a coherent combination of both the resonance fluorescence-type transitions and
the Raman-type transitions, making the two mechanisms inseparably connected.
We elaborate on the dressed-molecule picture in the following section assuming
small d, and provide a more general result allowing large d after that.

Small vibrational displacement d: dressed-molecule picture

The regime where the linewidth of the resonance fluorescence peaks is comparable
to the width of the Raman peaks is a limiting case of Raman scattering in
intense fields that has been studied in the context of atomic physics [305–308].
To understand the splitting of the lines that appear when the Mollow triplet side
peaks have the frequency of the Raman lines, it is useful to rewrite the Hamiltonian
into a form where the coupling among vibrational states is explicitly present.
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This Hamiltonian can be derived from the original Hamiltonian Ĥres
om appearing

in Eq. (7.17) by applying the so called small polaron transformation Ĥres
om →

Ĥ
′res
om = Ûσe

Ĥres
omÛ

†
σe
, which is represented by the unitary matrix in the form of

a displacement operator Ûσe = exp
[
dσ̂e(b̂† − b̂)

]
. This transformation has two

effects on the Hamiltonian [defined in Eq. (7.17)]. First, the vibrational term in
Ĥmol transforms as:

~Ω(b̂† + σ̂ed)(b̂+ σ̂ed)→ ~Ωb̂†b̂ (7.34)

and the pumping term of the TLS given by Ĥpump acquires an additional factor
that includes the vibrational operators (which yield the well known Franck-Condon
factors):

~gαSσ̂
† + H.c.→ ~gαSσ̂

† exp
[
d(b̂† − b̂)

]
+ H.c. = −~Epl

2
σ̂† exp

[
d(b̂† − b̂)

]
+ H.c.

(7.35)

We assume that the influence of the plasmon (given by Ĥpl and Ĥpl−e in Eq. (7.17))
is effectively included in the effect of enhancement of the incident laser field αS.
Furthermore we consider only the case where the splitting of the fluorescence
and Raman spectral peaks is larger than their broadening (the so called secular
limit). In such a case, the incoherent broadening does not influence the peaks
positions and, therefore, in the following we consider that the system can be
described only by the the simplified Hermitian Hamiltonian (we do not consider
the Lindblad terms as we are mainly interested in the nature of the transitions).
We further assume weak electron-phonon coupling in the molecule and expand
the exponential terms containing the vibrational operators to the first order:
exp

[
±d(b̂† − b̂)

]
≈ I ± d(b̂† − b̂). Last, we reduce the system comprising the

vibrations and the TLS into an effective four level system that consists of the
ground and excited electronic states considering zero or one vibrational excitation
for each electronic state. The diagram of the resulting effective system is drawn
in Fig. 7.5 (a) and (b). By diagonalizing this 4× 4 Hamiltonian we achieve a new
level structure of the system that, in the dressed-molecule picture, provides the
positions of the emission peaks (for detailed discussion of the dressed-molecule
(atom) picture see e.g. chapter 10 of reference [97]). Below we briefly describe this
procedure that will help understanding the origin of the features observed in the
emission spectrum.

In the dressed-molecule picture we consider the simplified Hamiltonian, which
can be formally defined in the basis of states [|g,N , 0〉, |e,N−1, 0〉, |g,N , 1〉, |e,N−
1, 1〉], with e (g) labeling the electronic excited (ground) state, N labeling the
photon number state of the exciting field and 0 (1) labeling the number of
vibrational excitations, respectively. The exciting field is not quantized explicitly
in the original Hamiltonian [Eq. (7.17)] where it is represented by the plasmon
coherent-state amplitude αS. Without loss of generality, we assume that the
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7.2. r-SERS in the plasmon-exciton weak coupling regime

Figure 7.5: (a,b) Schematic representation of the energies of the simplified model of a
TLS molecule with one vibrational excited state. In (b) the interaction terms of the
simplified Hamiltonian, Ĥ

′res
om , obtained after applying the small polaron transformation,

are graphically depicted.

exciting field is a highly populated bosonic field which peaks sharply around a
(mean) occupation number Ñ yielding αS =

√
Ñ gPL−L, with gPL−L formally

defined as a small coupling constant (such that Ñ � 1) between the equivalent
exciting field and the molecule. Note that the formal definition of the exciting
field is not important for the following discussion as by introducing the quantized
exciting field we only aim at mimicking the action of the semi-classical pumping
term. However, the number states |N 〉 of the exciting field are advantageous to
discuss the dressing of the molecular excited states in terms of the hybridization
of the quantum-mechanical states.

We further define the total number of excitations as n = N + δie, with
i = e, g and δij the Kronecker delta. We consider that the electronic levels,
carrying the fine vibrational structure, are dressed by the strong laser illumination.
The Hamiltonian is expressed in the interaction picture of the incident laser
field which is exactly tuned to the electronic transition, ~δ = 0 eV. In the
basis [|g,N , 0〉, |e,N − 1, 0〉, |g,N , 1〉, |e,N − 1, 1〉] the Hamiltonian, Ĥ

′res
om , can be

represented by a matrix:

H
′res
om ≈ ~


0 −Epl/2 0 −dEpl/2

−Epl/2 0 dEpl/2 0
0 dEpl/2 Ω −Epl/2

−dEpl/2 0 −Epl/2 Ω

 . (7.36)

For vanishing electron-phonon coupling, d = 0, the Hamiltonian in Eq. (7.36)
reduces to the form describing a pair of TLSs dressed by the incident laser
illumination. The process of dressing (i.e. diagonalization of the above
Hamiltonian with d = 0) can be viewed as a mixing of the electronic states with the
high number states of the exciting laser field, giving rise to the basis of hybridized
states [|n−, 0〉, |n+, 0〉, |n−, 1〉, |n+, 1〉] where the first quantum number, n, labels
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Figure 7.6: Energy level diagram in the dressed-molecule picture where the level structure
of the effective four-level system describing the molecule is repeated for each manifold
containing n excitation quanta: (a) a situation where no electron-phonon interaction is
present (d = 0), and (b) a situation where all the interactions are present [λi are defined
in Eq. (7.38)]. In (a) we further mark the transitions that give rise to Mollow triplet by
coloured arrows (connecting only m = 0 states, for simplicity), and use the colour code
to assign the transitions to the respective emission peaks in the spectrum below. The
coloured lines in (b) represent all possible transitions that can contribute to the emission
spectrum [shown in Fig. 7.7 (a)].

the total number of electronic plus laser excitations, and the second quantum
number, m, belongs to the vibrational states [see Fig. 7.6 (a) for schematics of
the corresponding energy levels]. The hybrid states are defined as |n±,m〉 ≡
(|g,N ,m〉 ± |e,N − 1,m〉)/

√
2 with + labelling the state with higher energy. In
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the new basis of such dressed states, we can represent the Hamiltonian as:

H
′res,dr
om ≈ ~


Epl/2 0 0 0

0 −Epl/2 0 0
0 0 Ω + Epl/2 0
0 0 0 Ω− Epl/2



− ~


0 0 0 −dEpl/2
0 0 −dEpl/2 0
0 −dEpl/2 0 0

−dEpl/2 0 0 0

 , (7.37)

For d = 0, the splitting of the states |n±〉 for the TLS in each vibrational
manifold is |2gαS| = |Epl|. The two vibrational manifolds are mutually shifted
by the vibrational frequency Ω along the energy axis. In the absence of electron-
phonon coupling d, the resonance fluorescence emission (dominating in this case
the inelastic emission) is given purely by the transitions within the individual
vibrational manifolds and it changes the total number of excitations, n, by
one. In particular, the central Mollow peak is given by transitions between
|(n + 1)+, 0(1)〉 → |n+, 0(1)〉 and |(n + 1)−, 0(1)〉 → |n−, 0(1)〉, while the side
peaks contain transitions |(n + 1)−, 0(1)〉 → |n+, 0(1)〉 (red detuned) and |(n +
1)+, 0(1)〉 → |n−, 0(1)〉 (blue detuned), respectively. The respective transitions
and their corresponding emission peaks (the Mollow triplet) are schematically
marked in Fig. 7.6 (a). In Fig. 7.6 (a) the colours of the spectral emission peaks
correspond to the colour of the respective arrows marking the transitions.

If we switch on the electron-phonon interaction d, a mixing between the levels
belonging to the two vibrational manifolds is introduced, simultaneously allowing
additional transitions yielding the Raman emission (i.e. changing the vibrational
manifolds). The details of the level mixing and the subsequent emission spectra
depend on the particular choice of pumping strength, Epl, in combination with
the value of the electron-phonon coupling, d. In the following we consider a
particular case where the Mollow triplet side peaks overlap with the Raman lines
with the laser frequency exactly tuned to the TLS energy splitting (~δ = 0 eV and
|Epl| = Ω). Upon diagonalization, the Hamiltonian in Eq. (7.36) [Eq. (7.37)] yields
the following spectrum of energy levels:

λ− = −1

2
(d− 1)Ω,

λ+ =
1

2
(d+ 1)Ω,

λ3 = −1

2

(√
d2 + 4− 1

)
Ω ≈ −1

2

(
1 +

d2

4

)
Ω,

λ4 =
1

2

(√
d2 + 4 + 1

)
Ω ≈ 1

2

(
3 +

d2

4

)
Ω,

(7.38)

where we used the assumption that d � 1 to perform the Taylor expansion of

155



Chapter 7. Optomechanical approach to r-SERS

Figure 7.7: Particular example of an emission spectrum of a TLS in a plasmonic resonator
obtained from the full model [Eq. (7.17)] using (a) two and (b) seven vibrational levels
(converged spectrum) in both the ground and the excited electronic states. The spectrum
is calculated for d = 0.1, ~Ω = 50 meV, ~g ≈ 13 meV, ~E = 480 meV, ~γσ = 2 × 10−5

eV, ~γb = 2 meV, ~γa = 500 meV, ~δ = 0 eV, ~∆ = 0 eV and temperature T = 0 K. The
colored lines represent the different transitions graphically depicted in Fig. 7.6 (b) using
the same color code.

the square root up to the first order. The states having energy λ± are a coherent
admixture of states containing zero and one vibrational excitation |n−, 1〉 and
|n+, 0〉, as discussed above, and the states of energy λ3,4 can be identified (up
to small o(d) admixtures of other states) with |n−, 0〉 and |n+, 1〉 whose energy is
renormalized due to the off-resonant electron-phonon coupling. This level structure
of the molecule does not explicitly contain the quantized electromagnetic field of
the incident laser. However, in the dressed-molecule picture the molecular level
structure [Eq. (7.38)] is periodically repeated for each manifold represented by a
specific number of excitations, n, and thus appears repeated along the energy axis
displaced by integer values of the laser frequency ωL, as schematically illustrated
in Fig. 7.6 (b). In this picture, the emission events are represented by transitions
between manifolds that differ by one excitation quantum of the electronic and
effective photonic states, i.e. transitions between the manifolds containing n and
n+ 1 excitation quanta [represented by colored lines in Fig. 7.6 (b)].

The dressed-molecule picture above nicely allows us to identify the spectral
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peaks which appear in the complex photon emission spectra obtained from
the numerical calculation of the complete Hamiltonian in Eq. (7.17) with its
corresponding Lindblad terms. Figure 7.7 (a) shows such a situation where two
vibrational levels corresponding to the ground vibrational state and the first
excited vibrational state are considered. Nine main frequencies [coloured lines
in Fig. 7.7 (a)] are identified in the spectrum which nicely coincide with the nine
transitions marked in the energy diagram of Fig. 7.6 (b) (vertical lines marking
λi − λj , where i, j ∈ {+,−, 3, 4}). For comparison, we show in Fig 7.7 (b) the
results obtained using a sufficiently large number of vibrations to achieve results
converged with respect to the size of the vibrational subspace. In this case,
more spectral features appear [we observe higher order transitions and further
peak splitting when compared with Fig. 7.7 (a)]. Nonetheless, the simple model
introduced in this section still explains very well the spectral positions of the
strongest peaks.

Large vibrational displacement d

We have so far used a moderate value of the displacement, d = 0.1, however, in
realistic molecules significant exciton-vibration coupling can lead to larger values
of d. Although the dressed-molecule picture developed in the previous section can
be generalized for arbitrary displacement d, it becomes excessively complicated
when d becomes large and we therefore opt for describing the situation with help
of full numerical calculation. In Fig. 7.8 we show the evolution of the emission
spectra with d [as schematically shown in Fig. 7.8 (a)] for the same two values of
the plasmon-TLS coupling considered up to now, i.e. ~g = 50 meV [Fig. 7.8 (b)]
and ~g ≈ 13 meV [Fig. 7.8 (c)]. For all the values of d considered, the laser intensity
is chosen such that the RF lines match the position of the Raman lines. For small
values of d ≈ 0.1, the RF profile follows the behavior described in Fig. 7.4. As
d gradually increases, the spectra start exhibiting additional features due to the
increasing importance of higher-order vibronic transitions. When the RF line is
significantly broader than the Raman lines [Fig. 7.8 (b)], an increase of the coupling
d gradually changes the spectral dip located at the frequency of the Stokes emission
and the bump at the anti-Stokes emission [see Fig. 7.4 (c)] into positive Raman
peaks. Additional peaks appear for values of (ω−ωL) that are multiple integers of
Ω, together with a suppression of the broad background RF [top side of Fig. 7.8 (b)].
When the line width of the Mollow side peaks is similar to the width of the Raman
lines [Fig. 7.8 (c)], the splitting of the strongly coupled hybrid lines becomes larger
as d increases. For large values of d, all of the spectra in Figs. 7.8 (b,c) acquire a
complex structure due to the generally complicated coherent interaction between
the molecular vibrational and electronic degrees of freedom, with the emergence of
additional peaks originating from higher-order Raman and resonance-fluorescence
transitions.
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Figure 7.8: Emission spectra of a molecule for increasing value of coupling, d, as
schematically depicted in (a), keeping the conditions δ = 0 eV, for (b) ~g =50 meV
and ~E = 125 meV, (c) ~g =13 meV and ~E = 480 meV. As d is increased, the spectra
acquire a complicated form containing a number of RF and r-SERS peaks due to the
increasing importance of higher-order vibronic transitions.

7.2.4 Optomechanical vibrational pumping for strong laser
intensities

In this section, we extend the treatment of resonant SERS within the linear
response introduced previously to consider the case of strong incident illumination,
where non-linear effects become important. To that end we invoke the effective
vibrational Hamiltonian introduced in Eq. (7.23) together with the incoherent
damping Γdec

v = 2 (Ωd)
2

Re{S̃(Ω)} and pumping Γpump
v = 2 (Ωd)

2
Re{S̃(−Ω)}

rates in Eqs. (7.24) and (7.25), respectively. As described in Section 7.2.2, the
spectral function S̃(s) can be obtained from the effective dynamics of the TLS,
which is effectively broadened by the plasmon via the Purcell effect (more
details about the calculation of S̃(s) are given in AppendixF). This hierarchy of
approximations considered in this section is schematically depicted in Fig. 7.9 (a).
These effective rates are dependent on the spectral function S̃(s) of the reservoir
evaluated at frequencies Ω and −Ω, respectively. Note that the analytical model
is limited to cases where the electron-vibration coupling Ωd is smaller than
the effective broadening Γeff of the electronic resonance. We thus perform full
numerical calculations to obtain the results spanning the full range of model
parameters and use the analytical model for qualitative discussion.

The effective optomechanical decay and pumping rates are dependent on the
spectral function S̃(s) of the reservoir, hence the value of the spectral function S̃(s)
at frequencies ±Ω determines the strength of the effective vibrational pumping
(Γpump

v ) or damping (Γdec
v ). It is therefore possible to achieve different regimes of

interaction with the vibrations which range from pumping to damping by simply
modifying the illumination conditions (laser intensity and frequency detuning)
that provoke a variation of the shape of the spectral function. When the laser
intensity is large, the reservoir function S̃(s) reflects the structure of the TLS
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7.2. r-SERS in the plasmon-exciton weak coupling regime

Figure 7.9: (a) Schematic depiction of the hierarchy considered in the theoretical model.
The plasmons serve as an effective reservoir and broaden the TLS via the Purcell
effect (Γeff). The broadened TLS then effectively influences the incoherent dynamics
of the vibrations via the effective vibrational pumping (Γpump

v ) and damping (Γdec
v ). (b)

Real part of the spectral function (calculated from the reduced Hamiltonian where the
plasmonic cavity is eliminated), Re{S̃(s)}, of the operator σ̂e, for three different values
of detuning ~δ̃ = 0 eV (black line), 0.02 eV (red line) and -0.02 eV (blue line). ~E = 125
meV, and ~g = 50 meV. (c,d) Maps of vibrational population of a molecular vibration
(~Ω = 50 meV) as a function of detuning from the effective TLS energy, δ̃, and of the
incident laser amplitude, E , for ~g = 13 meV, with d = 0.1 (c), d = 0.5 (d). The blue
lines in (d) indicate the condition λTLS = nΩ with n integer (depicted only for δ < 0).

dressed by the incident laser, and therefore it becomes qualitatively different from
the weak-illumination case.

In Fig. 7.9 (b) the spectral function, Re{S̃(s)}, for d = 0.1, ~E = 125 meV,
and ~g = 50 meV, is shown to peak around the effective frequencies of the dressed
TLS (s = ±λTLS). When the incident laser is detuned from the TLS transition
(δ̃ 6= 0, with δ̃ = δ+d2Ω), an additional peak appears at around ~s = 0 eV and the
spectral function changes symmetry. For δ̃ > 0 (red detuning marked with a red
line) a regime of vibrational damping can be reached (Re{S̃(Ω)} > Re{S̃(−Ω)}),
whereas for δ̃ < 0 (blue detuning marked with a blue line) a regime of vibrational
pumping (Re{S̃(Ω)} < Re{S̃(−Ω)}) is achieved. This effect is more pronounced
for a situation where S̃(±Ω) corresponds to the maxima of S̃(s).

To illustrate the possibility to achieve a controlled excitation of molecular
vibrations on demand within this scheme of interactions, we numerically solve
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Chapter 7. Optomechanical approach to r-SERS

the full Hamiltonian of the system [Eq. (7.17)], and show in Figs. 7.9 (c,d) the
result of the steady-state vibrational population of the electronic ground state,
〈σ̂gb̂

†b̂〉, for an electron-plasmon coupling of ~g ≈ 13 meV and two different
values of the dimensionless displacement (d = 0.1 and d = 0.5). The map of
efficiency of vibrational pumping is non-trivially influenced by both the detuning
δ̃ of the incident laser frequency from the TLS transition frequency and by the
incident laser intensity (∝ |E|2), so that the optimal laser intensity for the pumping
depends on the laser detuning δ̃. When the electron-vibration coupling is large
(d = 0.5), the population reaches multiple local maxima [Fig. 7.9 (d)]. In this
case, by adequately tuning the laser frequency one can efficiently excite Franck-
Condon transitions involving a change of more than one vibrational transition
(higher-order processes). As expected, the population maxima are found when
the spectral position of the side peaks of the electronic spectral function matches
the frequency of the higher order vibrational transitions (λTLS ≈ nΩ, with n an
integer), a condition traced by the blue lines in Fig. 7.9 (d), and displayed only
for negative detuning δ.

7.2.5 Selective optomechanical vibrational pumping

The potential to control the activation of molecular vibrations shown in the
previous section can be exploited in the selective excitation of different vibrational
modes. Let us consider the coupling of a plasmonic system with a molecule
supporting two vibrations (labelled 1 and 2) at frequencies ~Ω1 = 70 meV and
~Ω2 = 100 meV, both coupled to independent reservoir modes (baths) with
~γb1 = ~γb2 = 2 meV, as schematically depicted in Fig. 7.10 (a). We simplify the
description of the system and use the effective Hamiltonian where the plasmonic
degrees of freedom are eliminated:

Ĥtwo
red = ~δσ̂e + ~Ω1(b̂†1 + d1σ̂e)(b̂1 + d1σ̂e)

+ ~Ω2(b̂†2 + d2σ̂e)(b̂2 + d2σ̂e) + ~
1

2
Eplσ̂x

(7.39)

Where we have assumed that the vibrational modes are coupled to the TLS via a
polaronic coupling term (d1 = d2 = 0.1), and do not consider the direct coupling
between the two vibrational modes. However, this model Hamiltonian naturally
couples the two vibrational modes indirectly via the electronic TLS of the molecule.
Our model thus partially accounts for thermalization effects, without considering
the effect of the surrounding environment that may further incoherently couple
the vibrational modes.

The resulting vibrational population of the electronic ground state, 〈σ̂g b̂†i b̂i〉, is
shown in Fig. 7.10 (b) as a function of the intensity and detuning of the incoming
laser. The color map depicting the population of the vibrational mode at frequency
Ω1 is displayed together with a dashed contour plot that shows the corresponding
results for the mode at Ω2. Each mode presents a clear maximum for adequate
illumination conditions. The maxima are shifted with respect to each other both
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7.2. r-SERS in the plasmon-exciton weak coupling regime

Figure 7.10: Selective vibrational pumping. (a) Schematic representation of an example
of two different vibrational modes of frequencies Ω1 and Ω2, respectively, coupled with
their electronic degrees of freedom via the displacement d1 and d2 of their respective PESs.
The vibrational modes are assumed to interact independently with their corresponding
reservoirs, 1 and 2. (b) Color map of the vibrational populations 〈σ̂g b̂

†
i b̂i〉 of two different

vibrational modes {i = 1, 2} present in the same molecule, with frequency ~Ω1 = 70
meV (solid colors) and ~Ω2 = 100 meV (values expressed by dashed contour lines). (c,d)
Populations of the modes Ω1 (solid line) and Ω2 (dashed line) extracted along the white
dashed lines in (b). In (c) ~E = 0.5 eV and δ is varied, whereas in (d) ~δ = −0.05 eV
and E is varied.

in frequency and amplitude, so that changing the illumination conditions serves
to pump more efficiently one mode or another. To highlight the selectivity of the
vibrational pumping mechanism, we extract line cuts of Fig. 7.10 (b) for constant
laser pumping, ~E = 500 meV, [Fig. 7.10 (c)], and for constant laser detuning
~δ = −50 meV [Fig. 7.10 (d)]. As observed in Fig. 7.10 (c,d) the conditions
of intensity and detuning for maximum population of one mode give a much
weaker population of the other mode (solid versus dashed lines). This scheme
of interactions makes it possible to achieve selective vibrational pumping by either
tuning the laser frequency for a given illumination intensity or by modifying the
laser intensity for a fixed illumination frequency.
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7.3 Resonant-SERS in the plasmon-exciton
strong coupling regime

We consider in this section that the coupling between the molecular exciton and
the plasmon, g, is sufficiently large to overcome the plasmonic losses, g & γa/2, and
the system is thus in the plasmon-exciton strong-coupling regime. In this regime
the plasmonic and excitonic states hybridize forming the Jaynes-Cummings ladder
of plexcitonic states,which has been described in Section 5.1. The large g values
necessary for strong coupling to occur are typically achieved by coupling plasmonic
nanostructures with J-aggregates [222, 309–311], large complex dyes characterized
by their large dipole moment, or with a large number of small molecules forming
a collective bright mode of larger effective coupling strength [178, 186, 312].
However, recently it has become possible to achieve strong coupling even with
a single small molecule conveniently aligned with the plasmonic field [186]. In this
chapter we consider ~g = 100 meV and ~γa = 150 meV as representative values of
strong coupling between a plasmonic cavity and a single molecule. As before, we
consider ~γσ = 2×10−5 meV for the intrinsic decay rate of the molecular electronic
excited state and specify the other relevant parameters when necessary.

In the following it will be convenient to split the polaronic Hamiltonian, Ĥres
om

[Eq. (7.17)], of the system of plasmons interacting with molecular excitations in a
slightly different form than used in the previous sections:

Ĥres
om = ĤJ−C,p + Ĥv + ĤTLS−v, (7.40)

where in the rotating frame

ĤJ−C,p = ~∆â†â+ ~δ̃σ̂†σ̂ + ~gâσ̂† + ~g∗â†σ̂ + ~E(â+ â†), (7.41)

is the Hamiltonian of the pumped Jaynes-Cummings system, with δ̃ = δ + Ωd2,

Ĥv = ~Ωb̂†b̂ (7.42)

is the vibrational Hamiltonian, and

ĤTLS−v = ~Ωd σ̂†σ̂(b̂† + b̂) (7.43)

is the Hamiltonian mediating the interaction between the Jaynes-Cummings
system and the vibration.

7.3.1 Optomechanical vibrational pumping and photon
emission in a simple situation

Optomechanical vibrational pumping

To provide insights into the scattering of light by the molecule we develop an
analytical model describing the Raman process for a relatively simple scenario.
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We first consider that the electron-phonon coupling, described by the displacement
value d, is in the low range of values obtained for rigid molecules [313, 314]
(d ∼ 10−1). We further assume that the laser illumination is not too intense
so that the linear response approximation is justified, and that the TLS is not
affected by pure dephasing processes.

The condition of weak electron-phonon coupling, considering that the time scale
of the electron-phonon interaction is larger than that of the dominant relaxation
processes, can be roughly estimated as Ωd� |γa + γσ|/4. This assumption allows
us to separate the full system according to the hierarchy of time scales: the
fast decaying and decohering reservoir part, which consists of the electronic TLS
strongly coupled with the plasmon, and the slowly varying system part represented
by the vibrational mode [94]. As we have shown in Section 7.2.2, under such
conditions the vibrational dynamics then approximately follows the Hamiltonian
Hv [Eq. (7.42)], and the effective incoherent decay, via the Lindblad superoperator
L

Γdec
v

b̂
(ρ̂) [Eq.(7.24)], and pumping, via the superoperator L

Γpump
v

b̂†
(ρ̂) [Eq.(7.25)],

with Γdec
v and Γpump

v the effective incoherent damping and pumping rates due to
the electronic TLS and the plasmon. As we have shown in Section 7.2.2, these
rates are related to the steady-state reservoir spectral function:

Re{S̃(s)} = Re

{∫ ∞
0

〈〈σ̂†σ̂(τ)σ̂†σ̂(0)〉〉eisτdτ

}
(7.44)

as:

Γdec
v = 2(Ωd)2Re{S̃(Ω)} (7.45)

Γpump
v = 2(Ωd)2Re{S̃(−Ω)}, (7.46)

In the considered scheme, the reservoir operators are obtained from the dynamics
of the Jaynes-Cummings system decoupled from the vibrations.

As we have assumed that the pure dephasing of the TLS is negligible, we
write 〈σ̂†σ̂〉SS ≈ |〈σ̂〉SS|2. In this case, after decomposing the lowering operator
of the TLS into its steady state value 〈σ̂〉SS and the fluctuating part with zero
mean δσ̂ as σ̂ = 〈σ̂〉SS + δσ̂, we can approximate the population operator as
σ̂†σ̂ ≈ |〈σ̂〉SS|2 + 〈σ̂〉SSδσ̂

† + 〈σ̂†〉SSδσ̂.
We then transform the spectral function Re{S̃(s)} from an expression

depending on the correlation function of the full operator 〈〈σ̂†σ̂(τ)σ̂†σ̂(0)〉〉,
to a simpler one where the expression depends on the correlation function
〈〈δσ̂(τ)δσ̂†(0)〉〉 = 〈〈σ̂(τ)σ̂†(0)〉〉 as:

Re{S̃(s)} = Re

{∫ ∞
0

〈〈σ̂†σ̂(τ)σ̂†σ̂(0)〉〉eisτdτ

}
≈ |〈σ̂〉SS|2 Re

{∫ ∞
0

〈〈σ̂(τ)σ̂†(0)〉〉ei(s+ωL)τdτ

}
︸ ︷︷ ︸

J0(s)

. (7.47)
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Equation (7.47) thus factorizes the full spectral function into two contributions:
(i) the coherent population of the TLS, |〈σ̂〉SS|2, and (ii) the absorption spectrum
of the TLS, here strongly coupled with the plasmon, J0(s). We obtain
an approximate expression of both quantities analytically using the quantum
regression theorem and considering the low pumping regime.

Under weak illumination, we consider the dynamics of the operators in the
single-excitation manifold [182]. We define a vector of operator mean values
v = (〈â〉, 〈σ̂〉)T [(·)T denotes transposition, and with â and σ̂ the standard
bosonic annihilation operator and Pauli lowering operator, respectively] that
approximately satisfies the differential equation

d

dt
v = MC v + rhs, (7.48)

where MC is a matrix of coefficients

MC =

[
−i∆− γa/2 −ig
−ig −i∆− γσ/2

]
, (7.49)

and rhs is a constant vector that represents the coherent pumping of the system,
rhs = (0, −igα∗S)T. The steady-state value 〈σ̂〉SS follows from Eq. (7.48) after
setting the time derivative equal to zero obtaining:

|〈σ̂〉SS|2 ≈ 〈σ̂†σ̂〉SS ≈
g2|αS|2(∆2 + γ2

a/4)

∆4 + (g2 + γσγa/4)2 + ∆2(γ2
σ/4 + γ2

a/4− 2g2)
. (7.50)

To finally evaluate the correlation function, J0(s), in the last integral of
Eq. (7.47) we apply the QRT. We concentrate on the calculation of the fluctuating
part of the correlation functions which are responsible for the incoherent damping
and pumping effects. These go to zero in the limit τ →∞. The time dynamics of
the two-time correlation functions is then given by the homogeneous part of the
differential equation for the operator mean values. More specifically,

d

dτ
w = MC w,

with w = (〈〈â(τ)σ̂†(0)〉〉, 〈〈σ̂(τ)σ̂†(0)〉〉)T. Finally, the initial values (τ = 0) of the
two-time correlators for w are:

〈〈âσ̂†〉〉SS ≈ 0,

〈〈σ̂σ̂†〉〉SS ≈ 1,

where we have neglected the terms O(α2
S). Finally, we obtain:

J0(s) =
g2γa/2 + γσ/2[γ2

a/4 + (∆− s)2]

g4 − 2g2[(∆− s)2 − γσγa/4] + [γ2
σ/4 + (∆− s)2][γ2

a/4 + (∆− s)2]
.

(7.51)
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In the strong coupling regime, J0(s) contains two peaks approximately
located at frequencies sJ± ≈ ∆ ±

√
g2 − (γ2

σ + γ2
a)/8 (assuming a slowly varying

numerator). We notice that the double-peaked structure can be resolved only if
g2 > (γ2

σ + γ2
a)/8, which is a stronger condition than the one for the plasmon-

exciton strong coupling g2 > (γa − γσ)2/16.
The expressions for the effective damping [Eqs. (7.45)] and pumping [Eq.

(7.46)], proportional to Re{S̃(s)}, can then be interpreted as the consequence
of a two step process. First, the |〈σ̂〉SS|2 indicates that the pumping laser of
frequency ωL induces the coherent population of the molecular excited state, which
triggers the Raman process and thus increases Γdec

v and Γpump
v . In the second

stage, the Stokes and anti-Stokes excitations appearing at frequencies ωL ± Ω are
absorbed and partially emitted to the far field by the resonance of the J-C system,
as determined by J0(s) [the emission at the Raman frequencies corresponds to
J0(±Ω)]. The enhancement of the Stokes scattering at frequency ωL−Ω leads to an
enhancement of the vibrational pumping Γpump

v (a vibrational quantum is created
with each emitted Stokes photon), while the anti-Stokes emission at frequency
ωL + Ω contributes to the vibrational damping Γdec

v . A similar interpretation has
also been shown to be valid for off-resonant SERS [279, 280, 315, 316]. Figure 7.11
illustrates the validity of our model. We show in Fig. 7.11 (a,b) 2D color map plots
of the incoherent part of the vibrational population 〈〈b̂†b̂〉〉SS = 〈b̂†b̂〉SS − |〈b̂〉SS|2
as a function of vibrational frequency Ω and of detuning ∆ of the laser from
the plasmon frequency. We display the incoherent part of the population, as the
coherent part |〈b̂〉SS|2 represents a constant static displacement of the vibration due
to the coherent laser pumping. We compare numerical results with the analytical
calculations using

〈〈b̂†b̂〉〉SS ≈ 〈b̂†b̂〉SS,in =
Γpump

v

γb + Γdec
v − Γpump

v
. (7.52)

The approximate [Fig. 7.11 (a)] and exact [Fig. 7.11 (b)] results are very similar,
both exhibiting a clear population maximum for detuning ≈ −100meV and
frequency of the vibrational mode ≈ 180meV. This maximum can be understood
as a consequence of the two-step process described above.

r-SERS spectra

Although the vibrational populations provide important information about the
system dynamics, the quantity typically accessible in experiments is the inelastic
Raman emission spectrum [Eq. (7.15)]. By using the separation of the system
into the slowly decaying vibrational mode and the fast decaying excitations of
the J-C reservoir, we are able to isolate the Raman contribution to the scattering
spectrum from the fluorescence background. Due to the separation of time scales
described in Section 7.3.1, we can assume that the vibrations induce changes of the
reservoir (J-C) operators which immediately (adiabatically) follow the changes
at the vibrational operators. In the adiabatic approximation we assume that
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Figure 7.11: Resonant SERS for weak illumination ~E = 1 meV, no pure dephasing and
weak coupling between the electronic and vibrational levels of the molecule, d = 0.1.
(a,b) Population of the vibrational mode under laser excitation as a function of laser
detuning ∆ and vibrational frequency Ω, calculated (a) from the analytical model as
explained in the text and (b) from the full numerical calculation solving Eq. (7.40) with
the corresponding Lindblad terms. The lines mark the conditions where the frequency of
one of the bare J-C absorption peaks coincides with the frequency of the first order Stokes
line (red line) or the incident laser (green line). (c) Numerical SERS spectra se(ω,∆) at
emission frequency ω as a function of plasmon detuning ∆, for a vibrational mode energy
~Ω = 50meV. (d) Maximum intensity of the Stokes-Raman line (at ω = ωL − Ω) as a
function of the detuning of the incident laser from the plasmon ∆, calculated with the
analytical model [Eq. (7.64)] (red line) and with the full numerical model (black crosses).
The other parameters used for the calculation in (a-d) are ~γb = 2 meV, ~γσ = 2× 10−5

eV, ~γa = 150 meV, ~g = 100 meV, γφ = 0 eV. ∆ = δ̃.

the vibrational operators satisfy the effective vibrational dynamics given by the
Hamiltonian Ĥv [Eq. (7.42)], the incoherent intrinsic damping L γb

b̂
(ρ̂), and also

that they are implicitly dependent on the reservoir via the reservoir-induced
coherent and incoherent pumping, L

Γpump
v

b̂†
(ρ̂) [Eq. (7.25)], and damping, L

Γdec
v

b̂
(ρ̂)

[Eq. (7.24)]. Based on these assumptions, we write the following set of Heisenberg-
Langevine equations describing the dynamics of the J-C system operators coupled
to the vibrations (in the frame rotating with the laser frequency ωL). The
Heisenberg-Langevine equations have almost the same form as the equations
governing the dynamics of the operator mean values, but they additionally include
the noise terms that are needed to preserve the operators commutation relations
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[94, 97]. The relevant equations can be derived from ĤJ−C,p, ĤTLS−v [Eqs. (7.41)
and (7.43)], and adding the damping terms that arise from L γa

σ̂ [ρ̂] [Eq. (7.8)] and
L γσ
σ̂ [ρ̂] [Eq. (7.19)]:[
˙̂a
˙̂σ

]
≈
[
−i∆− γa/2 −ig
−ig −i∆− γσ/2

]
·
[
â
σ̂

]
+

[
0

−iΩd〈σ̂〉SS(b̂† + b̂)

]
+ Noise terms,

(7.53)

The inhomogeneous term in Eq. (7.53) has been derived with the use of the
decomposition of the lowering operator of the TLS, σ̂ = 〈σ̂〉SS + δσ̂, and σ̂†σ̂ ≈
|〈σ̂〉SS|2+〈σ̂〉SSδσ̂

†+〈σ̂†〉SSδσ̂, and neglecting δσ̂(b̂†+ b̂). This assumption restricts
our further calculations to the first-order Raman scattering.

The solution for the plasmon annihilation operator relevant for the SERS
process is represented by the inhomogeneous solution of these differential equations
[Eq. (7.53)]. We first solve the homogeneous part by diagonalizing the matrix:[

−i∆− γa/2 −ig
−ig −i∆− γσ/2

]
=

= PC DC PC
−1.

where DC = diag{λSC
1 , λSC

2 } contains the eigenvalues λSC
1(2) of the matrix and the

columns of PC contain the respective eigenvectors.

The inhomogeneous solution of the equations vinh in the steady state becomes

vinh(t) ≈
∫ t

−∞
PC e

DC(t−t′) PC
−1 RHS(t′) dt′, (7.54)

where RHS(t′) is

RHS(t′) =

[
0

−iΩd〈σ̂〉SS[b̂(t′)† + b̂(t′)]

]
. (7.55)

In particular, the steady-state inhomogeneous solution for the plasmon
annihilation operator, âinh(t), adiabatically depends on the vibrational operators
as follows:

âinh(t) ≈ −iΩd〈σ̂〉SS

∫ t

−∞
e−λ

SC
1 (t′−t) g√

4g2 − (γa − γσ)2/4
[b̂(t′)† + b̂(t′)]dt′+

+ iΩd〈σ̂〉SS

∫ t

−∞
e−λ

SC
2 (t′−t) g√

4g2 − (γa − γσ)2/4
[b̂(t′)† + b̂(t′)]dt′. (7.56)

In the adiabatic approximation, the slowly varying part of the vibrational
operators ˆ̃

b(t′) [with b̂(t′) =
ˆ̃
b(t′)e−iΩt′ ] can be evaluated at time t′ → t and
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the integration can then be performed explicitly, giving:

âinh(t) ≈− iΩd〈σ̂〉SS
g√

4g2 − (γa − γσ)2/4

[
1

(iΩ− λSC
1 )
− 1

(iΩ− λSC
2 )

]
b̂†(t)

− iΩd〈σ̂〉SS
g√

4g2 − (γa − γσ)2/4

[
1

(−iΩ− λSC
1 )
− 1

(−iΩ− λSC
2 )

]
b̂(t)

+ Noise terms

≡ −iΩd〈σ̂〉SSA0(−Ω)b̂†(t)− iΩd〈σ̂〉SSA0(Ω)b̂(t) + Noise terms, (7.57)

where we have defined

A0(Ω) =
g√

4g2 − (γa − γσ)2/4

[
1

(−iΩ− λSC
1 )
− 1

(−iΩ− λSC
2 )

]
. (7.58)

Finally, the calculation of the emission spectra requires the evaluation of the two-
time correlation function

〈〈
a†(0)a(τ)

〉〉
as

se(ω) ≈ 2 Re

{∫ ∞
0

〈〈
â†inh(0)âinh(τ)

〉〉
eiωτ dτ

}
. (7.59)

Using the expression in Eq. (7.57) we obtain:〈〈
â†inh(0)âinh(τ)

〉〉
≈

≈ Ω2d2|〈σ̂〉SS|2|A0(−Ω)|2
〈〈
b̂(0)b̂†(τ)

〉〉
(7.60)

+ Ω2d2|〈σ̂〉SS|2|A0(Ω)|2
〈〈
b̂†(0)b̂(τ)

〉〉
(7.61)

+ Ω2d2|〈σ̂〉SS|2A∗0(Ω)A(−Ω)
〈〈
b̂†(0)b̂†(τ)

〉〉
(7.62)

+ Ω2d2|〈σ̂〉SS|2A∗0(−Ω)A(Ω)
〈〈
b̂(0)b̂(τ)

〉〉
, (7.63)

from which the first two contributions represent the Stokes [Eq. (7.60)] and
the anti-Stokes [Eq. (7.61)] contributions, respectively. The other terms can be
neglected in the regime considered as the expectation values operators b̂b̂ and b̂†b̂†
are only sensitive to coherences between higher vibrational excited states.

The resulting expressions for the Stokes (se,St) and anti-Stokes (se,aSt) emission
spectral lines are

se,St(ω) =Ω2d2|〈σ̂〉SS|2|A0(−Ω)|2 2 Re

{∫ ∞
0

〈〈b̂(0)b̂†(τ)〉〉ei(ω−ωL)τdτ

}
, (7.64)

se,aSt(ω) =Ω2d2|〈σ̂〉SS|2|A0(Ω)|2 2 Re

{∫ ∞
0

〈〈b̂†(0)b̂(τ)〉〉ei(ω−ωL)τdτ

}
, (7.65)

where |〈σ̂〉SS|2 is given by Eq. (7.50) and it can be shown that |A0|2 is the reservoir
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spectral function that describes the enhancement of the emission of the Raman
photons into the far field due to the presence of the Jaynes-Cummings system (we
assume that the emission from the molecule via the plasmon is much stronger than
its direct far-field emission):

|A0(s)|2 =

∣∣∣∣∫ ∞
0

〈〈â(τ)σ̂†(0)〉〉eisτdτ

∣∣∣∣2 =

=
g2

g4 − 2g2[(∆− s)2 − γσγa/4] + [γ2
σ/4 + (∆− s)2][γ2

a/4 + (∆− s)2]
.

(7.66)

This function is double peaked since we assume the plasmon-exciton strong
coupling regime, and, for the conditions considered here, the peak positions,
sA± = ∆±

√
g2 − (γ2

σ + γ2
a)/8, are similar to sJ± for the spectral function J0(s).

Last, the integrals of the vibrational correlation functions in Eqs. (7.64) and
(7.65) represent the emission line shape (as a function of ω) that can be obtained
from the equations describing the dynamics of the vibration coupled with the
reservoir [280]:

˙̂
b ≈ −iΩb̂− γvdpb̂+ Noise terms, (7.67)

with γvdp = γb+Γdec
v −Γpump

v . Applying the quantum regression theorem to these
equations we obtain

Re

{∫ ∞
0

〈〈b̂(0)b̂†(t)〉〉ei(ω−ωL)t

}
=

γvdp/2

(ω − ωL + Ω)2 + γ2
vdp/4

(
1 + 〈〈b̂†b̂〉〉SS

)
,

(7.68)

Re

{∫ ∞
0

〈〈b̂†(0)b̂(t)〉〉ei(ω−ωL)t

}
=

γvdp/2

(ω − ωL − Ω)2 + γ2
vdp/4

〈〈b̂†b̂〉〉SS. (7.69)

The emitted signal [Eq. (7.64) and (7.65)] is thus proportional to the efficiency
of the excitation of the system ∝ |〈σ̂〉SS|2 and to the emission enhancement due
to the coupled TLS-plasmon, |A0(s)|2. Furthermore, the anti-Stokes and Stokes
lines are proportional to the incoherent population of the vibrations 〈〈b̂†b̂〉〉SS and
to 1 + 〈〈b̂†b̂〉〉SS [317], respectively [Eqs. (7.69) and (7.68)], where 〈〈b̂†b̂〉〉SS itself
is enhanced by the effect of the reservoir on the excitation and emission process
[Eqs. (7.45) to (7.47)]. The line width of the Raman peaks is finally given by the
interplay between the damping rates γb together with Γdec

v , both broadening the
peak, and the pumping rate Γpump

v that narrows the peak. These properties again
mirror the behavior discussed for off-resonant Raman [278–280], except for the
presence of a more complex reservoir.

Figure 7.11 (c,d) illustrates the behavior of the resulting Raman emission for
a vibrational mode of energy ~Ω = 50 meV and d = 0.1. We first show in
Fig. 7.11 (c) the emission spectra obtained from the numerical solution of the full
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system [Hamiltonian in Eq. (7.40) and the corresponding loss terms], as a function
of the detuning ∆ of the laser from the plasmon frequency. As discussed above, the
inelastic emission can be split into two components. The emission resulting from
the resonant fluorescence of the J-C system, and the Raman emission yielding the
vibrational lines. The former is present in the emission spectra of Fig. 7.11 (c) as
a broad symmetrical background around zero detuning ∆ = 0, in agreement with
previous studies [182]. The strong Raman-Stokes line is also clearly distinguishable
on top of the background at ωL − Ω, accompanied by a second-order Stokes
transition line (not described by the analytical model that accounts only for the
first-order transition) at ωL − 2Ω and a very weak anti-Stokes line at ωL + Ω.

To better analyse the ∆ dependence of the Raman signal, we focus in
Fig 7.11 (d) on the maximum of the Stokes line, which we plot as a function of the
laser detuning ∆ as calculated from the full numerical model (black dots) and as
given by the analytic expression in Eq. (7.64) (red line). The agreement between
the two is excellent. We observe a double-peaked structure, a clear signature
of plasmon-exciton coupling considered here, which, however, is not symmetric
with respect to ∆ = 0, but its central minimum is blue-detuned by 25meV. This
blue detuning can be seen as the result of having to optimize the product of
the enhancement at the excitation ωL and emission ωL − Ω frequencies, given
by |〈σ̂〉SS|2 and |A0(s)|2, respectively (assuming that the vibrational population
remains small 〈〈b̂†b̂〉〉SS � 1).

7.3.2 Effect of strong electron-vibration coupling

We now consider scenarios that go beyond the assumptions of the previous section.
Up to know, we have assumed that the coupling between the molecular vibrational
and electronic states, characterized by the dimensionless displacement d, is weak.
However, when the interaction becomes stronger, and thus the time scale of the
coupling between the electronic TLS and the phonon is shortened, the dynamics
of the J-C system coupled to the vibrational mode are no longer separable into a
slow vibrational dynamics driven by the fast relaxing reservoir. For large d, we
thus cannot apply the formalism developed in the previous section and we need to
use the full numerical solution to obtain the response of the system.

We show in Fig. 7.12 (a,b) the vibrational population maps for relatively large
electron-vibration coupling (a) d = 0.5 and (b) d = 1 as a function of laser
detuning and vibrational frequency. The lines in Fig. 7.12 (a,b) are similar to
those in Fig. 7.11 (a,b), indicating the detuning ∆ at which the first-order Stokes
line (red line) or the incident laser frequency (green line) match the position of
the absorption peaks of the J-C system. For d = 0.5 [Fig. 7.12 (a)] the strongest
vibrational pumping appears approximately when both conditions are met and the
lines cross each other, similarly as for low d = 0.1 [Fig. 7.11 (a,b)]. Nonetheless,
while for d = 0.1 a single clear peak was observed, in this situation two close
maxima start emerging near this optimal condition for d = 0.5. The effect of large
electron-vibration coupling is more apparent when we set d = 1 [Fig. 7.12 (b)]. In
this case, the dependence of phonon population on the vibrational frequency and
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Figure 7.12: Effect of electron-vibration coupling on resonant SERS. (a,b) Populations
of the vibrational mode as a function of detuning ∆ and vibrational frequency Ω for
electron-vibration coupling (Huang-Rhys) parameter (a) d = 0.5 and (b) d = 1. In
both cases, E = 1meV and there is no pure dephasing. The straight lines mark the
conditions where the peak frequency of one of the bare J-C absorption peaks coincides
with the frequency of the incident laser (green line) or the first order Stokes line (red
line). (c,d) SERS spectra of a molecule supporting a single vibrational mode of energy
~Ω = 50meV, for two values of the electron-vibration coupling, (c) d = 0.1 and (d) d =
1. Two illumination intensities E = 1meV and 11meV are considered in both cases. The
other parameters used for all the calculation are: ~γb = 2 meV, ~γσ = 2 × 10−5 eV,
~γa = 150 meV, ~g = 100 meV, γφ = 0 eV, ∆ = δ̃.

detuning becomes very complex as it involves the influence of the higher-order
vibronic transitions.

The emission spectra for (c) weak (d = 0.1) and (d) strong (d = 1) electron-
vibration coupling constant and two selected values of pumping amplitude, E =
1meV and 11meV, are shown in Fig. 7.12. For d = 0.1 the results for both
illumination intensities show a clear lower order Stokes peak at ω = ωL − Ω and
a weak anti-Stokes peak at ω = ωL + Ω. A weak second order Stokes peak at
ω = ωL−2Ω is visible for E ≈ 1meV (for E ≈ 11meV the second order Stokes peak
is hidden by the fluorescence background). Increasing the displacement d of the
excited state vibrations naturally leads to larger overlaps among vibrational wave
functions belonging to different numbers of vibrational excitations, thus facilitating
higher-order Raman transitions that yield intense higher-order Raman peaks. This
can be seen in Fig. 7.12 (d) where for d = 1 intense Raman peaks of higher orders
emerge on both the Stokes and anti-Stokes sides of the spectra, most notably for
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E ≈ 11meV.

7.3.3 Effect of pure dephasing

So far we have always assumed negligible dephasing. This is the case for
optimized experiments at low temperature, however for a typical situation at finite
temperature the electronic transition is subjected to a large pure dephasing rate,
γφ, due to interactions with the environment. In molecules decoupled from the
plasmonic cavity, the pure dephasing introduces a loss of coherence between the
states of the TLS but without directly inducing the decay of the excited state [318].
A careful analysis of the microscopic dephasing mechanism shows that when the
plexcitonic states |N,±〉 are formed in the strong-coupling regime, the interaction
of the system with the originally purely dephasing reservoir can lead to novel
incoherent mechanisms including the energy transfer from the upper plexciton
states |N,+〉 to the lower ones |N,−〉 within the same manifold [259, 319] (see
also Chapter 6). In the following, we again consider that the system is illuminated
by a weak laser and hence only the single-excitation manifold containing the states
|1,±〉 ≡ |±〉 is important for the description of the inelastic light emission from
the plexcitons.

We implement the dephasing processes via the following Lindblad terms

L
γφ
σ̂−−++

(ρ̂) = γφ (2σ̂−−++ρ̂σ̂−−++ − {σ̂−−++σ̂−−++, ρ̂}) (7.70)

L
γσ−+

σ̂−+
(ρ̂) =

γσ−+

2

(
2σ̂−+ρ̂σ̂

†
−+ − {σ̂

†
−+σ̂−+, ρ̂}

)
, (7.71)

where σ̂−−++ = |+〉〈+| + |−〉〈−| and σ̂−+ = |−〉〈+|. We neglect any further
incoherent processes such as the energy transfer from the lower to the upper
plexciton as we assume that they are less important [293, 319]. We further
set ~γ−+ = 40meV whenever we consider ~γφ 6= 0 eV, a rate which leads to
relatively strong transfer of populations towards the lower plexcitonic state via
the vibrational reservoir of the molecule [250, 269].

To illustrate the effect of dephasing, we start by plotting the absorption
spectrum, sa(ω), [Fig. 7.13 (a)] and emission, se(ω), [Fig. 7.13 (b)] spectra for the
bare plasmon-excition J-C system, without vibrations. In both cases we set
~E = 1 meV, and we show results for intrinsic dephasing ~γφ = 0meV, 10meV
and 50 meV. For clarity the spectra are vertically shifted. When the dephasing is
increased, we observe a clear broadening of the plexciton peaks in the absorption
spectrum [Fig. 7.13 (a)], which is larger for the upper plexcitonic peak due to the
population transfer to the lower polariton given by Eq. (7.71).

The dephasing-induced broadening also affects the J-C emission spectra sE(ω)
shown in Fig. 7.13 (b) for E = 1meV and ∆ = 0 eV. When the dephasing is switched
on, there appears a strong inelastic light emission originating predominantly from
the lower plexciton branch, since the upper branch is efficiently depopulated by the
incoherent energy transfer. Without dephasing the emission spectrum practically
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Figure 7.13: Effect of pure dephasing for weak illumination ~E = 1 meV and electron-
vibration coupling d=0.1. (a) Absorption spectra and (b) emission spectra for the simple
J-C system (not considering the vibrations), displayed for three different values of pure
dephasing: ~γφ = 0meV, 10meV and 50 meV, pumped by monochromatic illumination
tuned to the plasmonic resonance ~∆ = ~ωc − ~ωL = 0. (c) Emission spectra of the
full molecule-plasmon system including the vibrational mode of frequency ~Ω = 50 meV,
for ~∆ = 0 eV and the same γφ values as in (a,b). The spectra in (a-c) are offset from
each other by a constant value of sa = 20 in (a) and se = 0.5 × 10−3 in (b,c). (d)
Incoherent populations of the vibrational mode as a function of detuning and vibrational
frequency for pure dephasing ~γφ = 10 meV. The lines drawn into the color maps mark
the detuning ∆ for which the first order Stokes line (red line) or the incident laser (green
line) coincides with one of the bare J-C absorption peaks. The other parameters used
for all the calculations in (a-d) are: ~γb = 2meV, ~γσ = 2 × 10−5 eV, ~γa = 150meV,
~g = 100 meV, ~∆ = ~δ̃ = 0 eV.

vanishes as the incoherent population of the plexcitons is low.
Finally, we turn on the interaction between the molecular electronic and

vibrational levels and calculate the effect of dephasing on the emission spectra of
the complete system. The resulting emission spectra are shown in Fig. 7.13 (c)
for the same parameters as the emission spectra of the bare plexcitons in
Fig. 7.13 (b). All of the spectra feature a sharp Stokes-Raman peak at frequency
ωL − Ω, which for ~γφ = 10meV and 50meV is accompanied by a broad and
intense fluorescence background similar in nature to the one already discussed
in Fig. 7.13 (b). Particularly for ~γφ = 50meV the background overwhelms the
relatively weak SERS signal. For no dephasing, this background is strongly
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reduced, and becomes negligible in comparison with the Raman peak.
For completeness, we show in Fig. 7.13 (d) the population of the vibrational

level for the same parameter d = 0.1, illumination amplitude ~E = 1 meV, and for
~γφ =10meV. The obtained values can be compared with those in Fig. 7.11 (a),
where we plotted the same results except that ~γφ = 0 eV. As could be expected,
the most noticeable feature introduced by dephasing is the larger width of the
displayed spectral features and the lower populations.

7.3.4 Effect of strong illumination

We consider again in this section a situation of weak electron-vibration coupling,
and assume that there is no pure dephasing in the system. However, we turn our
attention to situations where the intensity of the incident laser can be strong. An
intense laser populates the different manifolds of the J-C ladder and thus leads
to non-linear effects in the resonant SERS signal that were not included in our
weak-illumination expressions. A full analytical treatment of this situation is very
challenging, however, we can still gain insight into the vibrational dynamics by
assuming the separation of time-scales discussed in Section 7.3.1, and thus inserting
the numerically-calculated reservoir spectral function S̃(s) into the expression of
the decay and pumping rates [Eq. (7.52)]. We complement this simplified approach
with full numerical calculations.

We plot in Fig. 7.14 the vibrational population as a function of the amplitude
E and detuning ∆ of the illumination laser, obtained using the full-numerical
[Fig. 7.14 (a)] and semi-analytical [Fig. 7.14 (b)] approaches. The excellent
agreement between the two supports the assumption that using very intense laser
illumination does not invalidate the separation of the system into a slowly evolving
vibrations and a fast J-C reservoir.

Strikingly, the population is strongly non-linear with respect to the intensity ∝
|E|2 of the incident laser. For weak illumination we are in the linear regime, where
the population shows local maxima for two different moderate detunings, given
by the optomechanical vibrational pumping and damping [Eq. (7.52), together
with Eqs. (7.45), (7.46) and Eq. (7.47)], as discussed in the previous section. The
population of these peaks initially grows as more energy is pumped into the
system by increasing E , but, for a certain laser intensity, the population reaches a
maximum and starts to decay. We attribute this behavior to the underlying non-
linearity of the J-C system contained in the uneven spacing of the energy levels
sketched in Fig. 5.1 (c).

An intense illumination can also affect very strongly the SERS spectra
measured in an experiment. We study this situation using full-numerical
calculations. As an example we show the inelastic emission spectra as a function of
laser amplitude E for zero detuning ∆ = 0 [Fig. 7.14 (c)]. The calculated emission
spectra can still be regarded as a combination of the resonance fluorescence
background and the Raman lines. For low illumination intensities the spectra in
Fig. 7.14 (c) feature a clear Raman-Stokes peak at emission frequency ω = ωL −Ω
with a strength that is comparable to that of the background. One can also
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Figure 7.14: Non-linear resonant SERS response for strong laser illumination. (a,b)
Populations of a vibrational mode of energy ~Ω = 50 meV as a function of the detuning
and incident laser amplitude E calculated from (a) the full numerical model and (b) the
simplified model. The vibrations are weakly coupled to the electronic states (d = 0.1) and
there is no pure dephasing. (c,d) Evolution of the SERS emission with laser illumination
amplitude (E), calculated numerically for a single vibrational mode of energy ~Ω = 50
meV that is weakly coupled to the electronic states (d = 0.1) (c) Emission spectra as a
function of E for detuning of the incident laser ~∆ = 0 eV and d = 0.1. (d) Maximum
intensity of the Stokes (blue line) and anti-Stokes (green line) Raman line as a function
of E (shown in (c) for up to ~E =48meV). To obtain the value of the Raman peaks,
we first subtracted the background, defined as the inelastic emission of the J-C system.
The other parameters used for all calculations are: ~γb = 2 meV, ~γσ = 2 × 10−5 eV,
~γa = 150 meV, ~g = 100 meV, ~γφ = 0 eV, ∆ = δ̃.

distinguish a second-order Stokes peak at ω = ωL − 2Ω and the anti-Stokes peak
at ω = ωL +Ω. As the intensity of the laser is increased, still remaining sufficiently
small, the strength of both the background and Raman peaks increases, with the
latter being clearly visible. In contrast, for very large laser intensities E ' 100 meV
the amplitude of the Raman peaks is reduced and the spectrum is fully dominated
by the background.

The laser intensity also affects the spectral shape of the background. For
example, the two broad background peaks in Fig. 7.14 (c) for ~E = 1meV become
a single broad flat feature for ~E = 48meV. From these results one can conclude
that the laser intensity does not simply scale the emission spectra by a frequency-
independent factor, but it changes the overall shape and affects the relative weights
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of the Raman lines and the background (not shown).
We highlight the non-linear dependence of the maximum of the SERS signal

on the incident laser amplitude by plotting the background-free amplitude of
the Raman-Stokes (blue line) and anti-Stokes (green line) lines in Fig. 7.14 (d).
The background that we subtract from the total signal corresponds to the
inelastic emission spectrum of the J-C system uncoupled from the vibrational
modes. Fig. 7.14 (c) showed that the intensity dependence of the Stokes and anti-
Stokes amplitude resembled the result of the vibrational populations shown in
Fig. 7.14 (a,b), with a broad maximum that peaks at an optimal illumination
amplitude E . This is consistent with the results in Fig. 7.14 (d), however,
interestingly the optimal illumination-field amplitude is different for the Stokes
and the anti-Stokes lines. The maximum of the anti-Stokes line appears at roughly
the same illumination amplitude ~E ≈ 70meV as for the vibrational populations,
while the Stokes emission peaks are maximized at lower powers E ≈ 45meV.

7.4 Summary

After having introduced the basic concepts of the Raman activity of molecular
vibrations, we have shown that the (resonant) Raman process can be described
within the scope of the theory of cavity-QED as a hybrid optomechanical system.
We have applied this cavity-QED approach to calculate the r-SERS spectra of
molecules illuminated by a coherent monochromatic pumping laser, tuned close to
the frequency of an electronic transition of a molecule under both weak and strong
illumination conditions.

For weak laser illumination the molecule emits both Raman photons, creating
sharp emission peaks at the Stokes and anti-Stokes frequencies, and fluorescence
photons contributing to a generally broad emission background of the molecule.
We have further exploited the optomechanical mechanism to study the mean
vibrational populations as a function of the incident laser frequency. We have
found that the mechanism of optomechanical vibrational pumping gives rise to
higher steady-state mean vibrational populations whenever the generation of the
Stokes-Raman emission is enhanced. This occurs either when the incident laser
or the emitted Stokes-Raman photon is resonant with the molecular electronic
transition.

As the intensity of the laser is increased, the non-linearity of the molecule’s
electronic transition notably influences its inelastic optical response. When
illuminated by an intense pumping laser, the molecular electronic levels are dressed
by the strong incident laser field and the resonant fluorescence acquires the form
of the Mollow triplet. When the triplet’s side peaks appear at the frequency
of vibrational Raman photons, either interference features or a complete line
splitting combining the Raman and the fluorescence emission mechanisms appear
in the spectra. Furthermore, this dressing of the molecular electronic levels can be
actively exploited to optically manipulate the populations of molecular vibrations.
We note that the intensities of the dressing laser required to achieve the desired
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regime of the exciton-vibration interaction in the molecules may exceed the damage
threshold of many organic molecules. This serious experimental challenge may
thus require more stable sample molecules or the use of methods involving pulsed
illumination of the sample to avoid excessive heating.

Finally we have explored the situation where the molecular electronic transition
is strongly coupled with the plasmonic resonance of the metallic particle. We
have shown that even under the conditions of vacuum strong coupling the system
can be described in the scope of molecular optomechanics. We have derived
analytical expressions for the vibrational pumping and damping rates induced
by the optomechanical Stokes and anti-Stokes process, respectively, in a simple
situation where the vibrations weakly couple to the Jaynes-Cummings system
formed by the hybrid plexcitonic states, no dephasing is considered, and the system
is illuminated by a weak incident laser.

We have then studied more complex situations. We have first considered the
influence of two intrinsic parameters of the system: the electron-phonon coupling,
d, and the pure dephasing γφ. Larger values of d promote higher-order vibrational
transitions and generally increase the interaction strength between the electronic
and vibrational states of the molecule, leading to breakdown of the simple
reservoir-system picture introduced for small d and to the emergence of higher
order Raman peaks in the emission spectra. On the other hand, pure dephasing
reduces the efficiency of vibrational pumping, leading to smaller final vibrational
populations, and diminishes the vibrational Raman peaks in the inelastic emission
spectra. Pure dephasing also significantly broadens and enhances the fluorescence
background. As a consequence of the weaker lines and stronger background, the
visibility of the Raman lines becomes considerably smaller, complicating resonant-
SERS experiments.
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This thesis has been written with an intention to provide a brief but closed
and thorough theoretical description of the coupling between light, plasmons,
and molecular excitations including vibrations and excitons. In the opening of
the thesis (Part I) we have introduced the underlying concepts in the quantum
and classical description of light-matter interaction. We have intended to
build theoretical tools starting from basic concepts involving classical Maxwell’s
equations and the quantum many-body Hamiltonian of an interacting electron
gas, to end up with the use of cavity-QED models to address the dynamics of
molecular and plasmonic excitations. All this effort has been inspired by the
aim to describe situations of practical importance in nanophotonics. By applying
these models, we have studied surface-enhanced infrared spectroscopy (SEIRS)
in Part II, surface-enhanced fluorescence (SEF) in Part III, and surface-enhanced
Raman scattering (SERS) in Part IV. Since SEIRS, SEF, and SERS have attained
significant theoretical and experimental attention over the last decades, we have
attempted to address original aspects of these spectroscopic.

In Part II we have analysed how the ability of plasmonic antennas (plasmonic
substrate) to scatter and absorb infrared radiation impacts the formation of
molecular spectral fingerprints in SEIRS. We have developed an analytical
model to analyse absorption, scattering, and extinction spectral fingerprints of
vibrationally active samples interacting with plasmonic substrates. By performing
a systematic numerical study, we have found a practical rule of thumb for
the design of linear plasmonic antennas for SEIRS: in order to optimize the
performance of SEIRS, it is important to utilize antennas whose scattering and
absorption efficiency is approximately equal.

In Chapter 5 of Part III we have focused on the description of the microscopic
details governing the coupling between molecular excitons and plasmons in
atomically-sharp plasmonic cavities. We have identified situations where the
geometrical extent of the organic dye molecules supporting the excitons becomes
important to obtain a more faithful description of the plasmon-exciton coupling.
We have theoretically demonstrated that the highly localized and inhomogeneous
plasmonic fields arising around atomistic protrusions in metallic particles are able
to break selection rules of optical spectroscopy and thus render the otherwise dark
excitonic transitions bright.

In Chapter 6 of Part III we have analysed fluorescence from plasmonic
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cavities strongly coupled with molecular excitons and coherently driven by a
monochromatic laser. We have shown that light emission in such a situation
is substantially influenced by incoherent effects arising from the effect of internal
(vibrations) and external (solvent) dephasing reservoirs. These incoherent effects
give rise to transfer of population between the hybrid plasmon-exciton states and
yield spectral asymmetries in the light emission spectra, as often observed in
experiments.

Last, in Part IV we have applied the theory of quantum optomechanics
to describe resonant and off-resonant SERS. The framework of quantum
optomechanics has allowed us to calculate the characteristic Raman spectra of
a coupled system containing a plasmonic particle and a molecule. We have
described the system by a range of parameters which can characterise both typical
SERS systems, as well as state-of-the-art experimental configurations requiring
strong plasmon-exciton coupling or strong laser intensities. In the quantum-
optomechanical model, the Stokes- and anti-Stokes-Raman emission is intimately
connected with processes of optomechanical vibrational pumping and damping
which we have addressed in detail for the resonant SERS situation. The vibrational
pumping described in this thesis is a plausible mechanism to optically drive
chemical reactions involving on-demand selective pumping of molecular vibrations.

We hope that this thesis has also generated many interesting questions and
opened several directions worth exploring in future. For example, quantum aspects
of the interaction between infrared plasmonic modes and molecular vibrations
can be further explored. The quantum nature of the plasmon-vibration coupling
may impact, for instance, chemical properties of molecules or could be exploited
to engineer collective quantum states of molecular vibrational modes with yet
unforeseen applications. The theoretical models used across this thesis could be
further combined and extended to account for both coherent and incoherent effects
involving plasmons, molecular excitons, molecular vibrations, and interactions of
these with their respective environment. It should be possible to exploit such
complex modelling to describe, for example, quantum correlations of light emitted
by realistic molecules under state-of-the-art experimental conditions. Another field
worth exploring is the quantum-chemical description of the plasmon-exciton (and
vibration) interaction beyond the model developed in Chapter 5. A worthwhile
extension of the model developed here would be to self-consistently account for
effects of static and dynamical plasmonic screening on the molecular electronic
and vibrational quantum states. Another challenging task is to describe in its
full complexity the experimental situation where a molecule of an organic dye is
excited by an electric tunneling current and the light emitted by the molecule is
recorded. Theory of such spectral mapping would require merging the quantum-
optical model of the plasmon-exciton interaction developed in this thesis with a
theory of electron tunneling through the dye molecule.

Hopefully, this thesis succeeds in planting a seed for future research directions
and helps to discover unexplored and exciting novel aspects of light-matter
interaction.
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Appendix A

Quantization of surface
plasmons

A.1 Condition of quantization for plasmonic
surface charge and potential

In this appendix we show how the condition of quantization for the surface-plasmon
polarization density Pn [Eq. (1.57)] can be transformed into the condition for the
plasmonic surface charge density σn and potential φn [Eq. (1.58)].

Equation (1.58) naturally emerges from the boundary-integral approach as
follows. First one realizes that σ

(+)
n = P

(+)
n · n (σ(−)

n = P
(−)
n · n), and

∇φ(+)
n = LnP

(+)
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The quantization condition for the surface charge density and the potential
then follows from the first and the last expressions in Eq. (A.2), by inserting the
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polarization density from Eq. (1.57), and integrating:∫∫
∂Vpar

φ(+)
n σ(−)

n d2s =

∫∫
∂Vpar

∫∫
∂Vpar

σ
(+)
n (s′)σ

(−)
n (s)

4πε0|s− s′|
d2sd2s′

=
Ln
ε0

∫∫∫
Vpar

P(+)
n ·P(−)

n d3r =
Ln
ε0

Nee
2~

2meωn

∫∫∫
Vpar

fn · f∗nd3r =
1

2
~ωn, (A.3)

where we have used ωn =
√
LnNee2/(ε0me) and employed the integral

representation of the potential,

φ(+)
n (s) =

∫∫
∂Vpar

σ
(+)
n (s′)

4πε0|s− s′|
d2s′. (A.4)

The quantization condition then follows from the equality of the initial and the
final expression in Eq. (A.3) and adopts the form of Eq. (1.58) in the main text:∫∫

∂Vpar

φ(+)
n σ(−)

n d2s =
1

2
~ωn, (A.5)

A.2 Interaction of point-like excitons and
spherical-particle plasmons

In this appendix we quantize the plasmonic modes of a spherical particle of radius
Rd and calculate the plasmon-exciton coupling coefficients within the point-dipole
approximation of the molecule. In the point-dipole approximation the coupling
strength can be described as:

~g =

∫∫∫
ρPDφ

(+) d3r, (A.6)

where ρPD = −d0 · ∇δ(r − r′) is the charge transition density of the point-like
molecule with a transition dipole moment d0. Notice that the above definition
of the charge density leads to the commonly assumed expression for the coupling
between a point-like molecule and the local electric field, E

(+)
loc = −∇φ(+), as:

~g = −E
(+)
loc · d0. (A.7)

Outside of the spherical particle, the quantized plasmonic modes (the positive-
frequency part) can be described by the corresponding distribution of the
electrostatic potential in spherical coordinates (θ, ϕ, r) as:

φOUT
lm (θ, ϕ, r) =

√
~ωlR2l+1

d

2ε0(2l + 1)
Y ml (θ, φ)r−l−1 ≡ ClY ml (θ, ϕ)r−l−1. (A.8)
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Here ωl = ωp

√
l

2l+1 is the frequency of the (lm) plasmonic mode (does not depend
on m) and we have defined

Cl =

√
~ωlR2l+1

d

2ε0(2l + 1)
. (A.9)

The spherical harmonics are defined as

Y ml (θ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml [cos(θ)]eimϕ, (A.10)

where Pml [cos(θ)] are the associated Legendre functions [320]. The corresponding
surface charge density is

σlm = ε0(2l + 1)ClY ml (θ, ϕ)R−ld . (A.11)

For completeness we also describe explicitly the potential inside the particle:

φIN
lm(θ, ϕ, r) = ClR−2l−1

d Y ml (θ, ϕ)rl. (A.12)

If we consider a point-like dipole positioned at a generic point near the spherical
particle [θ = 0, ϕ = 0, R0], oriented along the radial direction (ẑ), we obtain the
following expression for the coupling constant g⊥lm:

~g⊥l0 = −

√
~ωlR2l+1

d

8πε0
d0(l + 1)R−l−2

0 , (A.13)

being zero for m 6= 0 and where d0 = |d0|
A similar calculation of the coupling constants for a point dipole transversally

oriented with respect to the radial direction yields the expression for the coupling
constant, g‖lm, which is nonzero only for m = ±1:

~g‖l1 = ~g‖l(−1) = −id0

√
~ωlR2l+1

d l(l + 1)

32πε0
R−l−2

0 . (A.14)
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Appendix B

Numerical implementation of
quantum dynamics

In this appendix we provide further details about the numerical procedures that
allow for solving the dynamics of the open-quantum systems studied in this thesis
and introduced in Chapter 3. We summarize here the numerical approach to
the solution of the quantum master equation for the density matrix introduced
in Section 3.1.3 and the numerical solution of the Wigner-Weisskopf problem
discussed in Section 3.2.

B.1 Numerical implementation of the quantum
master equation

In Section 3.1.3 we have derived the quantum master equation for the density
matrix, ρ̂S, of an open quantum system [Eq. (3.26)]:

d

dt
ρ̂S =

1

i~
[ ˆ̃HS, ρ̂S] +

∑
ββ′α

γLin
β′β(ωα)

2

(
2Âαβ ρ̂SÂ†αβ′ − {Â

†
αβ′Âαβ , ρ̂S}

)
. (B.1)

and we have remarked that Eq. (3.26) can be written in the form of a vector
equation:

~̇̂ρS = L~̂ρS, (B.2)
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which can be expressed in a suitable matrix representation

ρS =

ρS11 ρS12 · · ·
ρS21 ρS22 · · ·
...

...
. . .

→ ~̂ρS =



ρS11

ρS21

...
ρS12

ρS22

...


. (B.3)

The matrix representation of the superoperator L can be constructed from the
matrix representations of the respective system operators. Eq. (3.26) contains
expressions where the operators act on the density matrix from the right or
from the left (e.g. the term Âαβ ρ̂SÂ†αβ′). In the technical implementation, the
expressions are transformed as:

O1ρSO2 →
(
OT

2 ⊗O1

)
~̂ρS, (B.4)

where ⊗ represents a Kronecker product, T denotes transposition and O1, O2 are
matrix representations of the respective operators Ô1 and Ô2.

In practise, if the dimension of the truncated Hilbert space is set to NH, the
vectorised density matrix has lengthN2

H and the matrix
(
OT

2 ⊗O1

)
is of dimension

N2
H × N2

H. This scaling sets a practical constraint to the applicability of the
numerical method as large matrices (although often sparse) have to be stored and
handled in order to obtain the system dynamics.

B.2 Numerical solution of the Wigner-Weisskopf
equation

Here we describe an efficient numerical implementation of the solution of the
integro-differential equation (IDE) given by the Wigner-Weisskopf approach in
Eq. (3.54) of the main text (Section 3.2), as given in Ref. [321]. Equation (3.54)
can be written as an IDE of the general form:

ċe(t) = −
∫ t

0

f(t− τ)ce(τ)dτ, (B.5)

with f(t− τ) a kernel function which has the Fourier transform

F (s) =
1√
2π

∫ ∞
−∞

duf(u) exp(−isu). (B.6)
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By defining a new auxiliary function λW(t, u), with u = t− τ , we can rewrite Eq.
(B.5) as

ċe(t) = −λW(t, 0),

λ̇W(t, u) = f(u)ce(t) +
∂λW(t, u)

∂u
. (B.7)

By introducing the Fourier transform of the second equation in variable u we
obtain:

ċe(t) = − 1√
2π

∫ ∞
−∞

dsΛW(t, s),

Λ̇W(t, s) = F (s)ce(t) + isΛW(t, s), (B.8)

where ΛW(t, s) = 1√
2π

∫∞
−∞ duλW(t, u) exp(−isu), is the Fourier transform of the

original function.
The discretization of the Fourier transform leads to the final set of differential

equations which need to be solved numerically:

ċe(t) = − ∆s√
2π

∑
k∈Grid

ΛW(t, sk),

Λ̇W(t, sk) = F (sk)ce(t) + iskΛW(t, sk). (B.9)

The set of the differential equations above can be explicitly written in matrix
notation as:

ċe(t)

Λ̇W(t, s1)

Λ̇W(t, s2)
...

 =


0 − ∆s√

2π
− ∆s√

2π
· · ·

F (s1) is1 0
F (s2) 0 is2

...
. . .




ce(t)
ΛW(t, s1)
ΛW(t, s2)

...

 (B.10)

In the integration scheme, the generally infinite set of equations [Eq. (B.9)]
is evaluated on a grid of finite frequency spacing, ∆s, and for a finite range of
frequencies around the excitonic particle, [−smax, smax]. In our implementation,
we have selected the spectral range [−smax, smax] broad enough so as to contain
the entire non-trivial spectral structure of F (s), and a step parameter, ∆s, short
enough as to avoid an unphysical revival of the dynamics in the time interval of
interest.
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Appendix C

TDDFT calculations of
molecular excitations

In Chapter 5 the transition densities of the dominant optically excited states of
methylene blue (MB) and zinc phtalocyanine (ZnPc) molecules are calculated
within the linear-response of the time-dependent density functional theory, at
the level of the Tamm-Dancoff approximation (TDDFT-TDA) as implemented
in NWchem 6.5 [90]. In all the cases the excitations have been calculated for the
ground-state equilibrium geometry.

The results presented in this thesis have been calculated using a valence double
zeta Pople basis set with a polarization function (6-31G*) and the hybrid functional
B3LYP. We further tested the influence of the basis set and functional chosen on
the results of the TDDFT calculations. The results are summarized in Table C.1,
where, as a figure of merit, we show the calculated excitation energy and transition
dipole moment of the respective excitations for different basis sets and functionals.
We have checked that the distributions of the transition charge densities of the
excitations are not significantly altered when different basis sets/funcionals are
utilized. We thus conclude that the particular choice of the basis set and functional
does not strongly influence the general results of Chapter 5.
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TDDFT results for MB
Functional/basis set ~ωeg (eV) dz (e·nm)

B3LYP/6-31G* 2.84 0.23
B3LYP/6-31G** 2.84 0.23

B3LYP/6-311++G(2p,2d) 2.77 0.22
CAM-B3LYP/6-31G* 2.92 0.23

TDDFT results for ZnPc
Functional/basis set ~ωeg (eV) dx,y (e·nm)

B3LYP/6-31G* 2.30 0.17
B3LYP/6-31G** 2.30 0.17

B3LYP/6-311++G(2p,2d)1 2.27 0.18
CAM-B3LYP/6-31G* 2.33 0.18

Table C.1: Excitation energies, ~ωeg, and values of the transition dipole moment, di, along
the direction of the i-axis, for the MB and ZnPc excited states studied in Chapter 5.
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Appendix D

Exciton dynamics as a
function of plasmonic cavity
quality factor

Throughout Chapter 5, we consider that the cavity has a broadening proportional
to the plasma frequency of the electron gas. In particular, we consider the
broadening to be γa = 0.01ωp, which roughly corresponds to a quality factor, Q, of
the n plasmon modes (Qn ≈ ωn/κ) of Qn ≈ 60−70. These values, appropriate for
silver particles for example [174], have been chosen to clearly reveal the influence
of the molecular size on the exciton dynamics, however, plasmonic quality factors
commonly achieved in plasmonic systems can be slightly smaller, as those in gold,
for example (Q ≈ 10−20). Therefore, we also present here results of the dynamics
of exciton population for different values of the plasmon broadening, γa. The
results are presented in Fig.D.1. We calculate the dynamics for the MB molecule
(left, green frame) and for ZnPc (right, yellow frame), using the full quantum
model (FQM) (red lines) and thepoint-dipole model (PDM) (black lines), when
the molecules are located close to the surface of a spherical particle, as shown
in the insets. The molecular exciton frequency is tuned to the frequency of the
plasmonic dipolar mode (a-d) and to the plasmonic pseudomode (e-l). The first
row (a,e,i) represents the results shown in Chapter 5. We can observe that when
the broadening of the plasmonic modes is increased, the oscillating dynamics of
the exciton-plasmon state is damped, until it reaches a regime where the Rabi
oscillations completely disappear, for γa = 0.1ωp.
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Figure D.1: Decay dynamics of a plasmon-exciton state for different values of the plasmon
broadening γa/ωp (values displayed in the box above each row) for MB (green frame) and
ZnPc (yellow frame) molecules. Calculations are performed within the FQM (red lines)
and the PDM (black lines). The columns correspond to exciton frequency tuned to (a-d)
the plasmonic (Pl.) dipole mode, and (e-l) to the plasmonic (Pl.) pseudomode. The
values of the exciton energies are ~ωeg = 2.3 eV (2.8 eV) for the ZnPc (MB) molecule.

194



Appendix E

Effects of dephasing reservoir
in photon emission of
coherently driven organic
exciton-polaritons

E.1 Hilbert space for numerical calculations

In Chapter 6 we present a system Hamiltonian containing molecules interacting
with their local dephasing reservoirs and a cavity mode. In order to solve the
dynamics given by the system Hamiltonian and the Lindblad terms as described in
Chapter 6, we need to define a suitable basis for the combined plasmonic, excitonic
and vibrational Hamiltonian. We treat the plasmon and exciton on the same
footing in the single-excitation manifold. The set of cavity mode-exciton states is
written as:

|ψP−E〉 =s0|0p, 0, 0, . . . , 0〉
+sp|1p, 0, 0, . . . , 0〉
+s1|0p, 1, 0, . . . , 0〉
+s2|0p, 0, 1, . . . , 0〉+ ...,

where si are coefficients, the first occupation number represents the number
of cavity excitations and the following ones belong to the respective molecular
excitons. Alternatively, the states |1p, 0, 0, . . . , 0〉 and |0p, 1, 0, . . . , 0〉 can
represent the lower |−〉 and upper |+〉 polaritons, respectively.
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The reservoir states are represented in the double-excitation basis as

|ψres〉 =v1|0, 0, 0, . . . , 0〉
+v2|1, 0, 0, . . . , 0〉
+v3|0, 1, 0, . . . , 0〉+ . . .

+w1|2, 0, 0, . . . , 0〉
+w2|1, 1, 0, . . . , 0〉
+w3|1, 0, 1, . . . , 0〉+ . . .

+wN+1|0, 2, 0, . . . , 0〉
+wN+2|0, 1, 1, . . . , 0〉+ . . . ,

with respective coefficients vi and wi. The total state of the system is defined as
a Kronecker product of the cavity-molecule and reservoir states

|ψtot〉 = |ψP−E〉 ⊗ |ψres〉.

This basis defines the dimension of the Hilbert space. With the number
of molecules Nmol the dimension of the Hilbert space H grows as Dim {H} =
Dim {|ψtot〉} = (Nmol + 1)(Nmol + 2)2/2. Moreover, the superoperator space
necessary for the solution of the quantum master equation has the dimension
Dim{S} = Dim {H}4, which makes the numerical treatment of systems containing
larger number of molecules challenging. In the main text we thus present results
for a maximum of Nmol = 5 molecules.

E.2 Dependence of the emission and absorption
spectra of polaritons on the effective
reservoir frequency ΩR

In Chapter 6 we describe the effective dephasing reservoir as a broad damped
harmonic oscillator of energy ~ΩR = 400meV, width ~γB = 400meV and coupling
to the molecular electronic levels via dR ≈ 0.173, yielding the reservoir spectral
density

J(ω) =
2γBd

2
RΩ2

R

(ΩR − ω)2 + γ2
B

. (E.1)

Here we briefly discuss the influence of the frequency ΩR on the observed emission
spectra. To that end we calculate the polariton emission and absorption spectra
[Fig. E.1 (a) and (b), respectively] for Nmol = 4 molecules illuminated at the
frequency of the upper polariton (~ωL = 2.2 eV) for a constant broadening
~γB = 400meV and varying ~ΩR = 100meV, 200meV, 300meV and 400meV.
We adjust dR such that J(0) remains unchanged for all the cases. For clarity,
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Figure E.1: Polariton (a) emission and (b) absorption spectra for Nmol = 4 molecules
illuminated at the frequency of the upper polariton (~ωL = 2.2 eV) for a constant
broadening ~γB = 400meV and varying ~ΩR = 100meV, 200meV, 300meV and 400meV.
We adjust dR such that J(0) remains unchanged for all the cases. The spectra are
calculated for ~ωc = 2 eV, ~gi = ~g = 100meV, ~E = 0.1meV, ~γa = 150meV and
~γσ = 2× 10−2 meV.

all of the spectra in Fig. E.1 are normalized to the maximal value and vertically
displaced.

Fig. E.1 (a) shows that as ΩR is decreased (from top to bottom), the emission
spectra slightly change symmetry, making the emission from the upper polariton
slightly more pronounced but preserving the qualitative picture. On the other
hand, the absorption spectra remain practically identical for all ΩR, as shown in
Fig. E.1 (b).

Next we study the dependence of the polariton emission and absorption on the
polariton splitting, ω+ − ω− = 2

√
Nmolg. The spectra are calculated considering

the parameters of the reservoir ~ΩR = 400meV, ~γR = 400meV and dR ≈ 0.173
and values of ~g ranging from ~g = 100meV to ~g = 300meV. In all the cases
we consider Nmol = 4 molecules and tune the pumping laser frequency to the
frequency of the upper polariton (ωL = ωc+

√
Nmolg). The emission and absorption

spectra are plotted in Fig. E.2 (a) and (b), respectively. We normalize the spectra
to the maximum of the lower-polariton peak and apply a constant vertical offset.

Increasing g leads to larger separation of the polariton spectral peaks in both
the emission and the absorption spectra. In the emission spectra, the lower-
polariton peak is more pronounced than the upper-polariton peak due to the
asymetric population transfer. Interestingly, the relative intensity of the upper-
polariton peak with respect to the intensity of the lower-polariton peak is decreased
when ≈ 2

√
Nmolg ≈ ΩR, i.e. when the incoherent population transfer |+〉 → |−〉

becomes resonant [J(ω+−ω−) is maximized]. In the absorption spectra the upper-
and lower-polariton peaks are of similar intensity.
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Figure E.2: Polariton (a) emission and (b) absorption spectra for Nmol = 4 molecules
illuminated at the frequency of the upper polariton for reservoir parameters ~γB =
400meV, ~ΩR = 400meV and dR ≈ 0.173. The spectra are calculated for varying
~gi = ~g = 100meV, 140meV, 180meV, 220meV, 260meV and 300meV. The other model
parameters are ~ωc = 2 eV, ~E = 0.1meV, ~γa = 150meV and ~γσ = 2× 10−2 meV.
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Appendix F

Vibrational pumping and
damping for weak
plasmon-exciton coupling and
strong laser illumination

In Section 7.2.4 we discuss the effective incoherent dynamics of the molecular
vibrations if the electronic and plasmonic degrees of freedom are eliminated from
the total system Hamiltonian. We provide the effective damping, Γdec

v , and
pumping, Γpump

v rates [Eqs. (7.24) and (7.25), respectively] in terms of the real
part of the reservoir spectral function Re{S̃(s)}. Here we show how an analytical
expression for Re{S̃(s)} can be obtained under the conditions of weak plasmon-
exciton coupling and strong incident laser illumination.

We obtain the spectral function Re{S̃(s)} following the procedure described
in references [295, 322]. We start with the master equation describing the TLS
dynamics after effective elimination of the plasmonic cavity. In the case of no
electron-phonon coupling, this contains the Hamiltonian:

ĤTLS = ~δ̃σ̂e − ~
1

2
Eplσ̂x

together with the Lindblad term:

L Γtot

σ̂ [ρ̂] =
Γtot

2

(
2σ̂ρ̂σ̂† −

{
σ̂†σ̂, ρ̂

})
.

Here Γtot = Γeff + γσ [see Eq. (5.16) for definition of Γeff ], with γσ the intrinsic
decay rate of the exciton, and 〈〈σ̂e(τ)σ̂e(0)〉〉 = 〈σ̂e(τ)σ̂e(0)〉 − 〈σ̂e〉SS〈σ̂e〉SS is
the part of the correlation function that corresponds to the fluctuations of the
operators around the steady-state value. We obtain the following equations of
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motion for the mean values of the operators:

d

dt

 〈σ̂〉〈σ̂†〉
〈σ̂e〉

 =

 −iδ̃ − Γtot

2 0 −iEpl

0 iδ̃ − Γtot

2 iE∗pl

−iE∗pl/2 iEpl/2 −Γtot

 ·
 〈σ̂〉〈σ̂†〉
〈σ̂e〉

+

 iEpl/2
−iE∗pl/2

0

 .
(F.1)

According to the quantum regression theorem [94], the correlation functions
〈〈σ̂(τ)σ̂e(0)〉〉, 〈〈σ̂†(τ)σ̂e(0)〉〉 and 〈〈σ̂e(τ)σ̂e(0)〉〉 obey the same time evolution as
〈σ̂(τ)〉, 〈σ̂†(τ)〉 and 〈σ̂e(τ)〉, respectively:

d

dt

 〈〈σ̂(τ)σ̂e(0)〉〉
〈〈σ̂†(τ)σ̂e(0)〉〉
〈〈σ̂e(τ)σ̂e(0)〉〉

 =

 −iδ̃ − Γtot

2 0 −iEpl

0 iδ̃ − Γtot

2 iE∗pl

−iE∗pl/2 iEpl/2 −Γtot

 ·
 〈〈σ(τ)σe(0)〉〉
〈〈σ†(τ)σe(0)〉〉
〈〈σe(τ)σe(0)〉〉


(F.2)

with the initial values:

〈〈σ̂(0)σ̂e(0)〉〉 = 〈σ̂〉SS(1− 〈σ̂e〉SS),

〈〈σ̂†(0)σ̂e(0)〉〉 = −〈σ̂†〉SS〈σ̂e〉SS,

〈〈σ̂e(0)σ̂e(0)〉〉 = 〈σ̂e〉SS(1− 〈σ̂e〉SS).

Here SS denotes the steady-state values of the respective quantities. The
inhomogeneous part in Eq. (F.2) disappears because of the conveniently chosen
value of the correlation functions when τ →∞.

Equation (F.2) can be solved numerically or analytically. We have obtained
the analytical solutions of Eq. (F.2) and used it to evaluate S̃(s), but we do not
present it here due to its algebraic complexity.
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List of symbols

Introduction

λvis Wavelength of visible light
|x〉 Quantum state specified by x: ground (x = g) or excited

(x = e) electronic state, singly excited state of an environment
(x = {1ωkn}), unoccupied (ground) state of an environment
(x = {0ωkn})

EL
inc, ENF, E

(0)
NF,

ESt
NF, E

St
FF, E

St
inc,

EA, EAS, EBG

Electric field of: incident light, plasmonic near field, near-field
amplitude, at frequency of Raman-Stokes photon, plasmonic
far field at Stokes frequency, incident auxiliary field at Stokes
frequency, radiated by antenna, originating from antenna-
sample interaction, background

fL
pl, f

St
pl Field enhancement of the incident light, and of the auxiliary

field at the Stokes frequency
αmol Polarizability of the molecule
q, q0 Vibrational displacement, amplitude of the vibrational

displacement
dtot, dSt, daSt,
dRay, d0

Dipole moment: Total dipole moment, Stokes dipole moment,
anti-Stokes dipole moment , Rayleigh dipole moment,
transition dipole moment

d̂ Electronic dipole operator
ωL, ωSt, ωaSt,
ωeg, ωkn

Angular frequency of: incident light, Stokes, or anti-Stokes
photons, the transition between |g〉 and |e〉, environmental
modes

Ω Vibrational angular frequency
RSt Raman-Stokes signal
A ,ABG,AAS Total signal of SEIRS, background signal, signal arising from

the antenna-sample interaction
Γeff , Γrad

eff Effective decay rate, effective radiative decay rate
η Quantum yield
r0 Position of the molecule
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List of symbols

Part I

Chapter 1

~ Reduced Planck’s constant
r, r′ Position vectors
x, y, z Cartesian position coordinates
ρ, ρext, ρtot, ρind Electric charge density, and electric charge density of:

external charge, total charge, induced charge
Jext,Jind External current density, induced current density
E,D,B,H,P,M Electric field, electric displacement field, magnetic field,

magnetic H-field, macroscopic polarization field, macroscopic
magnetization field

ε0, µ0 Vacuum permittivity, vacuum permeability
ε, εx Dielectric function (relative permittivity), dielectric function

of material specified by x
µ relative permeability
c Speed of light in vacuum
k magnitude of the wave vector in vacuum k = ω/c
G(ω, r, r′) Electric dyadic Green’s function
δ(r− r′) Dirac’s delta function
I Identity dyadic
R, R R = r− r′, R = |R|
K(r, r′) Quasi-static dyadic kernel
φ, φext Electric potential, external electric potential
σ Surface charge density
s, s′ Surface positions
ns Outer surface normal at point s

F(s, s′) Boundary-integral kernel F(s, s′) = −ns·(s−s′)
|s−s′|3 for s 6= s′

Eext External electric field
Vpar Particle volume
L Depolarization dyadic (factor)
eR eR = R/R
α,α0 Particle’s polarizability tensor, and quasi-static polarizability

tensor
Pext, Pabs, Psca Total scattered and absorbed power, absorbed power,

scattered power
σabs, σsca, σext Absorption, scattering, and extinction cross section
I0 Incident-light intensity
ωp Plasma frequency
e Electron electric charge
Ne Density of electrons
me Electron mass
γe Electron damping rate
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List of symbols

Ln Depolarization factor of a plasmonic mode n
σn Surface-charge density of a plasmonic mode n
ωbulk, ωsp, ωLn Frequency of bulk, surface, and particle plasmon
q Wave vector
Pq,Eq, Pq Distribution of q−dependent polarization density and electric

field; Pq = |Pq|
q‖, r‖ q−vector and position vector parallel to the interface
φIN
n Electrostatic potential induced by the surface-charge

distribution of a plasmonic mode n
λn Eigenvalue of surface-integral operator
σn,Pn Surface-charge density of a plasmonic mode n, Polarization

density of a plasmonic mode n
δnm Kronecker delta
Πn Πn ≡ me

e Ṗn

fn Mode function of a plasmonic mode n
x(t), x(+)(t),
x(−)(t)

Generic real function x(t), its positive [x(+)(t)], and negative
[x(−)(t)] frequency part

un, pn, u
(+)
n , p

(+)
n Scalar amplitude of displacement, un, momentum, pn ≡

Neme
dun
dt , and their respective positive-frequency parts

ûn, p̂n Scalar operators of displacement amplitude, ûn, and
momentum amplitude p̂n.

â, ân Annihilation bosonic operator, and annihilation bosonic
operator of mode n

P̂, P̂
(+)
n , P̂

(−)
n Operator of polarization density, positive and negative

frequency part of the operator of polarization density for a
plasmonic mode n

φ
(+)
n , φ(−)

n , σ(+)
n ,

σ
(−)
n

Positive- and negative-frequency part of the quantized
amplitude of the scalar potential (φ(+)

n , φ
(−)
n ) and the surface-

charge density (σ(+)
n , σ

(−)
n ) of a plasmonic mode n

φ̂pl
n , σ̂

pl
n Operator of the scalar potential and surface charge density of

a plasmonic mode n
Hpl, Ĥpl Classical Hamiltonian and quantum Hamiltonian operator of

plasmons

Chapter 2

Hmol, He, Tn Molecular Hamiltonian, electronic Hamiltonian and nuclear
kinetic energy

RI , QI ,MI Position, charge and mass of nucleus I
ri Position of electron i
{r}, {R} Set of electronic and nuclear coordinates
H̃e Electronic Hamiltonian free of inter-nuclear interaction
Ψ({r}, {R}) Many-body electronic and nuclear wave function
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List of symbols

ϕα({r}; {R}) Many-body electronic Born-Oppenheimer wave function
χα({R}) Many-body nuclear Born-Oppenheimer wave function
Eα({R}) {R}-dependent eigenenergy of an electronic state α
ε Vibrational eigenvalue
τ

(1)
I,αβ , τ

(2)
I,αβ Non-adiabatic couplings

Nel Number of electrons
n(r) Electron density at position r
φKS
i (r) Kohn-Sham functions (orbitals)
λKS
i Kohn-Sham eigenvalues
Vs, Vext, VXC Effective single-particle potential, external potential and

exchange-correlation potential
Eel, Ts, fXC Total electronic energy, single-particle electronic kinetic

energy, and exchange-correlation energy functional
AXC Exchange-correlation part of quantum mechanical action
Xai, Yai,X,Y Coefficients in linear-response TDDFT and their respective

vector representations
XI
ai, Y

I
ai,X

I ,YI Coefficients in linear-response TDDFT and their respective
vector representations, belonging to the I−th electronic
excitation

δn, δnI Linear perturbation of electronic density and linear
perturbation of electronic density for the I−th electronic
excitation

gXC gXC(r1, r2) ≈ δ2fXC

δn(r1)δn(r2)

A,B Matrices of coefficients appearing in LR-TDDFT
ρeIg Transition charge density between states |g〉 and |eI〉
q̃I,ζ Mass-weighted coordinate ζ of nucleus I
U, Uab Dynamical matrix and its components
Ω Matrix of vibrational frequencies
Hvib Vibrational Hamiltonian
qα, pα, q̂α, p̂α Mass-weighted displacement, qα, its conjugate momentum,

pα, of vibrational mode α, and operators of the respective
classical variables

µM, µM
α Matrix of reduced masses and its diagonal element

b̂i,α Annihilation operator of a vibrational mode α on top of Born-
Oppenheimer surface of the electronic state |ei〉

Ωi,α Vibrational frequency of mode α on top of Born-Oppenheimer
surface of the electronic state |ei〉

Chapter 3

ρ̂, ρ̂ψeg
(ρψeg

),
ρ̂mix (ρmix), ρ̂T,
ρ̂S, ρ̂E

Density operator (matrix) of a state |ψeg〉, of a mixed state,
of total system, reduced density operator, density operator of
the environment

wα Classical probability coefficient
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List of symbols

Tr{},TrE{} Trace, partial trace over environmental degrees of freedom E

Ĥ, ĤS, ĤSE, ĤE Hamiltonian of: the total system, the system of interest, the
system-environment coupling, and the environment

Ô, Ô, Ô1, Ô2 Generic operators
L (ρ̂),L γO

Ô
(ρ̂) Lindblad term, Lindblad term of the form L γO

Ô
(ρ̂) =

γO
2

(
2Ô ρ̂ Ô† −

{
Ô†Ô, ρ̂

})
γLin
β′β , S

Lamb
β′β Decay rate and Lamb shift of an excitation specified by system

operators Âβ′ and Âβ
γO Damping rate corresponding to a Lindblad term L γO

Ô
(ρ̂)

characterised by an operator Ô
Âβ , Âαβ(ωα) System operators, system operators of eigenfrequency ωα:

Âβ =
∑
α Âαβ(ωα)

B̂α, δB̂α Reservoir operators: δB̂α(s) = B̂α(s)− 〈B̂α〉res

Ĥav Effective Hamiltonian containing the non-vanishing averages
of reservoir operators

Ĥ ′S Corrected system Hamiltonian: Ĥ ′S = ĤS + Ĥav

ĤLamb Hamiltonian containing the Lamb shift
ˆ̃HS Effective system Hamiltonian: ˆ̃HS = ĤS + Ĥav + ĤLamb

Û , Ûx Unitary operator, unitery operator specified by x
L Liouville superoperator
~̂ρ Vectorised density operator ρ̂

P̂ (t, t), ~̂P (t, t) Auxiliary operator replacing the density operator in
calculation of two-time correlators, P̂ (t, t) = ρ̂S(t) Ô1, and
P̂ (t, t) in its vectorised form

gte
j τ -dependent coefficient of term j appearing in operator

dynamics
gk Coupling constant between cavity mode (plasmon) k and an

exciton
ωeg, ωk Frequencies of an electronic transition (|e〉 → |g〉) and an

electromagnetic mode k
Jem(ω) Spectral density of the electromagnetic environment
f(t− t1) Integration kernel
σ̂, âk σ̂ = |g〉〈e|, and âk an annihilation bosonic operator
c0, ce, ck Coefficients characterising the state of the plasmon-exciton

system
N̂ Number operator
Ĥsys, ĤI Hamiltonian of a two-level electronic system and the

electromagnetic modes, the interaction between the two-level
system and the electromagnetic modes

Ĥdet,ω, Ĥdet−ph Hamiltonian of the absorbing detector and the detector-
photon interaction

Ê(+)[Ê(−)] Positive (negative) frequency part operator of electric field
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List of symbols

d̂ω Annihilation operator of the absorbing detector
W (ω) Rate of photon absorption at frequency ω
se(ω), sa(ω), sta Normalized emission, absorption and total absorption as a

function of frequency ω
ĤPR, ĤP, ĤPW Probe-field Hamiltonian, probe-driving Hamiltonian, and

probe-driving Hamiltonian assuming coherent illumination
EP Amplitude of probe-system interaction
ĉ Annihilation bosonic operator of a probe field
Pabs Probe power absorbed by the system
ωP Probe angular frequency

Part II

Chapter 4

q, q(+), q(+)
0 Vibrational (mass-weighted)

coordinate, its positive-frequency part, and amplitude of its
positive-frequency part

d(q) Ground-state dipole moment of a molecule
δd, δd(+) Induced dipole moment and its positive-frequency part
δE, δE(+),
δE

(+)
0

Incident electric field, its positive-frequency part, and
amplitude of its positive-frequency part

αvib Vibrational polarizability
Vvib−rad, Tvib,
Vvib

Potential energy of a dipole in an external electric field,
vibrational kinetic energy, and vibrational potential

L Lagrangian
Ω, γv Vibrational frequency and damping
F Tensor of vibrational oscillator strength
Nd

mol Density of molecules
εS, εSiO2

Effective dielectric function of a vibrational medium, and that
of SiO2

ωOS, ωTO, ε∞ Oscillator strength, transverse-optical phonon frequency, and
background (relative) permittivity

αA, αS Polarizability of an antenna and sample
ΩA, ΩS Resonance frequency of an antenna and sample
fA, fS Oscillator strength of an ntenna and sample
γA, γS Damping of an antenna and sample
rA, rS Position of antenna and sample
dA, dS Dipole moment of antenna and sample
G Scalar component of the electromagnetic dyadic Green’s

function mediating the antenna-sample interaction
αeff , αAS

eff , αSA
eff Effective polarizability of a plasmonic antenna, quasi-static

effective polarizability of a plasmonic antenna, effective
polarizability of the sample
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List of symbols

σA
abs, σ

A
abs, σ

A
sca Absorption, extinction, and scattering cross section of a bare

antenna
σCF Corrected Fano profile
aF, bF, cF, dF,
yF, RF

aF = Ω2
A − ω2, bF = −γAω, cF = Ω2

S − ω2, dF = −γSω, and
yF = bF −RFfA with RF = k3/(6πε0)

∆F, Γ, Γc, δF, β ∆F = aFfAfSG
2/(a2

F + y2
F), Γ = Γc + dF, Γc =

yFfAfSG
2/(a2

F + y2
F), δF = fAfSG

2/(yFdF), β = d2
F/Γ

2

qF, BF, κ Fano asymmetry parameter (qF = ∆F/Γ), Fano dip
parameter, Fano frequency parameter (κ = (cF −∆F)/Γ)

δ′F, Γ′, Γ′c, κ′,
q′F, ∆′F, β

′
δ′F = fAfSG

2/(bFdF), Γ′ = Γ′c + d, Γ′c = bFfAfSG
2/(a2

F + b2F),
κ′ = (cF −∆′F)/Γ′, q′F = ∆′F/Γ

′, ∆′F = aFfAfSG
2/(a2

F + b2F),
β′ = d2

F/Γ
′2

Bext, Bsca, Babs Fano dip parameter for extinction Bext = β, for scattering
Bsca = β(1 + δF), and for absorption Babs = β(1 + δ′F)

LA, DA, L, D,
Dphc

Antenna length, antenna diameter, length of the sample
patch, diameter of the sample patch, diameter of a spherical
phononic sample

EA, PS, P̃S Electric near field induced by an antenna, polarization density
in a sample, normalized polarization density in a sample

EBG, EAS Background electric field scattered by an antenna, electric
field scattered due to the antenna-sample interaction

Part III

Chapter 5

|N, g(e)〉 Combined states of a plasmonic cavity and a TLS |N, g(e)〉 =
|N〉 ⊗ |g(e)〉

⊗ Direct product
|N〉 Cavity number state containing N excitations
|N,±〉 Hybrid plasmon-exciton states |N,±〉 = (|N − 1, e〉 ±

|N, g〉)/
√

2
g Coupling rate (constant) between a plasmon and an electronic

excitation in a molecule
d0 Molecular transition dipole moment
Ẽ Quantized electric field of a cavity mode
r̂ Position operator
Ĥc, Ĥc−e, Ĥe Hamiltonian of: a cavity, a molecular electronic transition,

and the coupling between the cavity modes and the electronic
transition

Veff Effective volume of a cavity mode
E(r) Spatial distribution of the electric field of a plasmonic mode
rmol Position of a point-like molecule
ĤRabi, ĤJ−C Rabi and Jaynes-Cummings coupling Hamiltonian
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List of symbols

â, ân Bosonic annihilation operator of a plasmon and of a plasmonic
mode n

Ω̃ Real oscillation (Rabi) frequency
∆EJ−C(N) Energy splitting ∆EJ−C(N) = 2

√
N~g

Q Quality factor
ωn Angular frequency of the n-th plasmonic mode
Ĥpl Plasmonic Hamiltonian
ρeg Transition electric charge density
G, α, Rd, Rs Gap between plasmonic particles, cone opening angle, radius

of plasmonic spheres, radius of the apex curvature
ρ̂c(r) Electronic-density operator
Ĥpl−mol Interaction Hamiltonian between plasmons and molecular

excitons
gn, gn,i Coupling between plasmonic mode n and a molecular exciton,

molecular exciton i
ωpl Lowest bonding dimer plasmon resonance frequency
gZnPc
Sx(y)

(r0),
gZnPc
Sxz(yz)

Effective coupling constant between the respective ZnPc
excitons and a bonding dimer plasmon mode

Sx, Sy, Sz, Syz,
Sxz

Singlet excitations of ZnPc molecule (Sx, Sy, Syz, Sxz), and
MB molecule (Sz)

Qyz, Qxz Quadrupolar moment of Syz and Sxz excitons in ZnPc
ωdk angular frequency of Syz and Sxz excitons in ZnPc
Ĥdk

mol, Ĥ
dk
pl−mol Hamiltonian of of Syz and Sxz excitons in ZnPc, and

interaction Hamiltonian among Syz, Sxz and plasmonic
modes. dk stands for dark transition

gdk
n Constant of coupling between plasmonic mode n and a dark

molecular exciton
ωps, ωdip Plasmon pseudomode frequency, dipolar plasmon frequency

of a sphere
γ0 Natural (vacuum) decay rate of molecular exciton

Chapter 6

Nmol Number of molecules in a cavity
Ĥe,i,
Ĥres,i, Ĥe−res,i,
Ĥc, Ĥe−c,i,
Ĥe−e, Ĥtot,
Ĥpump, Ĥcol

pump

Excitonic Hamiltonian of molecule i, reservoir Hamiltonian
of molecule i, Hamiltonian of exciton-reservoir coupling of
molecule i, cavity Hamiltonian, Hamiltonian of coupling of a
cavity mode with the i−th molecular exciton, exciton-exciton
coupling, total system Hamiltonian, pumping Hamiltonian,
and collective pumping Hamiltonian

ΩR, dR Effective reservoir frequency and exciton-reservoir interaction
(displacement)

gi, Gij cavity mode-exciton coupling constant of molecule i, and a
coupling constant between excitons of molecules i and j
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List of symbols

B̂i (B̂), σ̂i (σ̂), â Bosonic annihilation operator of the reservoir of a molecule
i (of a single molecule), Pauli lowering operator of the i−th
molecular exciton (exciton of a single molecule), and bosonic
annihilation operator of a cavity mode

|0〉, |+〉, |−〉,
|Di〉

Ground state, upper polariton state, lower polariton state,
and dark state i

F̂ , F̂i F̂ = dRΩR(B̂† + B̂), F̂ = dRΩR(B̂†i + B̂i)
σ̂ξζ σ̂ξζ = |ξ〉〈ζ|, with ξ, ζ ∈ {+, −}
σ̂−−++ σ̂−−++ = |+〉〈+|+ |−〉〈−|
ω+, ω− Upper and lower polariton frequencies
Ô(0) Schrödinger-picture operator
J(ω) Spectral function of a molecular reservoir
γφ Dephasing rate
E , ωL Laser pumping amplitude, laser frequency
Ŝi Collective excitonic operator Ŝi =

∑
α ciασ̂α, with coefficients

ci,α
geff , θ (θeff) Collective cavity mode-exciton coupling, polariton mixing

angle (effective collective polariton mixing angle)
n+, n−, nD Upper polariton population, lower polariton population, dark

polariton population
G0, d0, r0 Constant of Exciton-exciton coupling, transition dipole

moment of an exciton, intermolecular distance

Part IV

Chapter 7

|g(e),N ,m〉 Quantum state containing a molecule in its electronic ground,
g, or excited, e, state, exciting field in a number state
containing N photons, and a vibrational mode in a number
state containing m phonons

|n±,m〉 Hybrid states |n±,m〉 = (|g,N ,m〉 ± |e,N − 1,m〉)/
√

2 with
+ labelling the state with higher energy, and n = N + δie,
with i = e, g and δij the Kronecker delta

nPL Number of plasmonic excitations
Ĥc, Ĥc,0, Ĥc−vib Cavity (plasmon) Hamiltonian, bare-cavity Hamiltonian, and

plasmon-vibration coupling
dom, gom Optomechanical displacement parameter, optomechanical

coupling
Ĥom, Ĥpl, Ĥvib,
Ĥpl−vib, Ĥpump

Optomechanical Hamiltonian, plasmon
Hamiltonian, vibrational Hamiltonian, plasmon-vibration
coupling Hamiltonian, and plasmon pumping Hamiltonian

αeg Molecule’s electronic polarizability
nPL Number of plasmonic excitations
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List of symbols

Ĥbom Bare optomechanical Hamiltonian
nvib(T ), kB Thermal vibrational population, Boltzmann constant
αS Coherent plasmon amplitude
Eg(q), Ee(q), d,
S

Potential energy surface of ground electronic state, of excited
electronic state, and displacement of electronic ground and
excited potential-energy surfaces, Huang-Rhys factor

Ĥres
om, Ĥmol,

Ĥpl−e

Resonant optomechanical Hamiltonian, molecular
Hamiltonian, and plasmon-exciton coupling Hamiltonian

b̂e, b̂†e, b̂g, b̂†g Vibrational annihilation operator and creation operator in the
ground electronic state, vibrational annihilation and creation
operator in the excited electronic state

b̂, b̂† Vibrational annihilation and creation operators
δ, ∆ δ = ωeg − ωL, ∆ = ωc − ωL

δ̃ Renormalized detuning: δ̃ = δ + d2Ω
Q Plasmonic quality factor
Epl Amplitude of TLS driving by the plasmon-enhanced field:

Epl = −2gαS

Ĥred, Ĥtwo
red Effective reduced TLS-vibrational Hamiltonian, effective

reduced TLS-vibrational Hamiltonian for two vibrational
modes

Ĥred
vib Reduced vibrational Hamiltonian

ĤTLS Two-level-system reduced Hamiltonian
Γdec

v , Γpump
v Effective vibrational decay rate and effective vibrational

pumping rate
L

Γdec
v

b̂
[ρ̂] Effective vibrational damping Lindblad term: L

Γdec
v

b̂
[ρ̂] =

Γdec
v

2

(
2b̂ρ̂b̂† −

{
b̂†b̂, ρ̂

})
L

Γpump
v

b̂†
[ρ̂] Effective vibrational pumping Lindblad term: L

Γpump
v

b̂†
[ρ̂] =

Γpump
v

2

(
2b̂†ρ̂b̂−

{
b̂b̂†, ρ̂

})
S̃(s) Spectral function of an electronic reservoir
S̃R

coh, S̃
R
incoh Coherent and incoherent part of S̃(s)

〈b̂†b̂〉SS,in Incoherent vibrational population
Γtot Total decay rate Γtot = Γeff + γσ
λTLS Effective frequency λTLS = (E2

pl + δ2)1/2

Ĥ
′res
om Transformed resonant optomechanical Hamiltonian

H
′res
om , H

′res,dr
om Matrices representing Ĥ

′res
om in different basis sets

N Number of photons in the exciting field
nincoh
σ , ncoh

σ Incoherent population of molecular TLS, coherent population
of molecular TLS

σ̂g, σ̂e Operator of ground, σ̂g = σ̂σ̂†, and excited σ̂e = σ̂†σ̂, state
occupation

σ̂x, σ̂y, σ̂z Pauli matrices x, y and z
σ̂′x, σ̂′y, σ̂′z Transformed Pauli matrices x, y and z
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List of symbols

gPL−L Small coupling constant between an equivalent exciting field
and a molecule

n Number of field and excitonic excitations: n = N + δie
λ+, λ−, λ3, λ4 Eigenenergies of the effective Hamiltonian Ĥ

′res
om

b̂1, b̂
†
1, b̂2, b̂

†
2 Vibrational annihilation operator of vibrational mode

1, vibrational creation operator of vibrational mode 1,
vibrational annihilation operator of vibrational mode 2, and
vibrational creation operator of vibrational mode 2

ĤJ−C,p, Ĥv,
ĤTLS−v

Hamiltonian of a pumped Jaynes-Cummings system,
vibrational Hamiltonian, and exciton-vibration coupling
Hamiltonian

J0(s) Auxiliary spectral function of the TLS:
J0(s) = Re

{∫∞
0
〈〈σ̂(τ)σ̂†(0)〉〉ei(s+ωL)τdτ

}
MC Matrix of coefficients
v, w, rhs Shorthand vectorial notation for: v = (〈â〉, 〈σ̂〉)T, w =

(〈〈â(τ)σ̂†(0)〉〉, 〈〈σ̂(τ)σ̂†(0)〉〉)T, rhs = (0, −igα∗S)T

PC, DC Matrix of eigenvectors, matrix of eigenvalues
RHS Vector of right-hand side
λSC

1 , λSC
2 Eigenvalues of MC

vinh Vector of the inhomogeneous solution
âinh Inhomogeneous solution for the plasmon annihilation operator
A0(s) Auxiliary spectral function of the TLS: A0(Ω) =

g√
4g2−(γa−γσ)2/4

[
1

(−iΩ−λSC
1 )
− 1

(−iΩ−λSC
2 )

]
se,St, se,aSt Stokes and anti-Stokes emission spectra
γvdp γvdp = γb + Γdec

v − Γpump
v

Appendices

E
(+)
loc Positive-frequency part of quantized electric field at the

position of an emitter

Cl Cl =

√
~ωlR2l+1

d

2ε0(2l+1)

ρPD Charge density of a point dipole
ρS Matrix representation of density operator
~ρS Vectorized system density matrix
L Liouville superoperator
O1, O2 Matrix representations of operators Ô1 and Ô2

F (s) Fourier transform of kernel function f(t)
λW(t, u) Auxiliary function
ΛW(t, s) ΛW(t, s) = 1√

2π

∫∞
−∞ duλW(t, u) exp(−isu)
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