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Resumen en castellano
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La presente tesis se centra en el estudio, utilizando c&lalé estructura electrénica den-
tro de la teoria del funcional de la densidad (DFT), de lauesitra atomica y electrénica de
varias reconstrucciones que se obtienen después de @dembgdrsos metales en Si(111) y
superficies vecinales de Si(111). Muchas de estas estsdtuniman reconstrucciones cuasi-
unidimensionales donde los &tomos de metal se agrupanddo@adenas monoatémicas o
con secciones de unos pocos atomos. Por ello han sido ptapwesno realizaciones ex-
perimentales de un metal unidimensional ideal, y se hanadiesmanifestaciones del com-
portamiento conocido como liquido de Tomonaga-Luttingeses espectros de fotoemision,
asi como indicaciones de transiciones metal-aislanteaataxca distorsiones estructurales del
tipo transicion de Peierls. Casi todo nuestro estudio seehrado en las reconstrucciones
inducidas por la deposicion de oro Si(557)/Au, Si(553)/A8i{111)-(5x2)-Au. En nuestro
trabajo hemos conseguido identificar los modelos estraietsienergéticamente mas estables
y hemos estudiado sus propiedades electronicas que, eralgestan en buen acuerdo con
lo observado en los experimentos de fotoemision y de miopiactinel. También hemos
dedicado algun esfuerzo al sistema Si(111)/In. Para eptfstie hemos confirmado que el
modelo para la transicion 4x2 4x2 — 8x2 basado en una deformacién de cizalla seguido
por una distorsion de Peierls, propuesto recientementd,reas plausible y el que consigue
un mejor acuerdo con la fenomenologia experimental.

Las reconstrucciones inducidas por la deposicion de @igerspecies metalicas sobre su-
perficies silicio han atraido la atencién de muchos gruposwestigacion en los ultimos
afos. Metales como Au, Ag, Li, Na, Mg, K, Ca en recubrimientdsriores a una mono-
capa, producen reconstrucciones en las que los atomosaost@rman hilos monoatémicos
separados por distancias del orden de 1 nm, de forma queeladoion entre ellas es, en
principio, muy pequefia. En un modelo sencillo, olvidandoyomomento los posibles efec-
tos del substrato semiconductor, los electrones cercaividlde Fermi estarian confinados
lateralmente en estas cadenas, siendo Unicamente libras\dgse a lo largo de ellas. Los
estados de superficie en estas reconstrucciones podridarporconstituir una realizacion
experimental de un gas de electrones en una dimension, ulbg deodelos favoritos de la
fisica cuantica durante décadas. En efecto, existe cieidarecia experimental, basada en



fotoemision y microscopia tunel, de la existencia de estadiectronicos de caracter fuerte-
mente unidimensional en muchas de estas superficies. Daspento de vista tedrico ha
sido propuesto desde hace décadas que, debido a los efe&laaon, el comportamiento
de los electrones en una dimension (el llamado liquido dérger) debe desviarse sensi-
blemente de la teoria del liquido de Fermi, valida normabmen el volumen. Por ejemplo,
a bajas temperaturas el sistema debe volverse aislantesé.abre un “gap” para pequefas
excitaciones), las cuasiparticulas son reemplazadascpiba@ones de espin y de carga (los
denominados “spinons” y “holons”), y muchas de las propiedalel sistema debe ajustarse
a ciertos comportamientos algebraicos. Sin embargo, laredsion experimental de estos
efectos ha demostrado ser muy complicada principalmeiidala la dificultad para encon-
trar sistemas “realmente” unidimensionales. En este gtmtas reconstrucciones de metales
sobre silicio que hemos estudiado han sido propuestas carstiema ideal para estudiar
estos efectos, donde la magnitud de las interaccionealiegdi.e. distancia entre hilos) y de
la interaccion electron-electron (distintas especiesalicess adsorbidas y substratos) pueden
variarse. El sistema Si(111)/Au es especialmente intetesen este sentido ya que exis-
ten datos de fotoemision que parecen demostrar comporttaimesperados, dentro de los
modelos sencillos que se manejan, y que han sido interpetsidizando las predicciones
de la teoria de Tomonaga-Luttinger para una dimension.ifstigretacion, sin embargo, ha
sido discutida recientemente tanto tedrica, como expeiiaraente.

Hemos visto, por tanto, que en estos sistemas existen graxgectativas de encontrar
efectos exéticos relacionados con la correlacion eleicaéen una dimensién. Sin embargo,
en muchos casos estas expectativas estan basadas eriateéopes muy simplificadas de las
interacciones en estos sistemas. Por ejemplo, se desplefecto de la interaccion con los
atomos del substrato en la estructura electronica y gemaél hilo. En muchos casos no se
conoce la estructura atébmica en detalle y no existen c&aqule refrenden la veracidad de los
modelos estructurales, asociandoles una estructura dadvgne de forma aproximada puede
ser comparada con los datos de fotoemision.

En nuestro trabajo nos hemos centrado inicialmente endteysas Si(111)/Au que ha sido
extensamente estudiados experimentalmente y para |lassoeladiebate esta abierto, aunque
hemos extendido nuestros céalculos a otros sistemas nedainie. Las fases seguidas en nues-
tra investigacion han sido:

1. Estudiar distintos modelos estructurales de disti@sstrucciones de Au sobre Si(111)
y vicinales de Si(111) que exhiben hilos unidimensionaksta ello hemos utilizado
calculos de primeros principios basados en la teoria deldual de la densidad (DFT).
En este primer periodo fue necesario familiarizarse com asarato tedrico y con las
técnicas de simulacion habitualmente utilizadas. Dadaat gumero de atomos en
estos calculos, ha sido necesario utilizar un método efeigor lo que planeamos uti-
lizar el codigo SIESTA, desarrollado por una colaboraciérigntificos esparoles, en-
tre los que se cuenta el director de la presente tesis (DieD&énchez Portal). Hemos
obtenido resultados sobre los modelos estructurales deglaigntes superficies:

() Si(111)-(5x2)-Au, esta reconstruccion ha sido estddidurante décadas, y para ella
existe un detallado modelo estructural basado en holageafi atomos pesados y mi-
croscopia electrdnica de alta resolucién. Sin embargo,géstian muy pocos estudios
basados en calculos de primeros principios, y los que habdiraban la posibilidad
de una estructura diferente de la obtenida a partir delsaasé@le los datos experimen-



tales. Nosotros hemos encontrado con nuestros estudida gsieuctura propuesta por
los equipos experimentales no es en realidad la mas estBeldecho hemos prop-
uesto el modelo estructural mas estable de los conocidtas élasiomento. También
hemos estudiado como cambia la estabilidad de las estagands estables en funcién
de la concentracion de ad-atomos de silicio sobre la sujgerfiestos resultados han
sido publicados efkirst-principles study of the atomic and electronic stuuret of the
Si(111)-(5x2)-Au surface reconstructiddampsa Riikonen and Daniel Sanchez-Portal,
Physical RevievB 71, 235423 (2005)

(i) En caso de la superficie escalonada Si(553)/Au hemdigzada una blusqueda ex-
haustiva de los modelos estructurales mas estables y logsshemmparado con la in-
formacion experimental existente. Este trabajo ha dadarlagdos publicaciones:
Structural models for the Si(553)-Au atomic chain recamstion, Sampsa Riikonen
and Daniel Sanchez-Portal, Nanotechnol@§y218(2005);Systematic investigation of
the structure of the Si(553)-Au surface from first princgampsa Riikonen and Daniel
Sanchez-Portal, enviado a Physical Review B

(iif) Hemos comprobado que el modelo basado en una combimae deformacion de
cizalla y distorsion tipo Peierls es el mas apropiado pasaril#r la transicion de fase
4x1—4x2—8x2 observada en el sistema In/Si(111), confirmando losdatperimen-
tales mas recientes y en acuerdo con estudios tedricoza@ad en la Univ. Autbnoma
de Madrid simultdneamente (e independientemente) a latnoge Estos resultados han
sido publicados eMetal-insulator transition in the In/Si(111) surfacéampsa Riiko-
nen, Andres Ayuela Fernandez and Daniel Sanchez-PortghcguScienc&00 3821
(2006)

. Los calculos de estructura electrénica no so6lo nos dannecion sobre la estabilidad
relativa de las distintas estructuras, si no que nos damniracion sobre la estructura
electrdnica, esto significa que podemos obtener resulsmme estructura de bandas,
la densidad local de estados, la densidad electronicgyceete enlace, etc.. Esto nos
permite, entre otras cosas, el comparar los resultadogdedéron los experimentos
de fotoemision y de microscopia tinel de barrido. Esto nogdmmitido obtener los
siguientes resultados:

(i) Hemos identificado el origen de las dos bandas proximassguobservan cerca
del nivel de Fermi en la superficie Si(557)/Au. Algunos aesdnabian propuesto que
dichas bandas eran una prueba de la existencia de exciéacieparadas de espin y
de carga como resultado del caracter unidimensional delnsés Para otros autores
no podian ser sino el resultado de la existencia de dos gstisaunidimensionales
sobre la superficie: el borde del escalon y el hilo unidimamaide oro. En nuestro
trabajo, publicado enRole of the spin-orbit splitting and the dynamical fluctoas

in the Si(557) - Au surfacd)aniel Sanchez-Portal, Sampsa Riikonen and Richard M.
Martin, Physical Review Letter83 146803 (2004), demostramos que en realidad las
dos bandas se originan en la cadena de oro y que su aparict@bsea la rotura de
degeneracion entre distintos valores del espin asociadédaoteraccion espin-orbita
inducida por la presencia de un elemento pesado como el oro.

(i) Tanto en el trabajo anterior, como en otro mas recientietallado (S. Riikonen
y D. Sanchez-portal, Interplay between the electronic &edatomic structure in the



Si(557)-Au reconstruction from first principles, acepta@wa su publicacion en Phys.
Rev. B 2007), hemos estudiado en detalle el acoplamiente kg grados de libertad
electrénicos y estructurales. Hemos identificado a la digio del borde del escaldn,
gue se estabiliza a bajas temperaturas como el origen denkidion metal-aislante y
de los cambios de periodicidad en las imagenes de micrasetgaitronica.

(iif) Hemos demostrado que el Unico modelo estructuralterie para la superficie
Si(553)-Au, obtenido a partir del andlisis de los datos deadtién de rayos X, no
so6lo no es estable, sino que no produce imagenes STM ni baletdHnicas en buen
acuerdo con el experimento y por tanto debe ser revisade.ré&stltado ha sido publi-
cado en S. Riikonen, D. Sdnchez-Portal, Ab initio study efdbuble row model of the
Si(553)-Au reconstruction, Surf. Sci. 600 1201-1206 (29006

. Es sabido que la teoria del funcional de la densidad (DRBue aproximaciones ha-
bituales, locales LDA o GGA, funciona bastante bien paraeui las geometrias de
equilibrio de multitud de sistemas. El uso de las estrustdeabandas obtenidas como
una aproximacion a las excitaciones electronicas elenesnésta mucho menos jus-
tificado, aunque es una practica habitual el comparar dichadas con los datos de
fotoemision. Nosotros hemos analizado en detalle lasastas de bandas obtenidas
en los calculos, caracterizando los estados de superfigieud#do con su origen (aso-
ciados a los hilos metalicos o a otros &tomos del substratolymensionalidad. Como
un primer paso hacia una mejor descripcion de la interaagetron-electron, hemos
implementado el método LDA+U dentro del método de calculeS3A. SIESTA es un
programa que en la actualidad es utilizado por varios csetiousuarios y que es dis-
tribuido libremente a la comunidad académica (ver httpuifeam.es/siesta). Por ello
esperamos que nuestro trabajo tenga una amplia repereusiacomunidad de ciencia
de materiales, que usa este cédigo como uno de sus estahdas dia. El esquema
LDA+U es un método muy sencillo y, en principio, empirico dejonar la descripcion
de las interacciones para estados electronicos muy ladakz En particular, resuelve
el problema de la autointeraccion para estados con un foaréeter atbmico. Este es
uno de los principales problemas para describir estadoslocalizados dentro de las
aproximaciones locales de DFT. Hasta el momento hemozaddi nuestro desarrollo
para estudiar dos materiales cuyas propiedades ele@sdna@son correctamente de-
scritas por célculos DFT a nivel LDA ni GGA: el FeO y el Sr2VCBk esta preparando
una publicacion sobre este Gltimo material en colaboractgnE. Canadell del Centro
de Ciencia de Materiales del CSIC en Barcelona.
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Chapter 1

Introduction

The main subject of this thesis are the surface reconstngthat form spontaneously when
submonolayer amounts of metals are deposited on silicomeAsill see, on many occasions,
the metal adsorbates stabilize reconstructions that haeelonensional features. According
to the latest geometrical models for these systems, thdsiietaen (infinite) monatomic wires
on the surface, an idea that seems to be in accordance wittxffegzimental data. These
reconstructions can also be formed on stepped siliconcsfallowing to tune the wire-wire
interactions with the step width [1].

The fact that some metals form spontaneously one-dimealsstructures on a semicon-
ducting surface, is quite an extraordinary finding and tlaeeestill many open questions about
the driving force for the formation of these structures dralrtproperties.

As the minituriazion of electronic devices is approachimg atomic limit and the control
of physical and chemical reactions on the nanometer-ssalery difficult, this kind of au-
toassembling becomes very desirable. Controlling andrstel@ling it, is a strong motivation
from a technological point of view. From a more fundamentahpof view, the fact that these
surfaces have one-dimensional features makes them attydoecause they might exhibit a
completely a new kind of physical phenomena that could béo&egd. One of these excit-
ing phenomena is the so-called Tomonaga-Luttinger ligaidgvel phase of electrons where
collective spin- and charge modes form the low-energy atioits of the system.

Theab-initio calculations are a powerful method to test different hypsithabout the ori-
gin of the physical phenomena observed in these surfacaBough there exists numerous
experimental studies about these surface reconstrudiefd], the number o@b-initio cal-
culations has remained quite small [1, 65—-79]. One of theames for this is the large system
size needed to properly simulate a surface reconstrudtiahis thesis, we perforrab-initio
calculations using the SIESTA method. It uses the localidxtal formalism that is com-
putationally less time-consuming than some other methadlisying us to routinely simulate
very large systems containing up+0100 atoms. In this work we propose model geometries
(i.e. the atomic coordinates) for many surface reconstmst analyze their physical proper-
ties such as bond-forming, charge transfer, electronid stmicture, etc. with first-principles
calculations and then compare the results with the expetahéata, mainly photoemission
spectra and scanning-tunneling microscopy images. Theragsstudied in this thesis include
metal-induced reconstruction on both flat and steppedosilgurfaces. Those on flat sur-
faces include the Si(111)/Au-5x2 [2-25, 67, 68] and Si(1hi3x1 [39-57,72—-79]. Systems
with steps a few nanometers wide include the Si(557)/Au §3669-71] and Si(553)/Au

11



12 Chapter 1. Introduction

reconstructions [1, 58-64]. As we will see, we are able t@aéthe origin of many phys-
ical phenomena seen on the experiments. These include ithvergit splitting of the one-
dimensional bands in Si(557)/Au and Si(553)/Au, that waisailty proposed by us and very
recently backed-up by experimental data [62]. The metsHator transitions seen on many
of these surfaces are also an interesting challenge fatthiitio calculations that reflect how
the atomic and electronic degrees of freedom couple to eheln. Ve study this coupling for
several systems and analyze the origin of some of these-instdator transitions.

A side subject of this thesis is the implementation of the HAMethod into the SIESTA
program package. We will discuss the origin of the failuréhefLocal Density Approximation
(LDA) to deal with localized electrons (and their self-irgetion), explain how this could be
corrected and how this is implemented into SIESTA. We perfeeveral tests with compounds
such as FeO and SrO, [80-82]. In the case of $¥O, we find that LDA+U breaks the
symmetry of the vanadium d-orbitals and opens gaps in tlotreldc structure, correcting the
metallic character of the LDA calculations.

List of publications

Part of the work described in this thesis has been publigih#tkifollowing publications:

* Role of the spin-orbit splitting and the dynamical fluctoas in the Si(557) - Au sur-
face,Daniel Sanchez-Portal, Sampsa Riikonen and Richard M.iM&tysical Review
Letters93 146803 (2004)

 Structural models for the Si(553)-Au atomic chain recamdion, Sampsa Riikonen and
Daniel Sanchez-Portal, Nanotechnoldd/218(2005)

* First-principles study of the atomic and electronic sturet of the Si(111)-(5x2)-Au
surface reconstructiorSampsa Riikonen and Daniel Sanchez-Portal, Physical Revie
B 71, 235423 (2005)

» Ab initio study of the double row model of the Si(553)-Au restauctionSampsa Riiko-
nen and Daniel Sanchez-Portal, Surface Sci@:1201 (2006)

» Metal-insulator transition in the In/Si(111) surfacBampsa Riikonen, Andres Ayuela
Fernandez and Daniel Sanchez-Portal, Surface Sc&d@a821 (2006)

* Interplay between electronic and atomic structures in th@®55)-Au reconstruction
from first principles,Sampsa Riikonen and Daniel SAnchez-Portal, Physical Re¥ie
(in press)

» Systematic investigation of the structure of the Si(558p#face from first principles
Sampsa Riikonen and Daniel Sanchez-Portal, submittedytsi¢th Review B

Other publications written during the Ph. D. thesis:

» Plasmon tunability in metallodielectric metamateriggempsa Riikonen, Isabel Romero
and F. Javier Garcia de Abajo,
Physical RevievB 71, 235104 (2005)



Chapter 2

Methodology

In this chapter we discuss briefly about the Density Funetidieory (DFT) [83] and the
SIESTAab-initio program [84—86]. Some of the theory behind the SIESTA pnogssstudied
in detail.

The scope of this chapter is not to do a complete review onB8 B\ method, something
already done elsewhere [84—-86], but rather clarify somesgdthe method that were relevant
to this work. Formulas needed to implement new parts of tlognam, as well as various
miscellaneous tools, are studied in detail. In additiorhts,tthe pseudopotentials, basis sets
and other “parameters” that were used throughout this warlpeesented.

2.1 Density Functional Theory

When solving for the ground state of the many-electron systee have to minimize the total
energy:
E = (U|H|V), (2.1)

where¥ = U(rysy, ra80, 1383, ..., rysy) IS the many-particle wavefunction of a system of N
electrons. Since the electrons are fermions, the wavaimbas to be antisymmetric respect
to the exchange of the coordinates for two particles. Th@kast antisymmetric wavefunction
can be constructed using the so-called Slater determinant:

i(ris1) Pi(ress) ...
U — | Yo(ris1) tha(rass) ... | (2.2)

Minimizing the energy using a wavefunction given by a singlater determinant we obtain
the so-called Hartree-Fock approximation that will be dégd in more detail in Chap. 8.
Quantum chemistry methods rely on different approximagiohthe wavefunction which go
beyond a single Slater determinant. The wavefunction i€&fly approximated by a collec-
tion of Slater determinants corresponding to the configematwith a stronger contribution to
the ground state. These methods are referred to as muktinete.

Density Functional Theory [87] provides a different apmtoto the problem. It states that
the ground-state of the system is completely defined by éstein density and we may find

13
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the ground-state density by minimizing the total energy:

OE[p] =
dp(r) ’

wherey is a Lagrance multiplier that maintains a fixed number ofteters N. We must now
express the total energy as functional of the electronisitien

(2.3)

Elp] = Tlp] + Eec[p] + Eearlp], (2.4)

whereT[p|, E..[p] and E.,.[p] are the kinetic, electron-electron interaction and extepo-
tential, respectively. This can be further written as

Elp] = Tilp] + (Ezelp] + Enulp] + Eextp]) (2.5)

whereE,.[p] = ((T[p] - T.[p]) + (Ee. — En)) is called the exchange and correlation energy.
Ti[p] is the kinetic-energy term of a non-interacting electrostes, that has exactly the same
electron density as the interacting electron system.

In going from Eq. (2.4) to Eq. (2.5), we have added and sutetedE; [p] from the right-
hand side and the Hartree term

1 /
= - / Md?’rd?’r/, (2.6)
2 Ir — r
has been extracted from the total electron-electron iotem

= \I'|Z

i#£]

2

(2.7)

4—rj|

We see that the original system of interacting electronslistituted by a system of non-
interacting quasi-particles. The energy Eq. (2.4) of tgistesm has been divided in different
parts, in such a way that all terms that could not be expressaetly using the electron density
(such as E[p]) are retained in E[p]. This problematic term is usually approximated in some
way. The most widely used approximation is the Local Den&pproximation (LDA), where
E..[p| is taken from the calculations of the energy of the homogesesectron gas using
Many-Body Quantum Monte Carlo calculations. This resuita local functional E.[p] with
respect t(r).

When applying Eg. (2.3) to Eq. (2.5), we come up with the Sdim@er equation:

Tp — (Vie + Vir + Vi )9 = e, (2.8)

whereT is the kinetic energy operator. The potential terms hava bb&ined in the following
way:

0E,.
dp(r)’
and similar for other potential terms. Notice that the. Yotential is a “local” potential in
contrast with the equations obtained in the Hartree-Focthate(see Chap. 8). This the
advantage allowed by DFT as discussed above. In order te ffdvelectronic ground-state,
we solve Eq. (2.8), obtain the eigenstates then recalculate the electronic density and

Ve = (2.9)
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potential terms and solve Eq. (2.8) again. This is calleds#iéconsistency (SCF) cycle.
Finding the ground-state of the system by SCF iterationlisd¢the Kohn-Sham (KS) scheme
[88].

In order to calculate the electron-density or the expemtatalues of other single-particle
operators, we first write the wavefunctidnas a Slater determinant, using the eigenstates
and Eg. (2.2). Expectation value for a single-particle afmrf of the form

f=3f) (2.10)

where the operatof(ri) Is acting on coordinateonly, turns out to be:

(UIF19) = D" (val fltba)- (2.12)
A widely used technique, to make the convergence of thecasifistency cycle faster espe-
cially in the case of metals, is to smooth the occupation betwfilled and empty states and
write Eq. (2.11) as: A A
(UIf10) = > (Yol fla)wa, (2.12)

k

whereuw,, is the occupation number for the statg(r), given by the Fermi-Dirac distribution.
If the operatorf; is simply

~

fi= f(r:), (2.13)

i.e. a real valued function af;, then

(WIf10) = [ plr) ), (2.14)

where the electron density is calculated from

N
p(x) = 3 [t (t) it (2.15)

It is important to keep in mind that the eigenstatesand the eigenvalues of the non-
interacting reference system are just auxiliary quastititrom now on, they are referred to
as Kohn-Sham states (KS states). The only quantity that wsisn@ed equivalent in both
the actual system and the non-interacting reference sysgethe electron density of Eq.
(2.15). True physical quantities derived from this KohraBhscheme and the DFT are thus
the electron density and the total energy and also the dimegeof the total energy (i.e. the
forces, response functions, etc.). Note here that we ddimelectron density as a positive
guantity. This applies to other chapters as well.

2.2 Localized orbitals

2.2.1 Non-orthogonal basis sets

Most the calculations in this work were done using the SIEgi@gram package [84—86, 89].
In SIESTA, the wavefunctions are presented in a local drbdais. In this section we study
some details of the local orbital formalism.
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We consider a set of non-orthogonal basis functifias )} and following the notation of
Ref. [90], we define the dual of this basis as

[6°) = > 5, 10), (2.16)
whereS ! is the inverse of the overlap matrix
Svi = (D] i) (2.17)
Then it is easy to show that
<¢V|¢M> = <¢I/|¢“> = 5141- (218)

The dual(¢”| is thus a projection operator, created as a linear combimati the basis func-
tions. This linear combination is such that when the proje¢”| is applied to a function
spanned by the spag¢ép,,) }, only the coefficient corresponding fig,) is retained.

The systems we wish to solve, consist airat cellthat is repeated periodically. In SIESTA
it is also usefull to define aupercel] constructed by a few replicas of the unit cell. The
supercell needs to be sufficiently large in order to catcthalinteractions of the unit cell with
its neighbouring cells. It must then contain all the peradlimages of the unit cell that have
orbitals overlapping with the orbitals of the unit cell. hetfollowing, we refer wittm and N
to the total number of atomic orbitals in the unit and supéreespectively.

Using localized orbitals we typically find various sums oséferent indices, each indice
denoting the orbital, atomic site and cell. Occasionally,would like to distinguish between
different cells or atoms in the sums. For this reason we defisienplified notation to make
the formalism more clear. We start by defining the basis set:

|Ptunm) = |Pnu(r = (Rn + Rau))). (2.19)

In Eq. (2.19) thep,,, in the right-hand side refers to a set of orbitals, with a atodexn
(including the atom type), and with an orbital indexThe indices of the basis set (left-hand
side of Eq. (2.19)) are written in parenthesis in order ttimggiish them from a set of orbitals.
In Eq. (2.19),n refers also to the atomic site in the unit cell and each cdl (iepetition of
the unit cell) is referred to with an index R,, is the vector to the atom within the unit cell
andR, is a vector of the Bravais lattice. With the abbreviation

[myE (2.20)

we mean that the index refers to the “global” index of the orbitals in the supereaild runs
from 1 to N. The idea of the notation is that we have groupedrttiexes marked by “.” into
the indexu and the parenthesis indicate what has been grouped. Fopéxane can group

indicesn andy within each celku:
|Pu))- (2.21)

Now u refers to the cell number andis the index of all orbitals in a single cell. A more exotic
example would be

|P(uyu) (2.22)
where atomic site and cell index have been grouped into desimdexw.
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2.2.2 Bloch states

Now we wish to add the possibility to represent Bloch-statesur localized basis. Bloch-
states allow us to calculate solutions for an infinite systesimg only a finite one. A bloch-
statey*(r) with a k-vectork should satisfy the condition [91]:

U¥(r + Ry) = ¥ (r)e™ R, (2.23)

wherei is the imaginary unit/—1 andR,, a vector of the Bravais lattice.
In order to present bloch-states with our basis set, we aduhaepfactor into the basis
functions of EqQ. (2.19)

|0 Cunpy) = |Gnu(r — (R + Ry)))e’ ™ (2.24)
and consider an eigenstate represented by this basis w#kdnand with k-vectoik:
. r)= Z agllﬂgbnu(r — (Rn + Ru))>6ik.Ru' (2.25)

unpy

It is easy to see that the wavefunction of Eq. (2.25) satisfiegloch condition:

PX( =Y ark|pnu(R — (Rn + (Ry — Ry))))e™Ru. (2.26)

unpy

Now we substituté?,, := R, — R,, SO

D gkl Gnp(R — Ry + Ray)))e ) = gf(r)et . (2.27)

unp

2.2.3 K-point sampling

When solving the Schrodinger equation 2.8 using basis imet2.19, we use a finite unit
cell, imposing the periodicity of this unit cell and obtaigithis way the modes (eigenstates).
This is the so-called Born-von Karman boundary conditiorowver, if we wish to solve
a system where the unit cell is repeated to infinity, the @brb®undary conditions are the
zero boundary-conditions at the borders of ihinite cell. Eachk-vector and each bloch-
statey’*(r) can be interpreted as a distinct mode of the infinite cell.é€xation value of any
physical quantity should then be averaged over variougisak) each solution corresponding
to a differentk-vector.

The values for th&-vectors are chosen from the irreducible Brillouin-zon#] [@ith some
reasonable scheme. Throughout this work, we use the MoskRaick (MP) notation [92],
where MxN xL means a sampling of M, N and L equidistant points in the Buih-zone to
the direction of the first, second and third reciprocal vestoorrespondingly.

2.2.4 Solving the Schrodinger equation

In this subsection we show how the Eq. (2.8) can be solvedjubim non-orthogonal basis
functions of Eq. (2.24). We expand the wavefunction withliasis functions of Eq. (2.24) in
the supercell and use the Schrédinger Eq. (2.8):

H[yK) = ealihy), (2.28)
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where H is the Hamiltonian and andk the eigenvalue and k-indexes, we create the matrix
equations by multiplying with the thb‘f(.V)\:

(DY [ HIWE) = eald i) (2.29)

Since the function$¢‘f(.y)| are in the unit cell, the index k can be dropped. Writing EcR92
out gives:

Z<¢1( |H|¢u > ik: Ru Ock = €q Z ¢1 |¢u Zk'Ru’
< Z (Z i () ala = 2 ea(Z S ) ))aZL
W u!

& H(K)aw = €,S(k)agy, (2.30)
where we have defined:
Hi()um(k) = <¢1(.u)|H\¢u(.u))¢ik'R“ (2.31)
Sty () (K) = (D100 Gur(ury ) € (2.32)
whereH (k) andS(k) are matrices that depend on the k-index:
Hk)| = > Hityan (K), (2.33)
S0, =3 St (2.34)
anda,y is a vector:
agk = (aly, a2, a,, ... a"), (2.35)

wheren is the total number of orbitals in the unit cell.

We observe that the hamiltonian and overlap matrices of EQ1f and Eq. (2.32) have
the dimensions RN. The nxn matrices of Eq. (2.33) and Eq. (2.34) are created by summing
up the n<n elements of the correspondinggcN matrices (Egs. (2.31)-(2.32)) multiplied by
a phase-factor that depends on the Bloch-index k. In SIE®B&h subroutine (say, local
potentials, non-local potentials, etc.) adds its contridsuto the Hamiltonian matrix of Eq.
(2.31). After this, the matrices of Egs. (2.33)-(2.34) ameated and the eigenvalue problem
of Eq. (2.30) is solved.

In SIESTA, the Hamiltonian matrix has some parts which - uwnioately - must be cal-
culated in a real-space grid. The electron dengfty is projected into a real-space grid for
various reasons: these are for example the exchangeat@reénergy functionak’,..[p(r)]
that is a local, non-linear functional of the electron dgnand the usage of Fourier transforms
in order to solve the poisson equation to get the Hartreenpiate Three center integrals are
also calculated using the real-space grid. All this cretitesieed for an extra parameter in the
calculations, the cutoff energy.,. It is defined as the energy of a plane-wave** with the
highestk that can be represented with the grid:

1

B = Sk = %h(%)Q (2.36)

where L is the distance between neighboring grid points.
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Figure 2.1: Calculation of Hamiltonian matrix elements agbectation values for localized projectors in a
supercell scheme using localized orbitals. The orhitg)) is inside the unit cell (indicated by a thick box),
while the orbitaly . ) can be anywhere in the supercell, this is also true for thptarsp, andp,.. The cutoff
radii of orbitals and projectors are indicated by arrows.

2.2.5 The density matrix

The density matrix is a very useful concept; it encloses amtip all the information about
the system and can be used to calculate the expectatiorsvafleperators. We can find the
density matrix by considering the electronic density ofglistem:

p(r) = S0k (0UEE) = 3 0 d(r)ut 3 (afialaee™ @)

ka VUV k

=D o5 B()ut) Do) )

VUV

- qu(r);k)(u)qb(r)(M)Dv(y),(u)7 (237)

g

where we can easily see the definition of the density majx, (). Here the index..x)
goes over all orbitals in the supercell. In order to exprhessiectron density(r) inside the
unit cell correctly the indexes » do not have to run over the whole supercell, but over a small
“buffer-zone” instead, that includes all overlapping ¢als at point. For many purposes (see
below), it is sufficient that indexes v retain in the unit cell. Then we can write the density
matrix asD; ., (..., having dimensionsxN.

2.2.6 Non-local projection terms in the Hamiltonian

As mentioned earlier, the matrix elements in Eq. (2.31) ezated separately for each kind of
potential term. Here we take a look how this is done in the odsen-local projectors. These
are important in the case of pseudopotentials and the LDA€thod of Chap. 8 We consider
projectors of the type:

u7n7"{

The projectors are similar to the basis functions of Eq.qR.Note that in Eq. (2.38) we have
grouped both the atomic site and the cell index into the indékemembering Eq. (2.11) and
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using the density matrix of Eq. (2.37) we write:
P =3 (U*PT)
k

= > (XD ) Vi (Dl [X)

a7k7u7/]/])n

= > D) D10 Pn) Vi (Plusl D)) - (2.39)
VU, K
This sum is illustrated in Fig. 2.1.

The forces on atoms due to such projectors are the derigaifibe energy term Eq. (2.39)
with respect to atom locations. They are calculated mogydasconsidering forces on each
atom-projector pair and then summing over all pairs. Onetban make the derivative of
(&1 |Pwyn) With respect to the orbital-projector distanBg — R, and the force acting on
each one of their corresponding atoms is:

F=-VP=—3 2Di4)(V ({$100Pw1n) ) Vi Pusel b.a0)

u7777h:

= > 2D100), 0 ({8106 V 1Py} ) Vi Pl B0 ) (2.40)

:LL’177H

2.3 Pseudopotentials and Pseudo-orbitals

The pseudopotentials used by SIESTA are norm-conservingitid pseudopotentials. We
typically use those developed by Troullier and Martins (T®B] and apply them to the wave-
functions using the fully non-local formulation due to Kieyian and Bylander [94]. Using
ab-initio pseudopotentials the wavefunction is projedted s-,p-,d- etc. orbitals and differ-
ent potential terms are applied to each of these componbntsg. (2.38) this corresponds
to diagonalV/,. non-local potential terms. Rather than going into the ¢ketfithe TM pseu-
dopotentials, we simply present here the parameters usgdnerate the pseudopotentials
used throughout this work. For more details, one can seg$3&04].

To generate the pseudopotentials, we used the ATOM prodrantbomes with the stan-
dard SIESTA package. In addition to generate the pseudoipaie ATOM program provides
us with the pseudo-orbitals, which are the wavefunctiorenofolated atom, if the one-atom
problem is solved using the pseudopotential. SIESTA usesetpseudo-orbitals as a natural
basis when solving the Schrodinger equation. More compsistsets can be generated using
SIESTA. Individual orbitals can be “splitted” several tig® obtain more variational freedom
and excited-state orbitals can be generated. For mordgjeta¢ can consult Refs. [84-86,89].

The pseudopotentials used in this work are listed in Taba@dLit has all the information
needed to create these pseudopotentials with the ATOM @nogAs an example, the pseu-
dopotentials and the wavefunctions for indium are illusitidn Fig. 2.2. Note that outside the
matching radii, the wavefunctions are equal to the pseud@fuactions (which are used by
SIESTA) and that the latter ones do not contain any nodesuBing the matching radii, we
have been able to make the pseudopotentials if Fig. 2.2bwalasmooth, compared to the
all-electron effective potential (not shown), and keeprthie a reasonable energy range.

The bases used for all the elements in the course of this werkdicated in Tab. 2.2. In
this table we have also calculated the bulk lattice constasbme cases. An example band
structure from a bulk calculation of Au is illustrated in Fig)3.
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Element] E.. | file | valence | matching radii

H (1) LDA [ H.psf 1s 1.25

H (1) GGA | H2.psf 1s 1.25

0 (8) GGA | O_opt.psf| 22p*3d® 1.14,1.14,1.14 (1.38)
Si(14) | LDA | Si.psf 3823p? 1.89,1.89

Si(14) | GGA | Si2.psf 3s23p2 1.89,1.89, (3.00)

Fe (26) | GGA | Fe.vps 3s23p83d%(4¢?) | 1.20,1.20,1.78, (1.37
In(49) | GGA | In2.vps 4d'95825p 1.79,2.48,2.99,(3.56)
In(49) | GGA | In3.vps 5825p 2.48,2.99,(5.59)

Au (79) | LDA | Au.vps 5d106s 2.00,2.47

Au (79) | GGA | Au2.vps 5d'96s 2.00,2.47,(4.03)

V (23) GGA | V.psf 34 2.35, 2.70, (0.8)
Sr(38) | GGA | Sr.psf 4241058 1.80, 1.80, 1.80 (1.3)
0O (8) GGA | O.psf 282 2pt 1.14,1.14

Table 2.1: The pseudopotentials used in the calculatiotsi®fwork. The functional used for LDA is due to

Perdew and Zunger [95] and the one used for GGA due to PerdekeBnd Ernzerhof [96]. Valence electronic
configuration is shown, as well as the mathing radii. In thdiireolumn, core-correction radius is indicated
in parenthesis. In the case of iron, 4s orbitals were nouthd in the pseudopotential. Scalar-relativistic
corrections were included for Au [97]. In the case of Sr, teebital was not explicitly generated, but we use
the 4s orbital (very similar to 5s) instead, when generatiegoasis set in Tab. 2.2.
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Figure 2.2: The Indium pseudopotential. (a) The all-etat{solid) and pseudo- (dashed) wavefunctions for 5s
(black) and 5p (blue) atomic states. (b) Pseudopotentals (black), p (red), d (green) and f (blue) states.

In this work, we use mainly three type of basis sets: (i) tinglg( (SZ), which includes
just the plain pseudo-orbitals, (ii) the doulllébZ) in which the plain pseudo-orbitals have
been splitted once (DZ) and (iii) the douldewvith polarization orbitals (DZP), in which wave-
functions with angular momentum L+1 (L being the maximumwagmomentum of the SZ
and DZ basis sets) have been created by perturbation théotire SIESTA methodology,
the confinement radii of the orbitals is defined by an exatagnergy [86, 98]. This “energy
shift” is indicated in column 2 and the resulting cutoff riaatie listed in column 3 of Tab. 2.2.

2.4 Miscellaneous tools and implementations

In this work we used the ready-made SIESTA program packagehleve was also some
implementation involved, as will be emphasized in Chap. §arfrom the programming
work done in Chap. 8, we implemented numerous auxiliary g (in awk, python, matlab,
etc.) in order to handle band structure plots, create si@dlSTM/STS data, etc. We also
modified some parts of the SIESTA code and made data poségsiog programs in Fortran.

We explain some of the most important modifications and twalkis section.
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Pseudopotential AE (mev)  orbitals basis LC (Ang)
file (cutoff radii / au)
Au.vps 200 5d(4.51),6s(6.24), DZP:6s- 4.12 (exp 4.08)
6p(6.24) Sz:5d
Au2.vps 5d(4.51),6s(6.24), DZP:6s-
6p(6.24) Sz:5d
In2.vps 5s(5.95),5p(7.83), SZ:4p-
5d(7.83) DZ:5s-
DZP:5p
In3.vps 5s(5.95),5p(7.83), DzpP
5d(7.83)
Si.psf 3s(5.26),3p(6.43), Sz 5.53
3d(6.43)
Dz 5.48
DZP 5.42 (exp 5.43)
Si2.psf 3s(5.13),3p(6.59), Sz 5.62
3d(6.59)
Dz 5.56
DzP 5.50
H.psf 1s(5.08),2p(3.95) DZP -
H2.psf 1s(4.95),2p(4.95) DzP
Fe.vps 50 3s(2.56),3p(2.91), DZ:3d,4s-
3d(4.23),4s(6.00), SZ:3s,3p,4p
4d(6.00)
O_opt.psf 2s(4.47,2.37), DZ:2s,2p-
2p(5.85,2.42), Sz:3d
3d(3.51)
V.psf 3d(5.025,2.724), DZP:4s-
45(7.88,6.87) DZ:3d
Sr.psf 4s(3.62),4p(4.11), SZ:4s,4p,4d-
55(7.30,6.69), DZP:5s
4d(6.28)
O.psf 2s(3.65,2.51), DZ:2s-
2p(4.57,2.64) DZP:2p
Table 2.2: Information about the basis sets used througtiesitwork. In the first two columns, the

pseudopotential file (see Tab. 2.1) and the energyshift tsembnfine orbitals, respectively. In the third
column the resulting pseudo-orbitals and their cutoff iradin some casesHe.vps 4s and 4d orbitals,
O_opt.psf , V.psf , Sr.psf , O.psf ) the cutoff radii has been defined explicitly. FOr_opt.psf ,
parameters RrefactorSoft,InnerRadSoft ) have been used: they are, for 2s, 2p and 3d orbitals,
(58.20,3.47),(1.05,4.85),(69.65,0.30), respectivEhe basis set (see also Sec. 2.3) is indicated in column “ba-
sis”. Sometimes the basis set is a mixture of SZ, DZ and DZPekample, in the case of gold, we have used a
minimal basis for the 5d orbitals (SZ:5d), doubled 6s otbitend the perturbation theory has been used to create
the polarization 6p orbitals (DZP:6s). For some elementlk balculations were performed in order to obtain
the lattice constant (LC). In these cases8% 8 Monkhorst-Pack sampling and mesh cutoff& 100 Ry were
used. The experimental lattice constant values are from[&E]f

2.4.1 Simulated STM images

The simulated Scanning Tunneling Microscopy (STM) imagesaavery important tool for
comparing theory and experiment in the case of surfaceserifrpntal images are obtained
by the STM apparatus that measures the tunneling currenebatthe sample surface and the
STM tip. As the tip is moved along the surface, the tunnelingent is altered, depending
on the local conductivity at that point on the surface. An Sid@ography is obtained by
raising and lowering the STM tip in such a way that the tummgeturrent stays constant. In
the simplest approximation the tunneling current depemd$he Local Density Of electronic
States (LDOS), so an STM topography then corresponds to a3.B@surface, which can be
easily derived from calculations. Using the calculated L9&hd searching for its isosurface
is a very simple and powerful approximation, first introddibg Tersoff and Haman [99].
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W L I X W K
Figure 2.3: The band structure of Au using the basis set iestin Tab. 2.2

The LDOS reduces to the electronic density of Eq. (2.37)nout the indicex runs over
eigenstates that are within some energy-windew<{ ¢ < ¢,):

p(r) =D O(r)50) () () Do) () (€15 €2) (2.41)

v

where
Dyyumlen €)= Y agpab e, (2.42)
k,(e1<e(a)<e2)
By adjusting the energy-window, we are able to create fillad empty-state LDOS data,
with desired energy range.

The SIESTA code was modified in such a way that it permits uave the density matrix
of Eq. (2.42). Then we can use the DECHAR program, availalifle the SIESTA code to
produce the LDOS data in a three-dimensional grid. This tatiaen processed with MAT-
LAB and the isosurface can be searched using available MA tdutines. Once we have
the isosurface on a 2-dimensional grid (function valuesrat goints correspond to isosur-
face heights), we can transform it into grayscale colorsg|lfifrproducing the simulated STM
image.

2.4.2 Population analysis

When analyzing the chemical bonding of the system it is @&den know the number of
electrons in different atoms and orbitals. One possible @fgyerforming this analysis was
introduced by Mulliken (1955) [100]. With Mulliken chargésr populations) one can draw
conclusions about the ionic versus covalent character ebtinds and the charge-transfer
taking place in the system. The latter helps to understamd&haviour of, for example, the
metal-adsorbates and dangling bonds on a silicon surface.
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In this work we are frequently interested in the origin offeliént surface bands seen
both in the experiments arab-initio calculations. In calculations, we are able to see the
contribution of an individual atom (or an orbital) in the @i®@nic band structure. We start by
considering the total charge of a single one-electron state

Q=1= (YX]X) Z alyabSuu (k) =D g7k, (2.43)
1]

where we have defined the charge contribu@i@h of eigenstater to orbital . at k-pointk as:
Z e Sy (k) (2.44)

To present this information in the band structure plots, miag proceed as follows: if the
qgvk is greater than some treshold value, the eigenenergy otakbecsis highlighted with a
symbol in the band structure. The symbol size can also be moad@respond to the number

ak
k.

2.4.3 Constrained relaxations

During the course of this work we relax various surface $tmas using the Conju-gent-
Gradient (CG) method. In some cases we want to fix some geionegttities, say, entire
layers to keep the relaxation in accordance with an experiaheroposal or individual atoms
in order to force atomic distances, etc. We have implemeatesv very simple constraints.
Atoms can be collected into a group and atoms within the samgogcannot move with one
respect to another in a constrained direction. This can beaed by “correcting” the forces
on atom in the following way:

fi = fi — (fl . VO)VO —+ F, (245)

whered? is the constrained direction afidhe mean force of the whole group of atoms into
this direction. We also implemented the possibility to segiced force components simply to
zero.

Another possibility to implement such geometric boundamyditions would be to use the
Z-matrices. In this approach, one uses the internal coatelin(bond lengths, bond angles,
etc.) instead. The possibility to use Z-matrices has be@teimented in SIESTA 2.1.



Chapter 3

1-D Metal-induced reconstructions on
Si(111)

3.1 Introduction

An interesting class of surface reconstructions is crelayettie evaporation of small amounts
(0.2-0.4 ML) of metal, usually alkali, rare-earth or nobletais on a silicon substrate. De-
pending on the amount of the deposited metal, and the anggaibcess (i.e. how the sample
is heated and cooled), different surface patterns emeidjelzaracteristic surface geometries
are stabilized by the presence of the metallic atoms. In ncasgs, one-dimensional features
are observed.

These reconstructions include the so-called Si(111))(Bedonstruction (for a review, see
[65, 66]) that is formed by the deposition of alkali metalsiwer. Deposition of gold forms a
variety of reconstructions depending on the miscut anglee$ubstrate (see Refs. [1,31,101]
and references therein). Similar reconstructions resathfthe deposition of indium (see
Ref. [55] and references therein).

These (quasi) one-dimensional metal-induced surfacensaactions are usually created
in-situin order to study them with Scanning-Tunneling Microsco8y 1), Angle-Resolved
Photoemission (ARPES) and Low-Energy Electron Diffract{tEED). Row-structures are
observed with STM and (quasi-) one-dimensional electretates can be seen in ARPES
experiments. The periodicity of the reconstruction is obseé with LEED. When the sub-
strate has terraces (a “vicinal” substrate) the row-stmest tend to form more easily because
the reconstruction has a preferred direction. Howevegedheconstructions have also been
observed for completely flat substrates.

According to recent theoretical models for many of theséesys, the metal atoms tend to
form monatomic wires [1,67,69-72,101-103]. In the caséefvicinal surfaces, typically
only one single or double-wire per terrace, running parédiehe step-edge, is present. One
could then tune the coupling of the wires of neighboringgees by changing the terrace-width
and this way alter the one/two-dimensional character ofeébenstruction [1].

A strong motivation for fabricating one-dimensional mitadtructures on semiconducting
surfaces, has been to observe the so-callgtinger liquid behaviour. In a one-dimensional
metal, the low-energy electronic spectrum is dominatedddctive spin and charge excita-
tions [104—106]. This is in contrast with the behavior ofitgh metals, that can be understood

25
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in terms of independent particle-like excitations usuaHjled quasiparticles. Unfortunately,
one-dimensional metals are thought to be, in principletabis with respect to the Peierls
distortion that drives them into an insulating ground sfa@¥]. A possible route to avoid this
limitation could be the fabrication of metallic chains atise on surfaces; the hope is that
the rigidity of the substrate will make the energy cost fa #ftructural distortions too large
and, therefore, the one-dimensional chains would remaitalfite Semiconductor surfaces
are specially attractive for this purpose: the existencanoénergy gap prevents the coupling
of the electronic states of the chain in the vicinity of therfdevel with the substrate and the
one-dimensional character of these states is preserved.

The Luttinger-liquid theory predicts a splitting of the lobstructure near the Fermi-level,
where two different excitations, spinons and holons, shdaé observed (corresponding to
separate spin- and charge excitations) [104—-106]. In tbe abthe Si(557)/Au reconstruction,
a clear band splitting was observed by Segovia, et. al. [2d]iaterpreted in terms of
the Luttinger liquid. As the experimental [28—30, 32—-34,&8 and theoretical [69-71, 103]
research of this surface increased, several other explasdbr this behaviour were proposed.
These are, the existence of two distinct metallic bandsdas a theoretical model aradb-
initio calculations [69, 70]; the existence of two distinct métadlires on the surface [30]; and
the spin-orbit splitting [71].

The origin of the band-splitting observed by Segovia, et[24] is very likely to be the
spin-orbit interaction; after it was theoretically pretéid by us [71], it was found in a very
similar system, the Si(553)/Au reconstruction [62]. Notyothe Si(557)/Au, but most of
the gold-induced quasi one-dimensional surface recartgins found up to date feature a
similar band-splitting [1, 19, 28]. From the technologipaint of view this might make them
interesting; one could use them in the future spintronidaess The Si(557)/Au and the role
of the spin-orbit interaction and its consequences areudgsd in detail in Chap. 6.

Another very interesting feature observed in these sur@oenstructions is the existence
of metal-insulator transitions [30, 33,45, 47,52, 54, 5@hnsition from a metallic state to an
insulating one has been observed for several of these surdaonstructions in ARPES and
Scanning-Tunneling Spectroscopy (STS) experiments aethperature is lowered below
100 K. This transition is accompanied with periodicity-8bang in the STM images.

According to Ahn and co-workers these transitions are Peli&e displacive phase transi-
tions [30,33,45,52,54,56], between a highly symmetribh@mperature phase and a low tem-
perature structure with lower symmetry and/or higher ghcity. In the case of the Si(557)/Au
we have initially proposed that the behaviour seen in the $Xperiments could be explained
by the disappearance of the dynamical fluctuations in thiesyas the temperature is lowered,
corresponding to an order-disorder phase transition [GOnzalez, et. al., have proposed a
similar mechanism in the case of the Si(111)/In-4x1 reqoetibn [77-79]. However, in
Chap. 6 we also point out that there exist a continuous areesbetween these two different
kind of transitions [108] and the two different ideas do netessarily exclude one another.
According to us, the metal-insulator transition in Si(58\) is dominated by the freezing of
a mode that corresponds to the movements of atoms in theedtgpof the Si(557) terrace.
In Chap. 6 we have simulated usiab-initio calculations STM and STS data based on the
geometrical model of Si(557)/Au to test this idea and it seémat our results reproduce quite
well the experimental data.

The metal-insulator transition is particularly interegtiin the case of the Si(111)/In-4x2
and Si(553)/Au reconstructions. Both systems have a numbdifferent bands crossing
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the Fermi-level, each one with its characteristic fillin§2,[72]. These bands seem to suf-
fer a metal-insulator transition, involving several diffat structural distortions and complex
charge-transfer between them [52,72,77,78,109]. Thésetgfare studied using a simplified
model for the Si(111)/In-4x2 in Chap. 5.

A particularly interesting phenomena in many gold-induessbnstructions [1] is the pres-
ence of silicon adatoms which can be removed or added witstoongly affecting the un-
derlying surface reconstruction [20-22, 24]. For this osag has been proposed that these
reconstructions could be used as atomic-scale memoryeatevindividual adatoms acting as
bits [20]. Also using adatoms, Yoon et. al. [25] were ablerate alterning conducting and
semiconducting segments in the Si(111)-5x2/Au surfacesisting of regions with excess or
depletion of the adatom density.

The research on some of these systems started as early atethixlies [2—4]. Only quite
recently, ab-initio calculations have started to play important role in the aede of these
systems [67—69, 101]. They are a powerfull way for testirffecent hypothesis about the
origin of observed phenomena. A good example is the Si(Bbifg¢construction mentioned
above. By now the origin of the metallic bands found with ARPH9, 28] seem to be quite
clear: the free-electron like metallic bands are a resuthefhybridization of the gold 6p-
states with the neighboring silicon orbitals [69, 70], tisesdates of gold appearing well below
the Fermi-energy. Another good example is the Si(111)Ax2Econstruction. It has been
studied with growing intensity during the last three deca@ee refs. [14,101] and references
therein). From the experimental work, many different getita structure were proposed.
Finally, the models based on theoretical calculations 161] have been able to reproduce
to some extent the theoretical results (see ref. [101] afedlereces therein). In Chap. 4 we
present some new models which agree quite well with the te8€N and ARPES data and
which are predicted to be more stable than any other modpbgeal to date.

The theory behind the band structures and atomic geomatredsgold-induced surface
reconstructions is quite similar and analogies betweendiffierent reconstructions can be
found easily. Based on these analogies, in Chap. 7 we hastedreeveral trial geometries
for the Si(553)/Au reconstruction. It is the “newest” of sieereconstructions [58] and we
consider that a reliable structural model has not yet beendl].

In order to test hypothesis witb-initio calculations, a model geometry is needed; in this
scheme, one proposes a trial geometry and then producesi¢vant physical properties of
this geometry (total energy, electron-density, eigemstagtc.) by arab-initio method. By
relaxing the trial geometry one also checks for its stabditd by comparing total energies,
one can make conclusions about its stability with respeothier geometries. Fromb-initio
calculations simulated STM data can be easily reproducss $ec. 2.4.1). The band struc-
ture is usually taken to represent the simulated ARPES isppant Mulliken analysis can be
performed in order to see the origin of the bands (see Se?)2.4

In order to create reasonable trial geometries, one needs stsight on the geometry,
bonding and charge-transfer that takes place in the Si(ddrfaces (and in the silicon sur-
faces in general). For this reason we start, in Sec. 3.3 bgdating some very basic and
famous silicon reconstructions and looking at their phgisproperties. In Sec. 3.4 we also
consider the honeycomb model for the Si(11¥){3}/X, X=Li,Na,K,Ag,Mg reconstructions
which turns out to be also relevant for the surfaces we standire course of this work. In
Sec. 3.5 we consider some fundamental Si(111) stackingepiep which are, together with
the basic Si reconstructions the base for creating ourgeametries. Before all this, we take
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Figure 3.1: Cleaving of the Si(111) surface as function efMiller indices. Each set of Miller indices corre-
sponds to a different step width. Picture taken from Ref. [1]

a look at some basic concepts such as the notation of sudaogastructions.

3.2 Some basic concepts

A cleaved, unreconstructed Si(111) surface is presentéin3.2. We assume for the mo-
ment that the reconstruction takes place in the first dolayler (dbly), where we should
relocate the atoms. The periodicity of the reconstructeodenoted by its two-dimensional
lattice vectors, say MM. This means that the lattice vectors of the reconstrusteme N
and Mv,, wherev; andv, are the lattice vectors of the unreconstructed Si(111psar{see
Fig. 3.2a). In lattice constant units they ate= (0,1/+v/2) and, = (\/%,1/\@). Here
with (x,y) we refer to the {12] and [110] directions, correspondingly. With relative units we
refer to a coordinate system that must be scaled by thedattinstant.

By avicinal surface we refer to a surface that has been cleaved alongdsmugon whose
normal is close to the [111] direction. Typically these augs produce steps with terraces
exhibiting [111] facets, the widths of the steps dependinghe cleaving direction. The
normal of the surface is denoted by the three Miller indisessach set of indices corresponds
to a certain step width. This is illustrated in Fig. 3.1, wherlarge set of Miller indices is
considered.

Some Miller indices are - depending on the symmetry of th& madterial - equivalent. In
the case of silicon, we are allowed to “scroll” the Miller inds, i.e. (557),(755) and (575)
correspond to the same surface. This “scrolling” corredgdn a symmetry operation that
leaves the silicon lattice vectors unaffected.

3.3 Basic Si(111) reconstructions

The natural geometry of cleaved and annealed Si(111) isi{h&137x 7 reconstruction, also
called the Dimer-Adatom-Stacking Fault (DAS) model [1112]L It was found after more
than two decades of research and is quite complicated. Weatijo into its details, but rather
concentrate on some well known small-scale reconstrustibat take place in the Si(111).
Even the complex Si(111)/7 reconstruction can be reduced to some extent to the bésic si
icon building blocks, say, mainly to the adatom 2 reconstruction and surface-dislocation



3.3. Basic Si(111) reconstructions 29

Figure 3.2: Silicon (111) surface without reconstructiciewed from top (a) and from side (b). The inset of
figure (b) shows the directions. The buckling«®) reconstruction of Si(111) [110], viewed from top (c) and
from side (d). 2-dimensional lattice vectors are indicate) and (c).

(that will be discussed below). A wide range of vicinal silicsurfaces have been studied in
Ref. [113] and it seems that in the family of Si(111) surfadexh flat and stepped), atoms re-
construct only inside the terrace - i.e. no strong rebondirte step-edge is observed [113].
The building blocks we consider here are the buckling, gitcland the adatom reconstruc-
tions. For more details on the buckling model, see Hanem@®i(1110]. The pi-chain model
was introduced by Pandey (1981) [114], see also Norhtruple(1982) [115]. For some of
the firstab-initio calculations of the adatom model, see Northrup, et. al. 419BL6] and
Meade and Vanderbilt (1989) [117].

A cleaved Si(111) surface is illustrated in Fig. 3.2a-b. Tneing force for the recon-
struction are the dangling-bonds that are left to projeict the vacuum, after the surface has
been created from the bulk. The system tries to eliminateetidangling bonds by relocating
the surface atoms. By hybridizing the dangling bonds witieobrbitals, the system could
open gaps and lower its total energy. During the relocatoreyen removing) of the atoms,
surface stress arises, due to the underlying silicon budk phefers unaffected atomic sites.
The system with lowest total energy is the one that optimihescompetition of these two
terms. Each one of the following simple building blocks we about to consider, solves this
problem in a different way.

3.3.1 The buckling model

In the buckling model [110], illustrated in Fig. 3.2c-d, theighboring atoms "buckle”, i.e.
change their relative heights. This creates a surface with Reriodicity, where the atoms
have different z-positions alternating along théZ] direction. By having different heights,
the atoms achieve an important charge transfer. The lovedosd adopts the Sfhybridization
and gives up the electron in its prbital. This extra electron moves to the’ sfangling-bond
of the elevated atom and thus saturates it. This eliminatesdangling bond per each2
unit cell, and opens a gap in the surface bands associatedh&ilangling bonds.
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Figure 3.3: The pi-chain reconstruction of Si(111) [114wed from top (a) and side (b) and the band structure
(c). 2-dimensional lattice vectors are indicated in (ajelrof (¢) shows the Brillouin-zone and the path in the
k-space used to plot the bands. The atomic character of tigsliaas been marked with green squares and open
circles. Corresponding atoms are marked with the same dgritbpanel (b).
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Figure 3.4: The adatom reconstruction of Si(111) [117] wdvrom top (a) and side (b) and the band structure
(c). 2-dimensional lattice vectors are indicated in (ajelrof (¢) shows the Brillouin-zone and the path in the
k-space used to plot the bands. The states marked with redscinave a strong weight on the restatom, while
the green ones are mainly from the adatom.

3.3.2 The pi-chain model

The energy barrier between the buckling and the pi-chaiangcuctions is minimal [115];

in an ab-initio calculation, starting from the buckling reconstructioe gystem frequently
relaxes spontaneously into the pi-chain configuration ¢dusmall noise in the forces). Pi-
chain reconstruction is illustrated in Fig. 3.3. We notie® televated atoms that form a
zigzag-chain into thel[l 0] direction. The p orbitals of these atoms are hybridized, creating a
"pi-chain" while the rest of the orbitals adopt the $yybridization. A gap opens in the band
associated with the-chain due to the two inequivalent positions of the atoma@lio. The
lower atoms are in the $fybridization state, so there are no unsaturated dangéinds In
the band structure of Fig. 3.3c we show our calculation ofiiiied structure of this surface
and observe how bands related to the elevated atoms devghyp a



3.4. The honeycomb chain model 31

Figure 3.5: The Honeycomb Chain (HC) model of Si(11¥)1{3/X, X=Li,Na,K,Ag,Mg [66], viewed from top

(a) and side (b). The honeycomb is indicated by a box in (b)thad2-dimensional lattice vectors are plotted
in (@). Schematic plot of the bonds, viewed from top (c) ant gd). The dashed lines present the bonds of
the second dbly, while the solid ones the bonds of the firginftmst) dbly. The bonds of the honeycomb (not in
clear sg hybridization) are numerated from (1)-(5) (see text formdls}). The large filled circles present the metal
adsorbate atoms.

3.3.3 The adatom model

In contrast to the two basic building blocks of the previoest®ns, in the adatom reconstruc-
tion we add atoms in top of the surface. This is illustratethmFig. 3.4. We observe that by
adding one adatom every2 supercell, we are able to saturate three dangling bondk wh
creating only a single new one. We also observe a slightlyaédel atom, the "restatom” that
has a dangling bond not saturated by any of the adatoms. Tiggtiniga bond of the adatom
gives up its electron that moves into the restatom, thuga#atg it. The elevation of the
restatom can be attributed to the repulsion between itstivegeharge and the underlying
dangling-bonds. From the band structure of Fig. 3.4c we seethe adatom gives signal in
the empty states while the restatom in the filled ones.

3.4 The honeycomb chain model

In the last section, some simple Si(111) building blocks)sisting purely of silicon, were
considered. What happens when a small amount of metal i®eatapol on the surface? When
~ 0.2 ML of Li, Na, K, Ag or Mg are deposited on the flat Si(111) aarthealed, a character-
istic row-structured reconstruction, the Si(11R@/X, X=Li,Na,K,Ag,Mg is observed [66].
The theoretical model with the lowest total energy up-ttedeccording tab-initio calcula-
tions is due to Erwin and Weitering [66] and is illustratedFig. 3.5. It is also called the
"Honeycomb Chain" (HC) model.

First of all, one observes the metal adsorbate sitting egid surface layer, in a situation
that can be interpreted as a silicon substitutional siteoSe, located next to the metal atom,
the silicon bonds create a curious structure, which is thealed honeycomb. Third, in order
to create the honeycomb, one has to remove a silicon atomtiremanreconstructed Si(111)
surface.

The stability of the HC is explained as follows [66]: the $das of the HC create a
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Figure 3.6: Different ways of stacking silicon. The dasheed present the bonds of the second silicon dbly,
while the solid lines those of the first (topmost) siliconydt®pheres correspond to the "up" atoms of the second
silicon dbly.

double-pi bond (separate spand p-hybridization) and in order to saturate all the bonds,
ionize the alkali-metal. This scheme is illustrated in Fig.5c-d, where the bonds of the
honeycomb are visualized. Bonds (1) and (2) hybridize, ssd8) and (4). The "molecular
orbital" created by this hybridization, further hybridsaith the bond (5). The charge transfer
can be explained by counting the electrons of the honeycdhneloe is one electron available
for each bond, so the total electron-count in Fig. 3.5c-dives It can be made closed-shell
(even electron count) if one electron is removed or addedl tdhe HC ionizes the alkali-
metal, obtaining this way the extra electron.

In our case and in the following chapters, we are studyingiimaurface reconstructions
involving gold. Surprisingly, the (HC) forms spontanequisl most of the cases. Gold can act
both as a donor and as an acceptor of electrons, so the clnangéet will not be as obvious
as in the case of the Si(111%3)/X, X=Li,Na,K,Ag,Mg . On the other hand, the silicon HC
will obtain a closed-shell electronic structure even ifatsaas a donor. Also both the gold and
the silicon HC might act as acceptors, ionizing other pairth® surface reconstruction (for
example, dangling bonds).

3.5 Stacking Silicon

By stacking silicon, we refer to the different ways of arranggthe bonds in the Si(111) sur-
face. Some of these ways are illustrated in Fig. 3.6. Staftiom the very first row in the
right, we first have silicon atoms in a similar coordinatianiia the unreconstructed Si(111)
surface. We then remove a row of silicon atoms. In order tmmta@ the bond-lengths rea-
sonable, this removing is accompanied by a translationeofémaining topmost double-layer
to the right. First of all, this creates a so-called "surfdisgtocation” (SD). A row of atoms
becomes overcoordinated, so their position is obviousérggtically unfavorable. We also
observe that when going further to the left the atoms are stacking-fault" (SF), where the
bonds of the first dbly follow the bonds of the underlyingl dbly. Going further to the
left, this SF is corrected by removing an atom and creating rows of silicon atoms with
rather long bond-lengths. Continuying to the left, we obséhat the perfect silicon stacking
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has been recovered.

After removing or adding atoms to the surface the differemhbinations of SD and SF
become important as one wishes to recover the perfect atacKihis happens for example
when one wants to introduce a HC into the Si(553) surfacentrgpducing a HC, one creates
stacking-faults which must be corrected by a surface-daglon. This is discussed in more
detail in Chap. 7. We also create a notation for defining tffer@int combinations of SD, SF
and HC in Chap. 7.

3.6 Surface calculations with SIESTA

The SIESTAab-initio code [71, 84, 86] was used throughout this work to simulatestirface
reconstructions. On some occasions, to test our resuttplame-wave code VASP [118,119]
was also used. The results of SIESTA and VASP were alwaysstlichentical.

In surface calculations, and ab-initio calculations in general, one can adjust the trade
off between computational speed and accuracy of the cailcalby some key methodological
parameters. For most DFT schemes, these are (iqub@consistencyf the field equations
of Egs. (2.8)-(2.15), (ii) thenesh densityelectronic density must be put on a real-space grid
in order to calculate the exchange-correlation terms), tfie k-point samplingand (iv) the
basis-set In the case of surface calculations, key parameters ape(\@lsheslab thickness
and (vi) theslab-slab distance

(i) A less stringent autoconsistency condition speeds agéhculation, but may give in-
accurate results, especially when there are lots of statgsnear/crossing the Fermi-energy.
The autoconsistency in SIESTA calculations is measured fre density-matrix, for details,
see Sec. 2.2.5. (ii) The mesh density is usually taken torgedg@han 100 Ry. (iii) The k-point
sampling is very important when calculating infinite syssemach k-point corresponds to a
mode of the infinite system (in contrast to the modes adjggtirthe periodicity of the unit
cell) we are calculating, so using more k-points makes thautzed quantities more realis-
tic. In the case of the quasi-one dimensional surface réaart®ns, one typically uses more
k-points in the “one-dimensional” direction, along whit¢tetelectronic bands present a larger
dispersion. (iv) The basis set is very important paramet&IESTA calculations; one must
consider in detail the limitations of the basis set used awl suitable it is to describe the
known properties of each of the simulated elements. Foréfiaition of different basis sets,
see Sec. 2.3.

When calculating surfaces using standard methods like B\©$ VASP, we are bound to
calculate infinite systems (not semi-infinite, like a suefadVe must then model the surface
as a slab with a finite thickness that is repeated perioglieéding the normal direction of the
slab. The bottom of the slab is saturated with hydrogenr(etesely, symmetric slabs can
be used [117]) and the atoms in the lowermost layer are fixedetio initial bulk positions.
One must then choose carefully (v) the slab thickness anth@iamount of vacuum between
the slabs. A very thin slab has smaller number of atoms ankuis tomputationally very
convenient. However, not using a sufficient amount of freelsixing atoms in the slab results
in artificial stresses. A good example is the adatom recoctsdn of Fig. 3.4, where atoms
move considerably from their bulk-positions also in thessetdbly. A thin slab also polarizes
easily and might create a strong dipole-moment. Using aisktbad of a real semi-infinite
medium also implies that the electronic states become geghtiue to the finite thickness;



34 Chapter 3. 1-D Metal-induced reconstructions on Si(111)

Figure 3.7: A small portion of the (infinite) adatom recounstion, including only two dblys, viewed from an
arbitrary angle.

[ basis-set Sz DZ DZP |
buckling 0.0 0.0 0.0
7-chain -16.3(-3.6) -18.6(-5.7) -13.2(0.0)
adatom -4.4(1.2) -3.9(1.8) -5.9 (0.0)

[ Bulk Si Chemical potential (eV)  -107.013 -107.298 -107.75p

Table 3.1: LDA total energies (meVF of relaxed Si(111) reconstructions, calculated withetit basis sets,
using k-point sampling of 44 and 3-dblys. Relative energy values within each colummcangparable. Relative
energy values in parenthesis are comparable within each row

thinner slabs result in less electronic states and pooseitse

We have calculated the systems presented in Sec. 3.3 agofunétthe most important
key parameters (iii)-(vi) in order to see how they convejge parameters (i) and (ii), i.e. the
autoconsistency and the mesh cutoff, were set td Bd 120 Ry, respectively. For (iii) the
k-point sampling, we use the Monkhorst-Pack scheme, exgiin Sec. 2.2.3.

By the number of dblys, we refer to the total number of dblyshia system, including
the bottom layer saturated by hydrogen: an example of #zédatom model, with only two
double-layers is presented Fig. 3.7. The basis for the lggr@atoms was always taken to be
DZP, in order to enhance the sp hybridization with the silicbhe distance of the hydrogen
layer from the silicon layer was optimized, yielding theualof d~0.217 (in units of lattice
constant). The (vi) slab-slab distance was taken to be 15 A.

The silicon basis-sets used in the test calculations aesllia Tab. 2.2. Calculations are
performed with LDA. As explained in Sec. 2.3, the SZ basisudes (one) 3s and (three) 3p
orbitals. DZ includes the same set of orbitals, but splitsheaf them in order to get more
variation freedom (resulting in eight orbitals). DZP has same orbitals as DZ, but adds also
a shell of (five) d-orbitals, resulting in total of 13 orbggler atom.

The bulk lattice constants for different basis sets can badan Tab. 2.2. In Tab. 3.1
the silicon chemical potential (the energy of a Si atom in the bulk) have been calculated
using each of the basis sets. It is very important to use tequate lattice constant for each
set of the computational parameters in order to avoid atifitesses. When comparing total
energies from systems involving different number of atdimsthe extra-atoms we will assign

[ slab thickness  2-dbly 3-dbly 4-dbly 5-dbly |
buckling 0.0 0.0 0.0 0.0
m-chain 21.6(-2.4) -18.6(0.5) -19.5(-0.3) -19.4(0.0)
adatom -4.1(-3.4) -3.9(-3.2) -3.0(-2.2) -0.8 (0.0

Table 3.2: LDA total energies (meVZA of relaxed Si(111) reconstructions, calculated withetiit number of
double-layers, using»4 k-point sampling and the DZ basis set. Relative energyeglithin each column are
comparable. Relative energy values in parenthesis are aiie within each row.
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[ k-point sampling %2 4x4 8x8 16x16 |
buckling 0.0 0.0 0.0 0.0
7-chain -20.2(-12.4) -18.6(-1.8) -17.0(-0.2) -16.8(0.0)
adatom 50.5(60.1) -3.9(5.6)  -9.4(0.2)  -9.5(0.0)

Table 3.3: LDA total energies (meVP of relaxed Si(111) reconstructions, calculated with wagyk-point
sampling, using 3-dblys and the DZ basis set. Relative gneigies within each column are comparable. In the
"adatom" row, the relative energies in parenthesis are epafybe within the same row.

5 1IO 1|5 2|0 2|5 30
Slab-slab distance (Ang)

Figure 3.8: Energy difference as function of the slab-sleadce, for the pi-chain (solid) and the buckling
(dashed) reconstructions.

the energy. of a bulk silicon atom, since the surface should be in equiiih with the corre-
sponding bulk. The correction term is th&m x i, whereAN is the difference in the number
of silicon atoms (one must keep in mind that the chemicalmi@k.. changes as function of
the computational parameters). For example, relativeggraifferences between thechain
and the adatom models are calculated as follows:

1 1

. 3Eoxa — gp — Eaxa

- ’
A2><1

AFE (3.1)

where E’s are the energies and A the area. Subscripts refiee tanit cell. In units of lattice
constant, A,; ~0.87.

When calculating the total energies of Tabs. 3.1-3.3, wéegyatically relax the atomic
coordinates for each of the parameter sets. In order toeretelthe relaxation, we use the
information (the relaxed coordinates) from previous clatans; for example, one first relaxes
the system using the SZ basis then moves into more accurgitedsds. This systematic way
of refining calculations will be fully developed in Chap. 7here one refines step by step
using also (i) the accuracy of the self-consistency andithesize of the k-point sampling.
When realizing this kind of an approach, we have found veefulkthe python programming
language.

From Tab. 3.1 we see that the relative energies change &vablgt when thel-orbitals
are included in the basis set. For examplefarhain~ 2 meV/A? when changing the basis
from SZ to DZ and~ 6 meV/A when changing from DZ to DZP. This is consistent with
earlier observations [86, 120] and shows the importancéef/torbitals; silicon can lower
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significantly its total energy with thé-orbitals (this way readjusting the relative energies).
This becomes more important especially when the coordindtecomes more complicated.

The energies in Tab. 3.1 are in accordance with earlier lons [117], where ther-
chain reconstruction is always energetically more favierétian the adatom one. As the basis
set is made more complete, this energy difference becomméshiagly small [117]. In the
calculations of Meade and Vanderbilt [117], thehain is~ 300 meV per X1 unit cell more
favorable than the adatom reconstruction with a plane watafof 5 Ry and only~ 25 meV
per 1x 1 unit cell more favorable when the plane wave cutoff is iasgzl to 12 Ry. From Tab.
3.1 we can derive that this energy difference varies from60 meV per X1 unit cell, when
using the SZ basis te 93 meV per k1 unit cell when using the DZP basis. This difference
further reduces when using a more complete k-sampling.

In order to see the convergence with respect to the basismsetshould compare them
to a fully converved plane-wave basis set [90], a task thauisof the scope of the present
chapter. However, in the following chapters we will pressath tests and will see that a
typical comparison between SIESTA and plane-wave resultSP) is very satisfactory.

From the tables Tab. 3.1 we see that the relative energiasnatidn of the number of
dblys has converged (when compared to a slab containingys)lioh the case of the-chain,
to less than- 1 meV/A? already with 3 dblys. Already 2 dblys give a satisfactoryx@mgence
of ~ 2 meV/A? . In the case of the adatom reconstruction, this convergsnmeich slower.
The reason for this can be seen in Fig. 3.4, where we obseataltdo the atoms in the second
topmost dbly move considerably. When systems include as®tnd strong modification of
atomic heights, using 3-dblys, we can expect an error bar®meV/A? from the data in Tab.
3.2.

Althought the results from different k-point sampling adhtions in Tab. 3.3 are not
directly comparable (the unit cells<A and 22 have a different k-point density), we can see
the importance of using a reasonable amount of k-points 3éems to be>44 in the case of
ther-chain (convergence up to2 meV/A? ) and 8<8 in the case of the adatom reconstruction
(convergence up ter 0.2 meV/A ). From Fig. 3.8 we take the sufficient amount of vacuum
to be~ 15 A; including more vacuum changes the energies less tBamév/A?



Chapter 4
Si(111)5x2-Au

4.1 Introduction

The deposition of gold in the monolayer (ML) range on the figt Bl) surface results in a va-
riety of phases [13], such ag3 x v/3R30Q’, 1x1 and 5<2. The 5«2 phase occurs at0.4 ML
gold coverage [8]. It was first discovered about thirty yemage [2—4] and has been inves-
tigated using many experimental techniques since thens iflkciludes low energy electron
diffraction (LEED) studies [2—4], x-ray diffraction [9] a@x-ray standing wave analysis [5],
scanning tunneling microscopy (STM) [6,11, 15], angle hesth photoemission spectroscopy
(ARPES) [12,18, 19, 23, 24] and inverse photoemission [d%d, high resolution electron mi-
croscopy (HREM) combined with heavy-atom holography [14].

Already the first structural models, based on LEED measuné&neonsidered two atomic
gold chains per 52 unit cell running in parallel [3,4]. This was later confirdiey HREM [14]
and seems to be firmly established (see Fig. 4.3). The golid<han along thé110] and
equivalent directions (parallel to the2 periodicity of the unit cell). Therefore, three different
domains are possible for thex2 reconstruction on the flat Si(111) surface. Single-domain
surfaces, necessary for ARPES, can be fabricated usingavisurfaces with a slight cut-off
angle [1,11]. The presence of one-dimensional structurss reconstruction has also been
confirmed by the ARPES studies. Early studies found a stragpaopic signal near the
Fermi level [12, 16], but no evidence of Fermi-level crogsfar this band was found [16].
Later studies at low temperature found a one-dimensiomal lath a strong dispersion along
the direction of the gold chains [18, 19]. The top of this bapbears near thex® zone
boundary and disperses downward, reaching its minimunecles5<1 zone boundary. This
band has been reported to change its dimensionality froongly one-dimensional near the
Fermi energy to two-dimensional at lower energies [18]hizse studies a gap 6.3 eV was
also identified for this band. The presence of this gap arappsrent closing with increasing
temperature was related to a Peierls instability [18, 19rérecent ARPES results [23, 24],
both at low and room temperatures, have been able to idesaifye additional surface bands.
However, the metallic or semiconducting character of théase is still a matter of debate.
In fact, it has been proposed that the metallic or semicatmtyicharacter can depend on the
concentration of silicon adatoms [24,67], and even thaicemducting and metallic segments
can alternate along the gold chains in the surface [25].

The STM images (see Fig. 4.14) are characterized by themres# bright, irregular
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protrusions [6, 15] and “Y"-shaped features [11, 17] withellwlefined orientation respect to
the underlying substrate (see Fig. 4.15). The protrusians lheen established to be silicon
adatoms [21], which are present on the surface with an opticaverage close to 1/4 adatoms
per 5«2 unit cell (see Fig. 4.14).

In spite of all these experimental studies, the structurthefSi(111)-(5%2)-Au recon-
struction has not been completely established yet. Easfractural models only considered
the adsorption sites of the gold atoms. Many of them couldublrout on the bases of more
detailed STM studies [6] and the knowledge of the exact gokkrage [8]. A few more
refined models exist [14, 15]. They consider both the pasitibthe gold atoms on the sub-
strate and the rebonding of the silicon atoms in the surfager! Probably the most detailed
structural model proposed to date is the one by Marks and PIaB) [14]. The MP model
is based on a combination off-zone HREM, transmission edadiffraction and heavy-atom
holography data.

The first theoretical studies using first-principles electit structure calculations appeared
only quite recently. This is due to the complicated struetand the large unit cell of the
Si(111)-(5x2)-Au reconstruction. Kang and Lee [68] studied the MP arel Hiasegawa-
Hosaka-Hosoki (HHH) [15] models using density functioredry. Their main conclusion is
that both models fail to reproduce some of the key featuréiseoETM images and the exper-
imental band structures. Using a similar methodology, Bf®i7] proposed and studied new
structures which are characterized by the presence of teallm honeycomb-chain silicon
structure [66]. One of these models (the so-called25model) seems to fulfill many of the
constraints imposed by the empirical evidence. An interggtoint raised by Erwin is that
of the crucial role played by silicon adatoms in the stabtian of the different structures.
According to Ref. [67], the surface energy of Erwin’s<8" model is minimized for an opti-
mum adatom coverage in agreement with recent experimamaits [21]. For lower adatom
coverages other structures compete in stability. This ierg interesting result which, how-
ever, is based on approximate calculations. Due to the Emgeof the supercells necessary
to simulate explicitly the effect of the different adatonncentrations, Erwin assumed that
the main role played by the adatom is to dope the surface Wetttrens. He then analyzed
the behavior of the total energy as a function of the numbextrh-electrons in the substrate,
obtaining a minimum for-0.25 electrons per:62 unit cell.

In this work, we present a comprehensive study of the atomdt edectronic structure
of different models of the Si(111)-¢&2)-Au reconstruction using electronic structure calcu-
lations based on the density functional theory. We have twedifferent methodologies,
the SIESTA code [71, 84, 86] using a basis set of localizethat@rbitals and the VASP
code [118,119] using a basis set of plane-waves. We andigzklP model [14], the models
proposed by Erwin [67], and a new model that we found duringstwctural optimizations.
We study in detail the energetics and the structural andrel@c properties of the different
models. We also calculate the change in the surface energyfuasction of the content of
silicon adatoms for the two most stable models. In order teaowe perform calculations
for large supercells containing realistic concentratiohadatoms: %4, 5x6, and 58 su-
percells. Our new model is the most favorable in the rang@wfddatom concentrations,
while Erwin’s “5x2" model becomes favorable for larger adatom concentratidbhe cross-
ing between the surface energy of both structures occuse ¢tn1/2 adatoms per<® unit
cell, i.e. near the maximum adatom concentration observétki experiments. Both models,
our new structure and Erwin’s %62" model, seem to provide a good description of most of
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the experimental data. Particularly, we find a general agee between the calculated and
measured band structures along the direction parallektgaoid chains.

In the next sections we present our results for the diffeneodels of the Si(111)-(52)-
Au surface. We first focus on the energetics, relaxed geassetand the electronic band
structures. We then turn our attention to the effect of tHfeiint silicon adatom contents
and the simulated STM images, which we only analyze in d&iathe most stable structural
models. A summary of the relative energies of the calculatadigurations, accompanied
with a brief description of each of them, can be found in Table

Before starting with the description of the results, it isenesting to point out some brief
comments about the concentration of silicon adatoms on ifid §-(5x2)-Au surface. A
detailed study of the equilibrium situation has recentherbgerformed by Kirakosiaet
al. [21, 22] using STM. Their results indicate that, at equilibm, only one adatom site is
occupied out of every four possible sites, corresponding 58 adatom periodicity (if all
the adatom sites were occupied we would recover a perfe2tgeriodicity). The analysis
of the adatom-adatom correlation functions obtained froem3TM images reveals a strong
suppression of those configurations with small adatomeadatistances, a clear maximum
corresponding 54 periodicities, and a long range oscillatory tail [22]. Fwas interpreted
in terms of a short range repulsion between adatoms plusgarborge interaction term. In
Ref. [21], Kirakosian and collaborators showed that thestgrof adatoms can be increased
by depositing additional amounts of silicon reaching ancaiperfect 54 arrangement of the
silicon adatoms. Further deposition of silicon does noditga stable 52 adatom structure.
Instead the extra silicon atoms decorate the step-edge ¢étraces on the surface. These ob-
servations seem to have at least two implicationsthie optimal adatom concentration must
be certainly lower than one adatom petXbcell and, {z) the structure of the reconstruction
must be stable against relatively large changes of the nbofeadatoms since the density
of silicon adatoms can be increased by a factor of two withauteast apparently, dramatic
structural changes [21].

A systematic study of the energetics of the surface as aiumof the adatom concentra-
tion by means of first-principles electronic structure oldtions is quite complicated. This
is for two main reasons. First, the energies involved afgerasmall, which implies the need
of very well converged calculations. A more serious limdat however, is the necessity to
use large supercells consistent with the low adatom dess#or this reason we have concen-
trated most efforts in the two limiting cases, involvingpestively 0 and 1 adatoms pek?2
cell. The intermediate concentrations usually requirestitaapproximations. For example,
Erwin [67] assumed that the main effect of the adatoms in t{iel$)-(5x 2)-Au surface is to
dope the gold chains with electrons and studied the enesgetithe system as a function of
this doping. Here we go a step beyond and present expli@gtiizions for adatom contents
down to 1/4 adatoms penr& cell, consistent with a 68 periodicity, which indeed can be
reached in experimental conditions [21]. Due to the large sf these systems we limit this
study to our two most stable models, and only use the smalldrd3is set.

Results of this chapter have been published in Ref. [101].

1This observation does not contradict the recent proposgrmn [67] that aminimumadatom content may
be necessary to stabilize the observed structure over congpeting reconstructions.
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4.2 Computational details

Most of the calculations were done using the SIESTA codeCéep. 2), but also VASP [118,
119] was used. The pseudopotential and basis data can be ifodiab. 2.2, corresponding
to the LDA versionsSi.psf , H.psf andAu.vps (the generalized gradient approximation
(GGA) has been also used for a few test calculations, i.engusSi2.psf , H2.psf and
Au2.vps ). The bidimensional Brillouin-zone (BZ) sampling [92] (<M Monkhorst-Pack
sampling, N refers to the direction parallel to the gold wjreontained 44 points for the
5x2 unit cell (and a consistent sampling for other cé)ls

2nm

Figure 4.1: (color online). Schematic view of a typical slesed in our calculations. It shows the model proposed
by Marks and Plass (MP) [14] for the Si(111)-(5<2)-Au surface reconstruction. Large circles in the surface
layer represent the gold atoms. The bottom surface of theisisaturated with hydrogen atoms. (a) Side view
and (b) top view with some of the silicon atoms in the surfaue the two gold chain labeled (see the text).

We modeled the surface using a finite slab, similar to thatotieghin Fig. 4.1. For most
calculations the slabs contained three silicon bilayérs ¢ine at the surface and two underly-
ing silicon bilayers) plus an additional layer of hydrogéonas to saturate the silicon atoms in
the bottom of the slab. This removes the surface bands a$sddb the bottom surface from
the energy-range of interest, i.e. from the band-gap regdmhave checked the convergence
of the results using thicker slabs for the most stable strattnodels of the surface. We use
periodic boundary conditions in all three directions. Awam region of 15 A ensures negli-
gible interactions between neighboring slabs (see Seg. Blfing the structural relaxations
the positions of the silicon atoms in the bottom layer wergtla the bulk ideal positions.
Unless otherwise stated all other degrees of freedom wemmiapd until all the components
of the residual forces were smaller than 0.04 eV/A. To avdificial stresses the lateral lattice
parameter was adjusted to the theoretical bulk value ctledilusing similar approximations
to those utilized in the slab calculations, i.e. the samestsat and grid cutoff, and a consistent
k-sampling.

Due to the large number of atoms 70 atoms for typical slabs and up to 273 for the
largest ones) and to the need to perform geometrical opiioizs for many different struc-
tural models, we have decided to use a DZ basis set for siiicorost of our calculations, an
approximation which according to our test calculationsec.S3.6 is well justified.

2More precisely, for the 54 supercells we have checked that k-samplings wit® 4nd 4< 4 points produce
almost identical results. k-samplings wittkx8 and 4<2 points have been used, respectively, for theéznd
5x 8 supercells.
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Figure 4.2: (a) Comparison of the bidimensional Brilloumnes corresponding to 8l), (5x2) and (5<4)
supercells on the Si(111) surface. (b) Schematic view optth (dotted lines) used to plot the band structures
in this work (- ZBy2-ZB1-ZB’ ,-M-T'). lts relation with the (%1) (dashed lines) and (&) (solid lines)
Brillouin zones is indicated, and some special points afinele.

In this work we study the relaxed structures and the enegefi several models of the
Si(111)-(5x2)-Au surface reconstruction. The energy differences betwdifferent models
are of key importance since we would like to determine thetrplaaisible structures. When-
ever it is necessary to compare the energies of structurgginmg different numbers of
silicon atoms, the silicon chemical potential is set to thé&ltenergy of bulk silicon at the
equilibrium lattice parameter. This choice is justified hg fact that the surface should be
in equilibrium with the bulk. A summary of our results can loaifid in Table 4.1. One can
see that the relative energies are quite small in some cHesgever, they are larger than the
estimated error bar for the total energy (see above). Fumitre, the relative energies usually
exhibit a faster convergence than the total energy of aaistglicture. It is also necessary to
check the convergence of the results as a function of thetlsigkness and the completeness
of the basis set. Table 4.2 shows the results of these testis€fanost stable structures. In
one case, the slab thickness was increased by one silicyebivhile, in the other, a DZP
basis set was used for the silicon atoms. In both cases thensysvere relaxed. The results
are quite stable against the change of the slab thicknespartitular, the energy order of
the structures is not changed and the variation of the velatirface energies is smaller than
~0.5 meV/R in all the cases. The variations with the size of the basisasetsomewhat
larger. From the results in Table 4.2 we can estimate an berosmaller than 2 meV/Afor
the relative surface energies of the different structuadsutated using SIESTA.

In order to check the accuracy of our predictions we decidegaetform calculations for
some of the systems with another electronic structure duateutilizes a different methodol-
ogy. We used the VASP code [118,119] for this purpose. We pegjdcted-augmented-wave
potentials and a well converged plane-wave basis set withtaffeof 312 eV. All structures
were relaxed (the equilibrium lattice parameter of bullceih obtained with VASP is 5.41 A).
In Table 4.2 we can see some of the results obtained with VAB#/ are in good agreement
with the SIESTA results, especially with those obtainechwvifite more complete DZP basis
set. The order between our more stable models is preseftealigh the energy difference is
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somewhat decreased. In particular, the new structural hiiogled in the present work (model

N in Tables 4.1 and 4.2) is confirmed to be the most stable sirfaconstruction between
those studied here. It is also interesting to note that tleeggnassociated with the addition
and removal of adatoms for a particular structural modehsa® be quite independent of the
details of the calculation.

The surface BZs of the studied systems are shown in Fig. %.Z¢@a the 5<1 system the
BZ is a stretched hexagon while, for the remaining peridigdisj the hexagons are distorted.
We plot the electronic band structures of the different niwdong thd™- ZB . ,-ZB,-ZB/ , -
M-I line (see the dotted line in Fig.4.2 (b)). TheM path runs parallel to the gold wires in the
surface, crossing thex® BZ through three different regions. The Mline is perpendicular
to gold wires. The surface/bulk and main atomic charactéhedifferent bands is identified
by means of a Mulliken population analysis [100].

Although a DZ basis is usually sufficient to obtain a quiteddescription of the occupied
electronic states and the relaxed geometries in silicotesys the use of a more complete
basis set is necessary to describe the unoccupied partlwditicestructure even at low energies.
For this reason all the band structures shown in the papeatrelated using a DZP basis set
and slabs containing three underlying silicon bilayerefefthe relaxed geometry is obtained
from a calculation using a DZ basis and/or a thinner slab).

Finally, the Scanning Tunneling Microscopy (STM) images simulated using the theory
of Tersoff and Hamann [99].

[ Model | Description | AEgu, s (MeVIA?) |
MPT Marks and Plass model after a constrained relaxation +46.8
RMP* Fully relaxed MP- structure +5.4
RMP Relaxed MP" structure without adatoms +8.3
E(Gx1) | Erwin ‘5x1 +4.8
E(5x1)* | E(5x1) with adatoms on the Au-wires +6.5
E(5x2) | Erwin“5x2" +1.4
E(5x2)* | E(5x2) with adatoms on the Au-wires 0.0
N New model -3.3
N+ N with silicon adatoms in bl positions -0.6
N+ N with silicon adatoms in T positions +1.2
N* N with adatoms on the Au-wires +2.4

Table 4.1: Summary of the structural models studied herghferSi(111)-(52)-Au reconstruction and their
relative surface energieAg,,,r). Those structures containing adatoms have one silicotvadaer 5<2 cell,

i.e. the concentration of adatoms is maximum. Supersgripidicates the presence of “conventional” adatoms
saturating silicon dangling bonds in the surface. Labejsand T, refer, respectively, to adatoms occupying
hollow and top sites [121]. The presence of adatoms locateédmof the Au wires is indicated bysasuperscript.
The data in this table have been calculated using the SIE®@& with a DZ basis for silicon and DZPs-SZd
basis for gold. The slabs contained two silicon bilayerewehe surface layer (see Fig. 4.1 (a)). All energies
are referred to that of the structure recently proposed lrEn Ref. [67].

4.3 Marks and Plass model

We start our investigation of the structure of the Si(1133%)-Au surface using the model
proposed by Marks and Plass [14] from experimental datareddavith heavy-atom hologra-
phy and high resolution electron microscopy (HREM). An eptetHREM image can be seen
in Fig. 4.3. We use the label MFor this structure (see Table 4.1). Thesuperscript indicates
that the structure contains silicon adatoms saturatingesuftthe silicon dangling-bonds in the
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Figure 4.3: Near Schertzer defocus, noise filtered, ofezédREM image of the Si(111)s62-Au surface. Clearly
visible are two (arrowed) rows of dark features which cquoesl to gold atoms. Picture taken from Ref. [14].

structure, what we call "conventional” silicon adatoms.chematic view of this structure, as
proposed in Ref. [14], can be found in Fig. 4.1. It has to benakto account that, due to the
limitations of the experimental techniques, there are redwmcertainties and assumptions in
this structure. Only the atomic coordinates within the acefplane are accurate. The heights
of the atoms over the substrate are only approximatelyvedolThe experimental beam er-
ror in combination with the size and complexity of the sturetalso limits the sensitivity
to possible subsurface relaxations. As a consequencexpleeimentally proposed structure
only considers the reconstruction of the outermost bilayet contains limited information
about the registry between this surface bilayer and thenyidg material. It is necessary
to eliminate these uncertainties before one can undertaksexious study of the electronic
structure of the MP model. In order to do this while preserving all the inforroatbriginally
present in the MP proposal, we started our study by performing constrainekations of
the structure. The structure in Fig. 4.1 was relaxed usifigvitng degrees of freedom:)(
the height of the different layers and;)(the lateral position of the surface layers with respect
to the underlying bulk slab. The grouping of the atoms inedtéht layers given in Ref. [14]
only implies approximately equal z-coordinates ( the m=agitaken here along the surface
normal). For this reason, in a second step, the atoms weweallto relax in the z-direction
while keeping their coordinates within the xy-plane. Thsuténg geometry preserves the
bonding pattern of the original MPproposal, and provides a reasonable initial guess to start
our search of the most stable models by performing full stmat¢ optimizations.

We now consider in detail some of the structural patterneappg in the MP model
of the surface. For this analysis we find useful the compangith the Si(557)-Au surface,
a closely related reconstruction studied in more detail i 6 that has been quite well
characterized during recent years [27-29,69—-71]. Thestkfi(557)-Au is formed after the
deposition of~0.2 monolayers of gold on vicinal (111), with the misoriditta chosen along
the [112] direction. The size and orientation of the terraces of t{8530)-Au represent an
analogous to the flat>62 unit cell but including a single silicon step [19]. With hdie gold
coverage than the Si(111)%2)-Au surface, the terraces of the Si(557)-Au contain omlg o
Au wire running parallel to the step edges. Gold atoms ocsilpon substitutional positions
in the surface layer. This is supported both, by recent Xdiffyaction data [29], and density
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functional calculations performed using a methodologyilsinto the one utilized here [70],
which provide a consistent structural model of the surféeeoarticular, the highest stability
of the silicon substitutional sites for gold has been ungubusly demonstrated by tlado
initio calculations. For example, the substitutional site wasrdehed to be at least 1 eV/Au
more stable that adatom-like positions, where gold sitshensurface saturating one of the
silicon dangling-bonds, or even0.5 eV/Au more favorable than the adsorption decorating
the step edges [70]. It seems, therefore, that the Au atontiseo8i(557)-Au surface exhibit
a strong tendency towards three-fold silicon coordinati@onld atoms adapt to this situation
without much strain, with typical Si-Au distances only a feercents larger than the bulk
silicon bond length.

In the light of these observations the bonding pattern ofesofithe gold atoms in the MP
model (Fig. 4.1) seems quite peculiar. In particular, thiel@oms in the chain situated at the
left side of the "gold trench” (marked with an L in Fig. 4.1epent a fourfold coordination.
They are connected to three silicon atoms within the surfager and, additionally, to the
silicon atom immediately below. Furthermore, the Si atoregboring to the mentioned
gold atoms (see atomsandd’ in Fig. 4.1) present an unsaturated dangling bond which migh
be avoided with a slight structural change.

It is interesting to note that the tendency of the gold atamsctupy silicon substitutional
positions in the top most layer cannot help to completelpralize the structure. A three-
fold bonding pattern of the gold atoms is inherently frutdaby the presence of a surface
dislocation. In the MP model this dislocation is located at the position of the tilghnd
gold wire (marked with R in Fig. 4.1). Due to the change of tlemding sequence there
are not three unpaired silicon electrons available for ed¢hese Au atoms, but rather two.
Therefore, they do not occupy a normal three-fold positimthare quite likely to be displaced
from the initial symmetric positions after relaxation. Aaswiscussed in Sec. 3.5, the surface
dislocation can, in principle, be moved to different looas. In fact, we will see below that
this provides a simple route to generate alternative strattodels of the surface.

The comparison between the structure of the Si(557)-Aurgicoction of Chap. 6 and the
MP* model of Fig.4.1 raises another interesting point. In theeaat the Si(557)-Au surface
the silicon atoms in the proximity of the step edge suffer astderable rebonding. They
form characteristic silicon structure which has been idiedt with the "honeycomb chain”
(HC). As was explained in Sec. 3.4, the presence of the gilldG seems instrumental to
understand the stability of the Si(557)-Au and related mstrmictions. It seems somewhat
surprising that the silicon HC structure, common to the I3and Si(557)-Au metal induced
reconstructions, is absent from the Mmodel of the Si(111)-Au-(52) surface. Indeed the
MP* model seems to be based on an almost unreconstructed Sgdrfdge with a row of
adatoms on top, and the more clear disturbance from thisibgméttern being the presence
of a surface dislocation.

We now proceed further with the structural relaxations ef kP system. It is instruc-
tive to focus first on a optimization were only the silicon ces of freedom are taken into
account. The gold atoms are constrained to remain at théalinoordinates. Due to the
more directional bonding of silicon we can expect the strrattchanges to be simpler to an-
alyze and somewhat less dependent on the particular chbtbe mitial guess in this case.
Besides, as a stronger scatterer, we can assume that theogitidns to be better resolved in
the experiment. The resulting geometry is plotted in Fig(a). We observe two main effects.
On the one hand, the HC configuration clearly emerges. Orfeeadriving forces behind this
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A A KA A

Figure 4.4: (color online). (a) MP after the optimization of the position of the silicon atomste structure.
The gold atoms are kept in the positions obtained after thlircontrained relaxation of the experimental
coordinates. The silicon honeycomb chain (HC) structueedgen highlighted. (b) The same structure after full
relaxation (RMP"). See the text for the labels of the different atoms.

rebonding is the movement forward @anda’ atoms in order to form an additional covalent
bond with the silicon atoms in the underlying layer. The detlitonded “dimers” of the HC
structure are formed by atomhsandc. This questions the location of the adatoms in the sur-
face since, in principle, the dangling-bond associatett aibmd’ could disappear with the
formation of a silicon double bond. We can observe the distgreffect of the adatom on the
HC structure. The appearance of the HC bonding pattern gltine relaxation of the MP
structure confirms the results of recent density functicaétulations by Kang and Lee [68],
who also made a geometrical optimization of theMRodel. The electronic bands calculated
for this structure (not shown here) are also in quite gooeegent with those presented by
these authors in Ref. [68]. Fig.4.4 (a) also shows clearlgtwebuld be classified as a “stack-
ing fault” in the structure (bonds of atoniginde coincide with those in the underlying silicon
layer). This stacking fault, which probably is energeticahfavorable, can be easily avoided
by moving the position of the surface dislocation from trghtihand to the left-hand of the
gold trench. Alternatively we can visualize this changddast approximately) as a 18fb-
tation of the surface layer with respect to the underlyifigan structure. This transformation
gives one of the structures discussed in the next sectiachwicidentally is almost identical
to the “5x 1" structure proposed recently by Erwin in Ref. [67].

When the relaxation of the MPsystem is continued without any constraints, the monatomic
gold wires are strongly distorted as can be seen in Fig. 4.4 fbs distortion was not observed
in the density functional calculations of Kang and Lee [6Bje reasons for this discrepancy
are not completely clear at the moment. The break of the noomatgold wires seems to
be related with the presence of adatoms. If they are elimith&tbm the structure the gold
atoms remain in two well separated parallel wires. Addaibn the strain introduced by the
adatoms in the structure, results in the weakening of son& Bonds in the surface layer
(see the increased distance between atprasdg). In spite of these strong structural distor-
tions, the presence of adatoms in the structure is stillgatieally favorable as can be seen
in Table 4.1. These structural distortions are reflectechénldand structure: following the
nomenclature used in Ref. [68], the bandi$Sshifted to higher energies respect to theaSd
a gap of~0.3 eV is opened respect to the constrained case.

In summary, our results suggest that neither the silicarcgire nor the positions of the
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Figure 4.5: (color online). (a) Relaxed geometry of the E{% model with zero adatom coverage and, (b) the
corresponding band structure. Solid symbols indicategtasds with a larger weights in the atoms of the SiAu
complex. The energies are referred to the Fermi level.

Figure 4.6: (color online). Relaxed geometry for the £29 model.

gold atom in the structure proposed by Marks and Plass [leljstable. Furthermore, in

agreement with the general conclusions of Ref. [68], neithe STM images nor the band

structure of the fully relaxed or the constrained relaxedNifodel seem to be in agreement
with the experimental information.

4.4 The Erwin models

As discussed in the previous section, the MP model of thel$)({5x 2)-Au surface recon-
struction is characterized by the presence of a surfaceadisbn between one of gold wires
and the neighboring silicon atoms. Other locations areiplesfor the surface dislocation.
In particular, it can be translated to tbéhergold wire, this can also be assimilated to a ro-
tation of the surface bilayer with respect to the underlyigk silicon. This eliminates the
“stacking fault" commented in the previous section, anddpoes a new structural model.
This structure is very similar to the 61" model recently proposed by Erwin [67], and we
refer to it as E(%1). In Table 4.1 we can see that the KB model without silicon adatoms
is slightly more stable than the relaxed MP structure. Fi§.(d8) shows the relaxed structure
of the E(5<1) model. The left (L) gold wire, where the surface dislooatis located, suffers
a considerable dimerization, which is much smaller for figatr(R) wire. The alternating
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Figure 4.7: Band structure of the E{2) model with zero adatom coverage parallel4B . »-ZB1-ZB’, , path

in (a)) and perpendicular to the gold wires[-( path in (a) and panels (b) and (c)). Surface bands with the
larger contributions coming from the atoms in the SiAu coemg@re indicated by filled circles. The energies are
referred to the Fermi level.

Au-Au distances as obtained with VASP are, 4.06 A and 3.59rAfe L wire, and 3.82 A
and 3.83 A for the R wire. The geometries obtained with SIE&Tévery similar, specially
those obtained with the more complete DZP basis set. Hereaét name “SiAu complex” the
structure formed by the two gold wires and the central siliatbm connecting them. The sil-
icon structure in between two of such SiAu complexes is dlateand resembles what could
be described as a double honeycomb chain (DHC) silicontstei§67]. The band structure
along the direction parallel to the gold wires is shown in.Bi¢p (b). It shows several surface
bands and has a metallic character. Those surface bandf/rassociated with the Si-Au
complex has been highlighted using solid symbols. Most es¢hbands are occupied and
appear in the gap region. The unoccupied surface bandsrappaathe gap are mainly asso-
ciated with the silicon DHC. The most prominent feature isspersive band associated with
the weakly dimerized (right) gold wire and the central siiatom in the SiAu complex. This
band is, in principle, metallic and close to half occupietth8ugh small gaps are opened as-
sociated with the crossings with other bands and slight ggacal distortions, it can be easily
followed in Fig. 4.5 (b) extending from1.3 eV below to~2.3 eV above k. A similar band,
with a similar origin, also dominates the band structurehef $i(557)-Au surface [69, 70].
This band comes mainly from th@? lobes of the central silicon atom in the SiAu complex.
There is also a strong hybridization with the $tates of the gold atoms in the R wire. For
this reason, they are better assigned to the Si-Au bondsecting the central silicon with
the R gold wire. Its large dispersion is due to the large @peldetween these Si-Au bonds
along the wire. The metallicity stems from the inability @fid (each gold atom only provides
one valence electron) to saturate the bonds with all itsmilneighbors [69]. The other states
in the Si-Au complex give rise to relatively flat surface bardsociated either with weakly
overlapping silicon states or with the gold dimers.

In Ref. [67] it was also proposed that, under certain coods;j it could be energetically
favorable to remove some of the over coordinated silicomato the neighborhood of the sur-
face dislocation. Our relaxed structure for this modeléaéter E(5<2)) is shown in Fig. 4.6.
In this case both gold wires present an appreciable dintevzavith alternating Au-Au dis-
tances of 4.37 A and 3.35 A for the left gold wire, and 4.16 A 8mb A for the right wire.
Our SIESTA calculations with the smaller DZ basis set prettlie E(5<2) model to be more
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stable, by at least 3.4 meV#Athan both the E(81) model and the different variants of the
MP model (see Table 4.1). However, the difference betweerk{bx 1) and E(5<2) models

is reduced with the use of more complete basis set. In p&atjaur plane-wave calculations
predict both models to be degenerate within 0.1 méVthe E(5<1) slightly more stable).
This agrees with the results of Ref. [67] where theXE[Pmodel is predicted to be more stable
than the E(52) variant by less than 1 meV?Aand only after the addition of silicon adatoms
the E(5<2) structure becomes favorable.

The band structure of E&) with zero adatom coverage is plotted in Fig. 4.7. The band
structure along the wires is in good agreement with thatrtegon Ref. [67] for this structure.
Again, the surface bands close to the Fermi energy come yrfaomh the SiAu complex. Like
in the case of the E(61) model, the band structure is metallic. This is in disagrest with
one of the latest and more detailed ARPES experiments whighests that the Si(111)-Au-
(5x2) surface is a semiconductor with a band gap of at least 0 @e&/Fig. 4.11). However,
the metallic versus semiconducting character of this sarfa still a matter of controversy.
For example, the recent ARPES study by Himpsel and collabgrdinds several metallic
bands [24]. In fact, this reference and the scanning tungedpectroscopy (STS) data of
Ref. [25] indicate that the surface could be composed ofrate metallic and semiconduct-
ing regions along the gold wires. Our calculated band stredior the E(5% 2) model is very
close to being semiconducting. Just by shifting thé&nd to higher energies by a few tenths
of eV we could obtain a semiconducting surface. This migtiicate that the metallic behavior
is simply related to the limitations inherent to the locahsi¢y approximation used here and
the very simplified assumption that the monoelectronicreigkies can be directly identified
with the photoemission peaks. In spite of its metallicigyeral characteristics of the pho-
toemission spectra are recovered by the band structurgirtFi. The most prominent band
observed experimentally starts at the boundary of th2 Bone (ZB;,,) dispersing downwards
until it reaches a minimum at the boundary of thel5zone (ZB;,) [18,19,23,24]. This band
appears at binding energies betweeh2 eV and~1.3 eV. Following Erwin [67], we can try
to identify this band with our Sband, whose maximum appears close oi& the neigh-
borhood of ZB,,. However, it becomes difficult to follow the dispersion oisturface band
as we move to higher binding energies for two reasangie band enters the region of the
projected bulk bands, becoming a surface resonanceaipother surface bands coming from
the same region of the surface appear in the energy inteetalden -0.5 and -1.2 eV. This
last point is widely consistent with the experimental dat&ef. [23], where three additional
bands are identified for binding energies larger than 0.5 eV.

Losio and collaborators [18] reported an interesting effaccontinuous dimensionality
transition of the main surface band. The character chamgesstrongly one-dimensional at
the band maximum (i.e. only dispersing in the direction fpalr#o the gold wires) to two-
dimensional at its minimum (i.e. with a non-negligible disgion also in the perpendicular
direction). The strong one-dimensional character of théasa states close toEhas also
been confirmed in the most recent ARPES measurements [23,T2 dispersions in the
direction perpendicular to the wires can be found in Fig.(#)7and (c). The band widths are
rather small for most surface bands. An effect similar tor#ported dimensionality transition
can be seen in the case of thel#and. It is tempting to assign the experimentally observed
effect to the $ band (see the different dispersion of bandsrSpanel (b) and Sin panel
(c)). However, as commented above it is not so simple toviotlee S band as it disperses
downwards. In fact, we can locate what seems to be an avordsding between the,&nd
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Figure 4.8: (color online). (a) Relaxed geometry of the EZ¥ model (containing one adatom pex 3 unit
cell) and, (b) the corresponding band structure. Surfaceldavith a larger weight in the atoms of the SiAu
complex are marked with filled circles. The energies arerrefeto the Fermi level.

the S bands half way along the ZB-ZB,; path in Fig. 4.7 (a). Therefore, we think that the
S band in panel (c) is rather related to thelfand than to the Sband, and the dimensionality
change would be absent from our results. Also the energyiposif the band S(~-0.5 eV)

is quite far from the~-1.3 eV found experimentally for the band minimum. Therefdn
contrast to Erwin [67] we conclude that our calculated bangcture for the E(%2) model
does not provide a direct explanation to the observationdsidet al.

Similarly to the surface bands of the E(%) model, the § S, bands in Fig. 4.7 (a) have
the largest weight in the central Si atom in the SiAu complexe S band can be associated
with SiAu bonds connecting the central Si with the left goldewx This SiAu bonds have a
small overlap and this is translated in a quite flat band. Wwedispersive $and § bands
have a stronger weights in the other SiAu bonds, which haeeget overlap and, therefore,
present a stronger dispersion.

We now explore the role of the silicon adatoms in these sirast We first studied the
stability of the adatoms in the E{8Ll) model when they are located over the silicon part of the
surface reconstruction, i.e on sites equivalent to thosamed by the adatoms in the original
MP proposal. It is interesting to note that the role of theesit adatoms in such positions is
indeed not very clear. The stability of the adatoms in tyfgdecon reconstructions stems from
the fact that each adatom can saturate three dangling boritie surface at the expense of
creating just an additional dangling bond. The energy ghiméhis process usually overcomes
the strain energy caused by the addition of the adatoms. twehe E(51) model in
Fig. 4.5 (a) does not have silicon dangling bonds. The ajpearof unsaturated dangling
bonds is avoided by the formation of the double-bondedailidimers that characterize the
HC configuration. In fact, the only metallic band in this mbciemes from the SiAu complex
as explained above. In accordance with these observatienfyund extremely difficult to
reach a stable configuration, i.e. with all the componentseforces below our threshold, for
the silicon adatoms over the silicon sites of the (% model. Finally, after several hundreds
of optimization steps this model spontaneously relaxeal énbew structure. This structure,
labeled N in Table. 4.1, belongs to a new family of structural modelstfe Si(111)-Au-
(5x2) surface found in this work for the first time and describediore detailed in the next
subsection.
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Figure 4.9: (color online). New structural model for thel3i{)-(5x 2)-Au reconstruction. This is the most stable
configuration of the surface according to our calculatices (Table 4.1).

In the light of the previous comments, a more stable adswrsite for the silicon adatoms
would be on top of the SiAu complex. This has been previousbppsed by Erwin [67],
and is confirmed by our calculations. Table 4.1 shows thegid®gmim surface energy after the
addition of one silicon adatom perx2 unit cell. The behavior is opposite for the E(b)
and E(5<2) models, with the addition being energetically favordblethe later model. The
E(5x 1) remains metallic after the addition of the adatom, andiibpersive band associated
with the SiAu complex remains quite unchanged. The sitnatith the E(5<2) model is
different. In agreement with the results in Ref. [67] we fihdttthe band structure becomes
semiconducting after the addition of the adatoms. The spoeding atomic and electronic
structure can be found in Fig. 4.8 (a) and (b) respectivehe Jurfaces bands with a larger
contribution from the atoms in the SiAu complex has beenlighgted using solid symbols.
It has been impossible to identify a band that can be solalgasd to the adatoms. We can
see that the band structure of the E@ suffers major modifications after the addition of
adatoms, at least for the large concentrations considened Besides the fact that the struc-
ture becomes semiconducting, the agreement with the éetalilotoemission experiments of
references [23] and [24] seems to be somewhat degraded.

4.5 New structural model

In this section we present a novel structural model for th{&13i)-(5< 2)-Au surface recon-
struction that has been found during our investigation. €dafp spontaneously relaxed to this
new structure while trying to optimize a modified version loé t£(5<1) model commented
in the previous section. The new structure can be found in&8y and will be referred here
as model N. Table 4.1 shows that the energy of the new modgbas favorably with those
of the other structures proposed to date. In fact, within @alculational scheme it is the
most favorable structure. The difference with the seconstrsiable model without adatoms,
the E(5<2), is 4.7 meV/&. This difference is reduced to 4.1 meVW&hen using a more
complete DZP basis set as shown in Table 4.2. These enefgyetites are quite small, so
further studies have been performed in order to drive mofiaitiee conclusions. First, we
have repeated our calculations using the PBE [96] GGA exgdhand correlation functional
instead of LDA. The new structure continues to be more staypl@6 and 5.1 meV/Ausing,
respectively, a DZ and a DZP basis set. As a second step, ¢éngyeordering between the N
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Figure 4.10: Band structure corresponding to the N modéi néro adatom coverage parallEtZB «>-ZB 1 -
ZB' , path in (a)) and perpendicular to the gold wir&sNl path in (a) and panels (b) and (c)). Surface bands
are marked according to its main atomic character: filledegrindicate a strong contribution from the atoms in
the SiAu complex, open triangles from the silicon danglingdbs in the middle of the double honeycomb chain
(DHC), and open cubes from those silicon atoms at the boigslaf the DHC stripes, neighboring to the gold
wires. The energies are referred to the Fermi level.
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Figure 4.11: Experimental photoemission results. (upp@ef) The gray-scale g=k| diagram for the single-
domain Si(111)5x2-Au surface along thg — X direction taken from the ARPES scan with He Il excitation.
In the diagram, the intensities are represented by the tmégk, white corresponding to high intensity. The
dispersions for the surface states are depicted by blatledazirves. (lower panel), — X, Dispersions for the
single-domain Si(111)5x2-Au surface along the directibarge and small symbols represent rather distinctive
and weak spectral features, respectively. Solid circlgsdres) indicate peak positions obtained with the dde |
(He 11) excitations. Peak positions taken along the— X5 direction with the He & excitation are also shown
as open circles. The shaded region is the bulk band strustajected onto the 21 surface Brillouin zone. The
major surface state bands are traced by thick gray curveturBitaken from Ref. [23].
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and the E(5%2) structures has been confirmed using VASP and slabs corgahree and four
silicon double-layers. The new model is more stable tharE(Be 2) by at least 2.6 meV/A
These results convincingly establish, at least within thenework of density functional cal-
culations, the larger stability of our new structural modempared to previous proposals in
the limit of negligible adatom coverage

Model AEg,; (meV/A?)
SIESTA VASP
DZ-3 blys | DZ-2 blys | DZP-2 blys | 2 blys
E(5%2) +1.3 +1.4 +1.6 +1.4
E(5x 2)* 0.0 0.0 0.0 0.0
N -3.4 -3.3 -2.5 -1.3
N+ -1.0 -0.6 +0.9 +1.5

Table 4.2: Convergence of the relative surface enerdi&€s (, ;) of the most stable structural models respect to
the basis set and the thickness of the slabs used in theat#nd. The first column shows the data obtained with
the SIESTA code using a DZ basis for silicon and three silicibayers below the surface to construct the slab.
In the second column a slab with only two underlying silicdlayers was used. The third and four columns are
obtained using the thinnest slab and, respectively, a D2 Isat for silicon and the VASP plane-wave code.

[ Model | AEg,,; (meV/A?) |
z=0| z= % T = % T = % z=1
E(5x2)%t | +1.39 | +0.90 | +0.86 | +0.81 | 0.0
NG -335 | -1.98 | -1.72 | -1.23 | -0.60

Table 4.3: Relative surface energiésH;,,,. r) of the most stable structural models as a function,dhe number
of silicon adatoms per:62 unit cell. The calculational parameters here are the same im Table 4.1. Notice
that E(5x< 2)%_,=E(5x2) and N\_,=N.

Given the small energy differences between both modelsytheanteresting to estimate
the effect of the vibrational degrees of freedom in the sigrfeee energy(7'). The vibrational
contribution can affect the energy ordering even at zerg@grature due to the zero-point en-
ergy, and its importance grows with temperature. Unforteigaan accurate estimation of the
vibrational surface free energy;;,(7') is a formidable task that would require the detailed cal-
culation of the dynamical properties (phonon band stregtaf the different surface models.
This is a computationally very demanding calculation tsdieyond the scope of the present
work. We can obtain a rough estimation of the vibrationaltdbation to the difference of the
surface free energies between the different structiwrgd") following Ref. [122]. We have

AY(T) = ABEuus + Ay (T), whereAvy,(T) ~ 3NLTD[F(T, w2 — F(T, wyur)] -

s Ysurf
SNY[F(T,wh, ;) — F(T, wpur)] + 3N au[F(T,whO*?) — F(T,wY,)]. HereAE,,, is given
in Table 4.1 and is independent of the temperatlyeV.>*® and N2 are the number of
silicon atoms per unit cell in both surface structures, ahg the number of gold atoms;

F(T,w), given in the Appendix of Ref. [122], is the free energy of aegi vibrational mode

w; the frequencies’? It wfu(ffxz), andwy,; Characterize the average vibrational properties of
E(5x2

the silicon atoms in both surface structures and in bulkailj whilew 4, ) andw? those
of the gold atoms in both surfaces. We take dgy;,. values in the range of 50-70 meV, and
wsurr Fanging from 0.5 to 1.5 they,,;;, value. Within these range of parameterswjirf and

wEBX2) differ less than a-10%, thenA~,;,(T') stays within~ +2 meV/A? for temperatures

surf

up to 300 K. If the vibrational properties of both surface mlsdliffer more significantly, then
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A~,(T) can affect the relative order of the structures at much laesmperatures. How-
ever, we should not expect strong differences indkieragevibrational frequencies of the
E(5x2) and N models. Both models present very similar bondin¢gepad and structures.
It is interesting to notice that~,;,(7") is nonzero even if the vibrational properties of both

structures are identical, i.ec.; =W, ; =w..s andw} “*=wY . This reflects the different

number of silicon atoms in the unitsuééll of the two surfaceoretructions. In this case we
haveAy,i(T) ~ 3(NET? — NI [F(T, weurs) — F(T, wyur)]. Using the same parameters
as above we obtait\v,;,(7") within +1.5 meV/& up to ~1000 K. Thus we can conclude
that the energy ordering obtained in the present total grnEalgulations is not altered by the

vibrational contribution to the free energy up to, at leesbm temperature.

In the new structure the gold wires along {h&0] direction present a dimerization compa-
rable to the E(%2) structure. The alternating Au-Au distances are 3.24 Azana A (3.19 A
and 4.45 A) along the right (left) wires. The distance betweearest neighbor Au wires along
the[112] direction is smaller in the N structure (3 A) than in the E@ structure (3.8 A). The
later value being in better agreement with th8.9 A deduced from the HREM studies of the
surface. [14]

Similarly to the E(5<1) structure, most of the surface of the N model is covered wit
silicon double honeycomb chain structure [67]. One of themi atoms in the DHC appears
at a higher position over the surface. This indicates thiatatom has a charged dangling-
bond and, therefore, is trying to develog;& hybridization. This atom is expected to be more
visible in the STM images and to provide a preferential sireafdsorption on the surface, in
particular for possible silicon adatoms. The boundari¢séen the DHC stripes are occupied
by the SiAu complex, in which a central silicon atom appeansded with three gold dimers.

The band structure of the new structure is plotted in Figd 4dd the spectra from a very
recent photoemission study in Fig. 4.11. The general featare in good agreement with
the most recent ARPES studies [23, 24], although some ofétasld are different. The most
dispersive and prominent surface bands are quite simitaiote found for the E(52) model.
The surface is predicted to be semiconducting, which agrébg-ig. 4.11. The bands named
S, and S by Matsudaet al. in Fig. 4.11 can be easily identified in our calculation, arel w
use the same notation. Other less dispersive surface bendisa observed in our calculated
band structure. These can be tentatively identified witseHabeled $and S by Matsudaet
al.. However, the $bhand appears shifted to lower binding energies by a few sesfteV. We
can relate this upward energy shift to the use of the LDA inaalculations, which is likely
to be less suited to describe more localized (less disggrstates. Besides this energy shift,
the sole major discrepancy with the experimental band wtreen Ref. [23] is the absence of
the $ band. However, this band is not so clearly resolved in theexgents as the others.

Different symbols are used in Fig. 4.10 according to the naomic character of the
bands. $and S come from the Si-Au bonds in the surface (solid symbols)sT$hcommon to
most of the models studied in this paper: the most dispessikface bands always originate in
the Si-Au bonds, with the main character correspondingdditlstates of the central Si atom,
and a strong hybridization with the)&tates of the neighboring Au atoms. The flatifand
corresponds to the silicon dangling bonds in the middle @K C structure (open triangles).
The also quite flat Sband is mainly associated with the bonds between the gohdssamd the
silicon atoms in the border of the DHC structure (open s)aMe find several unoccupied
surface bands whose atomic character is difficult to deteen®ne of these bands is located at
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Figure 4.12: (color online). (a) Optimized geometry of the Model (containing one adatom pex 3 unit cell)

and, (b) the corresponding band structure. Surface barttisstvong contributions from the SiAu complex are
indicated by filled circles, while the states associateti¢cstdatom are marked with open triangles. The energies
are referred to the Fermi level.

energies very close toE particularly near th€ point. The metallic/semiconducting character
of the surface is thus governed by the position of this bartds $ituation is very similar to
that already observed for the E{2) model, although in this case the band reaches to lower
energies and becomes patrtially occupied driving the systemetallic.

In agreement with experiment, most surface bands show agsid character in our new
structural model as can be seen in Fig. 4.10 (b) and (c). Sipaiticularly clear in panel (b),
where most states are located within the bulk gap. In theregjsplayed in panel (c) (at the
zone boundary of the>61 Brillouin zone) the $and S bands merge with the bulk bands,
becoming surface resonances. It is no longer possible tdifgehe S and S resonances
with a single band of our finite slab and, as a consequencedifficult to follow the band
dispersion of these spectral features in the directiongretigular to the gold wires. However,
from the data in panel (c) itis clear that the combined efféthe possible dispersion, plus the
broadening of the resonances extends over a rang® @eV, much larger than its dispersion
for energies closer to £ This is broadly consistent with the 1D to 2D transition nepd in
Ref. [18] for the most prominent photoemission feature asihding energy increases.

We now explore the structure and energetics of the model Ntk addition of one
silicon adatom per 52 unit cell. We tried several different adsorption sitesedily on the
SiAu wire following the proposal by Erwin [67] (referred as)Nand bonded to the prominent
dangling bond in the DHC structure occupying hollow (") or top T, (N*) sites [121].
As shown is Table 4.1, this high coverage of adatoms is etieadjg unfavorable in all cases
by at least 2.7 meV/A This is in contrast with the situation for the B(2) model, where
the addition of one silicon adatom per unit cell is slightydrable. In the Nstructure (not
shown) the silicon adatoms tend to locate in a peculiar leridgsition between two gold
dimers along thé¢l10] direction. The structure of the'™Nmodel is shown in Fig. 4.12 (a). The
silicon atoms bonded to the adatom adopt a typical silicarfigaration although, contrary
to what is observed for the clean Si(111) surface, the hofltevis preferred over the top
site [117].

The band structure of the™Nsurface is shown in Fig. 4.12 (b). It is very similar to that
found for the model without adatoms. The &d S are largely unchanged, which clearly
indicates its origin in the SiAu complex. The flaf Band disappears from the gap region as a
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Figure 4.13: Relative surface energies as a function of tatoan content. Explicit calculations have been
performed for several adatom concentrations using thelesnaZ basis set (circles). The results obtained with
the DZP basis set (diamonds) and with plane-wave VASP caiounlis (triangles) for the two limiting cases are
also shown for comparison. All energies are referred todlodshe E(5<2)* model.

consequence of the saturation of the dangling bond withdagan. A new unoccupied band,
associated with the adatoms, appears instead. This newdaanide found around 0.6 eV
above E in Fig. 4.12 (b).

4.6 Adatom coverage

So far we have only considered the limiting cases with zermaximum adatom coverage,
which correspond to a numberof silicon adatoms per:62 unit cell equal, respectively, to
0 and 1. However, the experimental evidence indicates lteaeduilibrium concentration is
x ~ 1/4, corresponding to one adatom pex&supercell. Under silicon rich conditions the
adatom coverage can be increased in the experiment onlyaup td/2, consistent with a 54
periodicity (see Fig. 4.14). We have performed explicica#dtions forz = 1/2, z = 1/3,
andz = 1/4 for our two most stable models of the reconstruction in otdesimulate these
situations that can be reached experimentally. Due to thelasge supercells necessary for
these calculations (up to 273 atoms), we have performed thiémthe SIESTA code and
restricted to the use of a DZ basis set for silicon. The resafithe energetics as a function
of the adatom content can be found in Table 4.3 and in Fig..4TH& behavior is opposite
for both models, N and E¢62). It should be kept in mind that model N favors the adatoms in
hollow sites over the silicon surface, while in the E@ structure the adatoms sit on the gold
chains are more favorable.

The surface energy monotonously decreases as a functidr ofumber of adatoms for
the E(5<2) model. We do not find any evidence of an energy minimum asetifon of the
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Figure 4.14: STM images of (a) Si(111)5x2-Au in thermal drium and (b) after additional evaporation of
0.025 ML of silicon at 300 C. About 90% of all 5x4-cells aredil (-2 V, 0.2 nA, 30 x 30 nf). Picture taken
from Ref. [21].

adatom concentration. This is in contrast with the suggestiade by Erwin in Ref. [67]. In
that reference the addition of adatoms was studied usintptlosving simplification: it was
assumed that the sole effect of the adatoms is to dope thecgalds with electrons and the
energy of the system was studied as a function of the dopinginEound a minimum of the
total energy for 0.5 extra electrons pex B unit cell. Since each adatom was found to donate
two electrons to the surface, this would correspond to tleeed adatom concentration at
equilibrium ofz ~ 1/4. However, our simulations introducing explicitly the aalais in the
structure do not confirm this behavior. The surface energhefE(5<2) structure always
decreases as the adatom concentration is increased. Hotevslope of the curve becomes
very small for intermediate adatom concentrations, shgwiweak dependence of the surface
energy in that region. We cannot completely rule out the gagres of a minimum for the
surface energy at very low adatom concentrations. Howévwseems quite unlikely looking
at Fig 4.13. It could also be argued that the DZ basis set ifl@¥able enough to produce the
correct behavior. This seems quite improbable looking atita in Table 4.2, which clearly
show that the energy changes induced by the addition of aadice weakly dependent on the
details of the calculation.

In the case of the new model N, the Fig. 4.13 shows that thaseidnergy systematically
increases as a function of the adatom concentration. WehDi basis set the N model
is always more stable than the E&(8) structure. Using a more complete basis set and a
converged plane-wave calculation we find a crossing: themeudel is always more stable at
low adatom coverage, but becomes unstable compare withrihie E5 x 2" model at larger
coverages. Scaling the data calculated with the DZ basi®geproduce the VASP results
at the end points (i.er = 0 andx = 1) we can estimate that the crossing occurs atl/2.
We can conclude then that the N model is, at least in the frarewf density functional
calculations, more favorable than the E@ model for adatom concentrations belevi/2
adatoms per 52 cell.

4.7 Simulated STM images

The STM images of the Si(111)-(2)-Au surface are characterized by the presence of bright
“protrusions” (see Fig. 4.14 and Fig. 4.15) and “Y"-shapeatudires with a definite orientation
respect to the underlying lattice [11, 17, 25]. This can nse Fig. 4.15, with the protru-
sions labelled by P. It seems quite well established thaptb&usion correspond to silicon
adatoms [20-22], illustrated in Fig. 4.14. However, theioriof the “Y"-shaped features,



4.7. Simulated STM images 57

Figure 4.15: An experimental 3584 image of the slightly skewed Y structure unit seen in thedilstates of
the 5x2 rows. The topograph was taken at -0.4 VV sample bias and 1t@nmeling current. The main repeating
features are labeled and R indicates the2] direction. Picture taken from Ref. [11].

Figure 4.16: (color online). Simulated STM image of the €2 model with a sample bias of -0.8 eV and an
adatom concentration corresponding toa45periodicity. A possible candidate for the Y-shaped streeis
schematically indicated. The atomic structure is supeowsep with the simulated image in the lower part of the
figure. Large circles indicate the positions of Au atoms.

illustrated in Fig. 4.15, is less clear.

Figures 4.16 and 4.17 present our simulations of the STM @ndgr the E(%2) model
at -0.8 eV sample bias and the N model at -0.6 eV, respectivélg simulations have been
performed for a %4 arrangement of the silicon adatoms, corresponding toesdration of
adatoms that can be actually reached in the experiment. reeagent with Ref. [67] and
the experiments the silicon adatoms show as very pronoumngght protrusions. With the
adatoms directly sited on the gold chains, the bright spopear in the middle of the under-
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Figure 4.17: (color online). Same as Fig. 4.16 but for the Nestructure and a sample bias of -0.6 eV.

lying row structures for the E62) model. For the N model they appear in a more lateral
position. This seems to be in somewhat better agreementswaitte of the experimental im-
ages (see, for example, the Figure 1 (b) in Ref. [22]). “Y&3bd features can be identified in
the simulated STM images of both N and k@) models. The possible candidates have been
highlighted in the Figures 4.16 and 4.17 (see also Ref. [6IM)e identification is, however,
more clear in the case of the less symmetricE{bstructure.

4.8 Conclusions

We have performed a systematic study of different modelse8i(111)-(5 2)-Au surface re-
construction by means of first-principles density-funetibcalculations using the SIESTA [84,
86] and the VASP [118, 119] codes. We start our investigatiith the structural model pro-
posed by Marks and Plass [14] (MP). This is the most detailedehof this surface recon-
struction solely based on experimental information to ddteerefore, it provides a logical
starting point for our study. We have also considered difievariants of the relaxed MP
model, including the structures recently proposed by Ef@i#}, and a new structure found
during our simulations. Within the computational schems&=dhere this new structure is the
most favorable energetically, at least in the regime of lonaentration of silicon adatoms.
In general, we find a reasonable agreement between oursesultthose of the two existing
theoretical studies of the surface [67,68]. The energyedkfices between different models
are quite small, with most structures lying in a narrow raofjsurface energies of less than
10 meV/& (the estimated error bar for our energies is of the order dfrieV/A?). This,
together with the uncertainties arising from the use of doall approximation to the density
functional theory, make difficult to draw definitive condluss solely based on the energetics.
The comparison of the calculated band structures and lecsity of states, respectively, with
the available ARPES data [18, 23, 24] and the STM images [@3]lbecomes then instru-
mental in order to identify the most plausible candidategtie equilibrium structure. In the
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following we summarized some our main conclusions:

i) Like in the case of the reconstructions formed by the dejpositf gold on stepped
silicon surfaces [1, 29, 69, 70], the silicon honeycomb ©l{BiC) [66] structure emerges as a
fundamental building block of the reconstruction. In agneat with the result of Hang and
Lee [68], the silicon HC is formed spontaneously during #lexation of the MP model. The
HC is also present in the optimized geometries of all therattractural models considered in
our work.

i) For the MP model we agree with the main conclusions of Ref] {68t neither the
simulated STM images nor the calculated band structure acergatisfactorily with the ex-
perimental data.

i) We have studied in detail the models proposed in Ref. [67] itk the E(5<1) and
E(5x2) structures. The E1) model is quite similar to the MP structure: they correspon
to two possible positions, at opposite sides of the SiAu demmf the surface dislocation
present in these structures. The E(§ model and its E(52) variant are energetically de-
generate at zero adatom coverage. However, these twowsgachow a different behavior
against the addition of silicon adatoms: it is always unfatate for the E(5% 1) model, while
tends to increase the stability of the (&) model.

iv) We have explored a different position of the surface diglooa at the center of the
SiAu complex. We arrive in this way to a new structure, the Ndelo According to our
calculations this new structure is more stable, at leaskolwrcoverages of silicon adatoms,
than any of the models proposed to date. The distance betiveegold wires in this model
is ~3 A, which seems somewhat small compared to-39 A deduced from the HREM
measurements [14].

V) The calculated band structures of the EZ&§ and N models without adatoms are quite
similar and appear to be in reasonable agreement with thialadaARPES data [18, 23, 24].
The other models fail to reproduce the main features obdexxperimentally. The agreement
seems to be particularly good in the case of the N model. Aliagrto our analysis the most
prominent and dispersive surface bands, nameh8 S in Ref. [23], come from the atoms in
the SiAu complex. In the case of the N model the silicon adatnd to adsorb on the silicon
part of the surface, i.e. bonded to three silicon atoms irsthigace layer. As a consequence,
the topology and the energy position of these bands are osémsitive to the coverage of
silicon adatoms. This contrast with the situation foundif@r E(5<2) model. Here the silicon
adatoms tend to adsorb directly on the SiAu complex, thusingla notable modification of
the surface bands that worsens the agreement with the mygreal ARPES spectra.

vi) We have studied the energetics of the £ and the N models as a function of the
concentration of silicon adatoms. Contrary to the suggestf Ref. [67], we do not find
any evidence of a minimum of the surface energy of thex2)bmodel as a function of the
adatom coverage. The surface energy always decreasesevdalddition of adatoms, although
the changes are very small in the rangerdfetween 1/2 and 1/4, whereis the number of
adatoms per 52 unit cell. For the N model the addition of the adatoms is gswanfavorable.
As a consequence of this opposite behavior, the<Rfstructure becomes more stable than
the N structure in the limit of relatively large adatam= 1/2 corresponds to a>&4 peri-
odicity). According to this picture the exact content of taatas is instrumental to determine
the equilibrium structure of the reconstruction within tla@ge of experimentally realizable
adatom coverages. This introduces a new degree of comptlxit should be taken into ac-
count when analyzing the experimental information. Inipatar, this might be behind the
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observed phase separation intoband 5<2 patches [22, 24].

vii) The simulated STM images of the most stable models, N and EY5are in broad
agreement with the experimental images. The silicon atamdyze bright spots which are
located in the middle of the underlying row structures fa B{5x2) and in a somewhat more
lateral position for the N model. In both cases “Y"-shapeatiees similar to those observed
in the experiment can be found. However, they are more cleéing case of the E(52)
model [67] where the structure surrounding the gold chaireds symmetric.



Chapter 5
Si(111)4x1-In

5.1 Introduction

As was mentioned in Sec. 3.1, coupling between electrordcstmictural degrees of freedom
are enhanced in one-dimension and, as a consequence séaefranic and structural phase
transitons are observed in the metal-induced quasi onefdiilanal surface reconstructions
as the temperature is decreased. A nice example of this imeinas found in the In/Si(111)
system, which exhibits ax4l — 4x2 — 8x 2 structural transition accompanied by a metal-
insulator electronic transition.

The room-temperature (RT)}4L structure of the In/Si(111) surface is well establishe&d] [4
49]. Itis illustrated in Fig. 5.1 and consists of two neighibg zigzag In wires along thie 12]
direction. Each wire contains two In atoms perM4cell and each In atom is bonded to one Si
atom of the substrate. This model has been confirmeabbpitio calculations [72—74] which
reproduce the scanning tunneling microscopy (STM) imagd&s42], and the main features
of the band structure.

At RT the system presents three metallic surface bands watites dispersion [40]. How-
ever, when the temperature is lowered betoW30 K [45] photoemission shows the formation
of a band gap (this is illustrated in Fig. 5.3). This tramsitis accompanied with a doubling of
the unit cell in the STM images [45]. The low temperature (piase has been widely studied
experimentally [46, 48, 54, 55]. However, madt-initio calculations have failed to reproduce
the observed LT behaviour [72, 76].

Recently, an interesting mechanism for the gap opening baa proposed by Ahet
al. in Ref. [52]. The occupation of the surface bands in thel &tructure is quite close to
two electrons. If one of these bands is depopulated (therupps), the other two become
very close to half-filled and thus are suitable to suffer &feitransition due to a periodicity
doubling. If this is true, it seems to indicate thai) there are at least two types of surface
bands that originate in different regions of the substrateewe different symmetries, ani)(
the metal-insulator transition is the result of a combwr@bf two distinct structural distortions
that couple with different bands. This last point is coresistwith the recent first-principles
calculations by Gonzalet. al.[77]. These authors find an insulating 2 structure (see Fig.
5.2) reminiscent of that proposed by Kungifal.[43], as a result of a combined shear and
Peierls distortion of the 41 RT phase.

The objective of the present chapter is to understand inl de¢eorigin and characteristics

61
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Figure 5.1: Equilibrium structure of In/Si(111): (a) therpgective view of the (4x1) structure and the top views
of (b) the (4x1) structure, (c) a possible candidate of th)4tructure. The dark and grey circles represent In
and Si atoms, respectively. The x and y directions aié][and [112], respectively. Two different choices for
the (4x1) unit cell are indicated by the thin solid and dadivezgs. The arrows in (c) show pairing patterns of the
outer indium atoms. The interatomic distances betweemtheigzag indium rows are given in A. Picture taken
from Ref. [72].

Figure 5.2: The low temperature Si(111)/In-4x2 surfaceoetiog to Gonzalez et. al. [78]. Top view of the sur-
face, in which dark (pale) circles represent In (Si) atontge X and y directions aré [0] and [112], respectively.

of the different electronic states involved in the metailator transition, and how they couple
to different structural distortions. The emphasis is ondleetronic bands associated with the
indium atoms in the substrate. We use a simplified model (shawig. 5.4) that captures
the essence of the system. Our results support the mainusioies of Ref. [77], and point
to a primary electronic origin of the structural transitio®f course, in the real surface we
can expect a delicate competition between the gain of eleictenergy and the elastic energy
associated with the different distortions.

The pseudopotentials and basis-set used in this chapandicated in Tab. 2.2 and they
correspond to the GGA versio®2.psf , H2.psf andiIn3.vps . For the model system
of Sec. 5.2, DZP bases were used. We typically used 12 inalguit/k-points along the axis
of the wire (up to 250 in convergence tests, and 100 in thailons shown in Fig. 5.7).

The results of this chapter have been published in Ref. [109]
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Figure 5.3: Measured energy bands of In/Si(111) along thesiAk) in the metallic state (RT) at two different
k., of 0 (a) and 0.24 A" (c) and in the insulating state (45 K) (b),(d). Constantrgnepectral density maps at
EF showing the Fermi contours for the metallic states (e)aradbinding energy of 0.1 eV for the valence band
maxima of the insulating phase (f), which are schematiaddiygicted in (g) and (h), respectively. The first BZ
of the 4x 1 phase is drawn by the thin solid lines in (g). The wigglingriiecontours (g) and the varying band
dispersions at differentKs (a),(c) of m1 and m2 manifest the deviation from an ideahHRure in contrast with
m3. Picture taken from Ref. [52].

Figure 5.4: Our model of the In wires in the In/Si(111}-4 surface: it contains two zigzag indium wires
saturated with hydrogen.

5.2 The Simplified model

Figure 5.4 presents the simple model used here to study ¢e&@hic properties of indium
wires in the In/Si(111) surface. We keep the two zigzag Irewipresent in the>4l unit
cell, and substitute the neighboring silicon atoms withrogen. The In-H distances were
optimized (1.86 A), and kept fixed for the rest of the study.e Th-H bond is more ionic
than the In-Si bond. However, we have checked that satgrafithh SiH; groups instead of H
atoms leads to a very similar band structure.
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Figure 5.5: (a)-(c) Band structure (along the wires axeghefsystem shown in Fig. 5.4 as a function of the
wire-wire distancel: (a) isolated zigzag In wire (d=10.8 A), (b) d=4.31 A, anddeR.15 A. Different symbols
indicate the distinct character of the bands as determimad & Mulliken population analysis [100]: In(1) and
In(2)-py (circles), In(2)-p (squares), and In(1) and In(2)-friangles). (d) Band structure of the In/Si(111)-%
reconstruction (see Fig. 5.1) along thé2] direction calculated with a slab containing four silicotalgers, the
bands with strong indium character are highlighted witkles. Energies are always referred to the Fermi level.

5.3 Coupling of Indium wires

Figure 5.5 shows the evolution of the band structure of oudehas a function of the wire-
wire distanced. There are two types of indium atoms in each wire, In(1) an@)InThe
coordination of the In(2) atoms changes withPanel (a) corresponds to non-interacting (large
d) zigzag wires, while panel (c)i€2.15 A) corresponds to a configuration similar to that found
in the In/Si(111)-4 1 reconstruction. Although not completely evident due tpesgpance of
interaction gaps, the band structure in Fig. 5.5 (a) can ti@naized in terms of three bands:
(1) a strongly dispersive band associated with the In(1)natand the In(2)-porbitals (circles),

a flat band (I) with a clear contribution from In(1) and th€2jp. orbitals (triangles), and
another flat band (111) with large In(2)zharacter (squares). Taken into account the hydrogen
saturation, each In atom contributes with two valence sdest Thus we have four electrons
two distribute in these bands. Band (ll) is doubly occupied does not play any role in the
argumentation below. Bands (1) and (Ill), however, are-fiil#d. Band (lll) can be associated
with the “dangling-bonds” in the In(2) atoms that projecpegximately into the x-direction
and the vacuum.

As d is reduced, the interaction between the wires modifies the k&ructure. This can
be seen in Fig. 5.5(b) and (c). Particularly, the dispersibhands derived from band (l11)
largely increase as a result of the overlap of the danglmmgb in the neighboring wires.
Finally, the electronic states associated with this bamdive highly delocalized in the region
between the two zigzag wires, and the band exhibits an alireeselectron dispersion. In the
following we call this band the "interaction band".

Figure 5.5 (d) presents the band structure of the In/Si¢8%1]) reconstruction calculated
with a slab containing four silicon bilayers. Four surfa@ntls can be located in the gap
of the silicon substrate. Three of them cross the Fermi lewdl similar dispersions. This
is qualitatively reproduced by our model. The agreementnisroved if a small shift of the
Fermi level is allowed (see Fig. 5.5 (c)). The informatioonfr our model allows to catalogue
the surface bands in two types) two bands that are derived from the band () of the right
and left wires, andii) the interaction band. The first two bands have a larger weigide
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Figure 5.6: Shear distortion. (a) Energy per indium atom amation of the relative displacementy of the
indium wires along their axes (see the scheme in the upp¢mopaanel (a)). The band structures for three
different values ofAy are also shown. (b) Band structure of the In/Si(11%)t4econstruction witt\y=1.65 A.
The inset shows the Brillouin zon&X and YM run along the In wires. Energies in the band structae
referred to the Fermi level.

each of the wires and are quite sensitive to the structurbekigzag chains. In contrast,
the interaction band is localized in the regiogtweerthe two zigzag wires and thus is more
influenced by the relative positions of the wires.

This division allows to envision a two-step route for the efyed metal-insulator transi-
tion. Step one: the dimerization of the dangling-bonds fr@ighboring zigzag chains opens
a gap in the interaction-band. This effect can be obtainéldont doubling the periodicity of
the system, the relative displacement of the wires alonig #ixes (see Fig. 5.6) suffices. No-
tice that this corresponds to the shear distortion in R&A. [$tep two: the remaining metallic
bands need to accommodate two valence electrons. Sineetthedands have very similar
dispersions, both become approximately half-filled. As@seguence, the system is now suit-
able to suffer a Peierls transition. This two-step mechamssconsistent with the calculations
of Ref. [77] and the experimental evidence in Ref. [52].

Figure 5.6 (a) shows the evolution of the energy and the bandtare of our system as
function of the shear distortion. One of the zigzag wires diaplaced along the y-direction
by a magnitude\y with respect to the other. For each displacement the distbetween the
wiresd was optimized. A gap is opened in the interaction band whiclems with increasing
Ay. For distortions larger thany ~0.5 A the Fermi level enters in this gap. This is reflected
in the behaviour of the energy that starts to decrease aptiig. This behaviour translates
in an energy barrier o5 meV per In atom. The system is then left with two metallicdsn
that cross the Fermi level at nearby points in reciprocatspd@his is also the case for the real
In/Si(111)-4x 1 surface as can be seen in Fig. 5.6 (b). However, in this taskeehaviour of
the total energy is different. Although still in the rangeadew meV per In atom for moderate
distortions, the shear deformation always increases teggrof the system.

5.4 Distortion of the wires

We now study the effect of doubling the periodicity along thiees. We consider a quite
simple Peierls-like distortion: the length of one everyrfbonds is shorten (the undistorted



66 Chapter 5. Si(111)4x1-In

(c) 0.25
0_\/:
-0.25

", N 2wsa w2a

L

—6.51 R A e .

Sra  _ ‘.—~'1
288 29 292 294 296 298 288 29 292 294 296 2.98

Bond length (Ang) Bond length (Ang)

Figure 5.7: Peierls distortion. (a) Scheme showing fougirealent Peierls-like distortions: the lenght of one of
the bonds (indicated by an arrow) is modified by the same abiotooth wires; different distortions correspond
to different relative positions of the distorted bonds arnel mumbered according to the labels of the different
bonds in the right wire. Panels (b) and (c) show the totalggnper indium atom as a function of the modified
bond length for distortions 1 (solid), 2 (dashed), 3 (ddttéd(dash-dotted). Panel (b) correspondst®0°
(Ay=2.15A), while in panel (ch=154 (Ay=1.05 A). The insets show the band structures close to thieiri-
zone boundary for distortions 1 and 2 in panel (b), and 2 irep@). Energies in the band structures are referred
to the Fermi level.

bond length is 3.045 A). The distortion is identical for betires. Still we have four dif-
ferent possibilities according to the different relatieedtions of the distorted bonds in the
neighboring wires. This is illustrated in Fig. 5.7 (a). Whdoubling the unit cell, the four
distortions break the symmetry of the system in differengsva his detail is quite important.
The distortions open a gap &t due to the periodicity doubling. However, since the Fermi
points do not exactly lie in that position, this does not guaee that the system will become
semiconducting. This is more clear for the extreme sheaortisn (Ay=2.15 A, a=90). In
this case there is a mirror plane parallel to the axis of threswvhich is only preserved by
“distortion 1”. As a consequence of this symmetry, the banecture of the system submitted
to the “distortion 1” presents a band crossing and the systemains metallic. For the other
three distortions the band crossing is avoided due to theklmEsymmetry and a gap opens
at the Fermi level. This can be appreciated in Fig. 5.7 (b). #¢£90° the symmetry gap is
always opened, although its magnitude depends again ormpaaiitular structural distortion.
Figures 5.7 (b) and (c) present the total energy for the rdiffePeierls-like distortions (a shear
deformation has been previously applied to the system)sttidiion 2” and “distortion 4” are
always the most favorables. It is worth noting that the $tmecproposed in Ref. [77] can be
understood as the result of applying a combination of a stliséwrtion and the Peierls-like
“distortion 2” presented above.

5.5 Conclusions

In summary, we have studied the electronic structure of mldeum zigzag wires seen on
the In/Si(111)-4x1 reconstruction. The different surféeands are identified and classified
according to their origin and their response to differemaictural distortions. We confirm

that the combination of a shear and a Peierls distortiorpgsed in Ref. [77], provides a
reasonable and robust route for the observed metal-imsutansition in this system. Our

results also point to an electronic driving force of thisys#ion.
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Si(557)/Au

6.1 Introduction

Probably, the first observation of gold-induced orderingrenSi(557) surface was performed
by Jalochowski et. al. [26] and has attained lot of intenesécent years [19,27,29, 30, 32-34,
36-38,58,62,69, 70]. The present geometrical model is tiaseray diffraction studies [29]
andab-initio calculations [69, 70] and is illustrated in Fig. 6.1. Theaees of Si(557)/Au
have a width of~19 A (or 11 atoms) and each terrace contains a monatomic ctfigjald
atoms running parallel to the step-edge. Because of itslonensional features, the Si(557)-
Au surface has been proposed as an experimental realizdtzoone-dimensional metal [27],
one of the main motivations why it has been subject to suchi@msive research. In spite of
all the effort, the electronic structure of this system isyat completely understood.

The first angle-resolved photoemission (ARP) study by Siegetval. [27] found a spec-
trum dominated by a one-dimensional metallic band. Thisdb&as shown to split in two
peaks near the Fermi level £, and this was interpreted as signature of separated charge
and spin low-energy excitations as predicted by Luttingeoty of the one-dimensional elec-
tron gas [105, 106]. However, later photoemission data seddamdiscard this interpretation.
According to Losioet al. [19] (see also Fig. 6.3 and Fig. 6.4) the observed splittiogia/
correspond to two distinct proximal bands which crogsaEneighboring, although different,
positions of the surface Brillouin zone. However, the origf these bands was unclear. Fi-
nally, Ahnet al.[30] have recently suggested that only one of the bandslismetallic and
suffers a metal-insulator transition upon cooling. Thisalation was correlated with the
temperature dependence of the scanning tunneling miqogg&I M) images: the step-edge
undergoes a periodicity doubling consistent with a Peiésinstability (see Fig. 6.11). Thus
these authors concluded that at least one of the two proxiarals should be associated with
the atoms forming the step-edge.

In contrast with the electronic structure, the geometryhef $i(557)-Au reconstruction
seems to be quite well established. A detailed model wasosexpby Robinsoet al. [29]
on the basis of X-ray diffraction data, which has been carated by first-principles density
functional (DFT) calculations [70] (see Fig. 6.1). Unfaraiely, the calculated band structure
only presentone one-dimensional metallic band exhibiting a considerali$peatsion and
a width consistent with the experimental observations.[70hus, the observed two-band
photoemission spectrum remains unexplained from a thieal@bint of view.

67
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We will demonstrate in Sec. 6.2 with DFT calculations, theg bbserved ARP spectra
is consistent after all with the model geometry and that e pproximal bands appear as a
consequence of the spin-orbit (SO) splitting of the mospelisive surface state. The large
effect of SO splitting on gold-derived surface states haanb#emonstrated previously by
ARP experiments and calculations on Au(111) [123,124]. difgin and magnitude of the SO
splitting is similar in the present case. The inversion syatmgnis always broken at the surface,
thus the spin splitting of bands with no spatial degeneraxoimes possible. This suggests
that atomic wires formed by heavy atoms deposited on semiatimg surfaces could be used
in the fabrication of spin transistors [125] and spin-fillerices [126]. Interesting phenomena
can also appear associated with the competition betweetnateelectron interactions and SO
coupling in one-dimension [127,128].

The SO model has received some experimental support rgcévidasurements of the
plasmon dispersion in the Si(557)-Au surface by Naggal. [36] point to the importance of
the SO interaction in this system. Furthermore, very repliotoemission measurements in
the Si(553)-Au surface, which shows a band structure vemiai to the Si(557)-Au recon-
struction [1] (one can compare Figs. 6.3 and 7.1) seem toroomifiat the origin of the two
proximal bands is the SO splitting [62]. However, the aushafrthis reference arrived to this
conclusion based on the observed pattern of avoided cgsssirthe band structure. This in-
direct method was used by Himpsel and coworkers [62] sineedfuirements of energy and
angle resolution are difficult to combine with the low couaterimposed by spin detection.
Thus the band structure of the Si(557)-Au surface is stilledten of certain debate that needs
further experimental and theoretical work to be fully ursieod.

In Secs. 6.3-6.4 we show how the temperature dependenceasabexperimentally mea-
surable quantities [30, 33, 34], such as Scanning-Tungeé¥icroscopy (STM) and Spec-
troscopy (STS) images, projected Density of States (PD@8)Llacal Density of States
(LDOS) could stem from the buckling of the step-edge whosenatalternate between up
and down positions. A given "up-down" configuration and tixerse one are separated by a
small energy barrier. At room temperature the step-edgéutities between both structures,
and for example the STM images only reflect the average sudictronic and atomic struc-
ture. Upon cooling the step-edge buckling can be revealied &M, producing the apparent
doubling of the periodicity. This implies a Peierls-likegde-transition. However, the order-
disorder (freezing of “dynamical fluctuations”) or displae (Peierls-like) character of this
transition is still a matter of certain debate [33, 71, 10Blie to the nature of the structure,
we initially favored an order-disorder model. Howeversthiight be in conflict with some
of the observations made during the metal-insulator ttimmsihat accompanies the structural
distortion [33, 71]. This aspect is discussed in detail in. $e3.

In Sec. 6.5 we also perform Molecular Dynamics (MD) simulas in the timescale of
picoseconds and observe that the step-edge indeed flletwdtethe periodicity of~ 0.5
ps. This movement is accompanied with several other atoroiements that contribute to
the metallicity of the system at high temperatures, backipgur explanation of the metal-
insulator transition.

In this chapter, both the DZ and DZP basis for silicon weredusénile the DZP:s-SZ:d
basis-set was used for gold. The pseudopotentials and @sebdals correspond to the LDA-
flavour, i.e. toAu.vps ,Si.psf andH.psf inTab. 2.1.

The results presented in this chapter have been presentea ipublications, Ref. [71,
103].
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Figure 6.1: Top (a) and side (b) view of the structure of th&%i)-Au reconstruction. The larger circles (Au)
correspond to the gold atoms. The most prominent featurttedurface are highlighted: a row of adatomd)(
restatomsres), a buckled step-edge with up-edge (B) and down-edge (Ajdns, and a chain of gold atoms
with alternating Si-Au-Si bond angles @ndg).

6.2 Effect of the spin-orbit interaction

Fig. 6.1(a) shows the relaxed structure of the Si(557)-Awmstruction [69, 70]. This struc-
ture is almost identical to the experimentally proposed eh§i2R]. The atoms labelled with
“Au” stand for the gold atoms occupying silicon substituib positions on the middle of
the terraces. The corresponding band structure, alongitbetidn parallel to the steps, is
shown in Fig. 6.2. Panel (a) shows the results from a nongpiarized calculation, using the
VASP [118] code, with the local density approximation (LD#) the exchange-correlation
potential. This band structure is almost identical to tbabirted in Ref. [70] using the SIESTA
code. Several surface bands and resonances can be ideatififdhem with negligible dis-
persion in the direction perpendicular to the steps. Thierdiht symbols reflect their main
atomic character (see Sec. 2.4.2). The unoccupied bandcetharith open triangles comes
from the adatoms (labeleatiin Fig. 6.1(a)), while the occupied one is related to theateshs
(labeledres). In principle, every atom in the step-edge has a danglmdbpointing per-
pendicularly to the step, which would give rise to a very flalffiilled band. This unstable
situation leads to a buckling of the step-edge that doublesinit cell and forms two bands
marked by open squares in Fig. 6.2. The band with larger weighe "up" (B) atoms is fully
occupied, while the band associated with the "down" (A) atbias a small occupation. Notice
that the step-edge bands have a very small dispersion. Mayséannot explain the observed
ARP spectra, as was recently suggested by éthal. [30]. Contrary to the initial interpreta-
tion of the ARP data [27], none of the surface bands in theipribx of Ex has a clear Au
6s character. This is a direct consequence of the larger eleetifinity of gold as compared
to silicon: the & Au character appears several eV below Ehe sole surface bands exhibit-
ing an appreciable gold component in Fig. 6.2 are marked wgitttles. These bands mainly
come from the B states of the silicon atoms neighboring to the Au chainsnfatd and C).
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Figure 6.2: Electronic band structure for calculation matuding (a), and including (b) the spin-orbitinteraction
Energies are referred to the Fermi level. Surface states besn marked with different symbols according to
their main atomic character (see text).
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Figure 6.3: Et!l) band dispersions of surface states along tH@]tirection, which is parallel to the chains.
High photoemission intensity is shown dark. The right/Esymmetry is due to different polarization of the
photons, with the perpendicular component of A large attppesk!!. Picture taken from Ref. [19].
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Figure 6.4: Experimental band dispersion of the metallifame state on Si(557)-Au near the Fermi level, E
measured by E, k multidetection (center). High photoemissitensity is shown dark. Two nearly degenerate
bands are observed with a splitting that increases toward$Eture taken from Ref. [28]

However, they also show a strong contribution from tipestates of gold, so they are better
assigned to the Si-Au bonds. We find a flat band (open circes)cated with the Au-3i
bonds, and a dispersive (filled circles) corresponding ¢0&h-Si> bonds. This last band is
theonly onethat presents a dispersion and width consistent with théoghaission data.

Fig. 6.2(b) depicts the same band structure once the effebe&O interaction has been
included in a non-collinear spin calculation. We still get@n spin-polarized ground state.
The changes are negligible for most surface bands. Thispsat&d since most of them are
localized in regions far from the gold atoms or have a verylksdispersion, i.e. small group
velocities. However, the dispersive AusSband develops a considerable SO splitting. This
brings the calculated band structure in reasonable agreaemth the experimental spectra.
The experiments [19, 28, 30] show&800 meV splitting near E (see Fig. 6.4). This splitting
exhibits a linear dependence as a functiohjokith a~1.2 eV A slope. This can be compared
with our calculated~200 meV splitting at iz and~1.4 eV A slope.

Even though the two SO-split bands are a robust feature qgieetlifor this surface, the
states at the Fermi energy are strongly affected by the tidweds shown in Fig. 6.2(a) and
(b). In our calculations both SO-split bands are metallmyéver, there is a band gap just
above E-. This gap relates to the presence of a row of adatoms in threcterwhich induces
an alternation of the grAu-Si- bond angle between 102.8nd 109.8. The presence of this
gap drives the surface very close to becoming semiconduciine metallicity of the system
is due to the very small partial occupation of the upper s@gge band that pins the position
of Er.

If the step-edge band is lifted by0.1 eV the surface becomes insulating in agreement
with some of the most recent experimental observations3[3®B3]. Taking into account the
use of LDA, and the very different origin of both bands, thestence of inaccuracies of a few
hundreds of meV in their relative positions is not surpgsiim fact, the limitations of LDA to
describe the excitation spectra associated with the dangbnds in silicon surfaces has been
studied in detail by several authors. For example, in the cashe Si(001)-(Z 1) [129] and
Si(111)-(2x1) [130] the gap between the occupied and unoccupied subtawes is widened
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Figure 6.5: Schematic picture of a plausible model, basatd®theoretical band structure, of the metal-insulator
transition in the Si(557)-Au surface controlled by the Hirdkof the step-edge. (a) Shows the insulator situation
for the equilibrium, low temperature, structure. The SidAbel indicates the spin-split gold bands with a gap
A 4, due to the periodicity doubling caused by the row of silicdatems in the terrace. The buckling of the step
edge opens a gaf.q4., leaving an occupied band coming from the up-edge atomsr(@ja unoccupied band
coming from the down-edge atoms (A). The position of the Féewel is indicated by &, andh = |hg — h4|

is the height difference between the atomsand A in the step edge. Panel (b) shows the metallic situation
for h ~0. If the buckling of the step edge takes place through a ai$g distortion,h ~0 corresponds to
the high-temperature undistorted configuration. If thagiton takes place through an order-disorder transition,
configurations close th ~0 will have a larger weight as the temperature is increased.

~0.5 eV using the GW approximation for the electron self-gpeiThe unoccupied surface
bands appear shifted to higher energies with respect todtigpted surface and bulk states.
The GW approximation provides a better description of theherge and correlation effects
than the LDA. In particular, the use of a non-local self-gyallows for a better description of
the electronic exchange which is crucial for an approptig@ment of the relatively localized
silicon dangling-bonds. The origin of the step-edge ban&i(557)-Au is very similar to, for
example, the surface bands associated with the tilted dimmethe Si(001)-(Z1) surface.
Therefore, we can expect a shift of the unoccupied step-edqge to higher energies by a few
tenths of eV using a description of the exchange and coiwvelaeyond DFT-LDA.

6.3 Step-edge buckling and the metal-insulator transition

We proceed to demonstrate how the theoretical model of Fegad.and 6.1 contains all the
necessary ingredients to justify the appearance of a nmetalator transition driven by the
step-edge distortion. Fig. 6.5 schematically presentsitai@ ingredients and clarifies a pos-
sible mechanism for such transition. These are:

() due to the periodicity doubling imposed by the presenceraighboring row of silicon
adatoms, a band gap,, appears in the Si-Au bands at the Brillouin zone boundary;

(ii) the buckling opens a gap between occupied and unoccupiets lat the step edge
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Agep, the size of this gap depends on the strength of the stepeksigetion, i.e. is a function
of |h| = |hp — ha| the difference between the height of up (B) and down-edgeatAins
along the step edge (see Fig. 6.1);

(iif) the Fermi level position is controlled by the relative piosi of the upper step-edge
band (this band is unoccupied at low temperature, its enez@g dependent on the step-edge
distortion) and the top of the occupied Si-Au bands;

(iv) if the alignment of the Si-Au and step-edge bands is apptsgra change in size of
Agep Will drive a metal-insulator transition (compare Fig. 62 and (b)).

If the band structure of Si(557)-Au is qualitatively sinmita that in Fig. 6.5 (see Sec. 6.2),
a displacive-like transition of the step edge between aded ¢ = h.,) low-temperature
and an undistortedh(~ 0) high-temperature configurations will be accompanied braa-t
sition from an insulator to a metallic state as the tempeeagiraised in agreement with the
experimental observations [30]. Thus the connection betwtbe step-edge distortion and
the metal-insulator transition of the Si-Au bands has bestabdished: the metallic/insulator
character is determined by the position of,Bhe size ofA;,, controls &, and A, is
determined by the strength of the distortion

We could think the step-edge transition to be order-dispmgh the system fluctuating
between two equivalent equilibrium configurations at roemperature. This is in complete
analogy with the “dynamical fluctuation"” model acceptedtfa Sn/Ge(111) and related sur-
faces [131] and was our first suggestion of the charactereofrénsition [71]. On the other
hand, such an order-disorder transition would make diffibe direct application of the model
of the metal-insulator transition sketched in Fig. 6.5. Tisplacive or order-disorder char-
acter of the phase transition depends on the ratio betweeprtargy gain associated with
the local distortion and interaction between distortioreated in nearby sites, and how such
interaction decays with distance. As a function of theseupa&ters, there is a continuous
crossover between both types of phase transitions [L081B832 Unfortunately, the informa-
tion necessary to fully characterize the step-edge straidransition in the Si(557)-Au cannot
be obtained fronab initio calculations using small unit cells and thus is beyond tlopsof
the study. We notice, however, that the time spent by theesyst configurations with small
values ofh (slightly distorted step edge), and thus metallic, incesaas the temperature is
raised even in the case of an order-disorder transition.

In the following sections we will analyze the changes of tleeteonic structure as a func-
tion of the step-edge distortion. We will see that theseltesupport the plausibility of the
model proposed in Fig. 6.5 and reproduce most of the featfrdse recent STM and STS
experiments. [33, 34, 37]

6.4 Step-edge buckling: energetics and band structure

Fig. 6.6 presents the total energy as a function of the sigp-bucklingh. With the DZP
basis set the buckling distortion is favorable by at lea$t 2V, with a DZ basis set, like the
one that we used in our first study of this problem [71], theslees are reduced to30meV
and 0.4A. The value of the distortion at equilibrium, is 0.65 A. A value ofh corresponds
to a given up-down configuration along the step-edge, whileorresponds to the reverse ar-
rangement. Therefore, with find equilibrium configuratians., and—h.,. Notice, however,
that one of them is slightly more stable (by 11 meV). This asytry is due to the different
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Figure 6.6: Total energy calculated with a DZP (open cijchesd DZ (filled circles) basis sets as function
of the relative height (h) of the step-edge atoms. Noticestight asymmetry of the curve corresponding to
the inequivalency of the two step-edge positions due to thegmce of a row of adatoms in tkameterrace.
Three configurations, corresponding to different sizedefdtep-edge buckling are selected: configuration (1)
corresponds to a negligible buckling, (2) to an intermexdiatiue and (3) is close to the optimum strength of
the distortion. The local density of states and band streatfithese configurations are analyzed and presented
below in Figures 6.7, 6.8 and 6.12

registry of the two step-edge atoms with respect to theasili@datoms on theameterrace,
which are located-12 A away. Both step-edge positions are equivalent respehetclosest
adatom row, locateel 7 A away from the step edge.

The results using the DZP basis for the energetics of thelimgcHlistortion seem to be
more consistent with the experimental observation. Thaevaf 30 meV obtained with the
DZ basis is too small to explain the observed stabilizatibthe step-edge buckling at tem-
peratures of 78 K [33]. However, we should stress two poiete hOn the one hand, present
theoretical methods [134] are probably not accurate endogkliably estimate the small
energy associated with the step-edge distortion in thé3)(Au surface. We can expect con-
siderable inaccuracies associated with the use of appead&iDFT functionals. On the other
hand, this quantity is not sufficient to determine the appiatr@nsition temperature in a real
system with defects (see, for example, the “vacancies"arstep edge and the adatom row of
the Si(557)-Au surface in Fig. 6.11 and Fig. 6.15). It has&®own [135] that the presence
of defects can stabilize locally a reconstruction well abthe phase transition temperature of
the system. Given the very small energy differences betwééarent reconstructions of the
surface, the presence of defects is usually a very strortgrpation. Defects typically pin a
particular surface configuration in their neighborhood efEfiore, the temperature at which
a single step-edge configuration starts to be resolved i51Hé images will depend criti-
cally on the type and the density of defects present on tHiE5%j{Au surface. For example,
the room temperature STM images of Krawet@l.[34] resolve the step-edge modulation in
clean sections of the step-edge of at least 10 nm limited f®ctie The stabilization of the pe-
riodicity doubling of the step edge at room temperaturelmedefects has also been observed
by other authors [28, 33]. Since the appearance of a relatanegye density of defects seems
unavoidable in this surface, the estimation of the tramsitemperature from calculations of
the “perfect” surface can be questionable.

In Fig. 6.6 we have selected three different configuratiamsesponding to, (1) a very
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Figure 6.7: Band structures of the three configurationscsatiein Fig. 6.6. The different symbols indicate the
main atomic character of the different surface bands. drilguares for bands coming from the gold atoms
and their neighboring silicon atoms, diamonds for the gt@ge atoms, and open circles for the adatoms and
restatoms. In the case of the step-edge, the (partiallyeupmied band corresponds to the down-edge atoms (A
in Fig. 6.1), while the fully occupied one comes from the wge (B). As expected the band coming from the
adatoms is unoccupied while the restatom band is fully oeclEnergies are referred to the Fermi level.
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Figure 6.8: Density of states projected onto the step-ettgesafor the three configurations selected in Fig. 6.6.
The energies are referred to the Fermi level.
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Figure 6.9: Experimental normalized dl /dV spectra on tee stdges at 300 K (red) and 78 K (blue). The spectra
near Fermi level (bias zero) are enlarged in the inset. Haetisim is averaged over several equivalent positions
along the step edges. Picture taken from Ref. [33].

small step-edge distortion£0.06A), (2) an intermediate valuk<£0.25A) and, (3) close to the
equilibrium configuration{=0.70A). The corresponding band structures along the titirec
of the step edge are plotted in Fig. 6.7. The different serfaands are marked according
to their main atomic character. Solid (blue) squares irtdi¢he Si-Au bands, open (red)
circles mark those bands associated with the adatoms atadores, and (yellow) diamonds
correspond to the bands coming from the step-edge atoms. eé&/¢hat only those bands
that come from the step-edge atoms are modified as we chaagérémgth of the buckling
distortion. The step-edge gayp.q,. is strongly reduced as the size of the distortion diminish.
The difference between the average position of the step-edgds is 0.9 eV for configuration
(3), but only 0.2 eV for the structure (1). The occupied stelge band, associated with the up-
edge atoms, is always very flat (dispersion smaller than\0)land its position evolves from
-0.8 eV (below &) in (3)t0-0.17 eV in (1). The behavior of the “unoccupie®stedge band,
coming from the down-edge atoms, is somewhat more comptcdnfigurations (1) and (2)
this band is pinned at & whereas its average position in (3N§.15 eV above k. Thisisin
agreement with our proposal for the metal-insulator ttaonsi However, while the dispersion
of the band is very small for configurations (1) and (2), fousture (3) it becomes0.35 eV.
As a consequence of the strong dispersion, the band presentall partial occupation also
in configuration (3). This small occupation may be an artitdche DFT-LDA calculation as
pointed out in Sec. 6.2.

As expected, when the step-edge bucklings reduced, the down-edge atom band is
shifted to lower energies and this shift is accompanied biaage transfer from the Si-Au
band to the step-edge. However, we can expect this chargibg moderate and the occupa-
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tion of this band should always remain relatively small.ded, going from configuration (3)
to (2) shifts down the center of the bard.2 eV, while going from configuration (2) to (1)
this band does not considerably move respect to the othfarcguipands. As a consequence,
the closing of the step-edge gap implies a larger movemetiteobccupied step-edge band,
which moves~0.6 eV to higher energies. This asymmetric closing of thp-stdge gap is
a distinct feature of our theoretical model of the Si(557)-#nd has been claimed to be in
disagreement with the experimental evidence [33]. In fdt,0bserved gap closing in the
dl/dV spectra on the step edge reported in Ref. [33] and ptedan Fig. 6.9 is apparently
symmetric. However, if we examine these data in detail weficalnseveral features that are in
gualitative agreement with the predictions of our modet.é&s@mple, the differences between
the low and room temperature data are more significant foo¢hapied part of the spectrum.
In particular, a strong peak located~a.7 eV below E- in the low temperature spectrum dis-
appears at room temperature. This energy coincides niaéytiae position of the occupied
step-edge band in our low temperature configuration (3).

6.5 Simulated STM and STS images

The ground state structure of Fig. 6.1 and the electronid®ahown in Fig. 6.2 can perfectly
explain the low-temperature STM images of the surface in Eifjl. The step-edge exhibits
a buckling, with A atoms lying-0.7 A below B atoms. Furthermore, a high contrast between
these two types of silicon atoms is guaranteed. Empty-Stat images will preferentially
show A atoms, while filled-state images will reflect the locatof B atoms.

The simulated images using Tersoff-Hamann theory (see et.1) can be found in
Fig.6.10 (a), the upper part of the panel correspondingeaytiound-state configuration and
the lower part to the reversed step-edge buckling. The image very similar. They are
dominated by two chains showing a double periodicity aldregstep-edge direction in good
agreement with low-temperature images reported for thetesy [19, 30]. One of the chains
is the row of adatoms. The other corresponds to the step-edhgee only every other atom is
visualized.

The situation changes at higher temperatures. The timessageto flip between the
different step-edge configurations gets shorter as thedsatyre increases. Given the size
of the calculated energy barrier, at room temperature oneegpect that STM images show
a time average of the electronic and atomic structure of tince. This corresponds to an
order-disorder model of the transition and has been matlgilEig. 6.10 (b) by averaging the
STM images of the two structures. As a consequence, the eépebiodicity is lost and all the
atoms in the step-edge appear with similar intensitiess €kplains the apparent periodicity
doubling observed by Ahat al.[30] upon cooling. A similar effect would be observed if the
transition is of a displacive type. In such case the room &atpre structure will not show a
periodicity doubling. However, taken into account the draaérgy barrier and the behaviour
of silicon surfaces, it is quite tempting to identify thertsition with freezing of the dynamical
fluctuations.

In Fig. 6.8 we show the projected density of state (PDOS) tmdcstep-edge atoms as a
function of the energy. This can be directly compared with divdV spectra measured on
the step edge and presented in Fig. 6.9 The solid (blue) quesgents the PDOS for the
our low temperature configuration (3). Below: ive find the main peak at -0.71 eV in good
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Figure 6.10: Simulated STM images at low (a) and high tentpezdb) for a +0.7 V bias voltage (empty states).
The upper part of panel (a) corresponds to the ground statetste, while the lower part is obtained with the
reversed step-edge configuration. Panel (b) combines bnathes.

Figure 6.11: Experimental Empty-state STM images at (p3@0 and (d),(e) 78 K with a sample bias of (a),(d)
V¢=1.0 and (c),(e) 0.7 V. The structural model of Si(557/Autiswn in (b) schematically, where the large and
small circles denote Au and Si atoms, respectively. Pidaken from Ref. [30].
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Figure 6.12: Calculated maps of the density of states as @ifumof the energy for the Si(557)-Au surface.
Panels (a), (c) and (e) show the result for a buckled step-étlyresponding to configuration (3) in Fig. 6.6).
Panels (b), (d) and (f) correspond to a negligible step-dmigéling (using configuration (1) in Fig. 6.6) The
density of states is integrated in various energy ranges 0.9 to -0.5 eV (panels e and f), from -0.45 to -0.15
eV (panels c and d) and from -0.15 to 0.15 eV (panels a and t) ,2@ro corresponding to the Fermi energy. The
locations of one adatom row and one step edge are indicat&tibyand “edge”, respectively. The dimension of
each image is- 3.3 nmx 1.5 nm. The used gray scale (arbitrary units) is indicated.

agreement with the experiment. We also find the contributaming from the bulk states up
to ~0.2 eV below k. At higher energies we find a gap in the PDOS. Two peaks &l
0.24 eV above E, appear due to the dispersion of the down-edge atom banddeBethe
small occupation of the down-edge atom band, which is notmesl in the experiment and
gives rise to a peak at;E the main peak at -0.71 eV and the gap extending down to -0.2 eV
agree with the observed low temperature di/dV spectra. Bofigurations (2) and (1) the
main occupied peak shifts to higher energies and, as a coeseg, the gap in the PDOS is
considerably reduced. Although the changes are more matest E- than below E, we
also observe a shift to lower energies of the main unoccupézdk that becomes pinned at
Er. Configurations like (1) and (2) are only available at higmperature. If the structural
transition is purely displacive, then the high temperagpectra can be identified with the
curve for structure (1). However, in an order-disorder sraon the high temperature di/dV
corresponds to an average of the curves obtained for diffeteuctures. Since STMis a local
probe, such an average has to reflect the dynamics of thedtimiiprocess, not just a thermal
average. Thus, we can expect structures similar to configuarél) to have a strong weight in
this average.

Thus we have seen that our model can explain some featurée afiidV obtained on
the step edge of the Si(557)-Au surface. It is also intengdid note that these experiments
mainly reflect the changes in the atomic and electronic &ira®f the step edge. The curves
in Fig. 6.8 do not contain features directly related with&ié\u bands that dominate the pho-
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Figure 6.13: Experimental color STM topographic imagesi(h5¥)-Au at (a) 300 and (c) 78 KM +1.5 V.
dl/dV maps at (b) 300 and (d) 78 K, which were acquired by ClTéasurements at the given bias voltages, si-
multaneously with the constant current topography. Heeeirttensity scale of the di /dV maps, which represents
local density of states (LDOS), is given at the bottom. Rietaken from Ref. [33].

E 0.5 1
nm [R101]

Figure 6.14: Simulated STM images with bias of (a) -1.0 V d)d+0.6 V. Plots in (c) and (d) show the calculated
topography along the step edge (“edge") and the row of adaftex") respectively. Solid lines are for empty
states (positive bias) and dashed lines for occupied sfaéemtive bias). The used scan lines are indicated by
dotted lines in (a) and (b).
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Figure 6.15: The 9.7513.5 nn? Experimental STM topography images of the same area of & BiAu
surface recorded at two different sample biases U=-1.0 ¥rfd)U=1.0 V (b) with the tunneling current 1=0.05
nA. The bottom panels show profile lines perpendicular todh&ins, indicated by long arrows in the main
panels. Picture taken from Ref. [34].
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Figure 6.16: Experimental STM cross sections along twcedkfit chain structures in the Si(557)/Au surface
(see Fig. 6.15). Along chain C for bias voltage U=-1.0 V @dilie) and +1.0 V (dashed line), the bottom panel,
along chain D. Picture taken from Ref. [34].

toemission. In our model the metal-insulator transitiorthef Si-Au bands is a consequence
of the change in position of the down-edge atom band, fronv@bp to be pinned at E.

Fig. 6.12 shows the calculated maps of the local densityadést{LDOS). These maps can
be compared with the dI/dV maps of Fig. 6.13. The LDOS mapk@s&tirface were produced
mimicking the experimental procedure: first we find the “tgdght" Z,;,(x, y) corresponding
to a constant current image at a positive bias of +2.0 V (tkelte of the LDOS maps do not
significantly depend on this voltage),

Ep+V
I= / de p(z,y, Zyp(x,y), €) = constant, (6.1)
Ep

wherep(r, €) is the local density of states calculated for the energypointr. We then plot
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the local density of states on the surfage,(x, y) integrated in small energy intervalsi” as
an approximation to the measured dI/dV maps

Ep+V+AV/2
LDOS(xz,y,V) = / de p(x,y, Zyp(x,y), €). (6.2)

Ep+V—-AV/2
The size of the intervalal” depends on the fineness of the k-sampling and the disperkion o
the bands. For typical calculational paramet&is cannot be too small. In our case we have
divided the range between +0.15 eV and -0.9 eV in two intergéD.3 eV and one of 0.4 eV,
which correspond to the main position of the different stefbands in the low temperature
structure.

In agreement with the experimental results, the data in@=i2 are dominated by features
coming from the step edge and the adatom-restatom row, dineggspond respectively to the
« andg chains of Fig. 6.13. At low temperatures and small voltagagis (a) and (c)) the
LDOS maps are dominated by the signal coming from the resw#nt~0.3 eV below E..
We can only see extremely faint features associated witlstéqe edge and the Si-Au chain
in the middle of the terrace. We need to go to lower energiesjral -0.8 eV, to observe a
strong feature associated with the step edge (panel (e))calWalso see an increase in the
intensity of the signal coming from the middle of the terra€hkis corresponds to a relatively
flat band associated with one of the three silicon atoms lbtawleach gold atom. This surface
resonance is not clearly marked in Fig. 6.7 but is marked @p#n circles in the band structure
of Fig. 6.2. The bonds between gold and the other two silidcoma generate the dispersive
Si-Au band seen in photoemission that, however, only preslac/ery weak signal in the STM
and STS images. At high temperature (panels (b), (d) anth@)¥ituation changes as seen in
the experiment: the step-edge becomes clearly visibleravddtages.

Recently, Krawiet al. [34] have reported an interesting experimental result. [g\ihie
topography of one of the two atomic rows that characteriezeSM images of the Si(557)-
Au depends on the sign of the applied bias voltage, it remanctanged for the other wire.
They suggest that the different behavior is an indicati@t both wires are made of different
materials, gold and silicon (see Fig. 6.15 and Fig. 6.16)wéi@r, we claim that this ex-
perimental observation can be perfectly understood usiagtesent structural model where
the two prominent chains are assigned to the step edge aadatem row respectively. The
step edge shows a reverse corrugation as function of theblasty, whereas this does not
happen for the adatom row. The silicon adatoms-ate3 A higher than the other atoms in
the surface layer, except for the restatoms that only.-0e8 A below. Although the adatoms
produce more pronounced features at positive bias and stegoens at negative bias, for scan
lines taken along the rows of adatoms the atomic topographyirthtes over the electronic
effects. Therefore, the STM images show maxima at the adptmiions irrespective of the
sign of the applied voltage. This can be seen in Fig. 6.14 Tthe corrugation is larger for
empty states and the data are in good qualitatively agreemtrthe images of Krawieet al.
in Fig. 6.16. In contrast, the electronic effects dominatetiie scans taken along the buck-
led step-edge, and the topography can show a pronounceddypasndence. This is shown
in Fig. 6.14 (c), again in good qualitative agreement with data for chain C in Fig. 6.16.
Notice that we use our low temperature structure (with fdityeloped step-edge buckling) to
generate the images in Fig. 6.14. Although the experimdi{saaviecet al. are made at room
temperature, the use of this geometry is justified by thetfadtthese authors concentrate in
structure of the step edge of a few nanometers bounded bgtdefehe presence of defects
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stabilizes the step-edge distortion up to room temperdturthis relatively short chains, as
was mentioned above.

Itis interesting to note that one of the criticisms of Yeenal.[33] towards the low temper-
ature structure proposed by Robingatral. [29] and Sanchez-Portat al.[70, 71] was based
on the predictions, using such structural model, of the afgree of a step-edge modulation
for both, empty and occupied states [71]. According to Yexiral., such modulation could
only be observed for empty states. However, this is disageae with the results presented
in Ref. [34] that we just have discussed above. Of courseconkl argue that the step-edge
modulation observed in the presence of defects is diffdrent the modulation stabilized at
low temperature. However, most experiments to date have pegormed on samples with
a considerable concentration of defects and the obsengatibKrawiecet al. seem to agree
with the predictions from theory. Thus, it is quite tempttngdentify the distortions observed
at low temperature and in the presence of defects. Furthrerrtite simulated STM images
seem to reproduce the change in the relative intensity oftéyeedge and the adatom row as
a function of voltage. In Fig. 6.14 (a) and (b) we can see thiaafvoltage of -1.0 V the step
edge is more intense that the adatoms, whereas for +0.6 \ttizien is reversed. This s in
agreement with the STM images shown in Fig. 6.15, althougihtribe strongly dependent
on the tunneling conditions (e.g. this change is not so dletire data in Fig. 2 of Ref. [33]).

The agreement of the simulations in Fig. 6.14 with experimemualitative. From a
more quantitative point of view there are some discrepand)ehe calculated corrugations
are too large, and) the step edge shows a larger corrugation for occupiedssthta for
empty states, which is not observed in the experiment [34¢ sWbuld point here that we
are using the simple Tersoff-Hamann [99] theory for our $atians. In this theory the STM
images are obtained from the local density of states of thiasei according to Eqg. 6.1 and
all the effects induced by the tip are neglected. The obsedigcrepancies are probably
related to the simple theoretical treatment and the use a$& Bet of confined atomic orbitals
in our calculations [84,120]. This basis set is numericablyy efficient. However, due to
the short cut-off radii of the orbitals, it is not adequatesimulate the smooth decay of the
wavefunctions towards the vacuum and tends to emphasiztrtietural corrugation over the
electronic effects and, in general, leads to an overesbmé#ie surface corrugation. This also
explains, at least partially, the second discrepancy. Thete states images might be also
influenced by the difficulties of the DFT calculations to pedy describe the excited states.

6.6 Molecular Dynamics Simulations

Our MD simulations have been performed using a DZ basis satlas to that used in the
initial studies of the structural properties of the Si(58W) surface. [69—-71] With this basis
set we can perform simulations of several picosecondsoAth less complete than the DZP
basis set the structural and electronic properties oldairnid the DZ basis set are very similar
to those described above. Fig. 6.17 shows the behavior efaedegrees of freedom during
the last 4 ps of one of our MD simulations. The total simulatime is 8 ps (8000 time steps).
The temperature of the system oscillates around 300 K aftieeranalization time of-1 ps.
Our simulation cell contains one unit cell of the Si(557)-swrface. With this “small” cell
we cannot obtain a realistic picture of the structural titéors in the surface. Furthermore,
we have seen that the use of a DZ basis set causes a severestintgion of the energy
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Figure 6.17: Last 4 ps of a molecular dynamics simulationhef $i(557)-Au reconstruction performed at a
temperature 0f~300 K. A DZ basis set was used for this calculation and the siteulation time is 8 ps. Panel
(a) displays the height of different atoms as a function wieti(see also Fig. 6.1): adatowrd( greed dashed),
restatom (es solid black) and the step-edge atoms (B, solid blue and sheldred). The two inequivalent Si-
Au-Si bond anglesd and3) are presented in panel (b). The vertical lines mark thaimaneous configurations
for which the band structures are shown in Fig. 6.18

barrier between the two step-edge equilibrium configuratithe barrier is~30 meV and
the equilibrium step-edge distortidn, ~0.4 A). However, the MD simulations are a very
important tool to understand the coupling between diffexéiorational modes and between
the atomic and electronic degrees of freedom. In particulamwant to check if a well-defined
fluctuation of the step edge exists at high temperatures andtfhis movement is coupled
with other vibrational modes. We also study the effect inehetronic structure of atomic
movements that can be excited at reasonable temperatuteseadifferent from the step-edge
fluctuation studied in detail above.

Fig. 6.17 shows a clear oscillation of the step-edge, theaichanging their relative po-
sitions and residing for intervals of less than 1 ps in a gupsdown configuration. We can
also observe that the system spends a considerable amotimteoin configurations where
the step-edge distortiol is small (corresponding to a small step-edge dap,.). Besides
the step edge, other degrees of freedom show strong flumgah spite of the moderate tem-
perature. Particularly remarkable are the cases of thatoest(marked withesin Fig. 6.17,
see also Fig. 6.1), the Si-Au-Si bond anglesafpnd 5) and, to less extent, the adatoad).
As a consequence, the corresponding energy levels alsbiexiconsiderable movement dur-
ing the simulation. The case of the step-edge bands has hadindsin detail in Sec. 6.2.
The bands associated with the restatom and the adatomatseilith an amplitude of up to
~0.2 eV. This can be easily appreciated for the adatom bardétad~0.5 eV above k) in
the band structures shown in Fig. 6.18 corresponding terdifit snapshots of the simulation.
This movement might be one of the reasons why a well-defingtdtiean state has not been
detected in photoemission experiments [19] on this sudackwhy the adatom band appears
as a relatively broad structure between 0.5 and 1 V (with @gima at~0.7 V) in recent STS
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Figure 6.18: Band structures (calculated with a DZ basjsceetesponding to the snapshots selected in Fig. 6.17.
For configurations (ii), (iii) and (v) (upper panels) themhssive Si-Au band clearly crosseg End the down-
edge atom band is pinned at-Evhereas, for configurations (i), (iv) and (vi) (lower panetke lower branch of
the Si-Au band lies below Eand a tiny gap is developed between this band and the dowaadm band, i.e.

Er lies within the Si-Au band gap 4.

spectra obtained at room temperature [37]. The Si-Au-Sdlaorgle has an important influ-
ence on the Si-Au band that dominates the photoemissiored§uflface. The presence of a
row of adatoms induces a periodicity doubling in the tersaufethe surface that is reflected in
an alternating Si-Au-Si bond angle and the opening of algapin the dispersive Si-Au band.
In the equilibrium configuration the values of these two asgire 111.6 and 103.7 degrees
respectively for7 anda. In Fig 6.17 we see that these values change hiy10 degrees along
the simulation. Changing the Si-Au-Si bond angles changesize of theA 4, gap and thus
influences the metallic or insulating character of the intstaeous configurations.

The influence of the coupling between the electronic and mtdegrees of freedom in the
band structure is clearly shown in Fig 6.18 and Fig. 6.19. i\ess that these band structures
are calculated with a DZ basis set and, therefore, diffghdlly from those shown in Fig. 6.7,
calculated with a more complete DZP basis. Fig 6.18 showsé#mel structure for a few
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Figure 6.19: Average band structure (calculated with a D&ishaet) during the last 3 ps of the molecular
dynamics simulation of the surface at room temperature showrig 6.17. The average is done over 151
configurations (i.e., the band structures are calculat@etvals of 20 fs). The time average is compared with
the band structure for the equilibrium configuration.

selected structures (indicated in Fig. 6.17). Fig 6.19 shthe band structure averaged over
the last 3 ps of the simulation (using 151 different configjores, each one taken every 20 fs)
and compares it with the band structure for the equilibritnoncsure. The three band structures
in the upper panels of Fig 6.18 are clearly metallic: the elisjye Si-Au band crosses-Eand
the down-edge atom band is pinned at the Fermi level. Forgaraiions (ii) and (iii) there is
an evident reduction of the Si-Au gay,, and a shift in the position of the Si-Au band. This
is due to the change of theand angles that become quite close or, like in structure (igrev
appear reversed respect to the equilibrium configurationcénfiguration (v) we can also see
that the step-edge gab.,,. is almost closed due to the very similar height of both stégee
atoms. The three lower panels of Fig. 6.18 show semiconaytiand structures where the
lower branch of the Si-Au band is fully occupied and a smaji gadeveloped between the
down-edge atom band and the Si-Au band. As a consequendesitimelevel lies insideé\ 4,,.
This is particularly clear in the case of configuration (i the three configurations, angles
« and g differ by a similar or larger amount than in the equilibriutnusture and the step
edge shows a considerable buckling. This guarantees latges/ofA 4, and A, and thus
insulating configurations of the surface.
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The results of the MD simulation indicate that at room terapge we find large fluctua-
tions of A 4, andA 4,.. According to our model of the electronic structure of th€gS¥)-Au
surface (schematically summarized in Fig. 6.5) this ingptieat at room temperature the
system alternates between metallic and insulating cordiguns. This phenomenon does not
depend on the character of the ground state, which will beatisg if the values of\ 4, and
A, are large enough in the equilibrium configuration.

Interestingly, many bands that can be found in the equilihrband structure produce
very faint signals in the MD average shown in Fig. 6.19. Thithe case, for example, of the
adatom band and the occupied (up-edge atom) step-edge ltacial aimost disappear from
the average. The restatom band also produces a quite weakaadistructure around -0.2 eV.
The most visible features in the MD averaged band structige gthe occupied part of the
Si-Au band which extends fromEat the zone boundary down to -0.6 eV where it merges
with the bulk bands and the unoccupied branch of the Si-Aul lfieom ~0.4 eV above [k to
higher energiesi) a quite flat feature coming from the unoccupied step-edgd bight above
Er (and thus not visible by photoemission) aiid), the silicon bulk bands extending around
I' from ~0.5 eV below E towards lower energies.

6.7 Conclusions

We have presented a detailed discussion of the electramictgte of the Si(557)-Au surface
and its coupling to the structural degrees of freedom. Olautations are based on the struc-
tural model for the low temperature phase of the surfacemddarom X-ray diffraction [29]
and density functional calculations [70]. The results ampared with recent experimental
information obtained by ARP [28,30], STM and STS [33, 34, 3J0ir main observations are:

i) The band splitting observed in the experimental electrbard structure is successfully
reproduced, pointing out the important role played by tha-spbit coupling in this system.
The spin-orbit splitting in this class of systems has alsenbeeported experimentally very
recently [32, 62]. From a general perspective, this raisesquestion of whether systems
composed by atomic-scale wires of heavy atoms on semictindsubstrates can be used to
create or transport spin-polarized currents, and thus &kiluer future electronic devices.

ii) Contrary to the claims of Yeorat al, we have seen that the calculations using the
theoretical structural model in Fig. 6.1 provide nice quaive agreement with the STM and
STS images obtained at low temperatures [33] and arounctgtal defects that stabilize the
step-edge distortion up to room temperature [34]. Togethtr the successful description
of the experimental band structure, these results givedugupport to the current structural
model of the Si(557)-Au surface.

iii) We have shown that the theoretical band structure is ctosentetal-insulator transi-
tion. The transition is controlled by the relative posisasf the dispersive gold-derived and
the flat step-edge bands. The later splits into an occupidcdiarunoccupied band separated
by a gapA.4. Whose size depends on the degree of step-edge buckling tiiailformer
shows a gap\ 4, associated with the presence of a row of adatoms doublingehedicity
along the[110] direction. If A 4, and A4, are large enough the surface becomes insulating
at low temperature (see Fig 6.5).

iv) At low temperature the step-edge distortion is large and 8Q,,.. As the temperature
increases, configurations with a smaller step-edge bugkéind thus with a smalleh. 4.,
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are available. For sufficiently small values &f,,. the system becomes metallic. We argue
that this is consistent with the observation of a metalletsu transition in the Si(557)-Au
transition [30].

V) In the present model the metal-insulator transition isoagganied by an asymmetric
(respect to k) closing of the gap. Yeorst al. claimed that this is in disagreement with their
experimental results. However, we argue that our data geoaisimple explanation to the
strong changes observed for the occupied states in the dfddbtra taken over the step-edge
by these authors [33] (a strong peak at -0.71 eV in the low &atpre spectra disappears at
higher temperatures).

vi) Our simulated dI/dV maps are in good qualitative agreematit the experimental
results at both low and high temperatures. We assume thabat temperature the system
spends a considerable amount of time in structures with dl ste@-edge distortion. The
step edge produces a strong signal that dominates the dl&ps wf these structures at low
voltages, however, in the low temperature structure theege does not produce any distinct
feature at small voltages.

vii) Molecular dynamics simulations of the system show thatidess the fluctuation of the
step edge, other vibrational modes are present at room tatopeand also have an influence
on the electronic structure. In particular, the oscillatad the Si-Au-Si bond angles changes
considerably the\ 4, gap. Most configurations with small 4, are metallic and contribute
efficiently to the metallic character of the surface at roemperature.

viii) Below E» the MD averaged band structure is dominated by a gold debaed that
extends from E down to -0.6 eV where it merges with the bulk silicon bandshedtsur-
face bands in the occupied part of the spectrum produce wéeadieires due to the thermal
fluctuations of the structure. This seems in agreement Wwelobserved photoemission.

The results presented in this chapter seem to correcthyagxpiany of the experimental
observations on the Si(557)-Au surface. However, furtheotetical and experimental work
is still necessary to understand this surface. In particitléas necessary to characterize the
dynamics of the structural transition [133] and its relatiith the observed metal-insulator
transition. Furthermore, the photoemission data of Ahal. [30] suggest that only one of
the dispersive bands that dominate the spectrum of the BiAb suffers the metal-insulator
transition. This is difficult to explain within the currertdoretical model, where the appear-
ance of two bands is due to the spin-orbit splitting. The iispassociated with the presence
of defects and the different photoemission matrix elemefiise two bands can be behind this
observation and have to be analyzed before driving furtbeclasions from this observation.
Finally, we have seen that the calculated LDA ground statke8i(557)-Au is metallic. This
is due to the small overlap between the down-edge atom bahthardispersive Si-Au band.
We have argued that this failure could be corrected with goraved treatment of the elec-
tron exchange and correlation that would provide a bettscrijgtion of the excited electronic
states. This is challenging due to the large cell necessasyudy the Si(557)-Au surface.
However, it would be very interesting to direct future effoalong this direction.



Chapter 7
Si(553)/Au

7.1 Introduction

The existence of the Si(553)/Au reconstruction - exhilgitthear one-dimensional properties
both in STM images and in the band structure - was recentlhyodstrated by Crain et. al. [58].
The physical properties of the Si(553)/Au have many sirtiks with the Si(557)/Au recon-
struction studied in the previous chapter, but it bears tery important structural differences:
(i) the terraces are cut into opposite direction than in ti¢853)/Au and (ii) the terrace-width
is narrower, consisting only of nine silicon atoms (in theecaf Si(557)/Au they are twelve).
In the electronic structure, the existence of a metallic-dimeensional band with a peculiar

i filling has been reported for the Si(553)-Au surface [1, 58jg( also Fig. 7.1). This
quarter-filled band could create an opportunity for obseyvarge spin-charge separation if
electron-electron interactions (U) could be increasedexample, using a somewhat different
substrate. This is in contrast with half-filled bands, whach unstable against a Mott-Hubbard
transition for large values of U, preventing the observatiba Luttinger metal [1].

In the STM images, some interesting effects are seen in thectestep-edge (that is the
most brightest feature in STM). Snijders, et. al. [64] findbaéring of the symmetry in the
step-edge tox2, as the temperature is lowered from room temperature down 100 K
and ax 3 periodicity below~ 40 K, accompanied with &2 periodicity at the middle of the
terrace [64]. Ahn. et. al., [59] find a similar behaviour amdrbauthors observe a gap-opening
in the electronic structure corresponding to the diffepgriodicities (see also Figs. 7.2 and
7.14).

Althought there is lot of experimental data available on $€53)/Au reconstruction
[1,58,59, 61,63, 64], its geometry on the atomic level i stit completely established. As
a starting point, it would be interesting to obtain the highaperaturex 1 periodic) structure
in order to understand the peculiar electronic structuem se the experiments. With this
objective, in Sec. 7.2, we first propose five models based oranlier experience with the
closely related Si(557)/Au surface of Chap. 6. Then, in S&c7.7 we go even further and
develop a labelling scheme for finding all physically soundace geometries. This method
can be applied in general to all similar surface reconstvostand it allows us to enumerate the
amount of different geometries and generate them autoatigtid\Ve use it to check a large
group (210 in total) of trial geometries for the Si(553)/Aeconstruction and find various
energetically very stable models. We also test some sugacmetries featuring-bonding

89
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Figure 7.1: Experimental angle-resolved photoemissida dbthe band dispersion (c) and Fermi surface (b) of
the Si(553)-Au chain structure. The Brillouin zone is giver{a), together with a tight binding fit to the Fermi
surface. Three metallic bands disperse through the Feweli (Ez=0), two of them abou% filled and one~ i

filled. High photoemission intensity is shown dark, is along the [10] chain direction and k along [112].
Picture taken from Ref. [58].

chains.

At least within our computational scheme, the new modelgaeggetically comparable or
even more favourable than the sole structure proposed édfalathe Si(553)-Au surface [1].
Band structures are analyzed and the possible origin ofifpesive one-dimensional bands
in this reconstruction is discussed.

In the final section 7.8, we test, usiab-initio calculations the proposition made by Ghose,
et. al. [61] for the Si(553)/Au structure. This model, basadhe x-ray diffraction experiment
is quite a peculiar one, involving twice the amount of golarttother proposals [58—60,63,64].
The stability, geometric- and electronic-structure otimodel are analyzed.

Parameters according to Tab. 2.2 and corresponding to tAedpproximation §i.psf
H.psf andAu.vps ) are used throughout this chapter. Some calculations ussyASP
code are performed in Sec. 7.7.

Some of the results of this chapter have been published inR].

7.2 Structures based on analogies

In this section, we base our investigation of the Si(553)+&construction on a plausible
analogy with the closely related and better known Si(55d)stirface of Chap. 6. Both
surfaces contain steps along the0] direction. In fact, the orientation of the chains along
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Figure 7.2: Experimental STM topographs of Si(553)-Au #8@0 and (b) 45 K for an area of 10x10 At 0.2
and 0.5 V biases (empty states), respectively. The ball ackimodel in (a) shows the cross-sectional view of
the unreconstructed Si(553) surface with steps and a naemace. Picture taken from Ref. [59].

the[110] directions seems to be common to all the silicon reconstmsforming monatomic
gold chains [1]. We recall some properties of the Si(557)rdapnstruction from Chap. 6)
Gold atoms occupy substitutional positions in the top Setap the middle of the terraces;
ii) the atoms close to the step-edge are strongly rebondedjrigra structure reminiscent
of the so-called honeycomb chain (HC) [66]; the structure doubles its periodicity along
the direction of the steps due to a buckling of the atoms instep-edgejv) there is also
a row of adatoms on each terrace. The miscut direction is Sifgptor the Si(553)-Au and
the Si(557)-Au surfaces. This would open the possibilita afifferent rearrangement of the
step-edge in both cases. However, we do not consider thestplity here, and our models for
the Si(553)-Au are fabricated using the building blockeelisabove.

We recall from Sec. 3.4 and from Chap. 4 and Chap. 6 the impoetaf the HC structure
for the gold induced reconstructions; the HC is known to oaethe Si(557)-Au surface [29,
69, 70]. We saw in Chap. 4 that it is also the key ingredient oé@ent proposal for the
structure of the Si(111)-(62)-Au reconstruction. The HC structure is illustrated agai
figure 7.3. We see that the HC structure involves two unise#lkthe unreconstructed Si(111)
surface, with one atom removed from the top Si layer. Thisdltest the surface and removes
surface stress as was discussed in Sec. 3.4. The inset af figRirshows a side view of
the HC. The unsaturated bonds are illustrated, and the mischdehind this reconstruction
was explained in Sec. 3.4. We recall from Sec. 3.4 that thetrele count in the HC is
odd, so one additional electron is needed to yield an eleictidosed-shell structure. If there
is a neighbouring alkali-metal atom, it donates one electoothe HC, thus contributing to
the stabilization of the structure. In the case of gold, WwHias a stronger electron affinity,
the situation is different. Gold is likely to take electraasay from the silicon structure. In
principle, this does not prevent an electronic stabil@atnechanism: one electron may be
transferred to the6Au state, leading again to a closed-shell structure. Howeveeality we
are far from thigonic situation. As we saw in the case of the Si(111)/Au-5x2 an855if in
Chaps. 4,6, the states of gold are strongly hybridised vkidise of the neighbouring silicon
atoms creating several dispersive bands that are, in pl@cnetallic.
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The structural elements presented above can be used torbaiig models for the gold
induced reconstructions on stepped silicon surfaces. érigtth of the terraces and the registry
with the underlying silicon layers (assumed to be unrecangtd) impose some geometrical
restrictions. Some of these were explained in Sec. 3.5. ffaet®f the introduction of the
HC in the Si(111) is schematically illustrated in figure 7\8hile flattening the surface, the
HC creates a stacking fault towards thé&2| direction ( at the right of the HC in the figure)
that can be avoided by introducing a surface dislocation) (8Dthe upper part of figure 7.3
the SD is introduced immediately after the HC, thus recomgtihe perfect stacking of silicon.
On the lower part of the figure the stacking fault remainsling SD is introduced.

HC from side

Honeycomb Chain  Stacking fault

Figure 7.3: Some structural patterns appearing in the rivetated reconstructions of the Si(111) surface. The
bonds within the surface bilayer are indicated by soliddindile dotted lines are used for the underlying bilayer.
The atoms occupying the highest positions in the surfa@y®ilare represented by solid circles. Open circles
are used for those in the lower bilayer. A side view of the HQtre is shown in the inset.

To name our structural models of the Si(553)-Au surface wee lteeveloped a notation
which we believe may be useful for other similar systemss(tiotation will be further de-
veloped in Sec. 7.4). The first double-layer in the unreconstd Si(111) can be expressed
using a X1 unit cell with a two atoms basis. This entity is named “Sthis block contains a
stacking fault (i.e. its bonds coincide with those of thessetdouble-layer) it is called “8, f
standing for faulted. HC has a<A unit cell and is indicated by “H”. The SD is indicated with
“D”. Itis basically equal to “S”, but one of its atoms is overardinated. Using this notation,
the upper part of figure 7.3 can be abbreviated as (startomg the HC) HDS and the lower
part as H$D. The substitution of a silicon atom by gold is indicatedgsa+ superscript.

Our models for the Si(553)-Au surface can be seen in figureMedels | to V are gen-
erated by placing the HC structure with the accompanyinigckgion, and the chain of gold
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Figure 7.4: Relaxed structures of the different modelsHer$i(553)-Au surface studied here. Models | to V are
proposed from an analogy with the structure of the Si(55W)siérface. Structure VI has been proposed recently
by Crainet. al.[1]. Large circles indicate gold atoms. Some of the atomdadrelled (see figure 7.5). The inset

clarifies the orientation of the steps.

Table 7.1: Relative surface energies (in me%yAf different structures of the Si(553)-Au surface. The iens

in the first column refer to figure 7.4, while the names of thelais are assigned according to the nomenclature
explained in the text. Column labelledl presents the results for the smaller unit cell (with a €rfigh atom).
The systems in columns2 and x 3 included, respectively, two and three unit cells alongdtep direction.
This was done in order to study the stability of the step-aegpect to several structural distortions. However,
the relaxed structures always returned to an almost peufedistortedx 1 periodicity. Thex1 andx2 slabs
contained four silicon double-layers, while the3 slabs only had three silicon double-layers. The number in
parenthesis was obtained using a DZP basis.

Model x1 x2 %3
I HD*S 0 0 0
Il HS}D 1.4 - -
Il HDS™* 7.0 7.3 -
IV STHD 11.3 - -
V SS'H 5.3(5.6) 6.0 5.8
VI Crainet. al. - - 5.7

atoms in different positions of the terrace. Model VI hasrbpeeviously proposed by Crain
et al. [1]. The unit cell of the structure VI is three times largeoral the step direction than
that of the other models. This is due to the extra Si atomslathto the step-edge: there are
two atoms every three possible sites. This was proposed agpdamnation for the &3 super-
lattices (see Fig. 7.2) frequently observed in the STM insd@e58]. We have decided not to
impose the appearance of superlattices in our models.akhste studied the stability of the
step-edge against structural distortions that might bparsible of the periodic modulation
in the STM images, analogical to the case of the Si(557)-Atasa and Sec. 6.3.

The main results of this section can be found in figure 7.4 ahtt7.1, where the relaxed
structures and the relative surface energies of the differedels of the Si(553)-Au recon-
struction are presented. Model | is the most stable stractlirpresents a strong similarity
with the Si(557)-Au reconstruction (see Fig. 6.2). The HPleced at the step-edge and the
gold atoms reside in the middle of the terrace. The main miffees in the present case are
the presence of a SD, associated with the HC and the differgritation of the steps, and
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the absence of adatoms due to the smaller terrace. Modetkll anly differ in the position
of the SD and have almost degenerate energies. Changes loc#t®n of the gold chain
have stronger impact in the energy. This becomes clear bpaong models | and 11, which
solely differ in the site occupied by the gold atoms. Thisgasis that the ideal location of
the gold chain is in the middle of the terrace, as was preWdiesind for the Si(557)-Au
reconstruction [69, 70].

We also tried structures where the HC has been moved awaytfrestep-edge. In both
cases, model IV and V, this yields to an increase of the saréergy. This seems to in-
dicate that the HC is an especially stable rearrangemeriteo$tep-edge in vicinal Si(111)
surfaces. In fact, in the case of Si(557)-Au surface, the ti@sire formed spontaneously at
the step-edge during the geometrical optimisations usamgitly-functional calculation [69].
The model 1V, with the gold chain in a position neighbourinogtihe step-edge, is the most
unstable configuration. This points again to the largerisyabf the gold substitution in the
middle of the terraces.

The model by Crairet al.[1] (model V1) is indeed a simple variant of model V. A silicon
dimer is attached to two of the step-edge atoms and anotloesitiwson atoms in the terrace.
This creates & 3 modulation along the step-edge direction similar to wiaatleen observed
in some STM images [1, 58] (see also Fig. 7.2). Interestintly addition of these silicon
dimers leaves the surface energy almost unchanged (seertabl This is consistent with the
observation of large variations in the concentration ofdkia silicon atoms attached to the
step edge and, probably, a high mobility of these atoms. Agas seems to be consistent
with the STM observations.

As was explained in Secs. 6.3-6.5, in the case of the Si(Bbi73urface the doubling
of the periodicity observed with the STM can be explained assalt of a buckling of the
step edge. Since this could also provide an explanatiorh®ntodulations observed in the
Si(553)-Au surface, we have explored the stability of twooaf models (I and V) respect
to similar distortions. We have used supercells contaitiva or three unit cells along the
step. Our relaxations started from structures where onbeofitoms of the step edge was
moved either upwards or downwards .3 A. In some cases, the atoms with unsaturated
dangling-bonds in the terrace (see figure 7.4) were also chopwards in an attempt to force
their charging with electrons transferred from the stepeedigthe case of model | this would
leave a metallic step-edge band, susceptible to favouctatal distortions. In other cases,
the whole structure was relaxed under the constriction @friqular step-edge configuration.
However, in all cases we were unable to stabilize the stgg-bdckling. Once all the degrees
of freedom were optimized the structures always returnashtalmost perfeck 1 periodicity.

We now turn our attention to the electronic band structufesuo most stable models.
Based on earlier studies of the Si(557)-Au surface we expefind two surface bands with
different dispersions near the Fermi level associated thighSi-Au bonds [69, 70], similar to
those depicted in Fig. 6.2. In the present case, these shewdlat band originating from the
Sip-Au bonds, and a dispersive band coming from the more ovaigpSi-Au bonds (see
figure 7.4 for the labelling of the atoms). In the presentwalions we have only included
scalar-relativistic effects for gold. In fact, the effeétloe spin-orbit interaction is expected to
be negligible for the total energy of these surfaces (we kave spin polarization). However,
as we demonstrated in Sec. 6.2, the dispersiyéABiband shows a considerable spin-orbit
splitting (up to~200 meV near the Fermi level). As depicted in Fig. 7.1, thepdmission of
the Si(553)-Au surface shows a half-occupied band feajuwiclear splitting, almost identical
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Figure 7.5: Panel (a) illustrates the Brillouin zones fa (k1) and (x 3) periodicities along the step-edge. The
pathT'-ZB,»-ZB-ZB’ ,-M’ is parallel to the steps, while M is perpendicular. The band structure of the
systems HO'S and SSH are plotted in panels (b) and (c), respectively. Bandsapgrtg to the Si-Au and
Six-Au bonds(solid and open circles, respectively), to the step edgeai®s), and to the dangling bonds in the
terraces (diamonds) are indicated. The atomic labels arsistent with those in figure 7.4. The insets show a
schematic representation of the most prominent surfaceésan

to that observed for the Si(557)-Au, and a dispersive qudéifted band at lower binding
energies. We think that the surface bands showing splittinidpe experiment have to be
identified with those coming from the SAu bonds.

Figure 7.5 (b) and (c) show the band structures of the modet&l IV, respectively. The
different symbols reflect the main atomic character of théase bands, as obtained from a
Mulliken population analysis (see Sec. 2.4.2). In figure (b)5we can find an almost fully
occupied band pertaining to the $\u bonds very close to the Fermi level. A dispersive band,
coming from the dangling bonds in the terraces, appeargipallg empty. The agreement
with the experimental spectra of Fig. 7.1 could be improvetie population of this band
would increase. Such electron can occur associated witphréeence of extra silicon atoms
attached to the step-edge [1], or to the terraces (see Séf. A.surface band associated
with the step-edge crosses the-8u band and almost reaches the Fermi level. There is no
evidence of this band in the experiment. The band structinecalel 1l is almost identical
to the band structure of model I. A more thorough analysis odeh(ll) is done during the
systematic search of structures in Sec. 7.5.

The band structure of model V (figure 7.5 (c)) features botispatsive and a flat bands
associated with the Si-Au bonds. The step-edge gives risenetallic band with a small
filling. The presence of this band implies that structuratalition of the step-edge with an
electronic driving force are possible. However, as desdébove, we have failed to stabilize
such distortion in our calculations up to now.

The band structure of the model VI is presented in figure 7 larger unit cell makes
the comparison with the band structures in figure 7.5 someedraplicated due to the back-
folding of the bands. There is a clear gap in theSi band associated with the symmetry
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Figure 7.6: As in figure 7.5 (b) and (c), but for model VI.

breaking induced by the silicon dimers attached to the stiges and to some of the atoms
in the terraces. The changes in the three Au-Au distancdwinnit cell are -0.12, -0.16 and
+0.28 A, while the corresponding;SAu-Si; bond angles are 103100 and 115. Notice that
the possible mirror symmetry of the structure is also brakesur final relaxed configuration.
This can also be noticed in the slight buckling of the silicihmers, visible in figure 7.3.

None of the band structures of the models provided in this@eare able to explain the
photoemission data of Fig. 7.1 for the Si(553)-Au surfacewklver, some of the main quali-
tative features are reasonably described by the band steuat model V, shown in figure 7.5
(c). There are two metallic bands with quite similar disp@rs. One of them is close to half-
filled and comes from $iAu bonds (and, therefore, likely to exhibit an observalpli@-<rbit
splitting). The other one comes from the step-edge and ptesesmall fractional filling.
However, the band originating from the,SAu bonds is not seen in the experiment and the
details of the band structure are far from those observedrarpntally.

7.3 Strategy of the structural search

In the previous section we generated “manually” configoretifor the Si(553)/Au reconstruc-
tions using different physical (electron-counting, capadion, etc.) arguments. This way we
were able to search only through a relatively small amourdtafctures, five in total. We
would now like to search through a larger set of reconstoastand, somehow, calculate or at
least enumerate all “reasonable” surface coordinations.

According to our experience with the silicon reconstrutsioalmost any trial geometry
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that is not completely absurd relaxes to a nearby local minimHowever, the number of local
minima scales roughly exponentially with the number of atanvolved in the reconstruction
and the problem becomes intractable for large cells. Aparhfthis heuristic approach one
can use more sophisticated algorithms that can automgtital optimum geometries. Some
examples are simulated annealing [136, 137] and Monte Garlalations of different types,
including genetic algorithms [138—140]. Monte Carlo teicques have been traditionally used
to find cluster geometries [141], and have been recentlyneeite to find surface reconstruc-
tions [142, 143]. Unfortunately these methods are compurtally very expensive requiring
long simulations with thousands of evaluations of the syst@ergy (and interatomic forces
in some cases). Particularly, genetic algorithms are vewyepful but typically need hun-
drends of generations, each one containing tens of triahgétes [141]. Therefore, they are
mostly restricted to the use of empirical interatomic pttds which, however, might not be
sufficiently accurate to reproduce the energetics of tHfergift geometries explored.

In the present work we adopt a compromise between these wes.idDue to the lack of
reliable empirical potentials to represent the interacthetween the gold and silicon atoms
in the surface, we need to explore the energetics of therdiffenodels of the Si(553)-Au
reconstruction at the density functional or similar levetleeory. This precludes the use of
Monte Carlo algorithms to perform a global search of the mstmiction structure. However,
we do not want to restrict our search to explore a “few" strcaitmodels. Thus, we will rather
make asystematisearch of the optimum surface model within a large family loygcally
motivated structures. Our approach is the following:

i) a family of likely structural models for the Si(553)-Au $ace reconstruction is defined
using a heuristic procedure based on the analogy with o#feied and better known surfaces;

ii) a compact notation is designed to label unambigously eathegpossible structures
within this family;

iii) from each of these labels, a trial geometry is generateghzatically and an initial
constrained relaxation is performed to avoid the appearahunphysical bond distances;

iv) “fast" density functional calculations using SIESTA ased to relax each of the struc-
tures to its closest local energy minimum;

V) the most stable configurations from step are studied using more time consuming
“accurate" SIESTA calculations;

vi) finally, since the energy differences between differemicttiral models are quite small,
we check the energy ordering of our most stable configuratising a different methodology:
plane-wave calculations using the VASP code.

By “fast" SIESTA calculations we mean here calculationggrened using small basis
sets (i.e, with a small number of basis orbitals per atone 8 or DZ basis sets [84, 86]),
limiting the number of k-points and optimized degrees oéflem and/or using less stringent
criteria than usual for the convergence of the self-coestst cycles. These approximations
substatially reduce the computational cost. Thereforee@omes possible to relax the hun-
dreds of different configurations within our family of sttuces. We will see below that the
energies obtained in this first step are reliable enoughléuisa set of a few tens of structures
containing the most promising structural candidates. thate" SIESTA calculations are per-
formed for these configurations using DZP basis sets, arlargampling and well converged
self-consistency. We can see that the use of a code thatestitiasis sets of atomic orbitals
is instrumental for this gradual increment of the accurdaye calculations: while the pseu-
dopotentials, density functional, and basic numericaésth remains unchanged, the size of
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the basis set (the main factor limiting the size of the stidigstems and the computational
time) can be varied. This provides a very convenient way & déh the trade-off between
computational speed and accuracy of the calculation.

In the following we present in detail the hierarchy of appnoations used to perform our
simulations. As a starting point we automatically geneegiproximate coordinates for all
possible structures fulfilling certain conditions. Thesaditions will be explained in detail
in the next section. Our family of structural models is baseglausible analogies with the
structure of other related surface reconstructions likeSi557)-Au or Si(111)-(52)-Au.
While reasonable atomic coordinates within the plane oft¢nece (that we take as the-
plane) are relatively easy to guess due to the registry Wehstib-surface bilayer, the height
of the different atoms in the surface bilayer is more prol@gm For this reason, in the first
relaxation (named = hereatfter) only the atoms in the topmost bilayer are allotea@lax in
the z-direction (normal to the terrace). This relaxation stepugas the interatomic distances
to be reasonable without changing the topology of the sarfdlayer and its registry with the
underlying atoms. For th8z relaxations we use a SZ basis set andxd X-sampling. To
further accelarate the simulations the parameter detargthe convergence of the density
matrix in each relaxation step (DM.Tolerance [144]) is se1®2. The typical value given
to this parameter to ensure a very good convergence of the@®istent solution is 10.
However, we have checked that increasing this value td d@ly introduces small errors in
the calculation of energy and forces: for example, the marmforce difference during the
relaxation of a few representative structures of thoseietukere was less than 0.01 eV/A
when the two different convergence criteria were used. ite € this moderate effect on the
results, in some cases increasing the value of DM.Tolerant63 reduces considerably the
number of steps per self-consistency cycle. In the next(s@medSy hereafter) all atoms are
allowed to move (except the silicion atoms in the bottom ef$kab and the hydrogen atoms
directly bonded to them). However, in order to preserve dipology of the selected configu-
ration, the positions of the atoms along the direction pelrd the step edgeg{axis) is fixed.
Other parameters have the same value as in the relaxgtionhe purpose of the relaxations
Sz andSy is to provide a sound initial configuration from the coordesgenerated automati-
cally. Using this corrected guess we can proceed furthewally all degrees of freedom in the
slab to relax and using a more complete DZ basis set and ae@«d k-sampling. We call
this the D* relaxation. Finally, in theD relaxations we further decrease the tolerance for the
covergence of the elements of the density matrix to its usefult value in SIESTA [144] of
10~%. We use a DZP basis set for our most accurate relaxatiofshereafter). Adding a po-
larization shell withd symmetry can be especially important to accurately des¢rihusual”
coordinations of the silicon atoms which cannot be desdnkih simplesp hybridizations.

The use of this series of optimization schemes with evareesing accuracysz— Sy— D*

— D— D P) is much more efficient than starting directly with a relasatat theD P or similar
level. The reason for this efficiency gain is twofoid:the initial coordinates used to start each
relaxation have been optimized at the previous level amdetbre, they are an initial guess of
increasing qualityii) the energy estimates obtained with the less accurateatedas, already
at theSy level, are accurate enough to allow discarding many of tlssipte configurations in
favor of the most favorable models. This is the case eventifeaty level we use a minimal
basis set, a thin slab of two bilayers and we fix the atomicdioate parallel to the step edge
in order to preserve the selected bonding topology. Onedteske into account that a mini-
mal basis for Si contains only four orbitals, a DZ basis embitals, and a DZP basis thirteen
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orbitals. Thus the computational cost changes dramatiedlen changing the basis set size.
Additional gains are obtained by using smaller k-samplizugg reducing the number of step
in each self-consistent cycle.

7.4 Structural models: a labelling scheme

The structural models that we are considering for the S)Z&Breconstruction are based on
the analogy with the Si(557)/Au and the Si(111)/Au-5x2 restauctions of Chaps. 4 and 6.
The most important features of the most stable structuraletsoof these surfaces are:

i) the reconstruction only involves the atoms in the topmdaybr;

ii) the gold atoms occupy substitutional positions in theaaeaflayer, which are much
more favorable than adatom-like sites;

iii) positions of gold in the middle of terraces are favored @tep-edge decoration;

iv) frequent appearance of the honeycomb chain (HC) structure

Fig 7.7 (a) shows a schematic view of an unreconstructe®3j(&urface. Taking into ac-
count the points) andii) we only explore here reconstructions generated addingditi@nal
bilayer ontop of this unreconstructed substrate. One oéili@n positions is replaced by a
gold atom. Different registries with underlying bilayeeaallowed, as well as, the presence
of HC structures. Fig 7.7 (b), (c) and (d) show a few possiblectures. Structure (b) re-
covers the unreconstructed surface. Structure (c) prestatking fault in the middle of the
terrace with the accompanying surface dislocations witthetnand over-coordinated atoms
(indicated by arrows in Fig. 7.7). In panel (c) the surfadaysr contains a HC structure in the
middle of the terrace. Notice that the HC reconstruction aleates a stacking fault towards
the [112] direction (i.e., towards the inner part of the terrace). sTétacking fault has to be
corrected in order to connect with the bulk structure. Tlogee it is necessary to introduce a
surface dislocation with over-coordinated atoms (markéd an arrow).

In Sec. 7.2 we explored a few structural models for the Si(BGBreconstruction based
on an analogy with the Si(557)-Au surface. Here we want toerestep further and to make
a comprehensive search among the structural models thabecdmilt following the rules
()-(iv) presented above. We consiagdr possible structures where the atoms of the topmost
bilayer present coordinations between 2 and 4 with othenaia the same bilayer. The final
coordination depends on the registry with the underlyitigai structure. One of the silicon
atoms in the unit cell is replaced by a gold atom. The Si(5&3)econstruction is known to
suffer several distortions that increase the size of theaatl along the step direction as the
temperature is decreased. [59, 64] However, here we onlgidenmodels that preserve the
x 1 periodicity of the silicon substrate along the steps ametefore, are relevant to model the
high temperature structure.

We have developed a simple labelling scheme for the famiggratctural models that fulfill
the criteria presented above. We can label each structaréhais count the total number of
different trial structures within this family. Furthernggrthis scheme can be easily translated
into a procedure to automatically generate the trial genoeset The basis of our labelling
procedure can be found in Fig. 7.8. First, the possible postwithin thexy plane of the
surface atoms are discritized and approximated by the goird grid. The grid is formed by
nine columns and two rows. The nine columns correspond tpdkiions of the atoms along
the [112] direction in the terrace of an unreconstructed Si(553)ser{see the Fig. 7.7 (b)).
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Figure 7.7: (a) Schematic view of the unreconstructed S)Sbirface. The steps run parallel to fe0] di-
rection and are oriented towards thé2] direction. The rectangle indicates the “unit cellithin the terrace,
containing nine inequivalente silicon sites (with four atwsated dangling-bonds). Panels (b), (¢) and (d) show
configurations generated by adding a silicon bilayer on tofhe structure in panel (a). The different recon-
structions explored in this paper are obtained by chandiaegtructure of this surface bilayer and/or its registry
with the underlying atoms. Open triangles represent atantkeé topmost atoms and solid circles the higher
atoms in the second bilayer. These structures (and all thetstes considered in the present work) preserve a
x 1 periodicity along the step. Structure (b) recovers anaonstructed silicon structure. Structure (c) presents
a surface dislocation close to the step egde that generatesking fault (SF) that is later corrected creating
another surface dislocation in order to connect with thé striucture. Surface dislocations create under- and
over-coordinated atoms which appear indicated by arrovesle¥i(d) presents a honeycomb-chain (HC) structure
and the accompanying surface dislocation.

Second, all possible structures created by distributiegatioms among the grid points can
be translated into a sequence of nine numbers. The positog #éhe horizontal coordinate
(column) is indicated by the order in the numerical sequembe first number corresponds to
the atoms at the step edge. For a given column, a “2” (“4")datdis that a silicon (gold) atom
is located in the higher row, i.e., in the middle of the regiadar terrace unit cell, whereas
a“l" (“3") indicates that a silicon (gold) atom sits over adgpoint in the lower row. A “0"
indicates that there are no atoms in that column. Using ttheme, the unreconstructed
Si(553) surface in Fig. 7.7 (b) can be label as (1,2,2,121121), while structures in panels (c)
and (d) would receive the label (1,2,2,2,1,1,2,1,1) ang,211,0,1,2,1,1), respectively. Other
examples, corresponding to models already studied in S2can be found in Fig. 7.8.
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Figure 7.8: (a) and (c) show two possible structures for 1i{®53)-Au surface already explored in Sec. 7.2.
These structures are characterized by the presence of artiffuse close to the step-edge. Solid lines indicate
the bonds between atoms in the topmost bilayer of a giveaderithin dashed lines correspond to the underlying
silicon bilayer, and thick dashed lines indicate a few barfdhe upper terrace. The small solid circles mark the
positions of the higher silicon atoms in the underlyingy@aThe large open circles mark the substitutional sites
occupied by the gold atoms. The rectangle corresponds teftfaee “unit cell". Panels (b) and (d) schematically
explain how the structure of the surface bilayer can be laéed into a sequence of nine numbers. First the
possible positions of the atoms are approximated by thegofra grid. The grid is formed by nine columns and
two rows. The position along the horizontal coordinate didated by the order in the numerical sequence. The
first number corresponds to the atoms at the step edge. A 42 {fidicates that a silicon (gold) atom is located
in the higher row, i.e., in the middle of the rectangular.céll'1" (“3") indicates that a silicon (gold) atom sits
over a grid point in the lower row. A “0" indicates that there ao atoms in that column.

In principle, using our notation we can generate M differaotels, with

9!

M = 9WVsit1)
(8 — Ng;)! Ng;!

(7.1)

and Ny; being the number of silicon atoms in the surface bilayerc&iwe always have one
gold atom, the total number of atoms in the terrace unit seNj;,,,=Ng;+1. We consider
here structures with N=7. In this way, the family of structures studied here inelsithe five
models already discussed in Sec. 7.2. Furthermore, havjpg-R is a necessary condition
to allow for the formation of the HC structure, which is ondloé common building blocks to
several gold induced reconstructions in Si(111) and vicGn@11) surfaces (see above). With
Ng;=7 we have M=18432 different models. This large number caodmesiderably reduced
imposing a few constraints to ensure that the models reptredg/sically sound structures.
These constraints are) in order to connect with the bulk structure the last numtfeie
series must be either 1 or B) the dangling-bonds of the underlying silicon bilayer minst
saturated either by an atom or by a dimer as in the HC strudiueeefore the first number
of the labelling sequence must be always 1 oc)3he fifth number must be 0, 1 or 3 (if O,
then the neighboring numbers must be either 1 or 3), d@rithe third and seventh number
must be 0, 2 or 4 (if 0, then the neighboring numbers in the esecgi must be 2 or 4§) to
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ensure the connectivity within the surface bilayer, a nerezaiumber in the sequence cannot
be surrounded by zeros afjdwo or more zeros cannot appear together. Taken into atcoun
conditions &)-(f), the number of possible configurations with,N=8 and N;;=7 is reduced

to M=210. In the following section we will explore these 21@néigurations using “fast”
SIESTA calculations, as decribed in the previous sectiod, aafew tens of the most stable
configurations will be selected to perform more accurateS3fcand VASP calculations.

Our notation provides information about the connectiviiyhvm the surface bilayer and
the registry with the substrate. From a given sequence & nimbers we can generate a
trial geometry. However, we lack information about the hésgof the different atoms. Due
to this and to the discretization of positions in theplane, the bond lenghts and angles in
the automatically generated structures can consideraggrtl from the correct values. For
this reason, as a first step to get sound initial configurativa need to perform constraint
relaxations that, while preserving the bonding topologyhaf selected configuration avoid
unphysical bond distances and angles. We useSthand Sy relaxations described in the
previous section for this.

Besides the family of structures described above, we hgversd a few structural models
based on the-bonded chain reconstruction of the Si(111) surface. [148,146] In principle,
our notation cannot describe these bonding pattern: it cay @escribe structures which
are based on a “flat” surface bilayer. This is partially duehi® lack of information about
the atomic heights. However, we can modify our notation tecdbe ther-bonded chain
structures. This is done allowing for a double occupatiothefcolumns and is schematically
illustrated in Fig. 7.9. These double occupation indicétesposition of ther-bonded chain
in the structure. We still have the ambiguity about the redaheight of atoms in ther-
bonded chain, which is known to be tilted. There are two poiltses which are usually
referred as negative or positive tilt. [147] In our notatitvese two different tilts of ther-
chain are indicated by the order of the pair of indices, thmoid index corresponding to
the higher atom. In Fig. 7.9 we present a Si(553) surfacenstoacted with the negative tilt
chain. This negative tilir-chain block corresponds to the label (...,1,0,2,21)1while the
label (...,1,0,2,12,1,...) denotes the positive tiltstwe. Both configurations are quite similar
and first-principles calculations predict them to be alntagfenerate in energy and separated
by a very small energy barrier. [148, 149] Experimentally gositive tilt structure has been
traditionally favored. [145-147] In the case of the Si(558)pped surface, our calculations
predict the negative tilt structure to be slightly more &ab

This notation opens the possibility of generating and stglgll possible structures con-
taining ther-bonded chain. However, we have not pursued this approaetaine we limit to
consider nine different structural models that are obthafeer the substitution of one silicon
atom by a gold atom in different positions ofrabonded chain reconstruction similar to that
shown in Fig 7.9.

Next we take advantage of the methodology described inaseci.3 and 7.4 to make an
extensive search of the structure of the Si(553)-Au recansbns. We make a systematic
search within the 210 structures that can be generated mathdtation presented in Sec. 7.4
(models based on “flat” bilayers with different coordinasaand registries with the susbtrate)
with seven silicon atoms and one gold atom in the terraceaatit We also present results
from a much more restricted search for structures basedeortlonded chain reconstruction
(see Sec. 3.3.2). Finally the most stable structures frasetlitiwo searches are studied using
accurate SIESTA and VASP calculations. We present resoitthe band structure and the
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Figure 7.9: (a) Scheme ofrabonded chain reconstruction of the Si(553) surface, ahth@hproposed notation
for such structure. The presence of theonded chain at a certain location is indicated by the doabtupation
of the corresponding column, the second atom of this papies the higher position along thechain.

simulated STM structures of some of the final models.

7.5 Systematic search: “flat” bilayers with N,;,,=8

We first explore the energy of the 210 possible configuratissiag our fastest relaxation
schemesSz and Sy, described in Sec. 7.3. These calculations transform #éalistructure
automatically generated from a given label into a physycsdlund structure. In spite of the
thin slab and minimal basis utilized, the relative energietained at theS'y level (AE,;) al-
ready provide a good guide to eliminate the most unstahletstres. In Table 7.2 we can find
a list with the 80 most stable configurationsg, <~33 meV/&) obtained aftetSy relax-
ations. Several of the initial structures converge to thmesaonfiguration, so these 80 trial
structures give rise only te40 different models. This is clearly seen in Fig.(7.11), vehthe
plateaus in the energy curve correspond to this “lumpingsederal initial geometries into a
single geometry. These transformations typically takeglay a displacement of the surface
bilayer as a whole, thus changing its registry with undedysubstrate, or by the movement
of a vacancy to a neighboring position (using our notatios torresponds to a transforma-
tion(..,0,1,2,..- (..,1,0,2,..)). This happens for example in the case of1#%%,1,1,0,4,1,1)
initial structure, that transforms into a configurationttigbetter described with the label
(1,2,0,2,1,1,4,1,1) and is one of the most stable strustdreis can be seen in Fig. 7.10

The 68 most stable structures, as predicted\y, are then calculated again, this time
with more accurate relaxation schemes up ta/tielevel (for details, see Tab. 7.2). Hereatfter,
we will refer these final relative energies wifE,. A comparison betweeAE; andAE, can
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Figure 7.10: Relaxation of the structure generated fromahel (1,2,2,1,1,0,4,1,1) at they level. Insets (a)
and (b) present a top and a lateral view of the automaticahegated structure. Inset (c) presents the structure
after the relative heights of the atoms have been correctédeiS > relaxation. In point (d) we have already
reached a structure similar to the configuration that we waekxplore. However, this configuration is not stable
and transforms by the displacement of the surface bilageefi(e)) into a different structure. The final structure,
shown in inset (f), is better described by the (1,2,0,241111) label.

be found in Tab. 7.2 and Fig. 7.11. From Fig. 7.11 we obserat dgain, several initial
configurations end up in only few final geometries, but in ghgly different way than in the
case ofAE;. Some of these final geometries are marked with labels fBéth in Fig. 7.11
and Tab. 7.2.

The labelled final structures are shown in Fig. 7.12. The $astelaxations QE;) pre-
dicted f1 to be most stable configuration. It exhibits a HQictture at the step-edge, while
the gold atom is located at a surface dislocation in the reiddlithe terrace. The presence
of a surface dislocation is necessary to recover the buttkstg disrupted by the HC. The
position of the gold atom seems reasonable, gold should letter loption than silicon to sit
at the dislocation since gold does not exhibit strong dioeetl bonding. However, using a
more complete basis set (already a DZ basis gives the coesdt) and a thicker slab the f2,
f3 and f4 geometries become the most favorable structuney @re almost degenerate and
~4 meV/A? more stable than f1). This points to the importance of usiogentomplete (and
thus flexible) basis sets when the coordination of the sarédoms departs from simple
hybridization (like in the case of the HC structure or at thdace dislocations).

Our results indicate that the configurations featuring a H@csure at the step edge (simi-
lar to the Si(557)-Au structure) are the most stable, at \@akin the family of reconstruction
considered here. This confirms the results obtained in S&;.where we only studied six
different models. The configurations f4 and f2 in the preséundly correspond with the most
stable structures obtained in Sec. 7.2 (named respectiaiy Il in that reference). Also
configuration 8, f9 and f10 correspond to structures Il @M V in Sec. 7.2. Configuration
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Figure 7.11: Relative energies after fast (AE;, solid circles) and accurate P (AE,, open diamonds) relax-
ations for the systems listed in Tab. 7.2. The system lalief&0 correspond to those of Tab. 7.2 and Fig. 7.12.

f3, however, is a new configuration exhibiting a double h@osyb structure similar to that
found in some models of the Si(111)x2)-Au reconstruction (see Chap. 4).

In Sec. 7.4 we pointed out that our labelling scheme exclutheprinciple, structures
based on the-bonded chain reconstruction. However, in Fig. 7.12 we aashdine structure
where ther-bonded chain reconstruction has emerged spontaneonsignfiguration f6 the
gold atom is located very close to the step edge. The initiatgire corresponds to a largely
unreconstructed terrace. It is well known [115] that thergndarrier for the transformation
from the unreconstructed Si(111) to thébonded chain Si(111)-¢21) reconstruction is very
small. Therefore, the appearance of thbonded chain in this case is not very surprising.

The experimental electronic band structure, as deternip@tiotoemission experiments [1,
1,59], presents three bands with parabolic dispersion aindgone-dimensional character.
Two of them are similar to those found for the Si(557)-Au aud and, therefore, can be as-
signed to the spin-split bands formed from the hybridizatbAu 6p states with thep lobes
of the neighboring Si atoms, as proposed in Chap. 6. The baind appears centered around
the same point in reciprocal space, but at higher energiéshars with a lower occupation
arounds.

In Fig. 7.13 we can find the band structures of the models f2fand@he band structure
of the model f4 can be found in Fig. 7.5b. The geometries ofrf@ & are very similar
(see Fig. 7.12) but their band structures present some &miaéissential differences. Both
models present one dispersive one-dimensional band cdinangthe hybridization of gold
with its silicon neighbors. This band can be identified whk spin-split bands observed in
the Si(553)-Au surfaces [1,62] and Si(557)-Au [28]. TwoeatBurface bands appear close to
the Fermi level: a dispersive band coming from a silicon diaggoond in the surface and a
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No. | Initial configuration | AE; AEs No. | Initial configuration | AE; AEs
(meV/IA%) | (meVIA?) (meV/IA2) | (meVIA?)
1 1,2,2,0,1,1,4,1,1 0.00 0.00 41 1,2,2,0,3,1,2,1,1 23.88 7.47
2 1,2,2,1,0,1,4,1,1 0.00 0.00 42 1,2,2,3,0,1,2,1,1 23.90 7.48
3 1,2,2,1,1,0,4,1,1 0.00 0.00 43 1,2,2,3,1,0,2,1,1 23.91 7.47
4 1,2,0,2,1,1,4,1,1 0.00 0.00 (f1) 44 1,2,0,2,3,1,2,1,1 23.91 7.47
5 1,0,2,2,1,1,4,1,1 0.01 -0.01 45 1,0,2,2,3,1,2,1,1 23.91 7.47
6 1,2,2,01,3,2,1,1 5.51 -4.27 46 1,2,0,2,1,1,2,2,3 24.13 12.18
7 1,2,2,1,0,3,2,1,1 551 -4.29 47 1,2,0,2,1,24,1,1 25.23 7.76
8 1,0,2,2,1,3,2,1,1 551 -4.26 48 1,0,2,2,1,2,4,1,1 25.24 7.77
9 1,2,2,1,3,0,2,1,1 5.53 -4.30 49 1,2,2,0,1,2,4,1,1 25.24 7.77
10 1,2,0,2,1,3,2,1,1 5.54 -4.28 (f2) 50 1,2,0,2,1,2,2,3,1 25.41 4.17 (f8)
11 1,2,2,1,1,0,2,3,1 6.08 -4.02 51 1,2,2,0,1,2,2,3,1 25.41 4.13
12 1,2,0,2,1,1,2,3,1 6.09 -4.01 (f3) 52 1,0,2,2,1,2,2,3,1 25.42 4.13
13 1,2,2,01,1,2,3,1 6.09 -4.02 53 1,2,0,4,1,2,2,1,1 25.67 11.56
14 1,2,2,1,0,1,2,3,1 6.09 -4.01 54 1,2,4,0,1,2,2,1,1 25.72 11.50
15 1,0,2,2,1,1,2,3,1 6.12 -4.02 55 1,4,2,0,1,1,2,1,1 26.31 9.40
16 1,0,2,2,1,4,2,1,1 6.21 -4.42 56 1,4,2,1,0,1,2,1,1 26.34 9.40
17 1,2,0,2,1,4,2,1,1 6.23 -4.46 (f4) 57 1,4,2,1,1,0,2,1,1 26.36 9.40 (f9)
18 1,2,2,0,1,4,2,1,1 6.29 -4.45 58 1,4,0,2,1,2,2,1,1 27.35 12.50
19 1,2,0,2,3,2,2,1,1 7.47 1.75 (f5) 59 1,0,4,2,1,2,2,1,1 27.35 12.49
20 | 1,2,2,0,3,2,2,1,1 7.49 1.73 60 | 1,2,4,01,1,2,1,1 27.37 15.34
21 1,0,2,2,3,2,2,1,1 7.49 1.74 61 1,4,2,0,1,2,2,1,1 27.40 12.50
22 1,04,1,1,2,2,1,1 14.69 9.55 (f6) 62 1,2,2,3,1,2,2,0,1 27.62 2.66
23 1,2,2,1,1,0,2,4,1 14.76 -0.20 63 1,2,2,3,1,2,0,2,1 27.63 2.66 (f10)
24 | 1,2,2,1,0,1,2,4,1 14.76 -0.20 64 | 1,2,2,3,01,2,2,1 27.63 2.68
25 1,2,2,1,1,2,0,4,1 14.77 -0.21 65 1,4,2,1,1,0,2,2,1 28.08 11.52
26 1,2,0,2,1,1,2,4,1 14.77 -0.17 (f7) 66 1,0,4,2,1,1,2,2,1 28.09 9.70
27 1,2,2,01,1,2,4,1 14.78 -0.20 67 1,4,2,1,0,1,2,2,1 28.09 9.75
28 1,2,2,1,1,2,4,0,1 14.82 -0.18 68 1,4,2,0,1,1,2,2,1 28.09 9.75
29 1,0,2,2,1,1,2,4,1 15.41 -0.20 69 1,2,2,1,0,3,2,2,1 28.91
30 1,0,2,2,1,3,2,2,1 17.49 16.12 70 1,2,04,1,1,2,1,1 29.48
31 1,2,0,2,1,3,2,2,1 17.49 16.13 71 1,2,4,1,0,1,2,1,1 29.48
32 1,2,2,0,1,3,2,2,1 17.50 5.77 72 1,2,4,1,1,0,2,1,1 29.51
33 1,0,2,3,1,2,2,1,1 21.98 1.89 73 1,0,2,1,1,4,2,1,1 32.35
34 1,0,2,4,1,2,2,1,1 22.57 5.00 74 1,1,2,4,1,0,2,2,1 33.05
35 1,2,2,1,1,2,0,2,3 23.49 12.80 75 1,1,2,4,1,2,2,0,1 33.05
36 1,2,2,1,1,2,2,0,3 23.49 12.79 76 1,1,2,4,1,2,0,2,1 33.06
37 1,2,2,1,0,1,2,2,3 23.64 11.70 77 1,2,0,2,3,1,2,2,1 33.43
38 1,2,2,01,1,2,2,3 23.68 11.55 78 1,2,2,0,3,1,2,2,1 33.43
39 1,2,2,1,1,0,2,2,3 23.72 12.78 79 1,0,2,2,3,1,2,2,1 33.43
40 1,0,2,2,1,1,2,2,3 23.79 12.20 80 1,2,0,2,1,2,2,1,3 33.48

Table 7.2: Results from the automatic structural searctal ®mergieg\ £ are obtained using a thin slab of only
two silicon bilayers and the fastest (and less accuratexagbns £z andSy). Only the 80 most stable config-
urations (out of the total 210 studied structures) are thetlin this table, with a maximum energy difference of
AE, ~ 33 meV/R. The configurations are numbered according to their predistability. The initial config-
urations are labelled using the notation developed in Sdc.The 68 most stable structures, according\t,

are also calculated using a thicker slab of four bilayers@mdaccurate SIESTA calculation®{— D— D P),
resulting in the energAE,. Many of the initial configurations converge to a single cgafation, this degener-
acy being slightly different in the case &fF; andAFE; (see also Figs.(7.11) and (7.12)). Some of these single
configurations have been indicated by (f1)-(f10).
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(f1)

Figure 7.12: Final geometries (at tfieP level) for a few selected configurations from those listedab. 7.2
and Fig. 7.11. For (f2) and (f3) some symbols for the poparlasinalysis of the band structure have been added

(see Fig. 7.13).

E (eV)

Figure 7.13: Band structures for models f2 and f3, calcdlatgng SIESTA. The atomic character of different
bands is indicated with the same symbols as in Fig. 7.12ed-8ljuares indicate the contribution coming from
the gold atoms and their silicon neighbors, open circles¢bming from the atoms at the step edge, and open
diamonds that of some silicon atoms in the surface preggatime unsaturated bonds.
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band derived from the atoms at the step edge (that has a HE@w&u These bands are also
present for both models. However, while in the case of thdrifcture the step-edge band is
completely filled and the dangling-bond band is empty (Fi§bYin the case of the f2 model
these two bands cross and the dangling-bond band has a sroafiadion of~ % electrons
closer to the experimental observation.

The population of the different bands can be roughly underdstaking into account the
larger electron affinity of gold and the HC structure [66] aspared to other atoms in the sur-
face. The population of the dangling-bond band is thus degl& favor of the other surface
bands. The differences between the 2 and f4 structures are subtle. These two models
only differ in the position of the surface dislocation. Egetically this structural change has
small consequences and both structures are almost detgertdéoavever, it changes the occu-
pation of the dangling-bond band. In the case of the f2 mdaetiislocation involves the gold
atoms and some of the silicon atoms of the HC structure. Ticieases slightly the energy of
the bands associated with the HC and, as a consequencegihedsfe band transfers some of
its population to the dangling-bond band.

Fig. 7.13 also shows the band structure of the f3 model. Thglaa-bond band is missing
in this case. This spoils the comparison with experimene dther two bands (gold and step-
edge derived) are very similar to those found for the f2 anchtels. This is reasonable
taking into account the similar gold site and structure efstep-egde.

Fig. 7.23 (b) shows the band structure of the f2 model caledlancluding the spin-orbit
interaction with the VASP code. The band structure is in Beoeagreement with that calcu-
lated using SIESTA. It also confirms that all the bands clod&:twith a significant weight in
the gold atoms exhibit a splitting that has its origin in tpesorbit interaction.

Although the band structure of the model f2 does not exaettyaduce the photoemission
results [1, 1, 59], particularly the characteristic bantinfijs mentioned above, it has some
clear qualitative similaritires with them. We find two bandigh similar dispersions, with
their minima~1 eV and~0.5 eV below the Fermi energy at the Brillouin-zone boundary
This corresponds very well to the photoemission data. Eumbre, the band with its minima
at lower energy shows a notable band splitting near the Fermiigy due to the spin-orbit
interaction. The is in good agreement with the experimeHtswvever, the band structure of
Fig. 7.23 (b) has two important differences compared to ti@qgemission data. Firstly, the
dangling-bond band presents an important spin-orbittsgliassociated with its appreciable
hybridization with gold (see Fig. 7.13). This splitting istrobserved in the experiments.
Secondly, the theoretical band structure has one extra ibainseen in photoemission. This
band is associated with the HC structure at the step-edge &alg) has its minimum dt,
contrary to the case of the other two bands.

We can also compare the predictions for our models with tpemental STM images. In
Fig. 7.15 and Fig. 7.16 we show the simulated STM images frdiit voltages for the f2 and
f4 models. In agreement with the experimental images [5%43he most prominent feature
is the step edge. Within the terrace we find signals coming fite row of gold atoms and its
neighboring HC structure. The gold chain is seen as a camtisline for occupied states and
presents more structure for empty states. For both positidenegative voltages we can also
distinguish a signal coming from the unsaturated silicongtiag bond in the terrace close
to the step edge. The step edge and the gold chain could befigtbmvith the two parallel
chains reported by Snijdees al.[64] In their recent experiment, they observe a strong ftglar
despendence in the STM images, and in particular, find zigzagtures for empty states and
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Figure 7.14: Experimental (a) empty state and (b) filledestad.5 V, 50 pA) STM images taken simultaneously
at RT. Insets show magnifications. The structure in the chaiimdicated with dots. Picture taken from Ref. [64].

/&

Figure 7.15: Simulated STM images, calculated using SIESGAmModel f2. The insets of the panels indicate
the bias voltage in Wolts. Some features having a strongizakion with respect to the voltage are indicated by
filled circles.
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Figure 7.16: Simulated STM images, calculated using SIESGAmModel f4. The insets of the panels indicate
the bias voltage in Volts. Some features having a strongzal@on with respect to the voltage are indicated by
filled circles.

ladder configurations for filled states. In figures 7.15 aid® Wwe have sketched some possible
candidates for this kind of behaviour. For f2 (Fig. 7.15k thdder structure in filled states
could result from the registry of the step-edge with respetiie gold atoms. For empty-states
images the step-edge becomes slightly more visible andghaggeometry could result from
the atoms inside the honeycomb-chain. In the case of modgligd 7.16), we can identify
two entities that change their registries when going frotadito empty states. They are the
step-edge and the complex formed by Au and the surface disdmc They show, similar to
the experiment, ladder and zigzag configurations respgtior filled and empty states.

7.6 Restricted search: structures based on the-bonded chain

We first explore two models of the Si(553) stepped silicorfazier where the terraces are
fully covered by a (%1) w-bonded chain reconstruction. They correspond to two 8jigh
different arrangements of thebonded chain (Fig 7.17). Our most stable geometry (model
p0) correspond to the so-called negatively tilkelonded chain. [147] In low energy electron
diffraction experiments of the flat Si(111) surface the pwsitilt 7-bonded chain is usually
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Figure 7.17: Two possible models of the Si(553) surfacedarer-bonded chain reconstruction of the terraces.
Model p in panel (a) and model pO in panel (b).

Figure 7.18: Top (a) and side (b) view of the relaxed striectithe p4 model.

favored over the negative tilt. [145-147] However, firsipiples DFT calculations predict
both structure to be very close in energy and there are congliclaims about which of them
is more stable. [148,149]

We now proceed to make all possible substitutions of sillmpgold in the surface bilayer.
This gives rise to nine different models for the Si(553)-&aanstructions that we name pX,
with X=1 corresponding to a substitution at the step edgeXand to a substitution in the
terrace. The final energies after accurate SIESTA relaxsiid P level) are listed in Tab. 7.3.

In several cases the initial structure was not stable arfdrsigtrong modifications during the
relaxation. These changes are also summarized in Tab. ©8el\d4, illustrated in Fig. 7.18,

is the most stable structure. Thebonded chain where the gold substitution takes place-trans
forms into a structure similar to the unreconstructed SijElurface. This is reasonable taking
into account the atomic configuration of gold and confirmstdralency of gold to occupy
substitutional positions in the middle of the terraces6f1,,70]

The next most favorable model, p2, is illustrated in Fig97.Again ther-bonded chain
where the substitution took place has disappeared. Howthisrtime a configuration rem-
iniscent of the HC structure has formed in the middle of theat®. This transformation is
accompanied by an expansion of the surface bilayer (seethafd movement of the step-
edge atoms in Fig. 7.19).

The band structure calculated for the p2 model, shown in FitP (c), presents similar
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Figure 7.19: Top (a) and side (b) view of the relaxed striectitthe p2 model. (c) Electronic band structure. The
symbols highlight those surface bands with an appreciablght from the surface atoms marked with the same
symbols in panel (b). The inset shows a schematic reprasantd the most prominent surface bands. The HC
structure in the middle of the terrace is indicated by a box.
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Figure 7.20: Top (a) and side (b) view of the relaxed striectithe p2 model, obtained after the reconstruction
of the step edge. (c) Electronic band structure. The symibdisate those surface bands with an apprecia-
ble weight from the surface atoms marked with the same sysribgbanel (b). The inset shows a schematic
representation of the most prominent surface bands. Thettd€tgre is highlighted by a box.

characteristics to the experimental band structure (se@révious section). We can see in
Fig. 7.19 (c) that the p2 model presents two metallic digpetsands centered at point K in

the zone boundary. One of theses bands is associated withi-the bonds between gold

and the neighboring silicon atoms in the step edge. It hasaiderable gold weight and,

therefore, is expected to exhibit a splitting if the spitbicoupling is taken into account.

The other band, however, is mainly derived from the unst&drdangling bonds of the silicon

atoms at the step edge and presents a smaller filling. As ®&eber-bonded chain structure

that remains in the terrace does not give rise to any metaial.

The electron pocket of the step-edge band around K has apaticn of~1/4, quite close
to that found in the experiment. There is another small mdagpocket associated with the
step-edge around which is not observed in the experiment. Thus we can assigpalation
of ~0.4 to the surface bands with a larger weight in the step-edgens. The dispersive
band with a mixed silicon-gold character has an occupation(6 electrons. Therefore, the
total population associated with the step-edge derivefdseibands is one. This is somewhat
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Figure 7.21: Side view of the p5nodel. The HC structure emerges and is highlighted by a box.

| Name| Configuration | AE (meV/R?) |
D (1,02,12,1,0,2,12,1) 1.82
p0  |(1,0,2,21,1,0,2,21,1) 0.00
pL | (3,0,2,21,1,0,2,21,1) 14.92

p2  |(1,0,4,21,1,0,2,21,1)(1,4,2,1,1,0,2,21,1) 4.13
p3  |(1,0,2,41,1,0,2,21,1)(1,2,4,1,1,0,2,21,1) 8.15
p4 | (1,0,2,23,1,0,2,21,1)(1,2,2,3,1,0,2,21,1) 0.00
p5 | (1,0,2,21,3,0,2,21,1)(1,2,0,2,1,3,2,21,1) 7.07
p6  |(1,0,2,21,1,0,4,21,1)(1,2,2,1,1,4,2,1,1)| 9.13

p7 (1,0,2,21,1,0,2,41,1) 8.30
p8 (1,0,2,21,1,0,2,23,1) 11.98
p9 (1,0,2,21,1,0,2,21,3) 15.90
p2* -4.28
p4* -2.69
p5* 0.38

Table 7.3: Relative surface energies of different striefurased on a-bonded chain reconstruction of the
terraces of the Si(553) and Si(553)-Au surfaces. Modelschhcorrespond to the clean silicon surface. pX
corresponds to the substitution of a gold atom in positio 6K structure p0. During the relaxation process
several of these structures transform into configuratioitts svdifferent bonding topology. This change is also
indicated. pX refers to pX configurations after the formation of bonds leetathe step edge and the neighboring
m-chain structure. All energies correspond to our most ateuBIESTA calculations.

surprising if we take into account that the Si atoms at thp-stige have, in principle, three
electrons to populate these surface bands. However, ohes# electrons is transferred to the
Au 65 states (which appear several eV below) Bnd the other electron populates states with
large contribution from the HC structure (which does notikitlany metallic band).

Further investigation of the p2 model reveals that it is aasietble configuration. Perform-
ing the relaxations with a more stringent force tolerance.0i eV/A results in a more stable
structure. This structure, labelled*p&nd illustrated in Fig. 7.20, exhibits a strong rebonding
of the step edge. The-bonded chain suffers a small translation along|thé] direction in
order to saturate the dangling bonds at the step edge. Th@ostion of the atoms of the
m-bonded chain seems to be a compromise between creatinfpeesdislocation and saturat-
ing the dangling bonds at the step edge. The band structwesnsin Fig. 7.20 (c), is quite
similar to that of the p2 model. The role of the step-edge at@mmow played by the silicon
atoms that formed the-bonded chain. A quite dispersive surface band, coming fittase
atoms, appears centered at K. Another dispersive band vgittoag gold weight appears at
lower energies. Although the topology of the band structesembles that observed in the
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experiment, the filling of the parabolic silicon band is imsthase close 0.4, i.e. larger than
that observed experimentally. Fig. 7.20 (c) also highbgine of the bands associated with
the HC structure, showing a characteristic dispersior]. [66

The band structure of model pZalculated using VASP and including the spin-orbit inter-
action (Fig. 7.23 (a) ) shows quite good, although not pédgoeement, with the experiments.
As in the case of the f2 model (see above), due to the spininteraction the dispersive bands
suffer a splitting proportional to their weight in the golms in the surface. Thus, the split-
ting is much larger for the dispersive band starting at logrezrgies. Again, in contradiction
with the experimental observations we find some degree tfisglalso for the parabolic band
appearing at higher energies, although this splitting ialeen The overall conclusion from
Fig. 7.23 (a) is that the pautperforms the f2 model in terms of reproducing the phoiesem
sion results.

The simulated STM images for this structural model are shiowkig. 7.22. The depen-
dence on the polarity seems to be much larger than for mo2l@sd f4. The structure of the
STM images becomes more complex when going from filled to gistates as several “spots”
appear and the identification of zigzag or ladder-like gtmes becomes quite arbitrary.

Models p4 and p5 exhibit a similar rebonding of the step edgexalained above in the
case of p2 and g2 However, these new geometries,  @hd p3, are not as stable as p2
(see Tab. 7.3). Geometry palso develops the HC structure in the terrace as can be seen in
Fig. 7.21.

7.7 Moststable structures: combined SIESTA and VASP re-
sults

In Tab. 7.4 we compare the converged energies of the mos stealels found in the previous
sections for the Si(553)-Au reconstruction. As discusadle previous sections, these models
have been found using a systematic search among all possible model basadlatsurface
bilayer and eight atoms in the terrace unit-cell amgthe substitution of gold in different
positions of ar-bonded reconstruction of the Si(553) terraces. These tagses of models
have different number of atoms. In order to compare theivelaurface energies we need
to define the chemical potential of silicon. Since the sw@fslsould be in equilibrium with
bulk, we have chosen the chemical potential equal to thedotagy of a silicon atom in bulk.
Since the energy differences are quite small we have detadpdrform the calculations of
the most stable structure with a different methodology oeoto cross-check our results. We
have used the plane-wave code VASP for this purpose. [1B3 W& can see that there is an
excellent agreement between SIESTA and VASP results. Gei@s&l and f2 (see Fig. 7.12)
are the most stable structural models of those found in #tensive structural search. These
two models can be considered degenerate within the praci$ithe calculations.

Models f2 and f4 were already obtained as the most stableioties much more restricted
structural search of Sec. 7.2. The present calculationfroothat they are certainly among
the most stable reconstructions of Si(553)-Au surfacedhbt involve the topmost bilayer.
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Figure 7.22: Simulated STM images, calculated using SIE$@Amodel p2. The insets of the panels indicate
the bias voltage in \Volts.

Name| AE (meV/A?)
SIESTA ‘ VASP

p2* |4.85 |4.93
p4* |6.44 | 6.54
p5* |[951 |9.13
f1 463 | 4.27
f2 0.17 | -0.08
f3 0.42 |051
f4 0.00 |0.00

Table 7.4: Relative surface energies of our most stable lmedéulated using both SIESTA and VASP.
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Figure 7.23: Band structures calculated using VASP andidil the spin-orbit coupling for (a) model pand
(b) model f4.
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7.8 The double-row model

The proposal for the structure of the Si(553)-Au reconsiomcby Ghoseet. al.[61] can be
seen in Fig.7.24 (a) and (b). The main features are the doobleof gold atoms located
at the step edge of the Si(553) surface and the silicon adatesiding right below some
of these gold atoms. This reconstruction is quite diffefemin the other and better known
structures induced by the deposition of gold on vicinal Sl{lsurfaces like the Si(557)/Au
of Chap. 6 and the models for the Si(553)/Au of the previoutiees. Particularly surprising
is the position of the gold atoms at the step edge. It has beanrsby density functional
calculations in several similar surfaces that the silicansgtutional sites in the middle of the
terraces are typically more favorable for gold [69, 70, 10®hother striking fact is the very
large distance between the gold atoms along the step edg&ige7.24 (a)). This distance
(~3.8 A) has to be compared, for example, to the nearest neiglibance in bulk gold
(2.9 A). In the direction perpendicular to the step edge we fiiwo slightly different Au-Au
distances~2.7 A and~2.8 A. These distances are intermediate between the bogthlen
of the gold dimer (2.5 A) and that of bulk. Another peculianif this structure is that the
silicon terrace remains basically unreconstructed. Tis clear contrast with other systems
like the Si(557)-Au and the Si(111)-(2)-Au studied in previous chapters. For example, the
HC structure is absent in the model studied here. Thus, tliedguble-row model proposed
by Ghoseet. al. can be pictured as a collection of gold dimers attached tedges of the
terraces of a largely unreconstructured Si(553) surfad¢ee gold dimers are oriented along
the normal to the step edge. There are two types of gold dinTdns configuration can be
justified for one of these dimers, which bonds to a silicort@aan the terrace below with a
reasonable Si-Au distance ef2.4 A. However, this arrangement seems rather artificial and
unstable for the other dimer. We performed structural iegiaxs to study the stability of this
structural model. As we will see below the model turns outdaibstable and its structure is
greatly modified during the relaxation. One could alwaysiarthat this result is a pathology
of the local density approximation or other approximatiaasd in this work. For this reason
we have perfomed constrained relaxations that, while apimg some of the bond lengths
and bond angles, preserve the main characteristics ofrineste in Ref. [61]. The electronic
band structure and the simulated STM images are then ctduiar this optimized structure
and compared to the available experimental information.

Fig. 7.24 (c) and (d) shows the result of a constrained réilaxan which the relative
positions of the gold atoms are not allowed to change (igthid atoms cannot move respect
to each other). All other degrees of freedom are optimizgdhe position of the center of
mass of the gold atoms anidl) the positions of all the silicon atoms in the slab, excepséh
in the lowest layer which remain in perfect bulk positionss & stronger scatterer, the gold
positions should be the most reliable in the experiment§2, This justifies the approach
followed here. After this constrained relaxation, thecsiti atoms of the first layer reconstruct
to some extent. The atoms labeled “up” and “b” (see Fig. 7QQ4atd (d)) give rise to a
buckling of the surface, discussed in Sec. 3.3, in whichethem charge transfer from the
lower atom to the the elevated one. This is clearly refleateithé electronic band structure
shown in Fig. 7.24 (e). The “up” atom creates a fully occupieshd with small dispersion
(solid circles), while a more dispersive unoccupied bame(osquares) is associated with the
“b” atom. Atom labeled “db” has a partially occupied danglibond. The corresponding
dispersive metallic band (solid squares) can be found d¢toee Fermi level in Fig. 7.24 (e).
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Figure 7.24: The model of Ghose. al.[61] for the Si(553)-Au reconstruction (a and b, panel (apahows the
unit cell vectors). The same structure after constrainkcagion (c and d) and the corresponding band structure
(see text). The main atomic character of the surface banddisated with different symbols in panel (e) which
correspond to those used to label different atoms in pacgland (d). The diamonds correspond to the gold
atoms in the step edge and their neighboring silicon atorhs. ifiset of panel (e) illustrates the Brillouin-zone
of the Si(553)-Au reconstruction. The Brillouin-zone of a2 supercell of the unreconstructed Si(111) surface
is also shown for comparison. TheY and K-X directions are parallel to the gold wires.
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Several surface bands appear associated with the gold aodhtheir neighboring silicon
atoms in the step edge (open diamonds). However, all thesésbare quite flat. This is
in contrast with the band structures of other reconstrastiof gold in vicinal Si(111). In
those cases the gold atoms occupy silicon substitutiorsatipos in the middle of the terraces
and produce quite dispersive one-dimensional bands tmaindde the photoemission spectra
(see previous sections and Chaps. 4-6). Furthermore, ip.Chait was shown that the
presence of gold induces a spin-orbit splitting of the hybiiicon-gold bands that explains the
observation of two proximal one-dimensional bands in tH{&%)-Au surface [28,30]. The
photoemission of the Si(553)-Au surface also shows two iprakhalf-filled bands similar
to those of the Si(557)-Au [1,58,59]. Therefore, it is tem@tto associate these bands with
the gold wires and their silicon neighbors in analogy to tagecof Si(557)-Au. Since in the
present calculations we are not including the spin-orléraction, these two proximal bands
should appear as a single dispersive band. Unfortunateligpeersive band associated with
the gold atoms is completely absent in Fig. 7.24 (e). The lmamding from the partially
occupied dangling-bonds in the “db” atoms could be identifigth the~1/4 filled band (see
Fig. 7.1) of the Si(553)-Au [1,58,59]. However, this iddiatation is also not very clear since
in the experiment this band goes down to much lower energiéss can thus conclude that
the band structure calculated for the model proposed by &éioal. fails to reproduce the
photoemission data. Of course, given the discrepancy irgtie coverage reported in the
photoemission work [1, 58] and the x-ray diffraction work@hoseet al.[61], it is perfectly
plausible that we are dealing with different reconstrutsiof the surface. In such case, the
data reported in Fig. 7.24 (e) can be considered as the pedditectronic band structure for
the double row model proposed by Ghatal. using the local density approximation.

Simulated STM images for filled and empty states are predent€ig. 7.25. The gold
atoms show as alternating bright spots along th@][direction with ax2 periodicity. This
periodicity reflects the alternating heights of the goldhatonduced by the presence of a row
of silicon adatoms below them. Another feature witB periodicity is seen in the middle of
the terrace as a result of the buckling of the silicon surfager. In spite of the difference in the
reported gold coverages we can insist in comparing withwhéable experimental images [1,
58-60]. At room temperature the step edge is observed inxperienent as a continous
bright line. Another less pronounced feature is found inrthedle of the terrace with a2
modulation already at room temperature. At low temperatuegerrace chain shows a more
clear x2 periodicity, while the line at the step edge develops3amodulation. While the
doubling of the periodicity in the middle of the terrace ipneduced by the model studied
here, the image produced by the step edge is quite diffeféetappearance of bright spots in
the step edge is linked to the presence of the silicon adatdheiterrace below. One could
then speculate on creating a better agreement with the STEgamby introducing an adatom
only every three unit cells. However, this could hardly progl the observed temperature
variation. We can thus conclude that the STM images pretlifctethe double row model of
the Si(553)-Au reconstruction differ considerably frore tieported STM images.

So far we have analyzed the results obtained for a strucptm@ized under the restriction
that the gold atoms remain at the experimentally determpesitions. We can now release
this constraint and, starting from this partially relaxédisture, fully optimized the geometry
of the surface. By doing this we discover that the proposabbbseet al. is not stable,
at least within our computational approach. Although we dofimd strong changes in the
silicon terrace, the structure of the gold double-row is ptately modified. This is clearly
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Figure 7.25: Simulated STM images of the double row mode] §the Si(553)-Au reconstruction after con-
strained relaxation: panel (a) for a +1.0 V bias voltage (gnspates), and (b) for -1.0 V bias voltage (filled
states). Panel (c) shows the corresponding atomic confignndewed from the side.

seen in Fig. 7.26, where we show the structure of the surfiédee300 steps of unconstrained
structural relaxation. The gold atom that was initiallyediton top of the silicon adatom has
moved to a new position on top of the neighboring rest-atone donfiguration of the silicon
adatom has also changed considerably. The adatom movesigher position, its height
over the terrace being now comparable to that of the gold sttdrhis movement is possible
because the adatom breaks a bond with one of the siliconceusfams and adopts a bridge-
like configuration. This broken bond is replaced by a new 8ib&nd. Although the structure
shown in Fig. 7.26 is not completely relaxed, it becomesrdieat the model of the surface
proposed in Ref. [61], based on a silicon step edge deconatiedold dimers, is not stable. In
particular, the adsorption of one of the gold atoms on topfieon adatom is avoided. This
is consistent with previous density functional calculati¢67,70]. In these calculations it was
shown that the adsorption of gold as an adatom over the siBooface is quite unfavorable
compared to the substitution of the gold atoms in the surtfager.
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Figure 7.26: Top (a) and lateral (b) view of the double row eld61] of the Si(553)-Au after 300 steps of
unconstrained structural relaxation.

7.9 Conclusions

Our study of the Si(553)/Au surface reconstruction has m¢hree different subjects: (i)
In Sec. 7.2 we presented five new models for the Si(553)-Afasarconstructed using the
silicon honeycomb structure of Sec. 3.4 and the substitiudfdhe gold atoms in the surface
layer. These models were compared to an earlier proposalfiith corresponds to one of
our models (model V) with the addition of silicon dimers a step edge. Although the en-
ergy differences between different structures are radptismall, one of our models (model I)
was clearly the most favourable. Unexpectedly, the attaetiraf extra silicon atoms to the
step edge in model V has little effect on the surface energys fhight open a route for the
modification of the structures. We also investigated thesibdgy to induce periodic modula-
tions in the structures that might lower the energy and @yce some of the patterns seen in
the STM images (Fig. 7.2) [58,59]. However, although furtineestigation is necessary, the
few structures considered in Sec. 7.2 proved to be quitdéestaainst distortions that would
double or triple the unit cell. Neither the band structuresw models nor that of the model
proposed by Crairet al. [58], seem to provide a complete description of the photssion
spectra. However, the band structure of the models | and $eptesome of the main features
of the experimental data.

(i) We continued the investigation in Sec. 7.4 by presantrabelling scheme for gen-
erating geometries with different coordinations of thefate atoms. We used this idea to
make an exhaustive study of the Si(553)-Au reconstructibarmthe number of atoms in the
first double-layer is N-1, where N is the number of atoms ofttheeconstructed surface. The
removal of one atom is crucial if one wishes to introduce lyonenb-chains on the surface
(with analogy to the Si(557)-Au surface of Chap. 6) and elaté dangling bonds. On the
other hand it creates surface-dislocations and/or stgdiinlts that cost extra energy. We con-
sidered all possible combinations of these elements withoakible gold-substitutional sites,
for all systems in which the coordination between the atantheé first double-layer can vary
from 2 to 4. Imposing some physically meaningfull constisimot allowing isolated atoms,
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etc.), we found out that the number of different reconstomstis 210. We then proceeded in
calculating the total energy of all these structures takingdvantage of a scheme, where we
gradually made finer and finer calculations by changing tisests®t, k-point sampling and the
accuracy of self-consistency. The results confirmed thabaeealready found the most opti-
mal structures in Sec. 7.2; in general, systems featurimgdmeycomb-chain at the step-edge
were observed to be the most stable ones. The notation wass®sd to make the generation
of other trial geometries easier; in particular, we used generater-bonding structures (hav-
ing the same number of atoms N, as the unreconstructed spudad then substituted silicon
atoms by gold.

The most stable ones among all the studied structures whese having a honeycomb-
chain in the step-edge and a gold-atom in the middle of theder These structures were
observed to have similar polarization with respect to thmnéling voltage as seen in the ex-
perimental STM images [64]. The most stable one of thesetsires has also a band structure
reminiscent to that of the photoemission experiment of Fid., althought instead of a sin-
gle band and a doublet band, as seen in the photoemissionlommet bands appear due to
the spin-orbit interaction. On the other hand, the mostiststoucture among the-bonding
models reproduces the photoemission results [58, 59]relsewell, including a single and a
doublet parabolic bands. Unfortunately it is less stalda tine most stable model featuring a
HC on the step-edge. We suggested that the correct Si(558gAmetry might then be some
combination of ther-bonding structure and the honeycomb-chain at the step-edg

(i) In Sec. 7.8 we tested the double row model proposed bggghkt al. [61] for the
Si(553)-Au reconstruction. We address the stability of tin@del, as well as its electronic
band structure and STM images. Using the geometry obtamadtonstrained structural re-
laxation, which preserves the main characteristic of tio@psal of Ref. [61], we calculate the
band structure and STM images. We only find a dispersive bathdractional filling close to
the Fermi level. This band comes from the silicon dangliogds in the surface and its energy
position and filling seems quite different from the bandseobad in the photoemission exper-
iments [58, 59]. Dispersive bands associated with the glcha and their silicon neighbors
are completely absent, which also seems to be in disagreemignthe experimental evi-
dence [58,59, 71]. At variance with the room temperatureedrpental STM images [58, 59],
our simulated STM images do not show the step edge as a consriright line, but exhibit
a x2 modulation associated with the presence of the adatonieingighboring terrace. In
the low temperature experimental images the step edgeapevelx3 periodicity [59]. It
might be possible to induce this3 periodicity in our calculated STM images by modifying
the adatom content. However, it is not clear how this couttlaguce the temperature depen-
dence. In summary, the calculated band structure and STNeam#tor the model proposed
in Ref. [61] do not provide a good agreement with the avadlaxperimental information for
this surface. Of course, it might be argued that this is aeguence of the different gold cov-
erage in the different experimental approaches [58, 61jadt) it is possible that the surface
reconstructions studied by x-ray diffraction in Ref. [6Tjdaby photoemission and STM in
references [58], [59], and [60] are different. Unfortugtthe structure provided by Ghosé
al. [61] is unstable, at least at the level of the local densifyrapimation. When the geometry
is relaxed without any constraints the structure of the glddble-row attached to the step
edge severely modifies from the proposal of Ref. [61]. Theeefwe propose that the data of
Ghoseet al. should be reanalyzed in the light of the present results amdproposal for the
structure of the Si(553)-Au surface obtained.
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Implementation of the LDA+U method

8.1 Introduction

The LDA+U method was developed by Anisimov and co-workeE)H153] with the objec-
tive to improve the treatment of the electron-electronrext&on for localized electrons within
the LDA description.

It can be shown that LDA implicitly assumes the electroreeten interactions, that for
localized electrons can be described with Hubbard paranigtéo be small compared to
the band width W [150]. However, for very localized elecgpwhile the band width may
be small, the electron-electron interactions can be qude B classical example are the
transition-metal oxides, were a strong localization ofrtietallic d-electrons take place.

This limitation of LDA manifests in several deficiencies¢lmding the self-interaction of
the electrons. The exhange interaction in LDA is obtainedhfa free electron gas of similar
density. However, for localized electrons this approxeneatment of the exchange gives
rise to the interaction of a given electron with itself. As@lons get more localized (and as
W gets smaller), the self-interaction becomes more and sigrgficant.

The LDA+U method has proven very succesfull with materialstéiring partially filled
d or f shells [153]. The computational cost is comparablertd_BA calculation and the
few parameters needed by this method, can be calculatedfirsinprinciples (this will be
discussed in Sec. 8.4). For this reason we came forward temgnt it into the SIESTA
code.

8.2 Theory and methods

We proceed to obtain the standard, rotationally invariddAiU implementation by Anisi-
mov, et. al. [153]. On the way we learn how the self-inte@ti@nd exchange energy terms
are obtained.

By minimizing the total energy of Eq. (2.1) using the Slatetadminant of Eq. (2.2) as a
trial wavefunction, one obtains the expression for the tdarFock (HF) energy:

(WIH) = Y [ dro; ()T + Vear)i0) + B, 6.1)

123
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where E. is the electron-electron interaction:
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We rewrite this:
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where the first termiy) is known as the Hartree energy and the last tefin.{ is the so-
calledexchangderm. One observes that now the indices run ovet, alland j, o’. This has
been achieved by adding and subtracting the terjnof the electron-electron interaction of
Eq. (8.2). The positive term is included into thg Bnd the negative one into the Eterm,
this way obtaining a more symmetric form at Eq. (8.3). Harte@ergy can also be written
using the electron-density only:

2

5 ] il 8.4

wherep(r) is the total electron density (including both spins).

We recall that the electron-electron interaction in LDA pgeoximated by E=Ey+E,.,
where E; is the Hartree term and,Eis the exchange-correlation energy which is parametrized
from the results of a homogeneous electron gas.

The self-interaction problem is now easy to understandh&ltDA approximation the
electron self-interaction, i.e. the terms of the Hartreergy with (i, 0)=(j, ¢’) are supposed
to cancel with E. (that is including the exchange energy). However, sincesiaet E.. is not
known and is parametrized from simple model systems likehthraogeneous electron gas,
this cancellation is incomplete.

We now consider the possibility to go beyond the LDA, and imsapproximate way,
include the electron-electron and exchange terms of E®) {8t electrons tightly localized
around the atomic center. For very delocalized electronsloveot need to worry since the
LDA description is quite appropriate. We start by considgra set of orthonormal atomical
orbitals|¢;) at the same site. Our objective is to calculate exactly theE, . total energy
of Eq. (8.3) for an isolated system consisting of these alhitThe eigenstates of this sys-
tem are theny?) (o and k are the spin and eigenvalue indexes, respectivelypthdinear
combinations of¢;), i.e

48 =D agsldn)- (8.5)
For later use, we introduce the following occupation nundperator:

= 3 (00 (r))3 (x| (8.6)
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wheres, operates on spim only. Using a Slater determinant, constructed with therestges
of Eq. (8.5), as the wavefunction, leads to the followingentation value for the operatof,

oo OCO'

ng, = (V|| ) = Zak* ! (8.7)

Using Eqg. (8.5) with the Hartree term in Eq. (8.3) results in:
Eg =
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Using Eq. (8.7) and changing the names of the indices (namely,m’ —j’, m” —i",m” —j"),
gives

By =
Z mm/'m/ m”’n;m/n%umm
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{m}o {m}o
where
Uttt = [ A5 e 1, 61 ()5 (). .10)

In a similar fashion, for the exchange term we obtain:

Ee:cc = —1( Umm m///m/n ns ///). (811)

By combining Eq. (8.9) and Eq. (8.11) we get finally:

EH + Ee:cc = 1 Z (Umm”m m”’nmm’nm 'm!"
2 {m}o

—'—(Umm//m/m/// — Umm m!"m! )nmm/nm m///). (812)

We have now expressed correctly the electron-electroraictien for an isolated system (con-
sisting of orbitalsp;). The energy in Eq. (8.12) depends through the occupatiorbeus.? .,
on the wavefunctior. We now wish to use this expression for an isolated systeror@ct
the LDA energy of localized electrons. This connection islesshed by calculating the oc-
cupation numbers using the LDA wavefunction.

Due to the fact that we are considering two “disconnectedtesys (the isolated orbitals
and the LDA system), the Coulombic interactions in Eq. (Bdri@ effective interactions (in
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the Anderson model language, they are “renormalized”) &weg must be screened by the
surrounding electronic density. These effective inteoast are the only parameter needed in
the LDA+U method. If we define two effective (empirical forethime being) parameters, U
and J as

1 0
1 F? + !
= — 7%y = 814
then any of the integrals in Eq. (8.12) can be expressed by:
Um,m”,m’,m”’ - Z Qg (m7 m/7 m”, m”/>Fk, (815)
k
the terms F being the slater integrals and
/ " " 47T i q / " q* "
ag(m,m',m" m") = T > (Im|Y M) (Im" [V, |im""), (8.16)
q=—k

where F-values can be determined from the U and J values gvam input to the LDA+U
scheme (see Eq. (8.13) and Eq. (8.14)). The terms in Eq. )(&&kde integrations over
three spherical harmonics, and can be calculated using itpeeW3; symbols [154].

It is necessary to add some terms to Eq. (8.12) in order togplppefine a correcting
energy functional,

1
Eolln}] = 5 X { Ut s +
2 ) 3
{m},o
(Um,m",m’,m’" — UM,mH,mm,m/)ngm7m’n(7jn”,m”’}
1
—§(UN(N — 1) = JINT(NT = 1) + N{(N' = 1)]). (8.17)

The last line in Eq. (8.17) is a correction-term to canceltbetelectron-electron interaction
already taken into account by the original LDA total energigis way, the average electron-
electron interaction energy included in the LDA calculatisremoved by the ter@UN(N—

1) and the correct energy is put explicitly by the sum in Eq. 18.1The final, corrected
LDA+U energy functional is then:

Erpatv = Erpa + Ev, (8.18)

where g 4 is the LDA functional of Eq. (2.5). The functional of Eq. (8)lis originally due
to Anisimov, et. al. [153]. There exists also simplified vers (see, for example [155]).

In order to get the potential resulting from Eq. (8.17) tdude it into the LDA calcula-
tions, we apply the variational principle with eaef) ,,, and obtain:

Vu = Z |m70->vni,m’<m/vo-|7 (819)

m,m’
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where the elements,, ., are as follows:
Vm7m/ = Um,m”,m/,m”’nr_r;;7m”’ —'— (Um7m//7m/7m/// — Um,m”,m”’,m’)n;//7m”’- (820)
Here we have also adopted the notation:
<m7 U| = ,§0<¢(I')|, (821)

where the orbitab(r) has the magnetic quantum numbeands, is operating on spia only.

In a practical LDA+U calculation, the occupation numbefs,,, are calculated as in Egs.
(2.38)-(2.39) (when calculating occupation numbers, onstrset \/,.=1). Then the potential
term Eq. (8.19) is evaluated (again using Eqs. (2.38)-§2.88d the SCF cycle of the KS
scheme is let to converge the system. After this initial S@te; charge transfer has occurred
and the occupation numbers have changed, so one has teatalitid occupations again. This
changes the potentials so a new SCF cycle must be perforrhedefére, we have two nested
self-consistency loops. One in the density for fixed ocdopatand one in the occupations
themselves. The details for controlling this extra SCF ek described in Sec. 8.5.

8.3 Hubbard U and orbital occupations

The U parameter in Eq. (8.13) is frequently regarded as actefe parameter | ,=U-J. This
equals in setting J=0 in Eq. (8.13). Then the energy of the’“edJrection in Eq. (8.17) can
also be expressed in terms of the eigenvahfesf the occupation matrix;, ., [155]:

Ey = %;ZA;’(l—)\;’). (8.22)

This expression clearly shows that the correction term idtD favors integer occupations.
It also provides a simple way to check our numerical impletagon that uses equation (8.17)
to calculate the total energy and the Hamiltonian. In facthe limit J=0 the energies calcu-
lated directly from Eq. (8.22) perfectly reproduce thosesgiby SIESTA.

8.4 Calculating the effective Hubbard parameter U

In Eq. (8.17), the average electron-electron interactidrDA is approximated by the term:
ee 1
LDA — §UN(N - 1), (8.23)

where N is the total occupation of the shell we wish to tredihwie LDA+U. One could then,
in principle, change the occupation number N, see how the eB&qgy of the system changes
and from this variation get the value of U (assuming that o#dmergy terms show vanishing
variation with respect to N), by simply fitting the {5 4,N} values to Eq. (8.23). One could
also use the second derivative of the total energy and E2B)8.

PErps  0*ESS,
~ =U 8.24
ON? ON? (8.24)
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These techniques can be employed if one has a good contnmolr@/eccupation number
N. This is the case, for example, in the Linear Muffin Tin CabiLMTO) method. In the
LMTO method one can isolate an atom, by neglecting the higaian of its orbitals with the
rest of the system and this way forcing the desired occup4tibl, 156, 157]. One can also
exploit the Janak theorem:
_ O0E(N)
“= 8’”@ ’
where E is the total energy; the occupation of the stateande; its eigenvalue, in order to
determine the U from the eigenvalue shifts. For examplesimiv and Gunnarsson [151]
use the following formula with the iron d-orbitals:

n 1n n 1n
U:e(§+§,§)—e(§+§,§—1), (8.26)
wheree(n T,n |) is the spin-up 3d eigenvalue, depending on the spin:ul) énd spin-down
(n ]) 3d occupations. U can thus be determined from the shiftérdthigenstates.

Pickett et. al [158] use a variation of the constrained chacheme [159] for the deter-
mination of U. Their idea consists of applying small potahsiifts to a given atom (orbitals
of Eqg. (8.5)) and see how the system responds to this smalirpation. Potential shifts are
projector-like potential terms:

(8.25)

Vi = |gi)w(eil, (8.27)
wherew is the potential shift ang; is an atomic orbital. One can then show (see below), that
ow

U= AN (8.28)

where the potential shiti has been applied to all of the orbitals of the shell ahds again
the total occupation of the shell.

In the following, we use similar notation to that of Gironicahd Cococcioni [155]. We
start by introducing the constrained-LDA functional:

min
El{ai}] = n(r), oy {ELDA[n(r)] + ;az(m - CH)}; (8.29)
where n, g; anda; are the occupation numbers, the constrained occupatioensnand
the Lagrance multipliers, respectively. Here the indeyoes over the atoms in the unit cell
and ny is the total occupation of the desired shell. The constchoeupation numbers;q
represent the desired occupation for atbmLagrance multipliers maintain the number of
electrons constant. One can, via a Legendre transform@tt@j, pass to a functional where
the independent variable are thes:
min

El{as}] = n(r) {ELDA[n(r)] + Zalnl}- (8.30)

In this case, one chooses a setwk (usually only one of them is different from zero), and
then performs the self-consistent LDA calculation to miizierthe B{a; }].
Because E[{;}] is the minimum according to the variational principleaiso satisfies:
OE{ar}]
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This way we get, using Eq. (8.30) and rememberingdh&tare kept constant (the variational
minimization was done for a chosen setgfs):

OErpaln(r)] |\ _ o o OErpaln(r)

o = (8.32)

In the next derivative, the;’s are allowed to vary. We thus take a derivative over all-self
consistent electron-densities (there is a self-condislentron density for each set @f’s):

_ O?E[n(r)] Doy

= — : 8.33
Here we have used the Eq. (8.24).
In Eq. (8.33) we have assumed:
a= F(n), (8.34)

wherea = (o, s, ..., an) andn = (nq, no, ..., ny), but in the calculations we impose the
potential shiftsy and get the occupations, so

n=F"Ya). (8.35)
In the calculations, we thus first create the matrix:

B on
Ui} = aT;] (8.36)

and then invert it to get the U=l

8.5 Details of the implementation

In our implementation of the LDA+U we use the same routinesréate the atomic orbitals
and the projectorém, o|. The projectors created for one atom species are then ddé i a
SZ basis. From this basis one can choose which projectors| are used. (for example, in
the case of iron, one would choose the d-orbitals).

The projectors in one atomic center should not overlap viithdnes in the neighboring
atoms (otherwise, the occupation numbers are not well dBfirféor this reason, one should
use highly localized projectors (setting tRAO. proj_U_ energyshift to a high value,
see below), or alternatively, cut the interaction rangé&efdrojector, usin@AO.proj_U_radii
andPAO.proj_U_alpha switches (see below). We recommend the latter approach; thi
way the orbital shape is more similar to the orbital of anased atom. This method is also
consistent with earlier LDA+U studies in the literature.

In the following subsections, we explain the new prograntdvas needed to control the
LDA+U calculation. We have chosen the same format as in tES®A manual. The new
output files produced by the LDA+U are also described.

8.5.1 New program switches

PAO.proj_U_energyshift (real energy) The cutoff radius of projector&n, o|, defined with
an energy cutoff exactly the same way a®iO. energyshift
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Default value: 50 meV

Note: User should take care that the projectors from differenhatsites do not over-
lap, either by setting this parameter to a high value, orgiiePAO.proj_U_radii
parameter instead.

PAO.proj_U_radii (real length) The cutoff radius of projectorém,s|. Near this cutoff
value, the projector goes smoothly to zero
(seePAO.proj_U_alpha ).

Default value: 1000.0 a
Note: Must be used together with tfAO.proj_U_alpha  parameter.
PAO.proj_U_alpha (real): The projector is set to zero, by multiplying its radial pasith

(T{ut)) where ,; is the parametd?AO.proj_U_radii anda thePAO.proj_U_alpha
This way the projector goes smoothly to zero.

Default value: 1.0

Note: For example, with the iron d-orbitals and
PAO.proj_U_energyshift =50 meV, a nice value for this parameter is 50.
One should always check the behaviour of the projector irith&DAU

proj_U (data block) Defines the atoms and orbitals that are assigned with a LDprej¢c-
tor. Each line gives the type label and the | and m quantum eusnltHere an example
for the iron d-orbitals:

%block proj_U

Fe 2 -2
Fe 2 -1
Fe 2 0
Fe 2 1
Fe 2 2

%endblock proj_U

IdaU_U (real energy) The value of U. The parameter$ Bre calculated using the values
of U and J as described in the previous section. CurrenttySiater integrals and the
parameters are calculated only for d- and f-electrons.

Default value: 0.0 eV
IdaU_J (real energy) The value of J.
Default value: 0.0 eV

IdaU_maxiters (integer) This number controls the occupation number self- conscstey-
cle. When value of this parameter is >1, then the LDA+U octiopanumbers p, ,,, are
converged. This means that in the end of every SCF cycle,dbepation numbers are
recalculated, and then a new SCF cycle with the new LDA+Uraks (that depend on
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the n,, ,,v) is started. This procedure is repeated until the convesenhn,, ., as de-
fined inldaU_stop , is reached or until the occupation numbers have been eadcll

ldaU_maxiters  times.

WhenldaU_maxiters =1, the LDA+U potential is included into the Hamiltonian af-
ter the single SCF cycle has converged. The wavefunctiamgaculated using this
modified Hamiltonian and then the program stops. This isulister preliminary cal-
culations and testing the quantitative effects of U and J.

Default value: 2

Note: When this switch is >1, the user should increase considgetakl amount of
MaxScflterations which in this case means thietal amount of SCF itera-

tions to converge the occupation numbers.
IdaU_stop (real): The error in the occupation numbers at step k is defined ks\vsi
AN = max{|n}, ., — niool}, (8.37)
where 1f, ., is the cross-occupation number m’ at step k of the iteration.

Default value: 0.001

Note: Since the erroA N consists of summations over the density matrix elements, it
should be one order of magnitude greater tbh Tolerance

IdaU_scfmaxiters (integer) Maximum value of SCF iterations for one step of the occupati
number iteration.

Default value: 1000

IdaU_init (logical): When the p, ,,» converged density matrix is stored into the disk, it con-
tains the information to calculate,n,, and continue the iteration. When this switch is
setto.true. ,the occupation numbers are calculated from Bid file before the SCF
cycle starts and the LDA+U projectors are applied from thry g¢art of the cycle.

Default value: .false.
Note: Works better when used together wihixSCF1 set to.true.

IdaU_tm (logical): If this switch is.true. then the transformation of the U-matrix is
done. The review paper of Anisimov, et. al. [153], considesgherical harmonicg,™.
However, we are using real spherical harmorfifswhich are related to the spherical

harmonics by:

(—_\1/); (Y}‘m‘ _ Y}‘m‘*) m <0,
g m =0, (8.38)
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This transformation can be expressed in matrix form for sphlerical harmonics with
quantum number | as; = C'Y;. The matrixC" has the following form:

i(—=1)! 0 e 0 o0 =i
0 i(—1)1 0 —i 0
C‘:% 0 0 ﬁQ) 0 0 (8.39)
0 (—1)-1 0 1
(—1)! 0 0 0 1

The matrices of the type W, i mm = (m, m”|V..|m’, m") in EQ.(8.10) must then be
transformed by:
Um7m”7m’7m”’ == Z UM’]\/[”7M/’]\/[W Ci;:,]\/fciz”,M” Cin’,M’ Cin’”,M”’ (840)
{M}
Default value: .true.
Note: This is basically a switch for debugging and should not bangkd by the user.

IdaU_constrained (logical): By using this switch, one can calculate charge-constdaiad-
culations. These calculations can be used in determiniagdltue of the parameters
U and J as described in the previous section. When this svatsét to.true. , the
LDA+U potential term in Eq. (8.19) is substituted by:

Veonstr = Z |m7 0'>05?n<m7 U|7 (841)

whereq,, is the potential shift, for orbital m (see Eq. (8.27))

Default value: .false.
Note: See alsgotential_shift_orb_eV andpotential_shift_eV

potential_shift_orb_eV (data block) Defines the energy shifts,, in the units of eV as fol-
lows:

%block potential_shift_orb_eV

12 -01

2 3 0.1

%endblock potential_shift_orb_eV

In the case of iron, this would set a potential shiftgf-_, = —0.1 eV to the atom num-
ber 1 and a potential shift af,,—_; = 0.1 eV to the atom number 2 (the enumeration
of orbitals starts from s and is ascending with respect t@tfatum number m).

Note: Used only ifldaU_constrained is set to.true.

potential_shift_eV (data block) Defines the energy shifts,, in the units of eV as ipotential _shift_orb_e\
but without the orbital number; the potential shift is apgdlto the entire shell.
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LatticeConstant 4.36 A
DM.MixingWeight 0.025
DM.Tolerance 0.00018
DM.NumberPulay 9
PAO.proj_U_energyshift 50 meV
PAO.proj_U_radii 1.310A
PAO.proj_U_alpha 50

DM.ElectronicTemperature 50 meV

Table 8.1: Some SIESTA parameters used in the calculatioRe®. The lattice constant was optimized.

Note: Used only ifldaU_constrained is set to.true.

IdaU_forces (logical): If this switch is set totrue. , then the force and stress resulting
from the additional U energy term are added to the total farmbstress.

Default: .true.

IdaU_disk (integer) When this parameter is 1, the program writes the occupationbers
into the file OCCUWhen setting this parameter to 2 the occupations are rexl tine
file OCCU

Default: 0

8.5.2 Output files

A single file calledLDAUis produced. It includes the projectors as function of radistance
as well as information about the occupation numbers, odapaumber convergence and the
forces. To see the convergence, naé LDAU | grep -i “max” . TheLDAUfile also
gives two different LDA+U total energies. Other one as defigq.(8.17), labelled abotal
LDA+U energy . This energy is added to the total energy returned by Sigésaexpectation
value of the LDA+U potential of EQ.(8.19) is also calculated! labelled a3otal LDA+U
energyl .

8.6 Atest application of the LDA+U: FeO

The transition metal oxides are a classical example of stiHators, where the effect of us-
ing LDA+U instead of the LDA should be important. The LDA+Ugbers integer occupation
numbers for the d-shells of iron (either fully occupied obaoupied), breaking the symme-
try of the system in this way and opening gaps in the eleatrstructure. In the case of the
FeO, the standard (S)LDA predicts the system to be metalhde the LDA+U corrects this
situation and gives an insulating system instead [160].

Using the FeO as a test system, we wish to perform test célmusawith various values
for the parameter U and compare our results with an earlleuledion [160].

The antiferromagnetic phase of FeO (AFI) is illustratedrig. 8.1. It consists of iron
planes, normal to the (111) direction. The spin-polar@atf neighboring planes is different
and the planes are separated by oxygen.

First of all, some standard SIESTA parameters to convergé#®O calculations are pre-
sented in Tab. 8.1. A band structure from a standard (S)GGauledion is presented in Fig.
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(b)

Figure 8.1: (a) The antiferromagnetic structure of FeOtptbin a box. The sides of the box have the dimension
of the lattice constant. Iron atoms with spin up (down) area with black (green). Oxygen atoms are
indicated with red color. Several (111) planes are inditate) The irreducible Brillouin zone of FeO.
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Figure 8.2: The band structure from a (S)GGA calculatione®FThe notation corresponds to the special points
in the irreducible Brillouin-zone as described in Fig. 8.Bands with iron s-character and oxygen p-character
are highlighted with black and white circles, respectiv€lircle size is proportional to the character.
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Figure 8.3: The radial part of the projectors, consistingmfron d-orbital, created with the parameter switches
PAO.proj_U_energyshift =50 meV, PAO.proj_U_radii =1.3AandPAO.proj_U_alpha =50.
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Figure 8.4: Band structure calculations with the (S)GGA+e&timod. With U=2 (a-b), U=4 (c-d) and U=6 (e-f).
In (a),(c) and (e), the parametielaU_maxiters =1, while in (b),(d) and (flJdaU_maxiters  =1000 (i.e.
the self-consistent cycle in the occupations was convgrdggtdtes with Fe d-orbital character are marked with
circles and circle size is proportional to the weight theestes in the d-orbitals.

8 10 12 14 18 18
iteration step

Figure 8.5: Convergence of the occupation number when Uteatlon step refers to the occupation number
self-consistency step anilV is the convergence of Eq. (8.37).
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Figure 8.6: An analysis of the 4 character of the bands (see text) for (a) U=0 and (b) U=6 (atttupation
number self-consistency). The circle size is comparablledd\, , character.

| U day dy - d,2 Ay dmz,yz total |

0 003(0.26) 003(0.28) 0.93(0.14) 0.94(0.28) 0.93(0.26}.66 (1.22)
6 0.94(0.49) 0095(0.28) 0.94(0.02) 0.95(0.13) 0.95(0.18}.71 (1.10)

Table 8.2: Orbital occupations for spin up (down) when zaiparallel to the (111) direction. Occupations for
the atom with the majority spin up.

8.2. We see that oxygen p- and iron s-states form bands wakhamrwide bandwith, while
the flat bands (localized electrons) near the Fermi-leveeblirdue to the Fe d-states.

The radial part of the projector used in the GGA+U calculaiand the parameters used
to create it are presented in Fig. 8.3. Calculations usiffgrdnt U-values were performed.
The resulting band structures are plotted in Fig. 8.4.

In Fig. 8.4 the cases (a,c,e) correspond to test calcukgtishere the self-consistency in
the occupation number was not performed. When this extfaeakistency is included in the
calculation, usually 5-15 occupation number steps areetegdorder to meet the requirement
ldaU_stop =0.002 (see Fig. 8.5). Without the self-consistency in ttaupations the fully
occupied d-bands are pushed downwards in energy. HowéeeE; tcontinues to be pinned
by some of the d-bands. We observe that when the occupatimierucycle is converged,
we recover the correct behaviour and the resulting bandrgépe iron d-states isz U. As
the occupations are changing, they result in a non-symenetbital charges that breaks the
symmetry of the system and open gaps. This is an example dfiNatlating behaviour.

We now wish to test the rotational invariance of our LDA+U iempentation and com-
pare our band structures to those of Mazin and Anisimov [180F first recall from the
Ligand Field Theory (LFT) that d-orbitals can be dividedoirtonding ¢ (d,2,d,2_,2) and
non-bonding4, (d,,.d,.,d,.) orbitals (the g orbitals bonding with oxygen). Following Mazin
and Anisimov [160], we consider the linear combinatiog;ALg(dxy+dm+dyz) and for this
reason, rotate the system so that the z-axis is perpendioulze [111] planes. After the rota-
tion, A;,=37-(x?>+y?), where z is parallel to [111]. Now we can analyze the gharacter of
the bands, by considering theipcand d-_,» characters. In Fig. 8.6, we plot the band struc-
ture of the rotated system and get results similar to thosaain and Anisimov [160]; the flat
band lowering down to the oxygen manifold as the U is increéassults almost purely from
the A, orbitals (although the weight is relatively small compai@dome other bands). While
rotating the system, we have also tested the rotationatiamvee of our LDA+U method; the
band structures in Fig. 8.6 are identical to those of Fig. 8.4

We took some preliminary steps in order to evaluate the vafliein FeO. In Fig. 8.7 we
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Figure 8.7: Total occupations of the iron atoms of FeO fordtwen in which the potential shift is applied (solid)
and the neighboring iron atom (dashed).

have plotted the total occupation of the d-shell as funabibtine potential shift. We used the
switchpotential_shift_eV , SO the whole d-shell is subject to the potential shift. |gsin
the simple formula Eq. (8.28), we get13.0 eV. Using the formula of Eq. (8.36) yields a
similar result.

Although the value of U depends on the exact shape of the ggaofeused, the present
estimation of U seems a bit too large. We are in the procesgmibeng the reasons for
this overestimation of U in SIESTA and how it depends on thegoshand localization of the
projectors.

8.7 Another test application: SLVO,

One of the first experimental studies of the, SV,,05,,.; compounds were performed by
Cyrot et. al. [80] and Nozaki et. al. [81]. The motivation fynthesizing these compounds
lay in their structure: (i) they have 2-dimensional chagaclue to the VO-planes (separated
by Sr atoms) and (ii) the chemical environment for vanadiarsuch that a strong magnetic
moment can be achieved. Both of these characteristics auglhih to be the reason for the
onset of superconduction in some high+haterials [81]. These compounds, consisting of
VO-layers separated by Sr are illustrated in Fig. 8.8.

In this section we make a brief study of the 8D, compound using the LDA+U method.
With the LDA, the system turns out to be conductor, while mé&xperiment it is semiconduct-
ing. This compound has already been studied using very stigdtied Path-Integral Renor-
malization Group method combined with DFT [82] yielding t@rect semiconducting na-
ture. We will analyze in detail the electronic propertiegtog system and show that with the
LDA+U this problem can be solved: by studying YPlanes we show how the LDA+U, by fa-
voring integer occupations, breaks the symmetry betweed-brbitals of vanadium, making
the compound semiconducting in this way, in accordance thighexperimental evidence.

In the calculations presented here we take U as a paramektgagnit between 2 and 6 eV,
which according to our experience seem reasonable valu&d feansition metals. J is taken
to be zero. According to Sec. 8.2 this is equivalent to havifgF*=0.

In this section, we use a slightly different projector tharthe case of FeO. Instead of
using free-atom like orbitals with a steep cut, like thos&igf. 8.3 created using parameters
PAO.proj_U_radii and PAO.proj_U_alpha ,we employthd®AO.proj_U_energyshift
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Figure 8.8: Crystal structure of Sr1V,, 03,11, for (&) n=1 (b) n=2 (¢) n=3 and (d) ms. Picture taken from
Ref. [81].

== 3dV orbital
— LDA+U d projector for V
\

Distance (Bohr)

Figure 8.9: Radial dependence of the projedtof (r.=2.32 a.u.) and the most extendédbasis orbital
(r.=5.03 a.u.) of the V atoms.

switch to confine the projectors within some cutoff radiukisTis illustrated in Fig. 8.9. The
confinement radius of the LDA+U projector is 2.32 a.u., coragawith the 5.03 a.u. of the
d orbitals. We have checked that changing the radius ofrtherojectors does not produce
significant changes in the results as far as the projecterguate localized. However, a direct

comparison of the results obtained with different projesis difficult since the value of U
depends on the choice of projector.

8.7.1 Electronic band structure of SpVO,

The pseudopotentials and basis sets correspond td.gs , Sr.psf andO.psf in Tab.
2.2. We use a tetragonal unit cell that contains twd, VPlanes and a k-sampling of4tx 3.

Our calculations of the $¥O, compound show that the ferromagnetic arrangement within
the VO, planes (perpendicular to theaxis) is~100 meV per V atom more stable than the
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Order AE(meV/atom)| upg a c

Paramagnetic 122 | — 3.827| 12.755
FM 0| 0.88] 3.837| 12.732
AFM | -2 1 0.88| 3.837| 12.731
AFM I +78 | 0.02| 3.839| 12.690

Table 8.3: Energy differences per V atotkk) in meV, local magnetic moment in each V atom(, and relaxed
lattice parameters (

Paramagnetic GGA Ferromagnetic GGA

N

77 e

Energy(eV)

|
BFX

<}

Y rz T X M Y Tz

Figure 8.10: Band structure of the-$10, compound calculated with GGA. (a) Paramagnetic configomatnd
(b) ferromagnetic configuration (full lines for majorityispand dashed lines for minority spin). Energies are
referred to the Fermi level.

antiferromagnetic arrangement within the plane (AFMIIfanl20 meV than the paramag-
netic compound. Once the ferromagnetic order is set up ipldree, the ferromagnetic and
antiferromagnetic (AFMI) stacking of the planes are alnteggenerate. This implies that the
magnetic interaction between the planes is quite smalhdridrromagnetic phase, the V atom
presents a localized magnetic moment@.9 ;.5. Thus it can pictured as a*V ion.

8.7.2 VO plane

We have decided to start our investigation of the effect ef thHubbard term using the
smallest relevant unit necessary to make a reasonablemestiof the SgVO, compound.
We have used charged YOplanes. The structure of the oxygen octahedra is taken fnem t
SKLVO, geometry and is illustrated in Fig. 8.11.

The valence configuration of vanadium is’3¢" while that of oxygen 22p*. The effect
of the S¢* ions is supposed to be, as a first approximation, just to dopevO, planes
with extra-electrons. For this reason we charge theg planes with four extra electrons, this
way mimicking the situation in the real compound. Now the gety p-orbitals still need 4
electrons to get a closed p-shell, leaving only one eledtiothe vanadium atom. In the LDA
approximation this electron is most probably distributetiheen all the vanadium d-orbitals.
This situation is likely to change when using the LDA+U thatdrs the integer occupation
numbers.
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(b)

z

Figure 8.11: (a) VQ plane. The vanadium atom is marked with a black sphere anaxygen atoms with red
spheres. with filled circles. Coordinate directions usatiimsection are indicated by arrows. (b) The irreducible
Brillouin-zone of a VQ plane.

VO4 (-4) plane

GGA calculation

N

Energy (eV)

Figure 8.12: Band structure of a \ZO plane as calculated with GGA

In Fig. 8.12 we can find the band structure around the Fermggra such charged plane
as calculated with GGA and the same parameters used fO3r(except the in-plane k-
sampling which was increased tox100). The distance between planes is 30 A and, therefore,
the interaction between planes, if any, is purely elecatist

For the majority spin the Fermi level is pinned by two bandsitw from thed,. and
d,. orbitals, which are degenerate by symmetry. These bandaasmmodate two elec-
trons. However, the using simple electron counting argumeescribed above we would
assign only onel electron to each V atom. In principle structural distoripthat makel,,.
andd, . inequivalent, could open a band gap and render a semicangsgtstem. In practice,
our relaxations, at least at the GGA level show very smatbdi®ns (of course this is not
completely conclusive since the relaxations were star@oh fquite symmetric geometries).
The GGA occupations (Eq. 8.6) of the different orbital of thehell are in the range 0.3-
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VO4 (-4) plane
U=6, preserving GGA symmetry (nyz=nxz)
T e

Energy (eV)

Figure 8.13: Band structure of a \ZO plane as calculated with GGA+U scheme with U=6 eV and J=@tiistp
from a converged GGA density.

0.6, the larger occupations are for e andd,. orbitals. The magnetic moment (difference
between spin up and down occupation) is only significant erd, ., d,. andd,, orbitals:
oz=4y-=0.42,11,,=0.13. The non-diagonal terms,,p, with m##m’, of the occupation ma-
trix restricted to thel-shell are identically zero.

We introduce now a Hubbard U. The band structures presemerdre obtained using
U=6 eV and J=0. Fig. 8.13 shows the calculated band struetiiesm the GGA+U calculation
is started from the GGA result. We can see that the occupilednds are shifted to lower
energies, whereas the unocuppietlands are pushed to higher energies. However, a band
gap cannot be developed because the)z symmetry is preserved. In fact, the structure
of the occupation matrix is almost identical to that foundhe case of GGA, with all the
non-diagonal elements equal to zero.

However, we know that, due to the self-interaction cormtincluded in the Hartree-
Fock-like Hubbard term that we have added to our Hamiltortiae system will tend to select
integer occupations rather than fractional occupationther words, the electron should
occupy only one electronic state wich, in regards of the Isindture of the V@* plane, can
be assumed to have the fof)=cos(#)|yz)+sin(#)|xz) The corresponding occupation matrix
takes the form [y, =sin(6)?, n|_ _=cos(#)? nl. =nl__ =sin(f) cos(f), and zero otherwise.

Y2, Yz Tz, Yz Yz,x2

In the following, we use such occupation matrix to start o@A3-U calculations.

We observe that only=0° (90°), and #=45" are stable. These means that only start-
ing from these occupations the structure of the occupatioaisices is preserve during the
self-consistency. In fact=0° corresponds to an energy maximum a&hdl5° to an energy
minimum. All intermediate values df converge to thé=45" solution. The corresponding
band structure can be seen in figures 8.15 and 8.14, while@thleenergies are displayed in
Table 8.4. We have also tried to stabilize solution whereeleetron occupies &,, orbital.
However, such configuration turns out to be unstable andergeg to solutions where the
charge has been transferred to theandd, . orbitals.
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Table 8.4: Change in the total energy of a GGA+U calculatioa \ZO?[ plane as a function of the presence or
absence of orbital ordering.

Calculation AE(meV)
U=6eV | U=4eV
GGA symmetry 0 0
lyz) occupied +44 -
75 (lyz)+[xz)) occupied -63 +28

VO4 (-4) plane
U=6, 1 electron in 1/sqrt(2)( | dyz > + | dxz >)

Energy (eV)

Figure 8.14: Band structure of a \ZO plane as calculated with the GGA+U scheme. Initially, dheectron is
forced to occupy a state witﬂﬁ(|yz)+|xz>) symmetry. U=6 eV, J=0.

We have tried to use smaller values of U. With U=4 eV, the sofLtvhere only thei,,
orbital is occupied turns out to we unstable and we get aisolstmilar to the original GGA,
i.e. with half occupied!,, andd, . orbitals. With U=2 eV only this type of solutions, with two
half occupied! orbitals, were obtained.

Notice that the energy gain due to the symmetry breakingc#zssal with the orbital order-
ing is the same order of magnitude than the energy gain atedavith the spin polarization
(see Table 8.3). It is also clear that we can now open a gapeeththere is a clear gap
between occupied and unocupi€dtates for the majority spin. However, the system does
remain metallic due to the quite small overlap of two bandseseE bands must have a strong
oxygen character since they do not move appreciably even thgevalue of U applied to the
d-shell of V is increased to 8 or 10 eV. As we will see below, thé®s not happen for the
SrLVO, compound. Therefore, one has to be quite careful in orderite donclusions from
the VO;~ plane. Indeed, we will see that the results for the chargerord are quite different
for the bulk compound. Particularly thg, orbital tends to be favored over the.chnd d,..
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VO4 (-4) plane

U=6, 1 electron in | dyz >

Energy (eV)

Figure 8.15: As in Fig. 8.14, but the electron occupies a&ifltyz) symmetry.

Table 8.5: Change in the total energy (per V atom) of the FMGr¥ompound calculated with GGA+U as a
function of the selected orbital ordering. In parentheaimdalculated using a finer k-point mesh ofts<3

Symmetry AE(meV/V)

U=6eV| U=4eV|U=2eV
|Xz) +72 | +34 (+48) -2
75 1Y2)+[x2)) +33 -7 (+6) -5
IXy) 0 0 0

8.7.3 Band structure of SpVVO, with the LDA+U method

In Table 8.5 we can see the total energies of the differentgeharderings in bulk SVO,.
Contrary to the case of the simplified model based on thg \filane, for the bulk material the
solution with d,,, fully occupied is not only stable, but the most favorabledoge values of the
U parameter. For U of 4 eV the solution wittth=|yz)+|xz) occupied becomes more favorable,
although the energy difference is so small that lies withmerror bar of the calculation (see
the change of sign in some of the small energies in Table 8thédager 6<6x 3 k sampling).

Figures 8.16, 8.17 and 8.18 show the band structure My for different charge order-
ings and different values of U. For most charge orders a alig only developed for U=6 eV.
Only in the case of full occupation ¢fy). the gap is already present for the whole Brillouin
zone for a smaller value U=4 eV.

It is quite interesting to see that the results for the}V@lane are different from those of
bulk SLVO,. This indicates that the details of the structure, not jostwanadium atoms and
their nearest neighbors, are important to understand #gotrehic structure of this compound
and, most probably, other compounds of the same family Ik 8-.
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Ferromagnetic, starting from (Ixz>+lyz>) occupied
U=6eV

Energy (eV)

1

' X M YIZ T XMVYTIZ T LXMVYTIZ

Figure 8.16: Band structure of the.$10, compound. Calculated Energies referred to the Fermi level.

Ferromagnetic, starting from |xz> occupied
U=2eV U=4eV U=6eV
AT~ o O T

Energy (eV)

LR/AR

' X M Y I'Z

Figure 8.17: Band structure of the.$10, compound. Calculated Energies referred to the Fermi level.
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Ferromagnetic, starting from Ixy> occupied
U=2eV U=4eV U=6eV
. 3 4|

Energy (eV)

LS

FXMYFZFXMYFZFXMYFZ

Figure 8.18: Band structure of the.$10, compound. Calculated Energies referred to the Fermi level.
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Chapter 9

Conclusions

The main subject of this thesis is the theoretical study efphysical properties of quasi one-
dimensional metal-induced surface reconstructions ih13i( and vicinal Si(111) surfaces. In
spite of the experimental interest [2-56,58—-64] the geonaetd detailed electronic properties
of many of these reconstructions are still unknown. Theetme of our main purposes was
to propose atomic geometries for these structures and thpare the theoretical results,
obtained using the SIESTAb-initio method, with the available experimental data. We were
able to identify plausible model geometries and, by stuglyire properties of such models,
we could find explanations for observed physical phenomerhdse surfaces. The second
topic of this thesis was the implementation and testing ef tBDA+U method in SIESTA
that is described in Chap. 8. With the LDA+U method we can mmprthe description of
electron-electron interactions in many systems. The agiptin of this method for the surface
reconstructions studied in this thesis and other complstesys will be the subject of future
work.

In Chap. 2 we presented a summary of the methodology usedghoait this work. We
reviewed briefly the DFT and the local orbital formalism ussdSIESTA. In Sec. 2.2.6,
we also derived some formulas for the implementation of tBA+U method as described
in Chap. 8. In Sec. 2.3 we listed the pseudopotentials and bats used throughout this
work. Some tools interesting to compare the computatioatd @vith the experiment were
also briefly explained. These were the simulation of Scagiunneling Microscopy images
and the Mulliken population analysis to determine the atomnigin of the electronic states.

We reviewed in Chap. 3 some of the reconstructions that tédeepvhen metals are
deposited on the Si(111) surface in the submonolayer regimdediscussed some of the ob-
servations of photoemission and STM experiments. Someeof tire, to name few, the quasi
one-dimensional free-electron like bands seen in photegon, one-dimensional row-like
structures seen in STM experiments and the metal-insuia@ositions that take place when
the temperature is lowered, usually accompanied by bapagening seen by photoemission
and a change of the periodicity of the STM images. Some of émel® also exhibit a splitting
that was originally attributed to the Luttinger-liquid. A pointed out in this chapter, with
our models and results based on #teinitio calculations, we have been able to explain very
satisfactorily most of the mentioned physical phenomenast\df these models assume that
the metals form monatomic wires, situated in silicon substinal sites.

In Sec. 3.3, in order to understand better what happens se gweface reconstructions,
we looked at some of the typical structural patterns appgani the reconstructions of clean
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Si(111) surfaces, such as the bucklingbonding and the adatom reconstructions. We dis-
cussed how each one of these reconstructions solves thieprath the elimination of the
dangling bonds while minimizing the surface strain. We atgplained, in Sec. 3.4, the theory
behind the so-called honeycomb-chain Si(111) reconstruthat seems to be a key ingredi-
ent when certain metals are deposited on the Si(111) sufiaSec. 3.5 some general aspects
of the silicon stacking and coordination were discusseaalBj, in Sec. 3.6 we performed
test calculations on the buckling;bonding and the adatom reconstructions. We tested the
convergence of the calculations with respect to severapcbational parameters, such as the
basis-set, slab-thickness and the k-point sampling andbaoed our results to earlier pub-
lished ones.

The first quasi one-dimensional surface reconstructiontadiexd is the Si(111)-5x2/Au
[2—25,67,68] presented in Chap. 4. We started by makinged teview of the history of this
reconstruction, pointing out that the first observationhi$ surface reconstruction was made
some thirty years ago, and that ever since, as the expeaimaethods have been evolving,
the different propositions for its atomic level geometry@®een flourishing. We discussed
the latest experimental results, involving photoemissiod STM experiments and studied
with ab-initio calculations some of the recent models proposed for thfasaireconstruction.
During this study, we found a totally new geometry for thel$ik)-5x2/Au, that is not only
energetically more favorable than the earlier models, lsat @produces very well the results
of a very recent photoemission experiment and, to some gkteexperimental STM images.
We also studied the energetics of the different models agtifumof the adatom content that
seems to be a crucial ingredient not only in the Si(111)-Ax2but as well in other similar
surface reconstructions. In STM images the adatoms can §enadd as bright, irregular
protrusions distributed quite randomly on the surface. \We fhat our model becomes less
favorable than an earlier model proposed by Erwin [67], wtienadatom content is very
high. As we pointed out, all this implies that the adatomg @lavery important role when
determining the correct atomic level geometry of the Siji842/Au surface reconstruction.

In Chap. 5 we studied the Si(111)-4x1/In reconstruction-g89 72—79]. A reasonable
model for the atomic geometry of this surface at room tentpegalready exists that has been
tested withab-initio calculations and reproduces very well the experimental. detis geom-
etry consists of two parallel indium zigzag-wires embeditdtie silicon substrate. However,
the experiments show that the Si(111)-4x1/In features alrnetulator transition as the tem-
perature is lowered from- 300 K down to~ 130 K. Atomic-level geometry for this low-
temperature phase has not yet been fully established. Haiseptransition manifests itself
both in the photoemission, where gaps open simultaneonghei surface bands, and in the
STM images, where the symmetry is lowered t028 We studied this phenomena - its origin
lying in the coupling and distortion of the indium wires - bying a simplified model: we kept
the two zigzag In wires as in the real surface model and gubsdithe neighboring Si atoms
in the substrate by hydrogen. We verified that this simplifieatel is able to capture the
essential behaviour of electrons and found out that twesekasf surface bands can be found:
() two bands associated with states within the In-wires @da band associated with the
interaction between the two wires (coming from unsaturd&tedangling-bonds). We found
out that a shear-distortion, as proposed earlier by Gonzale al. [78] where the zigzag-
wires slide with one respect to another, opens a gap in teeaction band. This gap-opening
modifies the filling of the two remaining bands in such a wayt tha Peierls-distortion in
them becomes favorable. We also studied the possible &listbrtions that can take place
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within the zigzag-wires and found out that one of them israpti All the observations are
consistent with the experimental data and might be impomaimderstanding similar surface
reconstructions featuring monatomic double-wires.

Chap. 6 studies the Si(557)/Au reconstruction [26—38, @Ptvat could be considered as
the most well-known and widely studied quasi one-dimerediagold-induced surface recon-
struction in vicinal Si(111). For this surface reconstrmcthere exists an atomic-level geom-
etry that seems to explain quite well the experimental dammost important feature being
the parabolic band that has its origin in the Si-Au bonds. el@v, there was a characteristic
feature in the photoemission spectra - a splitting of thalpalic band - that was interpreted
in various different ways in the past, including the Lutendiquid behaviour, just to name
one. As we showed in Chap. 6, this splitting is probably duth®spin-orbit interaction.
This observation has also been backed-up by a very recetbgrhission experiment [62].
We also addressed the metal-insulator transition and tt@ngeanying periodicity doubling
in the STM images as the temperature is lowered. We assifpgetehaviour to the freezing
of dynamical fluctuations that have their origin in the atcemshe step-edge of the silicon
terraces of the Si(557) surface: in the equilibrium confagion of the model geometry, the
step-edge atoms are in alternating up-down positions alongtep-edge. We studied the en-
ergy landscape as a function of the structural distortiahfannd a double energy-minimum;
if the relative height of the atoms isthen there is a minimum &, and at—#,. As the tem-
perature is increased, the atoms should move between tfigwationsh, and—h, and visit
configurations such ds = 0 (atoms at the same height) quite often. In low temperatines t
atoms are “freezed” ath, or hy and this explains the periodicity doubling seen in the STM
images. Based on a detailed analysis of the band structusmmauded that the configura-
tions with h=0 are metallic, while those with = hq or h = —hg are semiconducting. The
metal-insulator transition is then observed because theyis more likely to visit config-
urations withh ~ 0 as the temperature is higher, while, again freezing to acamucting
configurations at low temperatures.

We tested this hypothesis by producing theoretical scgatunneling microscopy, scanning-
tunneling spectroscopy and projected density of statesadalifferent values df and compar-
ing them to the experimental data. Low temperature data pe@uced with valueg = hg
and the high temperature data were mimicked with configumati =~ 0. In each one of these
cases the results were very satisfactory.

We also madab-initio molecular dynamics simulations to see if the step-edgeuiticin
actually takes place. We found out that the step-edge inflieetdates as we thought and that
it is accompanied with other vibrational modes that contelio the metallicity of the system.
These are, for example, the fluctuation of the Si-Au bondesg|

In Chap. 7 we made an extensive study of the Si(553)/Au réngstsn [1,58—-64]. This
reconstruction has been found only very recently and a fiileugeometrical model that would
reproduce the experimental data has not yet been propodad.rélconstruction features a
quite unique electronic spectra, having two proximal liléd and another i filled band.
This makes this system very interesting, because a fradlyoiilled band with a such a small
filling would be ideal to create the Luttinger liquid, becausmight avoid the Mott-Hubbard
metal-insulator transition. We searched for the lowestltehergy model for this surface re-
construction systematically and based our search on aealagth the Si(557)/Au and other
similar systems, considering building blocks found on theuth as surface dislocations and
the honeycomb chains. We also developed a systematicomothtit allowed us to enumerate
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and generate automatically all physically reasonableasarfopologies for this class of sur-
face reconstructions. It included a step-by-step refinirth@ab-initio calculations, allowing
for a considerable reduction of the time used for structtglalxations. After using this sys-
tematic scheme to try a large number (210) of candidates&atomic-level geometry for the
Si(553)/Au surface, we end up with few structures that arstratable in the terms of the total
energy and also reproduce reasonably well the electroeictigpand the STM images when
compared to the experimental data.

The theory behind the LDA+U method and its implementaticio IBIESTA were de-
scribed in Chap. 8. We first discussed the origin behind tiheréaof the LDA approximation
to treat localized electrons. After this we considered ha tould be corrected by using the
Hartree-Fock method and derived the formulas of the stahdatationally invariant LDA+U
scheme due to Anisimov, et. al. [153] and also consideregdissibility to calculate U by
ab-initio calculations. Then, in Sec. 8.5, we described the new pnograitches used to con-
trol the LDA+U method and after this, in Sec. 8.6 tested oyslementation of the LDA+U
method by doing calculations of the FeO compound. For FeQyere able to reproduce ear-
lier results by Mazin, et. al. [160], where the FeO is seeneietbp a gap when the LDA+U
method is used. We also tested the rotational invariandeeoftethod, but failed to get a rea-
sonable value for the Hubbard-parameter U usibgnitio calculations only. This last aspect
must be studied in detail in future.

In Sec. 8.7 we studied the effect of the LDA+U ah-initio calculations of the SVWO,
compound [80-82]. As we discussed in the same chapter,dmpound might be important
in understanding the highzBuperconductors. According to the standard LDA calcutesjo
this compound is metallic, although in the experiments dbserved to be semiconducting.
We showed, by studying charged Y@yers, how using the LDA+U, the symmetry of the
vanadium d-orbitals in the layer can be broken and a gap camenjin the electronic structure,
this way obtaining an electronic spectra that is in accordamith the experiment. This was
also shown to be true in the case of the wholg/&, compound.

Finally, 1 believe that the work presented in this thesis ¢@astributed to the fundamen-
tal understanding of the quasi one-dimensional metalgadwilicon surface reconstructions.
Since these surfaces might be important from a technolbgaiat of view, a point that was
discussed in Sec. 3.1, the results obtained in this thegilstrbe an important, although small,
building block in the future exploitation of these surfaces

The LDA+U is quite simple, semi-empirical, yet very efficienethod for correcting some
well-known pathologies of the LDA, and the implementatioagented in this thesis will be
included in the future distributions of the SIESTA prograatkage.
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