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La presente tesis se centra en el estudio, utilizando cálculos de estructura electrónica den-
tro de la teoría del funcional de la densidad (DFT), de la estructura atómica y electrónica de
varias reconstrucciones que se obtienen después de depositar diversos metales en Si(111) y
superficies vecinales de Si(111). Muchas de estas estructuras forman reconstrucciones cuasi-
unidimensionales donde los átomos de metal se agrupan formando cadenas monoatómicas o
con secciones de unos pocos átomos. Por ello han sido propuestas como realizaciones ex-
perimentales de un metal unidimensional ideal, y se han buscado manifestaciones del com-
portamiento conocido como líquido de Tomonaga-Luttinger en sus espectros de fotoemisión,
así como indicaciones de transiciones metal-aislante asociadas a distorsiones estructurales del
tipo transición de Peierls. Casi todo nuestro estudio se ha centrado en las reconstrucciones
inducidas por la deposición de oro Si(557)/Au, Si(553)/Au ySi(111)-(5x2)-Au. En nuestro
trabajo hemos conseguido identificar los modelos estructurales energéticamente más estables
y hemos estudiado sus propiedades electrónicas que, en general, están en buen acuerdo con
lo observado en los experimentos de fotoemisión y de microscopía túnel. También hemos
dedicado algún esfuerzo al sistema Si(111)/In. Para esta superficie hemos confirmado que el
modelo para la transición 4x1→ 4x2 → 8x2 basado en una deformación de cizalla seguido
por una distorsión de Peierls, propuesto recientemente, esel más plausible y el que consigue
un mejor acuerdo con la fenomenología experimental.

Las reconstrucciones inducidas por la deposición de diversas especies metálicas sobre su-
perficies silicio han atraído la atención de muchos grupos deinvestigación en los últimos
años. Metales como Au, Ag, Li, Na, Mg, K, Ca en recubrimientosinferiores a una mono-
capa, producen reconstrucciones en las que los átomos metálicos forman hilos monoatómicos
separados por distancias del orden de 1 nm, de forma que la interacción entre ellas es, en
principio, muy pequeña. En un modelo sencillo, olvidando por un momento los posibles efec-
tos del substrato semiconductor, los electrones cerca del nivel de Fermi estarían confinados
lateralmente en estas cadenas, siendo únicamente libres demoverse a lo largo de ellas. Los
estados de superficie en estas reconstrucciones podrían portanto constituir una realización
experimental de un gas de electrones en una dimensión, uno delos modelos favoritos de la
física cuántica durante décadas. En efecto, existe cierta evidencia experimental, basada en



fotoemisión y microscopia túnel, de la existencia de estados electrónicos de carácter fuerte-
mente unidimensional en muchas de estas superficies. Desde un punto de vista teórico ha
sido propuesto desde hace décadas que, debido a los efectos correlación, el comportamiento
de los electrones en una dimensión (el llamado líquido de Luttinger) debe desviarse sensi-
blemente de la teoría del líquido de Fermi, válida normalmente en el volumen. Por ejemplo,
a bajas temperaturas el sistema debe volverse aislante (i.e. se abre un “gap” para pequeñas
excitaciones), las cuasipartículas son reemplazadas por excitaciones de espín y de carga (los
denominados “spinons” y “holons”), y muchas de las propiedades del sistema debe ajustarse
a ciertos comportamientos algebraicos. Sin embargo, la observación experimental de estos
efectos ha demostrado ser muy complicada principalmente debido a la dificultad para encon-
trar sistemas “realmente” unidimensionales. En este contexto, las reconstrucciones de metales
sobre silicio que hemos estudiado han sido propuestas como un sistema ideal para estudiar
estos efectos, donde la magnitud de las interacciones laterales (i.e. distancia entre hilos) y de
la interacción electrón-electrón (distintas especies metálicas adsorbidas y substratos) pueden
variarse. El sistema Si(111)/Au es especialmente interesante en este sentido ya que exis-
ten datos de fotoemisión que parecen demostrar comportamientos inesperados, dentro de los
modelos sencillos que se manejan, y que han sido interpretados utilizando las predicciones
de la teoría de Tomonaga-Luttinger para una dimensión. Estainterpretación, sin embargo, ha
sido discutida recientemente tanto teórica, como experimentalmente.

Hemos visto, por tanto, que en estos sistemas existen grandes expectativas de encontrar
efectos exóticos relacionados con la correlación electrónica en una dimensión. Sin embargo,
en muchos casos estas expectativas están basadas en interpretaciones muy simplificadas de las
interacciones en estos sistemas. Por ejemplo, se despreciael efecto de la interacción con los
átomos del substrato en la estructura electrónica y geométrica del hilo. En muchos casos no se
conoce la estructura atómica en detalle y no existen cálculos que refrenden la veracidad de los
modelos estructurales, asociándoles una estructura de bandas que de forma aproximada puede
ser comparada con los datos de fotoemisión.

En nuestro trabajo nos hemos centrado inicialmente en los sistemas Si(111)/Au que ha sido
extensamente estudiados experimentalmente y para los cuales el debate está abierto, aunque
hemos extendido nuestros cálculos a otros sistemas relacionados. Las fases seguidas en nues-
tra investigación han sido:

1. Estudiar distintos modelos estructurales de distintas reconstrucciones de Au sobre Si(111)
y vicinales de Si(111) que exhiben hilos unidimensionales.Para ello hemos utilizado
cálculos de primeros principios basados en la teoría del funcional de la densidad (DFT).
En este primer periodo fue necesario familiarizarse con este aparato teórico y con las
técnicas de simulación habitualmente utilizadas. Dado el gran número de átomos en
estos cálculos, ha sido necesario utilizar un método eficiente, por lo que planeamos uti-
lizar el código SIESTA, desarrollado por una colaboración de científicos españoles, en-
tre los que se cuenta el director de la presente tesis (Dr. Daniel Sánchez Portal). Hemos
obtenido resultados sobre los modelos estructurales de lassiguientes superficies:

(i) Si(111)-(5x2)-Au, esta reconstrucción ha sido estudiada durante décadas, y para ella
existe un detallado modelo estructural basado en holografía con átomos pesados y mi-
croscopía electrónica de alta resolución. Sin embargo, pero existían muy pocos estudios
basados en cálculos de primeros principios, y los que habíanindicaban la posibilidad
de una estructura diferente de la obtenida a partir del análisis de los datos experimen-



tales. Nosotros hemos encontrado con nuestros estudios quela estructura propuesta por
los equipos experimentales no es en realidad la más estable.De hecho hemos prop-
uesto el modelo estructural más estable de los conocidos hasta el momento. También
hemos estudiado como cambia la estabilidad de las estructuras más estables en función
de la concentración de ad-átomos de silicio sobre la superficie. Estos resultados han
sido publicados enFirst-principles study of the atomic and electronic structure of the
Si(111)-(5x2)-Au surface reconstruction,Sampsa Riikonen and Daniel Sánchez-Portal,
Physical ReviewB 71, 235423 (2005)

(ii) En caso de la superficie escalonada Si(553)/Au hemos realizado una búsqueda ex-
haustiva de los modelos estructurales más estables y los hemos comparado con la in-
formación experimental existente. Este trabajo ha dado lugar a dos publicaciones:
Structural models for the Si(553)-Au atomic chain reconstruction, Sampsa Riikonen
and Daniel Sánchez-Portal, Nanotechnology16 218(2005);Systematic investigation of
the structure of the Si(553)-Au surface from first principlesSampsa Riikonen and Daniel
Sánchez-Portal, enviado a Physical Review B

(iii) Hemos comprobado que el modelo basado en una combinación de deformación de
cizalla y distorsión tipo Peierls es el más apropiado para describir la transición de fase
4x1→4x2→8x2 observada en el sistema In/Si(111), confirmando los datos experimen-
tales más recientes y en acuerdo con estudios teóricos realizados en la Univ. Autónoma
de Madrid simultáneamente (e independientemente) a los nuestros. Estos resultados han
sido publicados enMetal-insulator transition in the In/Si(111) surface,Sampsa Riiko-
nen, Andres Ayuela Fernandez and Daniel Sánchez-Portal, Surface Science600 3821
(2006)

2. Los cálculos de estructura electrónica no sólo nos dan información sobre la estabilidad
relativa de las distintas estructuras, si no que nos dan información sobre la estructura
electrónica, esto significa que podemos obtener resultadossobre estructura de bandas,
la densidad local de estados, la densidad electrónica, el tipo de enlace, etc.. Esto nos
permite, entre otras cosas, el comparar los resultados teóricos con los experimentos
de fotoemisión y de microscopía túnel de barrido. Esto nos hapermitido obtener los
siguientes resultados:

(i) Hemos identificado el origen de las dos bandas próximas que se observan cerca
del nivel de Fermi en la superficie Si(557)/Au. Algunos autores habían propuesto que
dichas bandas eran una prueba de la existencia de excitaciones separadas de espín y
de carga como resultado del carácter unidimensional del sistema. Para otros autores
no podían ser sino el resultado de la existencia de dos estructuras unidimensionales
sobre la superficie: el borde del escalón y el hilo unidimensional de oro. En nuestro
trabajo, publicado en:Role of the spin-orbit splitting and the dynamical fluctuations
in the Si(557) - Au surface,Daniel Sánchez-Portal, Sampsa Riikonen and Richard M.
Martin, Physical Review Letters93 146803 (2004), demostramos que en realidad las
dos bandas se originan en la cadena de oro y que su aparición sedebe a la rotura de
degeneración entre distintos valores del espín asociada con la interacción espín-orbita
inducida por la presencia de un elemento pesado como el oro.

(ii) Tanto en el trabajo anterior, como en otro más reciente ydetallado (S. Riikonen
y D. Sánchez-portal, Interplay between the electronic and the atomic structure in the



Si(557)-Au reconstruction from first principles, aceptadopara su publicación en Phys.
Rev. B 2007), hemos estudiado en detalle el acoplamiento entre los grados de libertad
electrónicos y estructurales. Hemos identificado a la distorsión del borde del escalón,
que se estabiliza a bajas temperaturas como el origen de la transición metal-aislante y
de los cambios de periodicidad en las imágenes de microscopía electrónica.

(iii) Hemos demostrado que el único modelo estructural existente para la superficie
Si(553)-Au, obtenido a partir del análisis de los datos de difracción de rayos X, no
sólo no es estable, sino que no produce imágenes STM ni bandaselectrónicas en buen
acuerdo con el experimento y por tanto debe ser revisado. Este resultado ha sido publi-
cado en S. Riikonen, D. Sánchez-Portal, Ab initio study of the double row model of the
Si(553)-Au reconstruction, Surf. Sci. 600 1201-1206 (2006)

3. Es sabido que la teoría del funcional de la densidad (DFT) en sus aproximaciones ha-
bituales, locales LDA o GGA, funciona bastante bien para predecir las geometrías de
equilibrio de multitud de sistemas. El uso de las estructuras de bandas obtenidas como
una aproximación a las excitaciones electrónicas elementales esta mucho menos jus-
tificado, aunque es una práctica habitual el comparar dichasbandas con los datos de
fotoemisión. Nosotros hemos analizado en detalle las estructuras de bandas obtenidas
en los cálculos, caracterizando los estados de superficie deacuerdo con su origen (aso-
ciados a los hilos metálicos o a otros átomos del substrato) ysu dimensionalidad. Como
un primer paso hacia una mejor descripción de la interacciónelectrón-electrón, hemos
implementado el método LDA+U dentro del método de cálculo SIESTA. SIESTA es un
programa que en la actualidad es utilizado por varios cientos de usuarios y que es dis-
tribuido libremente a la comunidad académica (ver http://www.uam.es/siesta). Por ello
esperamos que nuestro trabajo tenga una amplia repercusiónen la comunidad de ciencia
de materiales, que usa este código como uno de sus estándareshoy en día. El esquema
LDA+U es un método muy sencillo y, en principio, empírico de mejorar la descripción
de las interacciones para estados electrónicos muy localizados. En particular, resuelve
el problema de la autointeracción para estados con un fuertecarácter atómico. Este es
uno de los principales problemas para describir estados muylocalizados dentro de las
aproximaciones locales de DFT. Hasta el momento hemos utilizado nuestro desarrollo
para estudiar dos materiales cuyas propiedades electrónicas no son correctamente de-
scritas por cálculos DFT a nivel LDA ni GGA: el FeO y el Sr2VO4.Se está preparando
una publicación sobre este último material en colaboracióncon E. Canadell del Centro
de Ciencia de Materiales del CSIC en Barcelona.
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Chapter 1

Introduction

The main subject of this thesis are the surface reconstructions that form spontaneously when
submonolayer amounts of metals are deposited on silicon. Aswe will see, on many occasions,
the metal adsorbates stabilize reconstructions that have one-dimensional features. According
to the latest geometrical models for these systems, the metals form (infinite) monatomic wires
on the surface, an idea that seems to be in accordance with theexperimental data. These
reconstructions can also be formed on stepped silicon surfaces, allowing to tune the wire-wire
interactions with the step width [1].

The fact that some metals form spontaneously one-dimensional structures on a semicon-
ducting surface, is quite an extraordinary finding and thereare still many open questions about
the driving force for the formation of these structures and their properties.

As the minituriazion of electronic devices is approaching the atomic limit and the control
of physical and chemical reactions on the nanometer-scale is very difficult, this kind of au-
toassembling becomes very desirable. Controlling and understanding it, is a strong motivation
from a technological point of view. From a more fundamental point of view, the fact that these
surfaces have one-dimensional features makes them attractive, because they might exhibit a
completely a new kind of physical phenomena that could be exploited. One of these excit-
ing phenomena is the so-called Tomonaga-Luttinger liquid,a novel phase of electrons where
collective spin- and charge modes form the low-energy excitations of the system.

Theab-initio calculations are a powerful method to test different hypothesis about the ori-
gin of the physical phenomena observed in these surfaces. Although there exists numerous
experimental studies about these surface reconstructions[2–64], the number ofab-initio cal-
culations has remained quite small [1, 65–79]. One of the reasons for this is the large system
size needed to properly simulate a surface reconstruction.In this thesis, we performab-initio
calculations using the SIESTA method. It uses the localized-orbital formalism that is com-
putationally less time-consuming than some other methods,allowing us to routinely simulate
very large systems containing up to∼ 100 atoms. In this work we propose model geometries
(i.e. the atomic coordinates) for many surface reconstructions, analyze their physical proper-
ties such as bond-forming, charge transfer, electronic band structure, etc. with first-principles
calculations and then compare the results with the experimental data, mainly photoemission
spectra and scanning-tunneling microscopy images. The systems studied in this thesis include
metal-induced reconstruction on both flat and stepped silicon surfaces. Those on flat sur-
faces include the Si(111)/Au-5x2 [2–25, 67, 68] and Si(111)/In-4x1 [39–57, 72–79]. Systems
with steps a few nanometers wide include the Si(557)/Au [26–38, 69–71] and Si(553)/Au
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12 Chapter 1. Introduction

reconstructions [1, 58–64]. As we will see, we are able to reveal the origin of many phys-
ical phenomena seen on the experiments. These include the spin-orbit splitting of the one-
dimensional bands in Si(557)/Au and Si(553)/Au, that was initially proposed by us and very
recently backed-up by experimental data [62]. The metal-insulator transitions seen on many
of these surfaces are also an interesting challenge for theab-initio calculations that reflect how
the atomic and electronic degrees of freedom couple to each other. We study this coupling for
several systems and analyze the origin of some of these metal-insulator transitions.

A side subject of this thesis is the implementation of the LDA+U method into the SIESTA
program package. We will discuss the origin of the failure ofthe Local Density Approximation
(LDA) to deal with localized electrons (and their self-interaction), explain how this could be
corrected and how this is implemented into SIESTA. We perform several tests with compounds
such as FeO and Sr2VO4 [80–82]. In the case of Sr2VO4 we find that LDA+U breaks the
symmetry of the vanadium d-orbitals and opens gaps in the electronic structure, correcting the
metallic character of the LDA calculations.
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Chapter 2

Methodology

In this chapter we discuss briefly about the Density Functional Theory (DFT) [83] and the
SIESTAab-initioprogram [84–86]. Some of the theory behind the SIESTA program is studied
in detail.

The scope of this chapter is not to do a complete review on the SIESTA method, something
already done elsewhere [84–86], but rather clarify some parts of the method that were relevant
to this work. Formulas needed to implement new parts of the program, as well as various
miscellaneous tools, are studied in detail. In addition to this, the pseudopotentials, basis sets
and other “parameters” that were used throughout this work are presented.

2.1 Density Functional Theory

When solving for the ground state of the many-electron system, we have to minimize the total
energy:

E = 〈Ψ|H|Ψ〉, (2.1)

whereΨ = Ψ(r1s1, r2s2, r3s3, ..., rNsN) is the many-particle wavefunction of a system of N
electrons. Since the electrons are fermions, the wavefunction has to be antisymmetric respect
to the exchange of the coordinates for two particles. The simplest antisymmetric wavefunction
can be constructed using the so-called Slater determinant:

Ψ =

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(r1s1) ψ1(r2s2) . . .
ψ2(r1s1) ψ2(r2s2) . . .
...

...
. . .

∣

∣

∣

∣

∣

∣

∣

∣

. (2.2)

Minimizing the energy using a wavefunction given by a singleSlater determinant we obtain
the so-called Hartree-Fock approximation that will be described in more detail in Chap. 8.
Quantum chemistry methods rely on different approximations of the wavefunction which go
beyond a single Slater determinant. The wavefunction is typically approximated by a collec-
tion of Slater determinants corresponding to the configurations with a stronger contribution to
the ground state. These methods are referred to as multireference.

Density Functional Theory [87] provides a different approach to the problem. It states that
the ground-state of the system is completely defined by its electron density and we may find

13
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the ground-state density by minimizing the total energy:

δE[ρ]

δρ(r)
− µ = 0, (2.3)

whereµ is a Lagrance multiplier that maintains a fixed number of electrons N. We must now
express the total energy as functional of the electronic density:

E[ρ] = T [ρ] + Eee[ρ] + Eext[ρ], (2.4)

whereT [ρ], Eee[ρ] andEext[ρ] are the kinetic, electron-electron interaction and external po-
tential, respectively. This can be further written as

E[ρ] = Ts[ρ] + (Exc[ρ] + EH [ρ] + Eext[ρ]) (2.5)

whereExc[ρ] =
(

(T [ρ]−Ts[ρ]) + (Eee −EH)
)

is called the exchange and correlation energy.
Ts[ρ] is the kinetic-energy term of a non-interacting electron system, that has exactly the same
electron density as the interacting electron system.

In going from Eq. (2.4) to Eq. (2.5), we have added and subtractedTs[ρ] from the right-
hand side and the Hartree term

EH =
1

2

∫ ρ(r)ρ(r′)

|r − r| d
3
rd3

r
′, (2.6)

has been extracted from the total electron-electron interaction

Eee = 〈Ψ|
N

∑

i6=j

e2

|ri − rj |
|Ψ〉. (2.7)

We see that the original system of interacting electrons is substituted by a system of non-
interacting quasi-particles. The energy Eq. (2.4) of this system has been divided in different
parts, in such a way that all terms that could not be expressedexactly using the electron density
(such as Eee[ρ]) are retained in Exc[ρ]. This problematic term is usually approximated in some
way. The most widely used approximation is the Local DensityApproximation (LDA), where
Exc[ρ] is taken from the calculations of the energy of the homogeneous electron gas using
Many-Body Quantum Monte Carlo calculations. This results in a local functional Exc[ρ] with
respect toρ(r).

When applying Eq. (2.3) to Eq. (2.5), we come up with the Schrödinger equation:

T̂ ψ − (Vxc + VH + Vext)ψ = ǫψ, (2.8)

whereT̂ is the kinetic energy operator. The potential terms have been obtained in the following
way:

Vxc =
δExc

δρ(r)
, (2.9)

and similar for other potential terms. Notice that the Vxc potential is a “local” potential in
contrast with the equations obtained in the Hartree-Fock method (see Chap. 8). This isthe
advantage allowed by DFT as discussed above. In order to solve the electronic ground-state,
we solve Eq. (2.8), obtain the eigenstatesψn, then recalculate the electronic density and
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potential terms and solve Eq. (2.8) again. This is called theself-consistency (SCF) cycle.
Finding the ground-state of the system by SCF iteration is called the Kohn-Sham (KS) scheme
[88].

In order to calculate the electron-density or the expectation values of other single-particle
operators, we first write the wavefunctionΨ as a Slater determinant, using the eigenstatesψn

and Eq. (2.2). Expectation value for a single-particle operator f̂ of the form

f̂ =
∑

i

f̂(ri) (2.10)

where the operator̂f(ri) is acting on coordinatei only, turns out to be:

〈Ψ|f̂ |Ψ〉 =
∑

α

〈ψα|f̂ |ψα〉. (2.11)

A widely used technique, to make the convergence of the self-consistency cycle faster espe-
cially in the case of metals, is to smooth the occupation between filled and empty states and
write Eq. (2.11) as:

〈Ψ|f̂ |Ψ〉 =
∑

k

〈ψα|f̂ |ψα〉wα, (2.12)

wherewα is the occupation number for the stateψα(r), given by the Fermi-Dirac distribution.
If the operatorf̂i is simply

f̂i = f(ri), (2.13)

i.e. a real valued function ofri, then

〈Ψ|f̂ |Ψ〉 =
∫

ρ(r)f(r)d3
r, (2.14)

where the electron density is calculated from

ρ(r) =
N

∑

α=1

|ψα(r)|2wα. (2.15)

It is important to keep in mind that the eigenstatesψi and the eigenvaluesǫi of the non-
interacting reference system are just auxiliary quantities. From now on, they are referred to
as Kohn-Sham states (KS states). The only quantity that was assumed equivalent in both
the actual system and the non-interacting reference system, is the electron density of Eq.
(2.15). True physical quantities derived from this Kohn-Sham scheme and the DFT are thus
the electron density and the total energy and also the derivatives of the total energy (i.e. the
forces, response functions, etc.). Note here that we define the electron density as a positive
quantity. This applies to other chapters as well.

2.2 Localized orbitals

2.2.1 Non-orthogonal basis sets

Most the calculations in this work were done using the SIESTAprogram package [84–86,89].
In SIESTA, the wavefunctions are presented in a local orbital basis. In this section we study
some details of the local orbital formalism.
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We consider a set of non-orthogonal basis functions{|φµ〉} and following the notation of
Ref. [90], we define the dual of this basis as

|φν〉 =
∑

i

S−1
νi |φi〉, (2.16)

whereS−1
νi is the inverse of the overlap matrix

Sνi = 〈φν|φi〉. (2.17)

Then it is easy to show that
〈φν |φµ〉 = 〈φν |φµ〉 = δνµ. (2.18)

The dual〈φν | is thus a projection operator, created as a linear combination of the basis func-
tions. This linear combination is such that when the projector 〈φµ| is applied to a function
spanned by the space{|φµ〉}, only the coefficient corresponding to|φµ〉 is retained.

The systems we wish to solve, consist of aunit cell that is repeated periodically. In SIESTA
it is also usefull to define asupercell, constructed by a few replicas of the unit cell. The
supercell needs to be sufficiently large in order to catch allthe interactions of the unit cell with
its neighbouring cells. It must then contain all the periodical images of the unit cell that have
orbitals overlapping with the orbitals of the unit cell. In the following, we refer withn andN
to the total number of atomic orbitals in the unit and supercell, respectively.

Using localized orbitals we typically find various sums overdifferent indices, each indice
denoting the orbital, atomic site and cell. Occasionally, we would like to distinguish between
different cells or atoms in the sums. For this reason we definea simplified notation to make
the formalism more clear. We start by defining the basis set:

|φ(unµ)〉 = |φnµ(r − (Rn + Ru))〉. (2.19)

In Eq. (2.19) theφnµ in the right-hand side refers to a set of orbitals, with a atom-indexn
(including the atom type), and with an orbital indexµ. The indices of the basis set (left-hand
side of Eq. (2.19)) are written in parenthesis in order to distinguish them from a set of orbitals.
In Eq. (2.19),n refers also to the atomic site in the unit cell and each cell (i.e. repetition of
the unit cell) is referred to with an indexu. Rn is the vector to the atomn within the unit cell
andRu is a vector of the Bravais lattice. With the abbreviation

|φ(..µ)〉, (2.20)

we mean that the indexµ refers to the “global” index of the orbitals in the supercelland runs
from 1 to N. The idea of the notation is that we have grouped theindexes marked by “.” into
the indexµ and the parenthesis indicate what has been grouped. For example, we can group
indicesn andµ within each cellu:

|φu(.µ)〉. (2.21)

Nowu refers to the cell number andµ is the index of all orbitals in a single cell. A more exotic
example would be

|φ(u.)µ〉, (2.22)

where atomic site and cell index have been grouped into a single indexu.
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2.2.2 Bloch states

Now we wish to add the possibility to represent Bloch-statesin our localized basis. Bloch-
states allow us to calculate solutions for an infinite system, using only a finite one. A bloch-
stateψk(r) with a k-vectork should satisfy the condition [91]:

ψk(r + Rv) = ψk(r)eik·Rv , (2.23)

wherei is the imaginary unit
√
−1 andRv a vector of the Bravais lattice.

In order to present bloch-states with our basis set, we add a phase factor into the basis
functions of Eq. (2.19)

|φk

(unµ)〉 = |φnµ(r − (Rn + Ru))〉eik·Ru (2.24)

and consider an eigenstate represented by this basis with indexα and with k-vectork:

ψk

α(r) =
∑

unµ

anµ
αk
|φnµ(r − (Rn + Ru))〉eik·Ru. (2.25)

It is easy to see that the wavefunction of Eq. (2.25) satisfiesthe Bloch condition:

ψk

α(r + Rv) =
∑

unµ

anµ
αk
|φnµ(R − (Rn + (Ru −Rv)))〉eik·Ru. (2.26)

Now we substituteRu := Ru − Rv, so
∑

unµ

anµ
αk
|φnµ(R − (Rn + Ru))〉eik·(Ru+Rv) = ψk

α(r)eik·Rv . (2.27)

2.2.3 K-point sampling

When solving the Schrödinger equation 2.8 using basis functions 2.19, we use a finite unit
cell, imposing the periodicity of this unit cell and obtaining this way the modes (eigenstates).
This is the so-called Born-von Karman boundary condition. However, if we wish to solve
a system where the unit cell is repeated to infinity, the correct boundary conditions are the
zero boundary-conditions at the borders of theinfinite cell. Eachk-vector and each bloch-
stateψk(r) can be interpreted as a distinct mode of the infinite cell. Expectation value of any
physical quantity should then be averaged over various solutions, each solution corresponding
to a differentk-vector.

The values for thek-vectors are chosen from the irreducible Brillouin-zone [91] with some
reasonable scheme. Throughout this work, we use the Monkhorst-Pack (MP) notation [92],
where M×N×L means a sampling of M, N and L equidistant points in the Brillouin-zone to
the direction of the first, second and third reciprocal vectors, correspondingly.

2.2.4 Solving the Schrödinger equation

In this subsection we show how the Eq. (2.8) can be solved using the non-orthogonal basis
functions of Eq. (2.24). We expand the wavefunction with thebasis functions of Eq. (2.24) in
the supercell and use the Schrödinger Eq. (2.8):

H|ψk

α〉 = εα|ψk

α〉, (2.28)
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where H is the Hamiltonian andα andk the eigenvalue and k-indexes, we create the matrix
equations by multiplying with the ket〈φk

1(.ν)|:

〈φk

1(.ν)|H|ψk

α〉 = εα〈φk

1(.ν)|ψk

α〉. (2.29)

Since the functions〈φk

1(.ν)| are in the unit cell, the index k can be dropped. Writing Eq. (2.29)
out gives:

∑

uµ

〈φ1(.ν)|H|φu(.µ)〉eik·Ruaµ
αk

= ǫα
∑

u′µ′

〈φ1(.ν)|φu′(.µ′)〉eik·R
u
′

⇔
∑

µ

(

∑

u

H1(.ν),u(.µ)(k)
)

aµ
αk

=
∑

µ′

ǫα
(

∑

u′

S(1(.ν),u′(.µ′)(k)
)

aµ′

αk

⇔ H(k)aαk = ǫαS(k)aαk, (2.30)

where we have defined:

H1(.ν),u(.µ)(k) = 〈φ1(.ν)|H|φu(.µ)〉eik·Ru (2.31)

S1(.ν),u′(.µ′)(k) = 〈φ1(.ν)|φu′(.µ′)〉eik·R
u
′ (2.32)

whereH(k) andS(k) are matrices that depend on the k-index:
[

H(k)
]

ν,µ
=

∑

u

H1(.ν),u(.µ)(k), (2.33)
[

S(k)
]

ν,µ
=

∑

u′

S1(.ν),u′(.µ)(k). (2.34)

andaαk is a vector:
aαk = (a1

αk
, a2

αk
, a3

αk
, ..., an

αk
), (2.35)

wheren is the total number of orbitals in the unit cell.
We observe that the hamiltonian and overlap matrices of Eq. (2.31) and Eq. (2.32) have

the dimensions n×N. The n×n matrices of Eq. (2.33) and Eq. (2.34) are created by summing
up the n×n elements of the corresponding n×N matrices (Eqs. (2.31)-(2.32)) multiplied by
a phase-factor that depends on the Bloch-index k. In SIESTA,each subroutine (say, local
potentials, non-local potentials, etc.) adds its contribution to the Hamiltonian matrix of Eq.
(2.31). After this, the matrices of Eqs. (2.33)-(2.34) are created and the eigenvalue problem
of Eq. (2.30) is solved.

In SIESTA, the Hamiltonian matrix has some parts which - unfortunately - must be cal-
culated in a real-space grid. The electron densityρ(r) is projected into a real-space grid for
various reasons: these are for example the exchange-correlation energy functionalExc[ρ(r)]
that is a local, non-linear functional of the electron density and the usage of Fourier transforms
in order to solve the poisson equation to get the Hartree potential. Three center integrals are
also calculated using the real-space grid. All this createsthe need for an extra parameter in the
calculations, the cutoff energyEc. It is defined as the energy of a plane-wave∼ ek·x with the
highestk that can be represented with the grid:

E =
1

2
h̄k2 =

1

2
h̄

(π

L

)2
, (2.36)

where L is the distance between neighboring grid points.
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φ1(.ν)

pη
pκ

φ(..µ)

,

Figure 2.1: Calculation of Hamiltonian matrix elements andexpectation values for localized projectors in a
supercell scheme using localized orbitals. The orbitalφ(.ν) is inside the unit cell (indicated by a thick box),
while the orbitalφ(..µ) can be anywhere in the supercell, this is also true for the projectorspη andpκ. The cutoff
radii of orbitals and projectors are indicated by arrows.

2.2.5 The density matrix

The density matrix is a very useful concept; it encloses compactly all the information about
the system and can be used to calculate the expectation values of operators. We can find the
density matrix by considering the electronic density of thesystem:

ρ(r) =
∑

kα

ψk∗
α (r)ψk

α(r) =
∑

vuνµ

φ(r)∗v(.ν)φ(r)u(.µ)

∑

k

(aν∗
αk
aµ

αk
eik·(Ru−Rv))

=
∑

vuνµ

φ(r)∗v(.ν)φ(r)u(.µ)Dv(.ν),u(.µ)

=
∑

vνµ

φ(r)∗v(.ν)φ(r)(..µ)Dv(.ν),(..µ), (2.37)

where we can easily see the definition of the density matrixDv(.ν),(..µ). Here the index(..µ)
goes over all orbitals in the supercell. In order to express the electron densityρ(r) inside the
unit cell correctly the indexesv, ν do not have to run over the whole supercell, but over a small
“buffer-zone” instead, that includes all overlapping orbitals at pointr. For many purposes (see
below), it is sufficient that indexesv, ν retain in the unit cell. Then we can write the density
matrix asD1(.ν),(..µ), having dimensions n×N.

2.2.6 Non-local projection terms in the Hamiltonian

As mentioned earlier, the matrix elements in Eq. (2.31) are created separately for each kind of
potential term. Here we take a look how this is done in the caseof non-local projectors. These
are important in the case of pseudopotentials and the LDA+U method of Chap. 8 We consider
projectors of the type:

P =
∑

u,η,κ

|p(u.)η〉Vηκ〈p(u.)κ|. (2.38)

The projectors are similar to the basis functions of Eq. (2.19). Note that in Eq. (2.38) we have
grouped both the atomic site and the cell index into the indexu. Remembering Eq. (2.11) and
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using the density matrix of Eq. (2.37) we write:

P̄ =
∑

k

〈Ψk|P |Ψk〉

=
∑

α,k,u,η,κ

〈ψk

α|p(u.)η〉Vηκ〈p(u.)κ|ψk

α〉

=
∑

ν,µ,u,η,κ

D1(.ν),(..µ)〈φ1(.ν)|p(u.)η〉Vηκ〈p(u.)κ|φ(..µ)〉. (2.39)

This sum is illustrated in Fig. 2.1.
The forces on atoms due to such projectors are the derivatives of the energy term Eq. (2.39)

with respect to atom locations. They are calculated most easily by considering forces on each
atom-projector pair and then summing over all pairs. One canthen make the derivative of
〈φ1(.ν)|p(u.)η〉 with respect to the orbital-projector distanceRν − Ru and the force acting on
each one of their corresponding atoms is:

F = −∇P̄ = −
∑

µ,η,κ

2D1(ν.),(..µ)∇
(

〈φ1(ν.)|p(u.)η〉
)

Vηκ〈p(u.)κ|φ(..µ)〉

=
∑

µ,η,κ

2D1(ν.),(..µ)

(

〈φ1(ν.)|∇|p(u.)η〉
)

Vηκ〈p(u.)κ|φ(..µ)〉 (2.40)

2.3 Pseudopotentials and Pseudo-orbitals

The pseudopotentials used by SIESTA are norm-conserving ab-initio pseudopotentials. We
typically use those developed by Troullier and Martins (TM)[93] and apply them to the wave-
functions using the fully non-local formulation due to Kleynman and Bylander [94]. Using
ab-initio pseudopotentials the wavefunction is projectedinto s-,p-,d- etc. orbitals and differ-
ent potential terms are applied to each of these components.In Eq. (2.38) this corresponds
to diagonalVηκ non-local potential terms. Rather than going into the details of the TM pseu-
dopotentials, we simply present here the parameters used togenerate the pseudopotentials
used throughout this work. For more details, one can see Ref.[93,94].

To generate the pseudopotentials, we used the ATOM program that comes with the stan-
dard SIESTA package. In addition to generate the pseudopotentials, ATOM program provides
us with the pseudo-orbitals, which are the wavefunctions ofan isolated atom, if the one-atom
problem is solved using the pseudopotential. SIESTA uses these pseudo-orbitals as a natural
basis when solving the Schrödinger equation. More complex basis sets can be generated using
SIESTA. Individual orbitals can be “splitted” several times to obtain more variational freedom
and excited-state orbitals can be generated. For more details, one can consult Refs. [84–86,89].

The pseudopotentials used in this work are listed in Tab. 2.1and it has all the information
needed to create these pseudopotentials with the ATOM program. As an example, the pseu-
dopotentials and the wavefunctions for indium are illustrated in Fig. 2.2. Note that outside the
matching radii, the wavefunctions are equal to the pseudo wavefunctions (which are used by
SIESTA) and that the latter ones do not contain any nodes. By tuning the matching radii, we
have been able to make the pseudopotentials if Fig. 2.2b relatively smooth, compared to the
all-electron effective potential (not shown), and keep them in a reasonable energy range.

The bases used for all the elements in the course of this work are indicated in Tab. 2.2. In
this table we have also calculated the bulk lattice constantin some cases. An example band
structure from a bulk calculation of Au is illustrated in Fig. 2.3.
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Element Exc file valence matching radii

H (1) LDA H.psf 1s 1.25
H (1) GGA H2.psf 1s 1.25
O (8) GGA O_opt.psf 2s22p43d0 1.14,1.14,1.14 (1.38)
Si (14) LDA Si.psf 3s23p2 1.89,1.89
Si (14) GGA Si2.psf 3s23p2 1.89,1.89, (3.00)
Fe (26) GGA Fe.vps 3s23p63d6(4s2) 1.20,1.20,1.78, (1.37)
In (49) GGA In2.vps 4d105s25p 1.79,2.48,2.99,(3.56)
In (49) GGA In3.vps 5s25p 2.48,2.99,(5.59)
Au (79) LDA Au.vps 5d106s 2.00,2.47
Au (79) GGA Au2.vps 5d106s 2.00,2.47,(4.03)
V (23) GGA V.psf 3d34s2 2.35, 2.70, (0.8)
Sr (38) GGA Sr.psf 4s24p65s2 1.80, 1.80, 1.80 (1.3)
O (8) GGA O.psf 2s22p4 1.14, 1.14

Table 2.1: The pseudopotentials used in the calculations ofthis work. The functional used for LDA is due to
Perdew and Zunger [95] and the one used for GGA due to Perdew, Burke and Ernzerhof [96]. Valence electronic
configuration is shown, as well as the mathing radii. In the radii column, core-correction radius is indicated
in parenthesis. In the case of iron, 4s orbitals were not included in the pseudopotential. Scalar-relativistic
corrections were included for Au [97]. In the case of Sr, the 5s orbital was not explicitly generated, but we use
the 4s orbital (very similar to 5s) instead, when generatingthe basis set in Tab. 2.2.

(a) (b)

Figure 2.2: The Indium pseudopotential. (a) The all-electron (solid) and pseudo- (dashed) wavefunctions for 5s
(black) and 5p (blue) atomic states. (b) Pseudopotentials for s (black), p (red), d (green) and f (blue) states.

In this work, we use mainly three type of basis sets: (i) the single-ζ (SZ), which includes
just the plain pseudo-orbitals, (ii) the double-ζ (DZ) in which the plain pseudo-orbitals have
been splitted once (DZ) and (iii) the double-ζ with polarization orbitals (DZP), in which wave-
functions with angular momentum L+1 (L being the maximum angular momentum of the SZ
and DZ basis sets) have been created by perturbation theory.In the SIESTA methodology,
the confinement radii of the orbitals is defined by an excitation energy [86, 98]. This “energy
shift” is indicated in column 2 and the resulting cutoff radii are listed in column 3 of Tab. 2.2.

2.4 Miscellaneous tools and implementations

In this work we used the ready-made SIESTA program package but there was also some
implementation involved, as will be emphasized in Chap. 8. Apart from the programming
work done in Chap. 8, we implemented numerous auxiliary programs (in awk, python, matlab,
etc.) in order to handle band structure plots, create simulated STM/STS data, etc. We also
modified some parts of the SIESTA code and made data post-processing programs in Fortran.
We explain some of the most important modifications and toolsin this section.
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Pseudopotential
file

∆E (mev) orbitals
(cutoff radii / au)

basis LC (Ang)

Au.vps 200 5d(4.51),6s(6.24),
6p(6.24)

DZP:6s-
SZ:5d

4.12 (exp 4.08)

Au2.vps 5d(4.51),6s(6.24),
6p(6.24)

DZP:6s-
SZ:5d

-

In2.vps 5s(5.95),5p(7.83),
5d(7.83)

SZ:4p-
DZ:5s-
DZP:5p

-

In3.vps 5s(5.95),5p(7.83),
5d(7.83)

DZP -

Si.psf 3s(5.26),3p(6.43),
3d(6.43)

SZ 5.53

DZ 5.48
DZP 5.42 (exp 5.43)

Si2.psf 3s(5.13),3p(6.59),
3d(6.59)

SZ 5.62

DZ 5.56
DZP 5.50

H.psf 1s(5.08),2p(3.95) DZP -
H2.psf 1s(4.95),2p(4.95) DZP -
Fe.vps 50 3s(2.56),3p(2.91),

3d(4.23),4s(6.00),
4d(6.00)

DZ:3d,4s-
SZ:3s,3p,4p

O_opt.psf - 2s(4.47,2.37),
2p(5.85,2.42),
3d(3.51)

DZ:2s,2p-
SZ:3d

-

V.psf - 3d(5.025,2.724),
4s(7.88,6.87)

DZP:4s-
DZ:3d

-

Sr.psf - 4s(3.62),4p(4.11),
5s(7.30,6.69),
4d(6.28)

SZ:4s,4p,4d-
DZP:5s

-

O.psf - 2s(3.65,2.51),
2p(4.57,2.64)

DZ:2s-
DZP:2p

-

Table 2.2: Information about the basis sets used throughoutthis work. In the first two columns, the
pseudopotential file (see Tab. 2.1) and the energyshift usedto confine orbitals, respectively. In the third
column the resulting pseudo-orbitals and their cutoff radii. In some cases (Fe.vps 4s and 4d orbitals,
O_opt.psf , V.psf , Sr.psf , O.psf ) the cutoff radii has been defined explicitly. ForO_opt.psf ,
parameters (PrefactorSoft,InnerRadSoft ) have been used: they are, for 2s, 2p and 3d orbitals,
(58.20,3.47),(1.05,4.85),(69.65,0.30), respectively.The basis set (see also Sec. 2.3) is indicated in column “ba-
sis”. Sometimes the basis set is a mixture of SZ, DZ and DZP. For example, in the case of gold, we have used a
minimal basis for the 5d orbitals (SZ:5d), doubled 6s orbitals and the perturbation theory has been used to create
the polarization 6p orbitals (DZP:6s). For some elements, bulk calculations were performed in order to obtain
the lattice constant (LC). In these cases 8×8×8 Monkhorst-Pack sampling and mesh cutoff Ec ∼ 100 Ry were
used. The experimental lattice constant values are from Ref. [91].

2.4.1 Simulated STM images

The simulated Scanning Tunneling Microscopy (STM) images are a very important tool for
comparing theory and experiment in the case of surfaces. Experimental images are obtained
by the STM apparatus that measures the tunneling current between the sample surface and the
STM tip. As the tip is moved along the surface, the tunneling current is altered, depending
on the local conductivity at that point on the surface. An STMtopography is obtained by
raising and lowering the STM tip in such a way that the tunneling current stays constant. In
the simplest approximation the tunneling current depends on the Local Density Of electronic
States (LDOS), so an STM topography then corresponds to a LDOS isosurface, which can be
easily derived from calculations. Using the calculated LDOS and searching for its isosurface
is a very simple and powerful approximation, first introduced by Tersoff and Haman [99].



2.4. Miscellaneous tools and implementations 23

Figure 2.3: The band structure of Au using the basis set described in Tab. 2.2

The LDOS reduces to the electronic density of Eq. (2.37), butnow the indiceα runs over
eigenstates that are within some energy-window (ǫ1 < ǫ < ǫ2):

ρ(r) =
∑

vνµ

φ(r)∗v(.ν)φ(r)(..µ)Dv(.ν),(..µ)(ǫ1, ǫ2) (2.41)

where
Dv(.ν),u(.µ)(ǫ1, ǫ2) =

∑

k,(ǫ1<ǫ(α)<ǫ2)

aν∗
αk
aµ

αk
eik·(Ru−Rv). (2.42)

By adjusting the energy-window, we are able to create filled-and empty-state LDOS data,
with desired energy range.

The SIESTA code was modified in such a way that it permits us to save the density matrix
of Eq. (2.42). Then we can use the DECHAR program, available with the SIESTA code to
produce the LDOS data in a three-dimensional grid. This datais then processed with MAT-
LAB and the isosurface can be searched using available MATLAB routines. Once we have
the isosurface on a 2-dimensional grid (function values at grid points correspond to isosur-
face heights), we can transform it into grayscale colors, finally producing the simulated STM
image.

2.4.2 Population analysis

When analyzing the chemical bonding of the system it is essential to know the number of
electrons in different atoms and orbitals. One possible wayof performing this analysis was
introduced by Mulliken (1955) [100]. With Mulliken charges(or populations) one can draw
conclusions about the ionic versus covalent character of the bonds and the charge-transfer
taking place in the system. The latter helps to understand the behaviour of, for example, the
metal-adsorbates and dangling bonds on a silicon surface.
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In this work we are frequently interested in the origin of different surface bands seen
both in the experiments andab-initio calculations. In calculations, we are able to see the
contribution of an individual atom (or an orbital) in the electronic band structure. We start by
considering the total charge of a single one-electron state:

Q = 1 = 〈ψk

α|ψk

α〉 =
∑

νµ

aν∗
αk
aµ

αk
Sνµ(k) =

∑

µ

qα,k
µ , (2.43)

where we have defined the charge contributionqα,k
µ of eigenstateα to orbitalµ at k-pointk as:

qα,k
µ =

∑

ν

aν∗
αk
aµ

αk
Sνµ(k) (2.44)

To present this information in the band structure plots, onemay proceed as follows: if the
qα,k
µ is greater than some treshold value, the eigenenergy of the stateα is highlighted with a

symbol in the band structure. The symbol size can also be madeto correspond to the number
qα,k
µ .

2.4.3 Constrained relaxations

During the course of this work we relax various surface structures using the Conju-gent-
Gradient (CG) method. In some cases we want to fix some geometric entities, say, entire
layers to keep the relaxation in accordance with an experimental proposal or individual atoms
in order to force atomic distances, etc. We have implementeda few very simple constraints.
Atoms can be collected into a group and atoms within the same group cannot move with one
respect to another in a constrained direction. This can be achieved by “correcting” the forces
on atomi in the following way:

fi := fi − (fi · v0)v0 + f̄ , (2.45)

wherev0 is the constrained direction and̄f the mean force of the whole group of atoms into
this direction. We also implemented the possibility to set desired force components simply to
zero.

Another possibility to implement such geometric boundary conditions would be to use the
Z-matrices. In this approach, one uses the internal coordinates (bond lengths, bond angles,
etc.) instead. The possibility to use Z-matrices has been implemented in SIESTA 2.1.



Chapter 3

1-D Metal-induced reconstructions on
Si(111)

3.1 Introduction

An interesting class of surface reconstructions is createdby the evaporation of small amounts
(0.2-0.4 ML) of metal, usually alkali, rare-earth or noble metals on a silicon substrate. De-
pending on the amount of the deposited metal, and the annealing process (i.e. how the sample
is heated and cooled), different surface patterns emerge and characteristic surface geometries
are stabilized by the presence of the metallic atoms. In manycases, one-dimensional features
are observed.

These reconstructions include the so-called Si(111)-(3x1) reconstruction (for a review, see
[65,66]) that is formed by the deposition of alkali metals orsilver. Deposition of gold forms a
variety of reconstructions depending on the miscut angle ofthe substrate (see Refs. [1,31,101]
and references therein). Similar reconstructions result from the deposition of indium (see
Ref. [55] and references therein).

These (quasi) one-dimensional metal-induced surface reconstructions are usually created
in-situ in order to study them with Scanning-Tunneling Microscopy (STM), Angle-Resolved
Photoemission (ARPES) and Low-Energy Electron Diffraction (LEED). Row-structures are
observed with STM and (quasi-) one-dimensional electronicstates can be seen in ARPES
experiments. The periodicity of the reconstruction is observed with LEED. When the sub-
strate has terraces (a “vicinal” substrate) the row-structures tend to form more easily because
the reconstruction has a preferred direction. However, these reconstructions have also been
observed for completely flat substrates.

According to recent theoretical models for many of these systems, the metal atoms tend to
form monatomic wires [1, 67, 69–72, 101–103]. In the case of the vicinal surfaces, typically
only one single or double-wire per terrace, running parallel to the step-edge, is present. One
could then tune the coupling of the wires of neighboring terraces by changing the terrace-width
and this way alter the one/two-dimensional character of thereconstruction [1].

A strong motivation for fabricating one-dimensional metallic structures on semiconducting
surfaces, has been to observe the so-calledLuttinger liquid behaviour. In a one-dimensional
metal, the low-energy electronic spectrum is dominated by collective spin and charge excita-
tions [104–106]. This is in contrast with the behavior of typical metals, that can be understood
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in terms of independent particle-like excitations usuallycalled quasiparticles. Unfortunately,
one-dimensional metals are thought to be, in principle, unstable with respect to the Peierls
distortion that drives them into an insulating ground state[107]. A possible route to avoid this
limitation could be the fabrication of metallic chains absorbed on surfaces; the hope is that
the rigidity of the substrate will make the energy cost for the structural distortions too large
and, therefore, the one-dimensional chains would remain metallic. Semiconductor surfaces
are specially attractive for this purpose: the existence ofan energy gap prevents the coupling
of the electronic states of the chain in the vicinity of the Fermi level with the substrate and the
one-dimensional character of these states is preserved.

The Luttinger-liquid theory predicts a splitting of the band structure near the Fermi-level,
where two different excitations, spinons and holons, should be observed (corresponding to
separate spin- and charge excitations) [104–106]. In the case of the Si(557)/Au reconstruction,
a clear band splitting was observed by Segovia, et. al. [27] and interpreted in terms of
the Luttinger liquid. As the experimental [28–30, 32–34, 38, 62] and theoretical [69–71, 103]
research of this surface increased, several other explanations for this behaviour were proposed.
These are, the existence of two distinct metallic bands, based on a theoretical model andab-
initio calculations [69,70]; the existence of two distinct metallic wires on the surface [30]; and
the spin-orbit splitting [71].

The origin of the band-splitting observed by Segovia, et. al. [27] is very likely to be the
spin-orbit interaction; after it was theoretically predicted by us [71], it was found in a very
similar system, the Si(553)/Au reconstruction [62]. Not only the Si(557)/Au, but most of
the gold-induced quasi one-dimensional surface reconstructions found up to date feature a
similar band-splitting [1, 19, 28]. From the technologicalpoint of view this might make them
interesting; one could use them in the future spintronic devices. The Si(557)/Au and the role
of the spin-orbit interaction and its consequences are discussed in detail in Chap. 6.

Another very interesting feature observed in these surfacereconstructions is the existence
of metal-insulator transitions [30, 33, 45, 47, 52, 54, 59].Transition from a metallic state to an
insulating one has been observed for several of these surface reconstructions in ARPES and
Scanning-Tunneling Spectroscopy (STS) experiments as thetemperature is lowered below∼
100 K. This transition is accompanied with periodicity-doubling in the STM images.

According to Ahn and co-workers these transitions are Peierls-like displacive phase transi-
tions [30,33,45,52,54,56], between a highly symmetric high temperature phase and a low tem-
perature structure with lower symmetry and/or higher periodicity. In the case of the Si(557)/Au
we have initially proposed that the behaviour seen in the STMexperiments could be explained
by the disappearance of the dynamical fluctuations in the system as the temperature is lowered,
corresponding to an order-disorder phase transition [71].Gonzalez, et. al., have proposed a
similar mechanism in the case of the Si(111)/In-4x1 reconstruction [77–79]. However, in
Chap. 6 we also point out that there exist a continuous cross-over between these two different
kind of transitions [108] and the two different ideas do not necessarily exclude one another.
According to us, the metal-insulator transition in Si(557)/Au is dominated by the freezing of
a mode that corresponds to the movements of atoms in the step-edge of the Si(557) terrace.
In Chap. 6 we have simulated usingab-initio calculations STM and STS data based on the
geometrical model of Si(557)/Au to test this idea and it seems that our results reproduce quite
well the experimental data.

The metal-insulator transition is particularly interesting in the case of the Si(111)/In-4x2
and Si(553)/Au reconstructions. Both systems have a numberof different bands crossing
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the Fermi-level, each one with its characteristic fillings [52, 72]. These bands seem to suf-
fer a metal-insulator transition, involving several different structural distortions and complex
charge-transfer between them [52,72,77,78,109]. These effects are studied using a simplified
model for the Si(111)/In-4x2 in Chap. 5.

A particularly interesting phenomena in many gold-inducedreconstructions [1] is the pres-
ence of silicon adatoms which can be removed or added withoutstrongly affecting the un-
derlying surface reconstruction [20–22, 24]. For this reason it has been proposed that these
reconstructions could be used as atomic-scale memory devices, individual adatoms acting as
bits [20]. Also using adatoms, Yoon et. al. [25] were able to create alterning conducting and
semiconducting segments in the Si(111)-5x2/Au surface, consisting of regions with excess or
depletion of the adatom density.

The research on some of these systems started as early as the late sixties [2–4]. Only quite
recently,ab-initio calculations have started to play important role in the research of these
systems [67–69, 101]. They are a powerfull way for testing different hypothesis about the
origin of observed phenomena. A good example is the Si(557)/Au reconstruction mentioned
above. By now the origin of the metallic bands found with ARPES [19, 28] seem to be quite
clear: the free-electron like metallic bands are a result ofthe hybridization of the gold 6p-
states with the neighboring silicon orbitals [69,70], the 6s-states of gold appearing well below
the Fermi-energy. Another good example is the Si(111)-5x2/Au reconstruction. It has been
studied with growing intensity during the last three decades (see refs. [14,101] and references
therein). From the experimental work, many different geometrical structure were proposed.
Finally, the models based on theoretical calculations [67,101] have been able to reproduce
to some extent the theoretical results (see ref. [101] and references therein). In Chap. 4 we
present some new models which agree quite well with the recent STM and ARPES data and
which are predicted to be more stable than any other model proposed to date.

The theory behind the band structures and atomic geometriesin all gold-induced surface
reconstructions is quite similar and analogies between thedifferent reconstructions can be
found easily. Based on these analogies, in Chap. 7 we have created several trial geometries
for the Si(553)/Au reconstruction. It is the “newest” of these reconstructions [58] and we
consider that a reliable structural model has not yet been found [1].

In order to test hypothesis withab-initio calculations, a model geometry is needed; in this
scheme, one proposes a trial geometry and then produces the relevant physical properties of
this geometry (total energy, electron-density, eigenstates, etc.) by anab-initio method. By
relaxing the trial geometry one also checks for its stability and by comparing total energies,
one can make conclusions about its stability with respect toother geometries. Fromab-initio
calculations simulated STM data can be easily reproduced (see Sec. 2.4.1). The band struc-
ture is usually taken to represent the simulated ARPES spectra and Mulliken analysis can be
performed in order to see the origin of the bands (see Sec. 2.4.2).

In order to create reasonable trial geometries, one needs some insight on the geometry,
bonding and charge-transfer that takes place in the Si(111)surfaces (and in the silicon sur-
faces in general). For this reason we start, in Sec. 3.3 by introducing some very basic and
famous silicon reconstructions and looking at their physical properties. In Sec. 3.4 we also
consider the honeycomb model for the Si(111)(3×1)/X, X=Li,Na,K,Ag,Mg reconstructions
which turns out to be also relevant for the surfaces we study in the course of this work. In
Sec. 3.5 we consider some fundamental Si(111) stacking properties which are, together with
the basic Si reconstructions the base for creating our trialgeometries. Before all this, we take
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Figure 3.1: Cleaving of the Si(111) surface as function of the Miller indices. Each set of Miller indices corre-
sponds to a different step width. Picture taken from Ref. [1].

a look at some basic concepts such as the notation of surface reconstructions.

3.2 Some basic concepts

A cleaved, unreconstructed Si(111) surface is presented inFig. 3.2. We assume for the mo-
ment that the reconstruction takes place in the first double-layer (dbly), where we should
relocate the atoms. The periodicity of the reconstruction is denoted by its two-dimensional
lattice vectors, say N×M. This means that the lattice vectors of the reconstructions are N̂v1

and Mv̂2, wherev̂1 and v̂2 are the lattice vectors of the unreconstructed Si(111) surface (see
Fig. 3.2a). In lattice constant units they arev̂1 = (0, 1/

√
2) and v̂2 = (

√

3/8, 1/
√

8). Here
with (x,y) we refer to the [̄11̄2] and [̄110] directions, correspondingly. With relative units we
refer to a coordinate system that must be scaled by the lattice constant.

By avicinal surface we refer to a surface that has been cleaved along somedirection whose
normal is close to the [111] direction. Typically these surfaces produce steps with terraces
exhibiting [111] facets, the widths of the steps depending on the cleaving direction. The
normal of the surface is denoted by the three Miller indices,so each set of indices corresponds
to a certain step width. This is illustrated in Fig. 3.1, where a large set of Miller indices is
considered.

Some Miller indices are - depending on the symmetry of the bulk material - equivalent. In
the case of silicon, we are allowed to “scroll” the Miller indices, i.e. (557),(755) and (575)
correspond to the same surface. This “scrolling” corresponds to a symmetry operation that
leaves the silicon lattice vectors unaffected.

3.3 Basic Si(111) reconstructions

The natural geometry of cleaved and annealed Si(111) is the Si(111)7×7 reconstruction, also
called the Dimer-Adatom-Stacking Fault (DAS) model [111, 112]. It was found after more
than two decades of research and is quite complicated. We will not go into its details, but rather
concentrate on some well known small-scale reconstructions that take place in the Si(111).
Even the complex Si(111)7×7 reconstruction can be reduced to some extent to the basic sil-
icon building blocks, say, mainly to the adatom 2×2 reconstruction and surface-dislocation
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Figure 3.2: Silicon (111) surface without reconstruction,viewed from top (a) and from side (b). The inset of
figure (b) shows the directions. The buckling (2×1) reconstruction of Si(111) [110], viewed from top (c) and
from side (d). 2-dimensional lattice vectors are indicatedin (a) and (c).

(that will be discussed below). A wide range of vicinal silicon surfaces have been studied in
Ref. [113] and it seems that in the family of Si(111) surfaces(both flat and stepped), atoms re-
construct only inside the terrace - i.e. no strong rebondingof the step-edge is observed [113].
The building blocks we consider here are the buckling, pi-chain and the adatom reconstruc-
tions. For more details on the buckling model, see Haneman (1961) [110]. The pi-chain model
was introduced by Pandey (1981) [114], see also Norhtrup et.al. (1982) [115]. For some of
the firstab-initio calculations of the adatom model, see Northrup, et. al. (1984) [116] and
Meade and Vanderbilt (1989) [117].

A cleaved Si(111) surface is illustrated in Fig. 3.2a-b. Thedriving force for the recon-
struction are the dangling-bonds that are left to project into the vacuum, after the surface has
been created from the bulk. The system tries to eliminate these dangling bonds by relocating
the surface atoms. By hybridizing the dangling bonds with other orbitals, the system could
open gaps and lower its total energy. During the relocation (or even removing) of the atoms,
surface stress arises, due to the underlying silicon bulk that prefers unaffected atomic sites.
The system with lowest total energy is the one that optimizesthe competition of these two
terms. Each one of the following simple building blocks we are about to consider, solves this
problem in a different way.

3.3.1 The buckling model

In the buckling model [110], illustrated in Fig. 3.2c-d, theneighboring atoms "buckle", i.e.
change their relative heights. This creates a surface with 2×1 periodicity, where the atoms
have different z-positions alternating along the [1̄1̄2] direction. By having different heights,
the atoms achieve an important charge transfer. The loweredatom adopts the sp2 hybridization
and gives up the electron in its pz orbital. This extra electron moves to the sp3 dangling-bond
of the elevated atom and thus saturates it. This eliminates one dangling bond per each 2×1
unit cell, and opens a gap in the surface bands associated with the dangling bonds.
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Figure 3.3: The pi-chain reconstruction of Si(111) [114] viewed from top (a) and side (b) and the band structure
(c). 2-dimensional lattice vectors are indicated in (a). Inset of (c) shows the Brillouin-zone and the path in the
k-space used to plot the bands. The atomic character of the bands has been marked with green squares and open
circles. Corresponding atoms are marked with the same symbols in panel (b).

Γ
Μ

Κ

(a)

(b)

(c)

Figure 3.4: The adatom reconstruction of Si(111) [117] viewed from top (a) and side (b) and the band structure
(c). 2-dimensional lattice vectors are indicated in (a). Inset of (c) shows the Brillouin-zone and the path in the
k-space used to plot the bands. The states marked with red circles have a strong weight on the restatom, while
the green ones are mainly from the adatom.

3.3.2 The pi-chain model

The energy barrier between the buckling and the pi-chain reconstructions is minimal [115];
in an ab-initio calculation, starting from the buckling reconstruction the system frequently
relaxes spontaneously into the pi-chain configuration (dueto small noise in the forces). Pi-
chain reconstruction is illustrated in Fig. 3.3. We notice two elevated atoms that form a
zigzag-chain into the [̄110] direction. The pz orbitals of these atoms are hybridized, creating a
"pi-chain" while the rest of the orbitals adopt the sp2 hybridization. A gap opens in the band
associated with theπ-chain due to the two inequivalent positions of the atoms along it. The
lower atoms are in the sp3 hybridization state, so there are no unsaturated dangling bonds. In
the band structure of Fig. 3.3c we show our calculation of theband structure of this surface
and observe how bands related to the elevated atoms develop agap.
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Figure 3.5: The Honeycomb Chain (HC) model of Si(111)(3×1)/X, X=Li,Na,K,Ag,Mg [66], viewed from top
(a) and side (b). The honeycomb is indicated by a box in (b) andthe 2-dimensional lattice vectors are plotted
in (a). Schematic plot of the bonds, viewed from top (c) and side (d). The dashed lines present the bonds of
the second dbly, while the solid ones the bonds of the first (topmost) dbly. The bonds of the honeycomb (not in
clear sp3 hybridization) are numerated from (1)-(5) (see text for details). The large filled circles present the metal
adsorbate atoms.

3.3.3 The adatom model

In contrast to the two basic building blocks of the previous sections, in the adatom reconstruc-
tion we add atoms in top of the surface. This is illustrated inthe Fig. 3.4. We observe that by
adding one adatom every 2×2 supercell, we are able to saturate three dangling bonds, while
creating only a single new one. We also observe a slightly elevated atom, the "restatom" that
has a dangling bond not saturated by any of the adatoms. The dangling bond of the adatom
gives up its electron that moves into the restatom, thus saturating it. The elevation of the
restatom can be attributed to the repulsion between its negative charge and the underlying
dangling-bonds. From the band structure of Fig. 3.4c we see how the adatom gives signal in
the empty states while the restatom in the filled ones.

3.4 The honeycomb chain model

In the last section, some simple Si(111) building blocks, consisting purely of silicon, were
considered. What happens when a small amount of metal is evaporated on the surface? When
≈ 0.2 ML of Li, Na, K, Ag or Mg are deposited on the flat Si(111) andannealed, a character-
istic row-structured reconstruction, the Si(111)(3×1)/X, X=Li,Na,K,Ag,Mg is observed [66].
The theoretical model with the lowest total energy up-to-date according toab-initio calcula-
tions is due to Erwin and Weitering [66] and is illustrated inFig. 3.5. It is also called the
"Honeycomb Chain" (HC) model.

First of all, one observes the metal adsorbate sitting inside the surface layer, in a situation
that can be interpreted as a silicon substitutional site. Second, located next to the metal atom,
the silicon bonds create a curious structure, which is the so-called honeycomb. Third, in order
to create the honeycomb, one has to remove a silicon atom fromthe unreconstructed Si(111)
surface.

The stability of the HC is explained as follows [66]: the Si-atoms of the HC create a
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Figure 3.6: Different ways of stacking silicon. The dashed lines present the bonds of the second silicon dbly,
while the solid lines those of the first (topmost) silicon dbly. Spheres correspond to the "up" atoms of the second
silicon dbly.

double-pi bond (separate sp2- and pz-hybridization) and in order to saturate all the bonds,
ionize the alkali-metal. This scheme is illustrated in Fig.3.5c-d, where the bonds of the
honeycomb are visualized. Bonds (1) and (2) hybridize, so does (3) and (4). The "molecular
orbital" created by this hybridization, further hybridizes with the bond (5). The charge transfer
can be explained by counting the electrons of the honeycomb:there is one electron available
for each bond, so the total electron-count in Fig. 3.5c-d. isfive. It can be made closed-shell
(even electron count) if one electron is removed or added to it. The HC ionizes the alkali-
metal, obtaining this way the extra electron.

In our case and in the following chapters, we are studying mainly surface reconstructions
involving gold. Surprisingly, the (HC) forms spontaneously in most of the cases. Gold can act
both as a donor and as an acceptor of electrons, so the charge transfer will not be as obvious
as in the case of the Si(111)(3×1)/X, X=Li,Na,K,Ag,Mg . On the other hand, the silicon HC
will obtain a closed-shell electronic structure even if it acts as a donor. Also both the gold and
the silicon HC might act as acceptors, ionizing other parts of the surface reconstruction (for
example, dangling bonds).

3.5 Stacking Silicon

By stacking silicon, we refer to the different ways of arranging the bonds in the Si(111) sur-
face. Some of these ways are illustrated in Fig. 3.6. Starting from the very first row in the
right, we first have silicon atoms in a similar coordination as in the unreconstructed Si(111)
surface. We then remove a row of silicon atoms. In order to maintain the bond-lengths rea-
sonable, this removing is accompanied by a translation of the remaining topmost double-layer
to the right. First of all, this creates a so-called "surface-dislocation" (SD). A row of atoms
becomes overcoordinated, so their position is obviously energetically unfavorable. We also
observe that when going further to the left the atoms are in a "stacking-fault" (SF), where the
bonds of the first dbly follow the bonds of the underlying silicon dbly. Going further to the
left, this SF is corrected by removing an atom and creating two rows of silicon atoms with
rather long bond-lengths. Continuying to the left, we observe that the perfect silicon stacking
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has been recovered.
After removing or adding atoms to the surface the different combinations of SD and SF

become important as one wishes to recover the perfect stacking. This happens for example
when one wants to introduce a HC into the Si(553) surface; by introducing a HC, one creates
stacking-faults which must be corrected by a surface-dislocation. This is discussed in more
detail in Chap. 7. We also create a notation for defining the different combinations of SD, SF
and HC in Chap. 7.

3.6 Surface calculations with SIESTA

The SIESTAab-initio code [71,84,86] was used throughout this work to simulate the surface
reconstructions. On some occasions, to test our results, the plane-wave code VASP [118,119]
was also used. The results of SIESTA and VASP were always almost identical.

In surface calculations, and inab-initio calculations in general, one can adjust the trade
off between computational speed and accuracy of the calculation by some key methodological
parameters. For most DFT schemes, these are (i) theautoconsistencyof the field equations
of Eqs. (2.8)-(2.15), (ii) themesh density(electronic density must be put on a real-space grid
in order to calculate the exchange-correlation terms), (iii) the k-point samplingand (iv) the
basis-set. In the case of surface calculations, key parameters are also (v) theslab thickness
and (vi) theslab-slab distance.

(i) A less stringent autoconsistency condition speeds up the calculation, but may give in-
accurate results, especially when there are lots of states very near/crossing the Fermi-energy.
The autoconsistency in SIESTA calculations is measured from the density-matrix, for details,
see Sec. 2.2.5. (ii) The mesh density is usually taken to be larger than 100 Ry. (iii) The k-point
sampling is very important when calculating infinite systems; each k-point corresponds to a
mode of the infinite system (in contrast to the modes adjusting to the periodicity of the unit
cell) we are calculating, so using more k-points makes the calculated quantities more realis-
tic. In the case of the quasi-one dimensional surface reconstructions, one typically uses more
k-points in the “one-dimensional” direction, along which the electronic bands present a larger
dispersion. (iv) The basis set is very important parameter in SIESTA calculations; one must
consider in detail the limitations of the basis set used and how suitable it is to describe the
known properties of each of the simulated elements. For the definition of different basis sets,
see Sec. 2.3.

When calculating surfaces using standard methods like SIESTA or VASP, we are bound to
calculate infinite systems (not semi-infinite, like a surface). We must then model the surface
as a slab with a finite thickness that is repeated periodically along the normal direction of the
slab. The bottom of the slab is saturated with hydrogen (alternatively, symmetric slabs can
be used [117]) and the atoms in the lowermost layer are fixed totheir initial bulk positions.
One must then choose carefully (v) the slab thickness and (vi) the amount of vacuum between
the slabs. A very thin slab has smaller number of atoms and is thus computationally very
convenient. However, not using a sufficient amount of freelyrelaxing atoms in the slab results
in artificial stresses. A good example is the adatom reconstruction of Fig. 3.4, where atoms
move considerably from their bulk-positions also in the second dbly. A thin slab also polarizes
easily and might create a strong dipole-moment. Using a slabinstead of a real semi-infinite
medium also implies that the electronic states become quantized due to the finite thickness;
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Figure 3.7: A small portion of the (infinite) adatom reconstruction, including only two dblys, viewed from an
arbitrary angle.

basis-set SZ DZ DZP

buckling 0.0 0.0 0.0
π-chain -16.3 (-3.6) -18.6 (-5.7) -13.2 (0.0)
adatom -4.4 (1.2) -3.9 (1.8) -5.9 (0.0)

Bulk Si Chemical potential (eV) -107.013 -107.298 -107.752

Table 3.1: LDA total energies (meV/Å2) of relaxed Si(111) reconstructions, calculated with different basis sets,
using k-point sampling of 4×4 and 3-dblys. Relative energy values within each column arecomparable. Relative
energy values in parenthesis are comparable within each row.

thinner slabs result in less electronic states and poorer results.
We have calculated the systems presented in Sec. 3.3 as function of the most important

key parameters (iii)-(vi) in order to see how they converge.The parameters (i) and (ii), i.e. the
autoconsistency and the mesh cutoff, were set to 10−4 and 120 Ry, respectively. For (iii) the
k-point sampling, we use the Monkhorst-Pack scheme, explained in Sec. 2.2.3.

By the number of dblys, we refer to the total number of dblys inthe system, including
the bottom layer saturated by hydrogen: an example of the 2×2 adatom model, with only two
double-layers is presented Fig. 3.7. The basis for the hydrogen atoms was always taken to be
DZP, in order to enhance the sp hybridization with the silicon. The distance of the hydrogen
layer from the silicon layer was optimized, yielding the value of d≈0.217 (in units of lattice
constant). The (vi) slab-slab distance was taken to be 15 Å.

The silicon basis-sets used in the test calculations are listed in Tab. 2.2. Calculations are
performed with LDA. As explained in Sec. 2.3, the SZ basis includes (one) 3s and (three) 3p
orbitals. DZ includes the same set of orbitals, but splits each of them in order to get more
variation freedom (resulting in eight orbitals). DZP has the same orbitals as DZ, but adds also
a shell of (five) d-orbitals, resulting in total of 13 orbitals per atom.

The bulk lattice constants for different basis sets can be found in Tab. 2.2. In Tab. 3.1
the silicon chemical potentialµ (the energy of a Si atom in the bulk) have been calculated
using each of the basis sets. It is very important to use the adequate lattice constant for each
set of the computational parameters in order to avoid artifical stresses. When comparing total
energies from systems involving different number of atoms,for the extra-atoms we will assign

slab thickness 2-dbly 3-dbly 4-dbly 5-dbly

buckling 0.0 0.0 0.0 0.0
π-chain -21.6 (-2.4) -18.6 (0.5) -19.5 (-0.3) -19.4 (0.0)
adatom -4.1 (-3.4) -3.9 (-3.2) -3.0 (-2.2) -0.8 (0.0)

Table 3.2: LDA total energies (meV/Å2) of relaxed Si(111) reconstructions, calculated with different number of
double-layers, using 4×4 k-point sampling and the DZ basis set. Relative energy values within each column are
comparable. Relative energy values in parenthesis are comparable within each row.
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k-point sampling 2×2 4×4 8×8 16×16

buckling 0.0 0.0 0.0 0.0
π-chain -29.2 (-12.4) -18.6 (-1.8) -17.0 (-0.2) -16.8 (0.0)
adatom 50.5 (60.1) -3.9 (5.6) -9.4 (0.2) -9.5 (0.0)

Table 3.3: LDA total energies (meV/Å2) of relaxed Si(111) reconstructions, calculated with varying k-point
sampling, using 3-dblys and the DZ basis set. Relative energy values within each column are comparable. In the
"adatom" row, the relative energies in parenthesis are comparable within the same row.

2
m

eV
/A

ng

Slab−slab distance (Ang)

Figure 3.8: Energy difference as function of the slab-slab distance, for the pi-chain (solid) and the buckling
(dashed) reconstructions.

the energyµ of a bulk silicon atom, since the surface should be in equilibrium with the corre-
sponding bulk. The correction term is then∆N×µ, where∆N is the difference in the number
of silicon atoms (one must keep in mind that the chemical potential µ changes as function of
the computational parameters). For example, relative energy differences between theπ-chain
and the adatom models are calculated as follows:

∆E =
1
2
E2×2 − 1

2
µ− E2×1

A2×1

, (3.1)

where E’s are the energies and A the area. Subscripts refer tothe unit cell. In units of lattice
constant, A2×1 ≈0.87.

When calculating the total energies of Tabs. 3.1-3.3, we systematically relax the atomic
coordinates for each of the parameter sets. In order to accelerate the relaxation, we use the
information (the relaxed coordinates) from previous calculations; for example, one first relaxes
the system using the SZ basis then moves into more accurate basis sets. This systematic way
of refining calculations will be fully developed in Chap. 7, where one refines step by step
using also (i) the accuracy of the self-consistency and the (iii) size of the k-point sampling.
When realizing this kind of an approach, we have found very usefull the python programming
language.

From Tab. 3.1 we see that the relative energies change considerably when thed-orbitals
are included in the basis set. For example forπ-chain∼ 2 meV/Å2 when changing the basis
from SZ to DZ and∼ 6 meV/Å2 when changing from DZ to DZP. This is consistent with
earlier observations [86, 120] and shows the importance of the d-orbitals; silicon can lower
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significantly its total energy with thed-orbitals (this way readjusting the relative energies).
This becomes more important especially when the coordination becomes more complicated.

The energies in Tab. 3.1 are in accordance with earlier calculations [117], where theπ-
chain reconstruction is always energetically more favorable than the adatom one. As the basis
set is made more complete, this energy difference becomes vanishingly small [117]. In the
calculations of Meade and Vanderbilt [117], theπ-chain is∼ 300 meV per 1×1 unit cell more
favorable than the adatom reconstruction with a plane wave cutoff of 5 Ry and only∼ 25 meV
per 1×1 unit cell more favorable when the plane wave cutoff is increased to 12 Ry. From Tab.
3.1 we can derive that this energy difference varies from∼ 160 meV per 1×1 unit cell, when
using the SZ basis to∼ 93 meV per 1×1 unit cell when using the DZP basis. This difference
further reduces when using a more complete k-sampling.

In order to see the convergence with respect to the basis set,one should compare them
to a fully converved plane-wave basis set [90], a task that isout of the scope of the present
chapter. However, in the following chapters we will presentsuch tests and will see that a
typical comparison between SIESTA and plane-wave results (VASP) is very satisfactory.

From the tables Tab. 3.1 we see that the relative energies as function of the number of
dblys has converged (when compared to a slab containing 5 dblys), in the case of theπ-chain,
to less than∼ 1 meV/Å2 already with 3 dblys. Already 2 dblys give a satisfactory convergence
of ∼ 2 meV/Å2 . In the case of the adatom reconstruction, this convergenceis much slower.
The reason for this can be seen in Fig. 3.4, where we observe that also the atoms in the second
topmost dbly move considerably. When systems include adatoms and strong modification of
atomic heights, using 3-dblys, we can expect an error bar of∼ 3 meV/Å2 from the data in Tab.
3.2.

Althought the results from different k-point sampling calculations in Tab. 3.3 are not
directly comparable (the unit cells 2×1 and 2×2 have a different k-point density), we can see
the importance of using a reasonable amount of k-points. This seems to be 4×4 in the case of
theπ-chain (convergence up to∼ 2 meV/Å2 ) and 8×8 in the case of the adatom reconstruction
(convergence up to∼ 0.2 meV/Å2 ). From Fig. 3.8 we take the sufficient amount of vacuum
to be∼ 15 Å; including more vacuum changes the energies less than 0.5 meV/Å2



Chapter 4

Si(111)5x2-Au

4.1 Introduction

The deposition of gold in the monolayer (ML) range on the flat Si(111) surface results in a va-
riety of phases [13], such as

√
3×

√
3R30o, 1×1 and 5×2. The 5×2 phase occurs at∼0.4 ML

gold coverage [8]. It was first discovered about thirty yearsago [2–4] and has been inves-
tigated using many experimental techniques since then. This includes low energy electron
diffraction (LEED) studies [2–4], x-ray diffraction [9] and x-ray standing wave analysis [5],
scanning tunneling microscopy (STM) [6,11,15], angle resolved photoemission spectroscopy
(ARPES) [12,18,19,23,24] and inverse photoemission [16],and high resolution electron mi-
croscopy (HREM) combined with heavy-atom holography [14].

Already the first structural models, based on LEED measurements, considered two atomic
gold chains per 5×2 unit cell running in parallel [3,4]. This was later confirmed by HREM [14]
and seems to be firmly established (see Fig. 4.3). The gold chains run along the[1̄10] and
equivalent directions (parallel to the×2 periodicity of the unit cell). Therefore, three different
domains are possible for the 5×2 reconstruction on the flat Si(111) surface. Single-domain
surfaces, necessary for ARPES, can be fabricated using vicinal surfaces with a slight cut-off
angle [1,11]. The presence of one-dimensional structures in this reconstruction has also been
confirmed by the ARPES studies. Early studies found a strong anisotropic signal near the
Fermi level [12, 16], but no evidence of Fermi-level crossing for this band was found [16].
Later studies at low temperature found a one-dimensional band with a strong dispersion along
the direction of the gold chains [18, 19]. The top of this bandappears near the 5×2 zone
boundary and disperses downward, reaching its minimum close the 5×1 zone boundary. This
band has been reported to change its dimensionality from strongly one-dimensional near the
Fermi energy to two-dimensional at lower energies [18]. In these studies a gap of∼0.3 eV was
also identified for this band. The presence of this gap and itsapparent closing with increasing
temperature was related to a Peierls instability [18, 19]. More recent ARPES results [23, 24],
both at low and room temperatures, have been able to identifysome additional surface bands.
However, the metallic or semiconducting character of the surface is still a matter of debate.
In fact, it has been proposed that the metallic or semiconducting character can depend on the
concentration of silicon adatoms [24,67], and even that semiconducting and metallic segments
can alternate along the gold chains in the surface [25].

The STM images (see Fig. 4.14) are characterized by the presence of bright, irregular

37
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protrusions [6, 15] and “Y"-shaped features [11, 17] with a well defined orientation respect to
the underlying substrate (see Fig. 4.15). The protrusions have been established to be silicon
adatoms [21], which are present on the surface with an optimum coverage close to 1/4 adatoms
per 5×2 unit cell (see Fig. 4.14).

In spite of all these experimental studies, the structure ofthe Si(111)-(5×2)-Au recon-
struction has not been completely established yet. Earlierstructural models only considered
the adsorption sites of the gold atoms. Many of them could be ruled out on the bases of more
detailed STM studies [6] and the knowledge of the exact gold coverage [8]. A few more
refined models exist [14, 15]. They consider both the position of the gold atoms on the sub-
strate and the rebonding of the silicon atoms in the surface layer. Probably the most detailed
structural model proposed to date is the one by Marks and Plass (MP) [14]. The MP model
is based on a combination off-zone HREM, transmission electron diffraction and heavy-atom
holography data.

The first theoretical studies using first-principles electronic structure calculations appeared
only quite recently. This is due to the complicated structure and the large unit cell of the
Si(111)-(5×2)-Au reconstruction. Kang and Lee [68] studied the MP and the Hasegawa-
Hosaka-Hosoki (HHH) [15] models using density functional theory. Their main conclusion is
that both models fail to reproduce some of the key features ofthe STM images and the exper-
imental band structures. Using a similar methodology, Erwin [67] proposed and studied new
structures which are characterized by the presence of the so-called honeycomb-chain silicon
structure [66]. One of these models (the so-called “5×2" model) seems to fulfill many of the
constraints imposed by the empirical evidence. An interesting point raised by Erwin is that
of the crucial role played by silicon adatoms in the stabilization of the different structures.
According to Ref. [67], the surface energy of Erwin’s “5×2" model is minimized for an opti-
mum adatom coverage in agreement with recent experimental reports [21]. For lower adatom
coverages other structures compete in stability. This is a very interesting result which, how-
ever, is based on approximate calculations. Due to the largesize of the supercells necessary
to simulate explicitly the effect of the different adatom concentrations, Erwin assumed that
the main role played by the adatom is to dope the surface with electrons. He then analyzed
the behavior of the total energy as a function of the number ofextra-electrons in the substrate,
obtaining a minimum for∼0.25 electrons per 5×2 unit cell.

In this work, we present a comprehensive study of the atomic and electronic structure
of different models of the Si(111)-(5×2)-Au reconstruction using electronic structure calcu-
lations based on the density functional theory. We have usedtwo different methodologies,
the SIESTA code [71, 84, 86] using a basis set of localized atomic orbitals and the VASP
code [118, 119] using a basis set of plane-waves. We analyze the MP model [14], the models
proposed by Erwin [67], and a new model that we found during our structural optimizations.
We study in detail the energetics and the structural and electronic properties of the different
models. We also calculate the change in the surface energy asa function of the content of
silicon adatoms for the two most stable models. In order to doso, we perform calculations
for large supercells containing realistic concentrationsof adatoms: 5×4, 5×6, and 5×8 su-
percells. Our new model is the most favorable in the range of low adatom concentrations,
while Erwin’s “5×2" model becomes favorable for larger adatom concentrations. The cross-
ing between the surface energy of both structures occurs close to 1/2 adatoms per 5×2 unit
cell, i.e. near the maximum adatom concentration observed in the experiments. Both models,
our new structure and Erwin’s “5×2" model, seem to provide a good description of most of
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the experimental data. Particularly, we find a general agreement between the calculated and
measured band structures along the direction parallel to the gold chains.

In the next sections we present our results for the differentmodels of the Si(111)-(5×2)-
Au surface. We first focus on the energetics, relaxed geometries, and the electronic band
structures. We then turn our attention to the effect of the different silicon adatom contents
and the simulated STM images, which we only analyze in detailfor the most stable structural
models. A summary of the relative energies of the calculatedconfigurations, accompanied
with a brief description of each of them, can be found in Table4.1.

Before starting with the description of the results, it is interesting to point out some brief
comments about the concentration of silicon adatoms on the Si(111)-(5×2)-Au surface. A
detailed study of the equilibrium situation has recently been performed by Kirakosianet
al. [21, 22] using STM. Their results indicate that, at equilibrium, only one adatom site is
occupied out of every four possible sites, corresponding toa 5×8 adatom periodicity (if all
the adatom sites were occupied we would recover a perfect 5×2 periodicity). The analysis
of the adatom-adatom correlation functions obtained from the STM images reveals a strong
suppression of those configurations with small adatom-adatom distances, a clear maximum
corresponding 5×4 periodicities, and a long range oscillatory tail [22]. This was interpreted
in terms of a short range repulsion between adatoms plus a long range interaction term. In
Ref. [21], Kirakosian and collaborators showed that the density of adatoms can be increased
by depositing additional amounts of silicon reaching an almost perfect 5×4 arrangement of the
silicon adatoms. Further deposition of silicon does not create a stable 5×2 adatom structure.
Instead the extra silicon atoms decorate the step-edge of the terraces on the surface. These ob-
servations seem to have at least two implications: (i) the optimal adatom concentration must
be certainly lower than one adatom per 5×2 cell and, (ii) the structure of the reconstruction
must be stable against relatively large changes of the content of adatoms1 since the density
of silicon adatoms can be increased by a factor of two without, at least apparently, dramatic
structural changes [21].

A systematic study of the energetics of the surface as a function of the adatom concentra-
tion by means of first-principles electronic structure calculations is quite complicated. This
is for two main reasons. First, the energies involved are rather small, which implies the need
of very well converged calculations. A more serious limitation, however, is the necessity to
use large supercells consistent with the low adatom densities. For this reason we have concen-
trated most efforts in the two limiting cases, involving respectively 0 and 1 adatoms per 5×2
cell. The intermediate concentrations usually require drastic approximations. For example,
Erwin [67] assumed that the main effect of the adatoms in the Si(111)-(5×2)-Au surface is to
dope the gold chains with electrons and studied the energetics of the system as a function of
this doping. Here we go a step beyond and present explicit calculations for adatom contents
down to 1/4 adatoms per 5×2 cell, consistent with a 5×8 periodicity, which indeed can be
reached in experimental conditions [21]. Due to the large size of these systems we limit this
study to our two most stable models, and only use the smaller DZ basis set.

Results of this chapter have been published in Ref. [101].

1This observation does not contradict the recent proposal byErwin [67] that aminimumadatom content may
be necessary to stabilize the observed structure over othercompeting reconstructions.
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4.2 Computational details

Most of the calculations were done using the SIESTA code (seeChap. 2), but also VASP [118,
119] was used. The pseudopotential and basis data can be found in Tab. 2.2, corresponding
to the LDA versionsSi.psf , H.psf andAu.vps (the generalized gradient approximation
(GGA) has been also used for a few test calculations, i.e. using Si2.psf , H2.psf and
Au2.vps ). The bidimensional Brillouin-zone (BZ) sampling [92] (inN×M Monkhorst-Pack
sampling, N refers to the direction parallel to the gold wires) contained 4×4 points for the
5×2 unit cell (and a consistent sampling for other cells2).
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Figure 4.1: (color online). Schematic view of a typical slabused in our calculations. It shows the model proposed
by Marks and Plass (MP+) [14] for the Si(111)-(5×2)-Au surface reconstruction. Large circles in the surface
layer represent the gold atoms. The bottom surface of the slab is saturated with hydrogen atoms. (a) Side view
and (b) top view with some of the silicon atoms in the surface and the two gold chain labeled (see the text).

We modeled the surface using a finite slab, similar to that depicted in Fig. 4.1. For most
calculations the slabs contained three silicon bilayers (the one at the surface and two underly-
ing silicon bilayers) plus an additional layer of hydrogen atoms to saturate the silicon atoms in
the bottom of the slab. This removes the surface bands associated to the bottom surface from
the energy-range of interest, i.e. from the band-gap region. We have checked the convergence
of the results using thicker slabs for the most stable structural models of the surface. We use
periodic boundary conditions in all three directions. A vacuum region of 15 Å ensures negli-
gible interactions between neighboring slabs (see Sec. 3.6). During the structural relaxations
the positions of the silicon atoms in the bottom layer were kept at the bulk ideal positions.
Unless otherwise stated all other degrees of freedom were optimized until all the components
of the residual forces were smaller than 0.04 eV/Å. To avoid artificial stresses the lateral lattice
parameter was adjusted to the theoretical bulk value calculated using similar approximations
to those utilized in the slab calculations, i.e. the same basis set and grid cutoff, and a consistent
k-sampling.

Due to the large number of atoms (∼70 atoms for typical slabs and up to 273 for the
largest ones) and to the need to perform geometrical optimizations for many different struc-
tural models, we have decided to use a DZ basis set for siliconin most of our calculations, an
approximation which according to our test calculations in Sec. 3.6 is well justified.

2More precisely, for the 5×4 supercells we have checked that k-samplings with 4×2 and 4×4 points produce
almost identical results. k-samplings with 4×3 and 4×2 points have been used, respectively, for the 5×6 and
5×8 supercells.
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Figure 4.2: (a) Comparison of the bidimensional Brillouin zones corresponding to (5×1), (5×2) and (5×4)
supercells on the Si(111) surface. (b) Schematic view of thepath (dotted lines) used to plot the band structures
in this work (Γ- ZB×2-ZB×1-ZB′

×2-M-Γ). Its relation with the (5×1) (dashed lines) and (5×2) (solid lines)
Brillouin zones is indicated, and some special points are defined.

In this work we study the relaxed structures and the energetics of several models of the
Si(111)-(5×2)-Au surface reconstruction. The energy differences between different models
are of key importance since we would like to determine the most plausible structures. When-
ever it is necessary to compare the energies of structures containing different numbers of
silicon atoms, the silicon chemical potential is set to the total energy of bulk silicon at the
equilibrium lattice parameter. This choice is justified by the fact that the surface should be
in equilibrium with the bulk. A summary of our results can be found in Table 4.1. One can
see that the relative energies are quite small in some cases.However, they are larger than the
estimated error bar for the total energy (see above). Furthermore, the relative energies usually
exhibit a faster convergence than the total energy of a single structure. It is also necessary to
check the convergence of the results as a function of the slabthickness and the completeness
of the basis set. Table 4.2 shows the results of these tests for the most stable structures. In
one case, the slab thickness was increased by one silicon bilayer while, in the other, a DZP
basis set was used for the silicon atoms. In both cases the systems were relaxed. The results
are quite stable against the change of the slab thickness. Inparticular, the energy order of
the structures is not changed and the variation of the relative surface energies is smaller than
∼0.5 meV/Å2 in all the cases. The variations with the size of the basis setare somewhat
larger. From the results in Table 4.2 we can estimate an errorbar smaller than 2 meV/Å2 for
the relative surface energies of the different structures calculated using SIESTA.

In order to check the accuracy of our predictions we decided to perform calculations for
some of the systems with another electronic structure code that utilizes a different methodol-
ogy. We used the VASP code [118,119] for this purpose. We usedprojected-augmented-wave
potentials and a well converged plane-wave basis set with a cutoff of 312 eV. All structures
were relaxed (the equilibrium lattice parameter of bulk silicon obtained with VASP is 5.41 Å).
In Table 4.2 we can see some of the results obtained with VASP.They are in good agreement
with the SIESTA results, especially with those obtained with the more complete DZP basis
set. The order between our more stable models is preserved, although the energy difference is
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somewhat decreased. In particular, the new structural model found in the present work (model
N in Tables 4.1 and 4.2) is confirmed to be the most stable surface reconstruction between
those studied here. It is also interesting to note that the energy associated with the addition
and removal of adatoms for a particular structural model seems to be quite independent of the
details of the calculation.

The surface BZs of the studied systems are shown in Fig. 4.2 (a). For the 5×1 system the
BZ is a stretched hexagon while, for the remaining periodicities, the hexagons are distorted.
We plot the electronic band structures of the different models along theΓ- ZB×2-ZB×1-ZB′

×2 -
M-Γ line (see the dotted line in Fig.4.2 (b)). TheΓ-M path runs parallel to the gold wires in the
surface, crossing the 5×2 BZ through three different regions. The M-Γ line is perpendicular
to gold wires. The surface/bulk and main atomic character ofthe different bands is identified
by means of a Mulliken population analysis [100].

Although a DZ basis is usually sufficient to obtain a quite good description of the occupied
electronic states and the relaxed geometries in silicon systems, the use of a more complete
basis set is necessary to describe the unoccupied part of theband structure even at low energies.
For this reason all the band structures shown in the paper arecalculated using a DZP basis set
and slabs containing three underlying silicon bilayers (even if the relaxed geometry is obtained
from a calculation using a DZ basis and/or a thinner slab).

Finally, the Scanning Tunneling Microscopy (STM) images are simulated using the theory
of Tersoff and Hamann [99].

Model Description ∆Esurf (meV/Å2)

MP+ Marks and Plass model after a constrained relaxation +46.8
RMP+ Fully relaxed MP+ structure +5.4
RMP Relaxed MP+ structure without adatoms +8.3

E(5×1) Erwin “5×1” +4.8
E(5×1)⋆ E(5×1) with adatoms on the Au-wires +6.5
E(5×2) Erwin “5×2” +1.4
E(5×2)⋆ E(5×2) with adatoms on the Au-wires 0.0

N New model -3.3
N+ N with silicon adatoms in H3 positions -0.6
N+′ N with silicon adatoms in T4 positions +1.2
N⋆ N with adatoms on the Au-wires +2.4

Table 4.1: Summary of the structural models studied here forthe Si(111)-(5×2)-Au reconstruction and their
relative surface energies (∆Esurf ). Those structures containing adatoms have one silicon adatom per 5×2 cell,
i.e. the concentration of adatoms is maximum. Superscript+ indicates the presence of “conventional" adatoms
saturating silicon dangling bonds in the surface. Labels H3 and T4 refer, respectively, to adatoms occupying
hollow and top sites [121]. The presence of adatoms located on top of the Au wires is indicated by a⋆ superscript.
The data in this table have been calculated using the SIESTA code with a DZ basis for silicon and DZPs-SZd
basis for gold. The slabs contained two silicon bilayers below the surface layer (see Fig. 4.1 (a)). All energies
are referred to that of the structure recently proposed by Erwin in Ref. [67].

4.3 Marks and Plass model

We start our investigation of the structure of the Si(111)-(5×2)-Au surface using the model
proposed by Marks and Plass [14] from experimental data obtained with heavy-atom hologra-
phy and high resolution electron microscopy (HREM). An example HREM image can be seen
in Fig. 4.3. We use the label MP+ for this structure (see Table 4.1). The+ superscript indicates
that the structure contains silicon adatoms saturating some of the silicon dangling-bonds in the
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Figure 4.3: Near Schertzer defocus, noise filtered, off-zone HREM image of the Si(111)-5×2-Au surface. Clearly
visible are two (arrowed) rows of dark features which correspond to gold atoms. Picture taken from Ref. [14].

structure, what we call "conventional" silicon adatoms. A schematic view of this structure, as
proposed in Ref. [14], can be found in Fig. 4.1. It has to be taken into account that, due to the
limitations of the experimental techniques, there are several uncertainties and assumptions in
this structure. Only the atomic coordinates within the surface plane are accurate. The heights
of the atoms over the substrate are only approximately resolved. The experimental beam er-
ror in combination with the size and complexity of the structure also limits the sensitivity
to possible subsurface relaxations. As a consequence, the experimentally proposed structure
only considers the reconstruction of the outermost bilayerand contains limited information
about the registry between this surface bilayer and the underlying material. It is necessary
to eliminate these uncertainties before one can undertake any serious study of the electronic
structure of the MP+ model. In order to do this while preserving all the information originally
present in the MP+ proposal, we started our study by performing constrained relaxations of
the structure. The structure in Fig. 4.1 was relaxed using following degrees of freedom: (i)
the height of the different layers and, (ii) the lateral position of the surface layers with respect
to the underlying bulk slab. The grouping of the atoms in different layers given in Ref. [14]
only implies approximately equal z-coordinates ( the z-axis is taken here along the surface
normal). For this reason, in a second step, the atoms were allowed to relax in the z-direction
while keeping their coordinates within the xy-plane. The resulting geometry preserves the
bonding pattern of the original MP+ proposal, and provides a reasonable initial guess to start
our search of the most stable models by performing full structural optimizations.

We now consider in detail some of the structural patterns appearing in the MP+ model
of the surface. For this analysis we find useful the comparison with the Si(557)-Au surface,
a closely related reconstruction studied in more detail in Chap. 6 that has been quite well
characterized during recent years [27–29,69–71]. The stepped Si(557)-Au is formed after the
deposition of∼0.2 monolayers of gold on vicinal (111), with the misorientation chosen along
the [1̄1̄2] direction. The size and orientation of the terraces of the Si(557)-Au represent an
analogous to the flat 5×2 unit cell but including a single silicon step [19]. With half the gold
coverage than the Si(111)-(5×2)-Au surface, the terraces of the Si(557)-Au contain only one
Au wire running parallel to the step edges. Gold atoms occupysilicon substitutional positions
in the surface layer. This is supported both, by recent X-raydiffraction data [29], and density
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functional calculations performed using a methodology similar to the one utilized here [70],
which provide a consistent structural model of the surface.In particular, the highest stability
of the silicon substitutional sites for gold has been unambiguously demonstrated by theab
initio calculations. For example, the substitutional site was determined to be at least 1 eV/Au
more stable that adatom-like positions, where gold sits on the surface saturating one of the
silicon dangling-bonds, or even∼0.5 eV/Au more favorable than the adsorption decorating
the step edges [70]. It seems, therefore, that the Au atoms onthe Si(557)-Au surface exhibit
a strong tendency towards three-fold silicon coordination. Gold atoms adapt to this situation
without much strain, with typical Si-Au distances only a fewpercents larger than the bulk
silicon bond length.

In the light of these observations the bonding pattern of some of the gold atoms in the MP+

model (Fig. 4.1) seems quite peculiar. In particular, the gold atoms in the chain situated at the
left side of the "gold trench" (marked with an L in Fig. 4.1) present a fourfold coordination.
They are connected to three silicon atoms within the surfacelayer and, additionally, to the
silicon atom immediately below. Furthermore, the Si atoms neighboring to the mentioned
gold atoms (see atomsa anda′ in Fig. 4.1) present an unsaturated dangling bond which might
be avoided with a slight structural change.

It is interesting to note that the tendency of the gold atoms to occupy silicon substitutional
positions in the top most layer cannot help to completely rationalize the structure. A three-
fold bonding pattern of the gold atoms is inherently frustrated by the presence of a surface
dislocation. In the MP+ model this dislocation is located at the position of the right-hand
gold wire (marked with R in Fig. 4.1). Due to the change of the bonding sequence there
are not three unpaired silicon electrons available for eachof these Au atoms, but rather two.
Therefore, they do not occupy a normal three-fold position and are quite likely to be displaced
from the initial symmetric positions after relaxation. As was discussed in Sec. 3.5, the surface
dislocation can, in principle, be moved to different locations. In fact, we will see below that
this provides a simple route to generate alternative structural models of the surface.

The comparison between the structure of the Si(557)-Au reconstruction of Chap. 6 and the
MP+ model of Fig.4.1 raises another interesting point. In the case of the Si(557)-Au surface
the silicon atoms in the proximity of the step edge suffer a considerable rebonding. They
form characteristic silicon structure which has been identified with the "honeycomb chain"
(HC). As was explained in Sec. 3.4, the presence of the silicon HC seems instrumental to
understand the stability of the Si(557)-Au and related reconstructions. It seems somewhat
surprising that the silicon HC structure, common to the (3×1) and Si(557)-Au metal induced
reconstructions, is absent from the MP+ model of the Si(111)-Au-(5×2) surface. Indeed the
MP+ model seems to be based on an almost unreconstructed Si(111)surface with a row of
adatoms on top, and the more clear disturbance from this bonding pattern being the presence
of a surface dislocation.

We now proceed further with the structural relaxations of the MP+ system. It is instruc-
tive to focus first on a optimization were only the silicon degrees of freedom are taken into
account. The gold atoms are constrained to remain at their initial coordinates. Due to the
more directional bonding of silicon we can expect the structural changes to be simpler to an-
alyze and somewhat less dependent on the particular choice of the initial guess in this case.
Besides, as a stronger scatterer, we can assume that the goldpositions to be better resolved in
the experiment. The resulting geometry is plotted in Fig. 4.4(a). We observe two main effects.
On the one hand, the HC configuration clearly emerges. One of the driving forces behind this
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Figure 4.4: (color online). (a) MP+ after the optimization of the position of the silicon atoms in the structure.
The gold atoms are kept in the positions obtained after the initial contrained relaxation of the experimental
coordinates. The silicon honeycomb chain (HC) structure has been highlighted. (b) The same structure after full
relaxation (RMP+). See the text for the labels of the different atoms.

rebonding is the movement forward ofa anda′ atoms in order to form an additional covalent
bond with the silicon atoms in the underlying layer. The double-bonded “dimers" of the HC
structure are formed by atomsb andc. This questions the location of the adatoms in the sur-
face since, in principle, the dangling-bond associated with atomb′ could disappear with the
formation of a silicon double bond. We can observe the disturbing effect of the adatom on the
HC structure. The appearance of the HC bonding pattern during the relaxation of the MP+

structure confirms the results of recent density functionalcalculations by Kang and Lee [68],
who also made a geometrical optimization of the MP+ model. The electronic bands calculated
for this structure (not shown here) are also in quite good agreement with those presented by
these authors in Ref. [68]. Fig.4.4 (a) also shows clearly what could be classified as a “stack-
ing fault" in the structure (bonds of atomsd ande coincide with those in the underlying silicon
layer). This stacking fault, which probably is energetically unfavorable, can be easily avoided
by moving the position of the surface dislocation from the right-hand to the left-hand of the
gold trench. Alternatively we can visualize this change (atleast approximately) as a 180o ro-
tation of the surface layer with respect to the underlying silicon structure. This transformation
gives one of the structures discussed in the next section, which incidentally is almost identical
to the “5×1" structure proposed recently by Erwin in Ref. [67].

When the relaxation of the MP+ system is continued without any constraints, the monatomic
gold wires are strongly distorted as can be seen in Fig. 4.4 (b). This distortion was not observed
in the density functional calculations of Kang and Lee [68].The reasons for this discrepancy
are not completely clear at the moment. The break of the monatomic gold wires seems to
be related with the presence of adatoms. If they are eliminated from the structure the gold
atoms remain in two well separated parallel wires. Additionally, the strain introduced by the
adatoms in the structure, results in the weakening of some Si-Si bonds in the surface layer
(see the increased distance between atomsf andg). In spite of these strong structural distor-
tions, the presence of adatoms in the structure is still energetically favorable as can be seen
in Table 4.1. These structural distortions are reflected in the band structure: following the
nomenclature used in Ref. [68], the band S1 is shifted to higher energies respect to the S2 and
a gap of∼0.3 eV is opened respect to the constrained case.

In summary, our results suggest that neither the silicon structure nor the positions of the
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(a) (b)

Figure 4.5: (color online). (a) Relaxed geometry of the E(5×1) model with zero adatom coverage and, (b) the
corresponding band structure. Solid symbols indicate those bands with a larger weights in the atoms of the SiAu
complex. The energies are referred to the Fermi level.

Figure 4.6: (color online). Relaxed geometry for the E(5×2) model.

gold atom in the structure proposed by Marks and Plass [14] are stable. Furthermore, in
agreement with the general conclusions of Ref. [68], neither the STM images nor the band
structure of the fully relaxed or the constrained relaxed MP+ model seem to be in agreement
with the experimental information.

4.4 The Erwin models

As discussed in the previous section, the MP model of the Si(111)-(5×2)-Au surface recon-
struction is characterized by the presence of a surface dislocation between one of gold wires
and the neighboring silicon atoms. Other locations are possible for the surface dislocation.
In particular, it can be translated to theothergold wire, this can also be assimilated to a ro-
tation of the surface bilayer with respect to the underlyingbulk silicon. This eliminates the
“stacking fault" commented in the previous section, and produces a new structural model.
This structure is very similar to the “5×1" model recently proposed by Erwin [67], and we
refer to it as E(5×1). In Table 4.1 we can see that the E(5×1) model without silicon adatoms
is slightly more stable than the relaxed MP structure. Fig. 4.5 (a) shows the relaxed structure
of the E(5×1) model. The left (L) gold wire, where the surface dislocation is located, suffers
a considerable dimerization, which is much smaller for the right (R) wire. The alternating
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(a) (b) (c)

Figure 4.7: Band structure of the E(5×2) model with zero adatom coverage parallel (Γ-ZB×2-ZB×1-ZB′
×2 path

in (a)) and perpendicular to the gold wires i (Γ-M path in (a) and panels (b) and (c)). Surface bands with the
larger contributions coming from the atoms in the SiAu complex are indicated by filled circles. The energies are
referred to the Fermi level.

Au-Au distances as obtained with VASP are, 4.06 Å and 3.59 Å for the L wire, and 3.82 Å
and 3.83 Å for the R wire. The geometries obtained with SIESTAare very similar, specially
those obtained with the more complete DZP basis set. Hereafter we name “SiAu complex" the
structure formed by the two gold wires and the central silicon atom connecting them. The sil-
icon structure in between two of such SiAu complexes is quiteflat and resembles what could
be described as a double honeycomb chain (DHC) silicon structure [67]. The band structure
along the direction parallel to the gold wires is shown in Fig. 4.5 (b). It shows several surface
bands and has a metallic character. Those surface bands mainly associated with the Si-Au
complex has been highlighted using solid symbols. Most of these bands are occupied and
appear in the gap region. The unoccupied surface bands appearing in the gap are mainly asso-
ciated with the silicon DHC. The most prominent feature is a dispersive band associated with
the weakly dimerized (right) gold wire and the central silicon atom in the SiAu complex. This
band is, in principle, metallic and close to half occupied. Although small gaps are opened as-
sociated with the crossings with other bands and slight geometrical distortions, it can be easily
followed in Fig. 4.5 (b) extending from∼1.3 eV below to∼2.3 eV above EF . A similar band,
with a similar origin, also dominates the band structure of the Si(557)-Au surface [69, 70].
This band comes mainly from thesp3 lobes of the central silicon atom in the SiAu complex.
There is also a strong hybridization with the 6p states of the gold atoms in the R wire. For
this reason, they are better assigned to the Si-Au bonds connecting the central silicon with
the R gold wire. Its large dispersion is due to the large overlap between these Si-Au bonds
along the wire. The metallicity stems from the inability of gold (each gold atom only provides
one valence electron) to saturate the bonds with all its silicon neighbors [69]. The other states
in the Si-Au complex give rise to relatively flat surface bands associated either with weakly
overlapping silicon states or with the gold dimers.

In Ref. [67] it was also proposed that, under certain conditions, it could be energetically
favorable to remove some of the over coordinated silicon atoms in the neighborhood of the sur-
face dislocation. Our relaxed structure for this model (hereafter E(5×2)) is shown in Fig. 4.6.
In this case both gold wires present an appreciable dimerization with alternating Au-Au dis-
tances of 4.37 Å and 3.35 Å for the left gold wire, and 4.16 Å and3.49 Å for the right wire.
Our SIESTA calculations with the smaller DZ basis set predict the E(5×2) model to be more
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stable, by at least 3.4 meV/Å2, than both the E(5×1) model and the different variants of the
MP model (see Table 4.1). However, the difference between the E(5×1) and E(5×2) models
is reduced with the use of more complete basis set. In particular, our plane-wave calculations
predict both models to be degenerate within 0.1 meV/Å2 (the E(5×1) slightly more stable).
This agrees with the results of Ref. [67] where the E(5×1) model is predicted to be more stable
than the E(5×2) variant by less than 1 meV/Å2, and only after the addition of silicon adatoms
the E(5×2) structure becomes favorable.

The band structure of E(5×2) with zero adatom coverage is plotted in Fig. 4.7. The band
structure along the wires is in good agreement with that reported in Ref. [67] for this structure.
Again, the surface bands close to the Fermi energy come mainly from the SiAu complex. Like
in the case of the E(5×1) model, the band structure is metallic. This is in disagreement with
one of the latest and more detailed ARPES experiments which suggests that the Si(111)-Au-
(5×2) surface is a semiconductor with a band gap of at least 0.2 eV(see Fig. 4.11). However,
the metallic versus semiconducting character of this surface is still a matter of controversy.
For example, the recent ARPES study by Himpsel and collaborators finds several metallic
bands [24]. In fact, this reference and the scanning tunneling spectroscopy (STS) data of
Ref. [25] indicate that the surface could be composed of alternate metallic and semiconduct-
ing regions along the gold wires. Our calculated band structure for the E(5×2) model is very
close to being semiconducting. Just by shifting the S1 band to higher energies by a few tenths
of eV we could obtain a semiconducting surface. This might indicate that the metallic behavior
is simply related to the limitations inherent to the local density approximation used here and
the very simplified assumption that the monoelectronic eigenvalues can be directly identified
with the photoemission peaks. In spite of its metallicity, several characteristics of the pho-
toemission spectra are recovered by the band structure in Fig. 4.7. The most prominent band
observed experimentally starts at the boundary of the 5×2 zone (ZB×2) dispersing downwards
until it reaches a minimum at the boundary of the 5×1 zone (ZB×1) [18,19,23,24]. This band
appears at binding energies between∼0.2 eV and∼1.3 eV. Following Erwin [67], we can try
to identify this band with our S2 band, whose maximum appears close to EF in the neigh-
borhood of ZB×2. However, it becomes difficult to follow the dispersion of this surface band
as we move to higher binding energies for two reasons:i) the band enters the region of the
projected bulk bands, becoming a surface resonance and,ii) other surface bands coming from
the same region of the surface appear in the energy interval between -0.5 and -1.2 eV. This
last point is widely consistent with the experimental data in Ref. [23], where three additional
bands are identified for binding energies larger than 0.5 eV.

Losio and collaborators [18] reported an interesting effect, a continuous dimensionality
transition of the main surface band. The character changes from strongly one-dimensional at
the band maximum (i.e. only dispersing in the direction parallel to the gold wires) to two-
dimensional at its minimum (i.e. with a non-negligible dispersion also in the perpendicular
direction). The strong one-dimensional character of the surface states close to EF has also
been confirmed in the most recent ARPES measurements [23, 24]. The dispersions in the
direction perpendicular to the wires can be found in Fig. 4.7(b) and (c). The band widths are
rather small for most surface bands. An effect similar to thereported dimensionality transition
can be seen in the case of the S1 band. It is tempting to assign the experimentally observed
effect to the S2 band (see the different dispersion of bands S2 in panel (b) and S′ in panel
(c)). However, as commented above it is not so simple to follow the S2 band as it disperses
downwards. In fact, we can locate what seems to be an avoided crossing between the S2 and
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(a) (b)

Figure 4.8: (color online). (a) Relaxed geometry of the E(5×2)⋆ model (containing one adatom per 5×2 unit
cell) and, (b) the corresponding band structure. Surface bands with a larger weight in the atoms of the SiAu
complex are marked with filled circles. The energies are referred to the Fermi level.

the S3 bands half way along the ZB×2-ZB×1 path in Fig. 4.7 (a). Therefore, we think that the
S′ band in panel (c) is rather related to the S3 band than to the S2 band, and the dimensionality
change would be absent from our results. Also the energy position of the band S′ (∼-0.5 eV)
is quite far from the∼-1.3 eV found experimentally for the band minimum. Therefore, in
contrast to Erwin [67] we conclude that our calculated band structure for the E(5×2) model
does not provide a direct explanation to the observation by Losioet al..

Similarly to the surface bands of the E(5×1) model, the S1, S2 bands in Fig. 4.7 (a) have
the largest weight in the central Si atom in the SiAu complex.The S1 band can be associated
with SiAu bonds connecting the central Si with the left gold wire. This SiAu bonds have a
small overlap and this is translated in a quite flat band. The two dispersive S2 and S3 bands
have a stronger weights in the other SiAu bonds, which have a larger overlap and, therefore,
present a stronger dispersion.

We now explore the role of the silicon adatoms in these structures. We first studied the
stability of the adatoms in the E(5×1) model when they are located over the silicon part of the
surface reconstruction, i.e on sites equivalent to those occupied by the adatoms in the original
MP proposal. It is interesting to note that the role of the silicon adatoms in such positions is
indeed not very clear. The stability of the adatoms in typical silicon reconstructions stems from
the fact that each adatom can saturate three dangling bonds in the surface at the expense of
creating just an additional dangling bond. The energy gained in this process usually overcomes
the strain energy caused by the addition of the adatoms. However, the E(5×1) model in
Fig. 4.5 (a) does not have silicon dangling bonds. The appearance of unsaturated dangling
bonds is avoided by the formation of the double-bonded silicon dimers that characterize the
HC configuration. In fact, the only metallic band in this model comes from the SiAu complex
as explained above. In accordance with these observations,we found extremely difficult to
reach a stable configuration, i.e. with all the components ofthe forces below our threshold, for
the silicon adatoms over the silicon sites of the E(5×1) model. Finally, after several hundreds
of optimization steps this model spontaneously relaxed into a new structure. This structure,
labeled N+ in Table. 4.1, belongs to a new family of structural models for the Si(111)-Au-
(5×2) surface found in this work for the first time and described in more detailed in the next
subsection.
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Figure 4.9: (color online). New structural model for the Si(111)-(5×2)-Au reconstruction. This is the most stable
configuration of the surface according to our calculations (see Table 4.1).

In the light of the previous comments, a more stable adsorption site for the silicon adatoms
would be on top of the SiAu complex. This has been previously proposed by Erwin [67],
and is confirmed by our calculations. Table 4.1 shows the changes in surface energy after the
addition of one silicon adatom per 5×2 unit cell. The behavior is opposite for the E(5×1)
and E(5×2) models, with the addition being energetically favorablefor the later model. The
E(5×1) remains metallic after the addition of the adatom, and thedispersive band associated
with the SiAu complex remains quite unchanged. The situation with the E(5×2) model is
different. In agreement with the results in Ref. [67] we find that the band structure becomes
semiconducting after the addition of the adatoms. The corresponding atomic and electronic
structure can be found in Fig. 4.8 (a) and (b) respectively. The surfaces bands with a larger
contribution from the atoms in the SiAu complex has been highlighted using solid symbols.
It has been impossible to identify a band that can be solely assigned to the adatoms. We can
see that the band structure of the E(5×2) suffers major modifications after the addition of
adatoms, at least for the large concentrations considered here. Besides the fact that the struc-
ture becomes semiconducting, the agreement with the detailed photoemission experiments of
references [23] and [24] seems to be somewhat degraded.

4.5 New structural model

In this section we present a novel structural model for the Si(111)-(5×2)-Au surface recon-
struction that has been found during our investigation. Ourslab spontaneously relaxed to this
new structure while trying to optimize a modified version of the E(5×1) model commented
in the previous section. The new structure can be found in Fig. 4.9, and will be referred here
as model N. Table 4.1 shows that the energy of the new model compares favorably with those
of the other structures proposed to date. In fact, within ourcalculational scheme it is the
most favorable structure. The difference with the second most stable model without adatoms,
the E(5×2), is 4.7 meV/Å2. This difference is reduced to 4.1 meV/Å2 when using a more
complete DZP basis set as shown in Table 4.2. These energy differences are quite small, so
further studies have been performed in order to drive more definitive conclusions. First, we
have repeated our calculations using the PBE [96] GGA exchange and correlation functional
instead of LDA. The new structure continues to be more stableby 3.6 and 5.1 meV/Å2 using,
respectively, a DZ and a DZP basis set. As a second step, the energy ordering between the N
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(a) (b) (c)

Figure 4.10: Band structure corresponding to the N model with zero adatom coverage parallel (Γ-ZB×2-ZB×1-
ZB′

×2 path in (a)) and perpendicular to the gold wires (Γ-M path in (a) and panels (b) and (c)). Surface bands
are marked according to its main atomic character: filled circles indicate a strong contribution from the atoms in
the SiAu complex, open triangles from the silicon dangling bonds in the middle of the double honeycomb chain
(DHC), and open cubes from those silicon atoms at the boundaries of the DHC stripes, neighboring to the gold
wires. The energies are referred to the Fermi level.

Figure 4.11: Experimental photoemission results. (upper panel) The gray-scale EB-k|| diagram for the single-
domain Si(111)5x2-Au surface along thēΓ0 − X̄0 direction taken from the ARPES scan with He II excitation.
In the diagram, the intensities are represented by the brightness, white corresponding to high intensity. The
dispersions for the surface states are depicted by black dashed curves. (lower panel)̄Γ0 − X̄0 Dispersions for the
single-domain Si(111)5x2-Au surface along the direction.Large and small symbols represent rather distinctive
and weak spectral features, respectively. Solid circles (squares) indicate peak positions obtained with the He Iα

(He II) excitations. Peak positions taken along theΓ̄3 − X̄3 direction with the He Iα excitation are also shown
as open circles. The shaded region is the bulk band structureprojected onto the 1×1 surface Brillouin zone. The
major surface state bands are traced by thick gray curves. Picture taken from Ref. [23].
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and the E(5×2) structures has been confirmed using VASP and slabs containing three and four
silicon double-layers. The new model is more stable than theE(5×2) by at least 2.6 meV/Å2.
These results convincingly establish, at least within the framework of density functional cal-
culations, the larger stability of our new structural modelcompared to previous proposals in
the limit of negligible adatom coverage

Model ∆Esurf (meV/Å2)
SIESTA VASP

DZ-3 blys DZ-2 blys DZP-2 blys 2 blys

E(5×2) +1.3 +1.4 +1.6 +1.4
E(5×2)⋆ 0.0 0.0 0.0 0.0
N -3.4 -3.3 -2.5 -1.3
N+ -1.0 -0.6 +0.9 +1.5

Table 4.2: Convergence of the relative surface energies (∆Esurf ) of the most stable structural models respect to
the basis set and the thickness of the slabs used in the calculations. The first column shows the data obtained with
the SIESTA code using a DZ basis for silicon and three siliconbilayers below the surface to construct the slab.
In the second column a slab with only two underlying silicon bilayers was used. The third and four columns are
obtained using the thinnest slab and, respectively, a DZP basis set for silicon and the VASP plane-wave code.

Model ∆Esurf (meV/Å2)

x = 0 x = 1
4

x = 1
3

x = 1
2

x = 1
E(5×2)⋆x +1.39 +0.90 +0.86 +0.81 0.0
N+

x -3.35 -1.98 -1.72 -1.23 -0.60

Table 4.3: Relative surface energies (∆Esurf ) of the most stable structural models as a function ofx, the number
of silicon adatoms per 5×2 unit cell. The calculational parameters here are the same used in Table 4.1. Notice
that E(5×2)⋆x=0=E(5×2) and N+

x=0=N.

Given the small energy differences between both models it may be interesting to estimate
the effect of the vibrational degrees of freedom in the surface free energyγ(T ). The vibrational
contribution can affect the energy ordering even at zero temperature due to the zero-point en-
ergy, and its importance grows with temperature. Unfortunately, an accurate estimation of the
vibrational surface free energyγvib(T ) is a formidable task that would require the detailed cal-
culation of the dynamical properties (phonon band structure) of the different surface models.
This is a computationally very demanding calculation that is beyond the scope of the present
work. We can obtain a rough estimation of the vibrational contribution to the difference of the
surface free energies between the different structures∆γ(T ) following Ref. [122]. We have
∆γ(T ) = ∆Esurf + ∆γvib(T ), where∆γvib(T ) ≈ 3N

E(5×2)
Si [F (T, ω

E(5×2)
surf ) − F (T, ωbulk)] -

3NN
Si[F (T, ωN

surf) − F (T, ωbulk)] + 3NAu[F (T, ω
E(5×2)
Au ) − F (T, ωN

Au)]. Here∆Esurf is given

in Table 4.1 and is independent of the temperatureT ; NE(5×2)
Si andNN

Si are the number of
silicon atoms per unit cell in both surface structures, andNAu the number of gold atoms;
F (T, ω), given in the Appendix of Ref. [122], is the free energy of a given vibrational mode
ω; the frequenciesωN

surf , ωE(5×2)
surf , andωbulk characterize the average vibrational properties of

the silicon atoms in both surface structures and in bulk silicon, whileωE(5×2)
Au andωN

Au those
of the gold atoms in both surfaces. We take forωbulk values in the range of 50-70 meV, and
ωsurf ranging from 0.5 to 1.5 theωbulk value. Within these range of parameters, ifωN

surf and

ω
E(5×2)
surf differ less than a∼10%, then∆γvib(T ) stays within∼ ±2 meV/Å2 for temperatures

up to 300 K. If the vibrational properties of both surface models differ more significantly, then
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∆γvib(T ) can affect the relative order of the structures at much lowertemperatures. How-
ever, we should not expect strong differences in theaveragevibrational frequencies of the
E(5×2) and N models. Both models present very similar bonding patterns and structures.
It is interesting to notice that∆γvib(T ) is nonzero even if the vibrational properties of both
structures are identical, i.e.ωE(5×2)

surf =ωN
surf =ωsurf andωE(5×2)

Au =ωN
Au. This reflects the different

number of silicon atoms in the unit cell of the two surface reconstructions. In this case we
have∆γvib(T ) ≈ 3(N

E(5×2)
Si − NN

Si)[F (T, ωsurf) − F (T, ωbulk)]. Using the same parameters
as above we obtain∆γvib(T ) within ±1.5 meV/Å2 up to∼1000 K. Thus we can conclude
that the energy ordering obtained in the present total energy calculations is not altered by the
vibrational contribution to the free energy up to, at least,room temperature.

In the new structure the gold wires along the[1̄10] direction present a dimerization compa-
rable to the E(5×2) structure. The alternating Au-Au distances are 3.24 Å and4.40 Å (3.19 Å
and 4.45 Å) along the right (left) wires. The distance between nearest neighbor Au wires along
the[112̄] direction is smaller in the N structure (3 Å) than in the E(5×2) structure (3.8 Å). The
later value being in better agreement with the∼3.9 Å deduced from the HREM studies of the
surface. [14]

Similarly to the E(5×1) structure, most of the surface of the N model is covered with a
silicon double honeycomb chain structure [67]. One of the silicon atoms in the DHC appears
at a higher position over the surface. This indicates that this atom has a charged dangling-
bond and, therefore, is trying to develop asp3 hybridization. This atom is expected to be more
visible in the STM images and to provide a preferential site for adsorption on the surface, in
particular for possible silicon adatoms. The boundaries between the DHC stripes are occupied
by the SiAu complex, in which a central silicon atom appears bonded with three gold dimers.

The band structure of the new structure is plotted in Fig. 4.10 and the spectra from a very
recent photoemission study in Fig. 4.11. The general features are in good agreement with
the most recent ARPES studies [23, 24], although some of the details are different. The most
dispersive and prominent surface bands are quite similar tothose found for the E(5×2) model.
The surface is predicted to be semiconducting, which agreeswith Fig. 4.11. The bands named
S1 and S2 by Matsudaet al. in Fig. 4.11 can be easily identified in our calculation, and we
use the same notation. Other less dispersive surface bands are also observed in our calculated
band structure. These can be tentatively identified with those labeled S3 and S4 by Matsudaet
al.. However, the S3 band appears shifted to lower binding energies by a few tenths of eV. We
can relate this upward energy shift to the use of the LDA in ourcalculations, which is likely
to be less suited to describe more localized (less dispersive) states. Besides this energy shift,
the sole major discrepancy with the experimental band structure in Ref. [23] is the absence of
the S′3 band. However, this band is not so clearly resolved in the experiments as the others.

Different symbols are used in Fig. 4.10 according to the mainatomic character of the
bands. S1 and S2 come from the Si-Au bonds in the surface (solid symbols). This is common to
most of the models studied in this paper: the most dispersivesurface bands always originate in
the Si-Au bonds, with the main character corresponding to the 3p states of the central Si atom,
and a strong hybridization with the 6p states of the neighboring Au atoms. The flat S3 band
corresponds to the silicon dangling bonds in the middle of the DHC structure (open triangles).
The also quite flat S4 band is mainly associated with the bonds between the gold atoms and the
silicon atoms in the border of the DHC structure (open squares). We find several unoccupied
surface bands whose atomic character is difficult to determine. One of these bands is located at
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(a) (b)

Figure 4.12: (color online). (a) Optimized geometry of the N+ model (containing one adatom per 5×2 unit cell)
and, (b) the corresponding band structure. Surface bands with strong contributions from the SiAu complex are
indicated by filled circles, while the states associated to the adatom are marked with open triangles. The energies
are referred to the Fermi level.

energies very close to EF , particularly near theΓ point. The metallic/semiconducting character
of the surface is thus governed by the position of this band. This situation is very similar to
that already observed for the E(5×2) model, although in this case the band reaches to lower
energies and becomes partially occupied driving the systemto metallic.

In agreement with experiment, most surface bands show a strong 1D character in our new
structural model as can be seen in Fig. 4.10 (b) and (c). This is particularly clear in panel (b),
where most states are located within the bulk gap. In the region displayed in panel (c) (at the
zone boundary of the 5×1 Brillouin zone) the S2 and S1 bands merge with the bulk bands,
becoming surface resonances. It is no longer possible to identify the S1 and S2 resonances
with a single band of our finite slab and, as a consequence, it is difficult to follow the band
dispersion of these spectral features in the direction perpendicular to the gold wires. However,
from the data in panel (c) it is clear that the combined effectof the possible dispersion, plus the
broadening of the resonances extends over a range of∼0.2 eV, much larger than its dispersion
for energies closer to EF . This is broadly consistent with the 1D to 2D transition reported in
Ref. [18] for the most prominent photoemission feature as the binding energy increases.

We now explore the structure and energetics of the model N under the addition of one
silicon adatom per 5×2 unit cell. We tried several different adsorption sites: directly on the
SiAu wire following the proposal by Erwin [67] (referred as N⋆), and bonded to the prominent
dangling bond in the DHC structure occupying hollow H3 (N+) or top T4 (N+′) sites [121].
As shown is Table 4.1, this high coverage of adatoms is energetically unfavorable in all cases
by at least 2.7 meV/Å2. This is in contrast with the situation for the E(5×2) model, where
the addition of one silicon adatom per unit cell is slightly favorable. In the N⋆ structure (not
shown) the silicon adatoms tend to locate in a peculiar bridge position between two gold
dimers along the[1̄10] direction. The structure of the N+ model is shown in Fig. 4.12 (a). The
silicon atoms bonded to the adatom adopt a typical silicon configuration although, contrary
to what is observed for the clean Si(111) surface, the hollowsite is preferred over the top
site [117].

The band structure of the N+ surface is shown in Fig. 4.12 (b). It is very similar to that
found for the model without adatoms. The S1 and S2 are largely unchanged, which clearly
indicates its origin in the SiAu complex. The flat S3 band disappears from the gap region as a
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Figure 4.13: Relative surface energies as a function of the adatom content. Explicit calculations have been
performed for several adatom concentrations using the smaller DZ basis set (circles). The results obtained with
the DZP basis set (diamonds) and with plane-wave VASP calculations (triangles) for the two limiting cases are
also shown for comparison. All energies are referred to those of the E(5×2)⋆ model.

consequence of the saturation of the dangling bond with the adatom. A new unoccupied band,
associated with the adatoms, appears instead. This new bandcan be found around∼0.6 eV
above EF in Fig. 4.12 (b).

4.6 Adatom coverage

So far we have only considered the limiting cases with zero ormaximum adatom coverage,
which correspond to a numberx of silicon adatoms per 5×2 unit cell equal, respectively, to
0 and 1. However, the experimental evidence indicates that the equilibrium concentration is
x ∼ 1/4, corresponding to one adatom per 5×8 supercell. Under silicon rich conditions the
adatom coverage can be increased in the experiment only up tox ∼ 1/2, consistent with a 5×4
periodicity (see Fig. 4.14). We have performed explicit calculations forx = 1/2, x = 1/3,
andx = 1/4 for our two most stable models of the reconstruction in orderto simulate these
situations that can be reached experimentally. Due to the very large supercells necessary for
these calculations (up to 273 atoms), we have performed themwith the SIESTA code and
restricted to the use of a DZ basis set for silicon. The results of the energetics as a function
of the adatom content can be found in Table 4.3 and in Fig. 4.13. The behavior is opposite
for both models, N and E(5×2). It should be kept in mind that model N favors the adatoms in
hollow sites over the silicon surface, while in the E(5×2) structure the adatoms sit on the gold
chains are more favorable.

The surface energy monotonously decreases as a function of the number of adatoms for
the E(5×2) model. We do not find any evidence of an energy minimum as a function of the
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Figure 4.14: STM images of (a) Si(111)5x2-Au in thermal equilibrium and (b) after additional evaporation of
0.025 ML of silicon at 300 C. About 90% of all 5x4-cells are filled (-2 V, 0.2 nA, 30 x 30 nm2). Picture taken
from Ref. [21].

adatom concentration. This is in contrast with the suggestion made by Erwin in Ref. [67]. In
that reference the addition of adatoms was studied using thefollowing simplification: it was
assumed that the sole effect of the adatoms is to dope the goldchains with electrons and the
energy of the system was studied as a function of the doping. Erwin found a minimum of the
total energy for 0.5 extra electrons per 5×2 unit cell. Since each adatom was found to donate
two electrons to the surface, this would correspond to the observed adatom concentration at
equilibrium ofx ∼ 1/4. However, our simulations introducing explicitly the adatoms in the
structure do not confirm this behavior. The surface energy ofthe E(5×2) structure always
decreases as the adatom concentration is increased. However, the slope of the curve becomes
very small for intermediate adatom concentrations, showing a weak dependence of the surface
energy in that region. We cannot completely rule out the presence of a minimum for the
surface energy at very low adatom concentrations. However,it seems quite unlikely looking
at Fig 4.13. It could also be argued that the DZ basis set is notflexible enough to produce the
correct behavior. This seems quite improbable looking at the data in Table 4.2, which clearly
show that the energy changes induced by the addition of adatoms are weakly dependent on the
details of the calculation.

In the case of the new model N, the Fig. 4.13 shows that the surface energy systematically
increases as a function of the adatom concentration. With the DZ basis set the N model
is always more stable than the E(5×2) structure. Using a more complete basis set and a
converged plane-wave calculation we find a crossing: the newmodel is always more stable at
low adatom coverage, but becomes unstable compare with the Erwin “5×2" model at larger
coverages. Scaling the data calculated with the DZ basis setto reproduce the VASP results
at the end points (i.e.x = 0 andx = 1) we can estimate that the crossing occurs atx ∼1/2.
We can conclude then that the N model is, at least in the framework of density functional
calculations, more favorable than the E(5×2) model for adatom concentrations below∼1/2
adatoms per 5×2 cell.

4.7 Simulated STM images

The STM images of the Si(111)-(5×2)-Au surface are characterized by the presence of bright
“protrusions" (see Fig. 4.14 and Fig. 4.15) and “Y"-shaped features with a definite orientation
respect to the underlying lattice [11, 17, 25]. This can be seen in Fig. 4.15, with the protru-
sions labelled by P. It seems quite well established that theprotrusion correspond to silicon
adatoms [20–22], illustrated in Fig. 4.14. However, the origin of the “Y"-shaped features,
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Figure 4.15: An experimental 35 Å×Å image of the slightly skewed Y structure unit seen in the filled states of
the 5×2 rows. The topograph was taken at -0.4 V sample bias and 1.2 nAtunneling current. The main repeating
features are labeled and R indicates the [1̄1̄2] direction. Picture taken from Ref. [11].

Figure 4.16: (color online). Simulated STM image of the E(5×2) model with a sample bias of -0.8 eV and an
adatom concentration corresponding to a 5×4 periodicity. A possible candidate for the Y-shaped structure is
schematically indicated. The atomic structure is superimposed with the simulated image in the lower part of the
figure. Large circles indicate the positions of Au atoms.

illustrated in Fig. 4.15, is less clear.
Figures 4.16 and 4.17 present our simulations of the STM images for the E(5×2) model

at -0.8 eV sample bias and the N model at -0.6 eV, respectively. The simulations have been
performed for a 5×4 arrangement of the silicon adatoms, corresponding to concentration of
adatoms that can be actually reached in the experiment. In agreement with Ref. [67] and
the experiments the silicon adatoms show as very pronouncedbright protrusions. With the
adatoms directly sited on the gold chains, the bright spots appear in the middle of the under-
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Figure 4.17: (color online). Same as Fig. 4.16 but for the newN structure and a sample bias of -0.6 eV.

lying row structures for the E(5×2) model. For the N model they appear in a more lateral
position. This seems to be in somewhat better agreement withsome of the experimental im-
ages (see, for example, the Figure 1 (b) in Ref. [22]). “Y"-shaped features can be identified in
the simulated STM images of both N and E(5×2) models. The possible candidates have been
highlighted in the Figures 4.16 and 4.17 (see also Ref. [67]). The identification is, however,
more clear in the case of the less symmetric E(5×2) structure.

4.8 Conclusions

We have performed a systematic study of different models of the Si(111)-(5×2)-Au surface re-
construction by means of first-principles density-functional calculations using the SIESTA [84,
86] and the VASP [118, 119] codes. We start our investigationwith the structural model pro-
posed by Marks and Plass [14] (MP). This is the most detailed model of this surface recon-
struction solely based on experimental information to date. Therefore, it provides a logical
starting point for our study. We have also considered different variants of the relaxed MP
model, including the structures recently proposed by Erwin[67], and a new structure found
during our simulations. Within the computational schemes used here this new structure is the
most favorable energetically, at least in the regime of low concentration of silicon adatoms.
In general, we find a reasonable agreement between our results and those of the two existing
theoretical studies of the surface [67, 68]. The energy differences between different models
are quite small, with most structures lying in a narrow rangeof surface energies of less than
10 meV/Å2 (the estimated error bar for our energies is of the order of 1-2 meV/Å2). This,
together with the uncertainties arising from the use of the local approximation to the density
functional theory, make difficult to draw definitive conclusions solely based on the energetics.
The comparison of the calculated band structures and local density of states, respectively, with
the available ARPES data [18, 23, 24] and the STM images [6, 11, 25] becomes then instru-
mental in order to identify the most plausible candidates for the equilibrium structure. In the
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following we summarized some our main conclusions:
i) Like in the case of the reconstructions formed by the deposition of gold on stepped

silicon surfaces [1, 29, 69, 70], the silicon honeycomb chain (HC) [66] structure emerges as a
fundamental building block of the reconstruction. In agreement with the result of Hang and
Lee [68], the silicon HC is formed spontaneously during the relaxation of the MP model. The
HC is also present in the optimized geometries of all the other structural models considered in
our work.

ii) For the MP model we agree with the main conclusions of Ref. [68] that neither the
simulated STM images nor the calculated band structure compare satisfactorily with the ex-
perimental data.

iii) We have studied in detail the models proposed in Ref. [67] by Erwin, the E(5×1) and
E(5×2) structures. The E(5×1) model is quite similar to the MP structure: they correspond
to two possible positions, at opposite sides of the SiAu complex, of the surface dislocation
present in these structures. The E(5×1) model and its E(5×2) variant are energetically de-
generate at zero adatom coverage. However, these two structures show a different behavior
against the addition of silicon adatoms: it is always unfavorable for the E(5×1) model, while
tends to increase the stability of the E(5×2) model.

iv) We have explored a different position of the surface dislocation: at the center of the
SiAu complex. We arrive in this way to a new structure, the N model. According to our
calculations this new structure is more stable, at least forlow coverages of silicon adatoms,
than any of the models proposed to date. The distance betweenthe gold wires in this model
is ∼3 Å, which seems somewhat small compared to the∼3.9 Å deduced from the HREM
measurements [14].

v) The calculated band structures of the E(5×2) and N models without adatoms are quite
similar and appear to be in reasonable agreement with the available ARPES data [18, 23, 24].
The other models fail to reproduce the main features observed experimentally. The agreement
seems to be particularly good in the case of the N model. According to our analysis the most
prominent and dispersive surface bands, named S1 and S2 in Ref. [23], come from the atoms in
the SiAu complex. In the case of the N model the silicon adatoms tend to adsorb on the silicon
part of the surface, i.e. bonded to three silicon atoms in thesurface layer. As a consequence,
the topology and the energy position of these bands are quiteinsensitive to the coverage of
silicon adatoms. This contrast with the situation found forthe E(5×2) model. Here the silicon
adatoms tend to adsorb directly on the SiAu complex, thus causing a notable modification of
the surface bands that worsens the agreement with the experimental ARPES spectra.

vi) We have studied the energetics of the E(5×2) and the N models as a function of the
concentration of silicon adatoms. Contrary to the suggestion of Ref. [67], we do not find
any evidence of a minimum of the surface energy of the E(5×2) model as a function of the
adatom coverage. The surface energy always decreases with the addition of adatoms, although
the changes are very small in the range ofx between 1/2 and 1/4, wherex is the number of
adatoms per 5×2 unit cell. For the N model the addition of the adatoms is always unfavorable.
As a consequence of this opposite behavior, the E(5×2) structure becomes more stable than
the N structure in the limit of relatively large adatomx = 1/2 corresponds to a 5×4 peri-
odicity). According to this picture the exact content of adatoms is instrumental to determine
the equilibrium structure of the reconstruction within therange of experimentally realizable
adatom coverages. This introduces a new degree of complexity that should be taken into ac-
count when analyzing the experimental information. In particular, this might be behind the
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observed phase separation into 5×4 and 5×2 patches [22,24].
vii) The simulated STM images of the most stable models, N and E(5×2), are in broad

agreement with the experimental images. The silicon atoms produce bright spots which are
located in the middle of the underlying row structures for the E(5×2) and in a somewhat more
lateral position for the N model. In both cases “Y"-shaped features similar to those observed
in the experiment can be found. However, they are more clear in the case of the E(5×2)
model [67] where the structure surrounding the gold chains is less symmetric.
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Si(111)4x1-In

5.1 Introduction

As was mentioned in Sec. 3.1, coupling between electronic and structural degrees of freedom
are enhanced in one-dimension and, as a consequence, several electronic and structural phase
transitons are observed in the metal-induced quasi one-dimensional surface reconstructions
as the temperature is decreased. A nice example of this behaviour is found in the In/Si(111)
system, which exhibits a 4×1 → 4×2 → 8×2 structural transition accompanied by a metal-
insulator electronic transition.

The room-temperature (RT) 4×1 structure of the In/Si(111) surface is well established [43,
49]. It is illustrated in Fig. 5.1 and consists of two neighboring zigzag In wires along the[112̄]
direction. Each wire contains two In atoms per 4×1 cell and each In atom is bonded to one Si
atom of the substrate. This model has been confirmed byab-initio calculations [72–74] which
reproduce the scanning tunneling microscopy (STM) images [41, 42], and the main features
of the band structure.

At RT the system presents three metallic surface bands with similar dispersion [40]. How-
ever, when the temperature is lowered below∼ 130 K [45] photoemission shows the formation
of a band gap (this is illustrated in Fig. 5.3). This transition is accompanied with a doubling of
the unit cell in the STM images [45]. The low temperature (LT)phase has been widely studied
experimentally [46, 48, 54, 55]. However, mostab-initio calculations have failed to reproduce
the observed LT behaviour [72,76].

Recently, an interesting mechanism for the gap opening has been proposed by Ahnet
al. in Ref. [52]. The occupation of the surface bands in the 4×1 structure is quite close to
two electrons. If one of these bands is depopulated (the upper one), the other two become
very close to half-filled and thus are suitable to suffer a Peierls transition due to a periodicity
doubling. If this is true, it seems to indicate that: (i) there are at least two types of surface
bands that originate in different regions of the substrate or have different symmetries, and (ii )
the metal-insulator transition is the result of a combination of two distinct structural distortions
that couple with different bands. This last point is consistent with the recent first-principles
calculations by Gonzálezet. al. [77]. These authors find an insulating 4×2 structure (see Fig.
5.2) reminiscent of that proposed by Kumpfet al. [43], as a result of a combined shear and
Peierls distortion of the 4×1 RT phase.

The objective of the present chapter is to understand in detail the origin and characteristics

61
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Figure 5.1: Equilibrium structure of In/Si(111): (a) the perspective view of the (4x1) structure and the top views
of (b) the (4x1) structure, (c) a possible candidate of the (4x2) structure. The dark and grey circles represent In
and Si atoms, respectively. The x and y directions are [1̄1̄0] and [112̄], respectively. Two different choices for
the (4x1) unit cell are indicated by the thin solid and dashedlines. The arrows in (c) show pairing patterns of the
outer indium atoms. The interatomic distances between the two zigzag indium rows are given in Å. Picture taken
from Ref. [72].

Figure 5.2: The low temperature Si(111)/In-4x2 surface according to González et. al. [78]. Top view of the sur-
face, in which dark (pale) circles represent In (Si) atoms. The x and y directions are [1̄1̄0] and [112̄], respectively.

of the different electronic states involved in the metal-insulator transition, and how they couple
to different structural distortions. The emphasis is on theelectronic bands associated with the
indium atoms in the substrate. We use a simplified model (shown in Fig. 5.4) that captures
the essence of the system. Our results support the main conclusions of Ref. [77], and point
to a primary electronic origin of the structural transition. Of course, in the real surface we
can expect a delicate competition between the gain of electronic energy and the elastic energy
associated with the different distortions.

The pseudopotentials and basis-set used in this chapter, are indicated in Tab. 2.2 and they
correspond to the GGA versionsSi2.psf , H2.psf andIn3.vps . For the model system
of Sec. 5.2, DZP bases were used. We typically used 12 inequivalent k-points along the axis
of the wire (up to 250 in convergence tests, and 100 in the calculations shown in Fig. 5.7).

The results of this chapter have been published in Ref. [109].
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Figure 5.3: Measured energy bands of In/Si(111) along the wires (k||) in the metallic state (RT) at two different
k⊥ of 0 (a) and 0.24 Å−1 (c) and in the insulating state (45 K) (b),(d). Constant-energy spectral density maps at
EF showing the Fermi contours for the metallic states (e) andat a binding energy of 0.1 eV for the valence band
maxima of the insulating phase (f), which are schematicallydepicted in (g) and (h), respectively. The first BZ
of the 4×1 phase is drawn by the thin solid lines in (g). The wiggling Fermi contours (g) and the varying band
dispersions at different k⊥’s (a),(c) of m1 and m2 manifest the deviation from an ideal 1Dnature in contrast with
m3. Picture taken from Ref. [52].
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Figure 5.4: Our model of the In wires in the In/Si(111)-4×1 surface: it contains two zigzag indium wires
saturated with hydrogen.

5.2 The Simplified model

Figure 5.4 presents the simple model used here to study the electronic properties of indium
wires in the In/Si(111) surface. We keep the two zigzag In wires present in the 4×1 unit
cell, and substitute the neighboring silicon atoms with hydrogen. The In-H distances were
optimized (1.86 Å), and kept fixed for the rest of the study. The In-H bond is more ionic
than the In-Si bond. However, we have checked that saturating with SiH3 groups instead of H
atoms leads to a very similar band structure.
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(a) (c) (d)(b)

π/a π/aπ/a

Figure 5.5: (a)-(c) Band structure (along the wires axes) ofthe system shown in Fig. 5.4 as a function of the
wire-wire distanced: (a) isolated zigzag In wire (d=10.8 Å), (b) d=4.31 Å, and (c)d=2.15 Å. Different symbols
indicate the distinct character of the bands as determined from a Mulliken population analysis [100]: In(1) and
In(2)-py (circles), In(2)-px (squares), and In(1) and In(2)-pz (triangles). (d) Band structure of the In/Si(111)-4×1
reconstruction (see Fig. 5.1) along the[112̄] direction calculated with a slab containing four silicon bilayers, the
bands with strong indium character are highlighted with circles. Energies are always referred to the Fermi level.

5.3 Coupling of Indium wires

Figure 5.5 shows the evolution of the band structure of our model as a function of the wire-
wire distanced. There are two types of indium atoms in each wire, In(1) and In(2). The
coordination of the In(2) atoms changes withd. Panel (a) corresponds to non-interacting (large
d) zigzag wires, while panel (c) (d=2.15 Å) corresponds to a configuration similar to that found
in the In/Si(111)-4×1 reconstruction. Although not completely evident due to appearance of
interaction gaps, the band structure in Fig. 5.5 (a) can be rationalized in terms of three bands:
(I) a strongly dispersive band associated with the In(1) atoms and the In(2)-py orbitals (circles),
a flat band (II) with a clear contribution from In(1) and the In(2)-pz orbitals (triangles), and
another flat band (III) with large In(2)-px character (squares). Taken into account the hydrogen
saturation, each In atom contributes with two valence electrons. Thus we have four electrons
two distribute in these bands. Band (II) is doubly occupied and does not play any role in the
argumentation below. Bands (I) and (III), however, are half-filled. Band (III) can be associated
with the “dangling-bonds” in the In(2) atoms that project approximately into the x-direction
and the vacuum.

As d is reduced, the interaction between the wires modifies the band structure. This can
be seen in Fig. 5.5(b) and (c). Particularly, the dispersionof bands derived from band (III)
largely increase as a result of the overlap of the dangling-bonds in the neighboring wires.
Finally, the electronic states associated with this band become highly delocalized in the region
between the two zigzag wires, and the band exhibits an almostfree-electron dispersion. In the
following we call this band the "interaction band".

Figure 5.5 (d) presents the band structure of the In/Si(111)-4×1 reconstruction calculated
with a slab containing four silicon bilayers. Four surface bands can be located in the gap
of the silicon substrate. Three of them cross the Fermi levelwith similar dispersions. This
is qualitatively reproduced by our model. The agreement is improved if a small shift of the
Fermi level is allowed (see Fig. 5.5 (c)). The information from our model allows to catalogue
the surface bands in two types: (i) two bands that are derived from the band (I) of the right
and left wires, and (ii ) the interaction band. The first two bands have a larger weight inside
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Figure 5.6: Shear distortion. (a) Energy per indium atom as afunction of the relative displacement∆y of the
indium wires along their axes (see the scheme in the upper part of panel (a)). The band structures for three
different values of∆y are also shown. (b) Band structure of the In/Si(111)-4×1 reconstruction with∆y=1.65 Å.
The inset shows the Brillouin zone,ΓX and YM run along the In wires. Energies in the band structures are
referred to the Fermi level.

each of the wires and are quite sensitive to the structure of the zigzag chains. In contrast,
the interaction band is localized in the regionbetweenthe two zigzag wires and thus is more
influenced by the relative positions of the wires.

This division allows to envision a two-step route for the observed metal-insulator transi-
tion. Step one: the dimerization of the dangling-bonds fromneighboring zigzag chains opens
a gap in the interaction-band. This effect can be obtained without doubling the periodicity of
the system, the relative displacement of the wires along their axes (see Fig. 5.6) suffices. No-
tice that this corresponds to the shear distortion in Ref. [77]. Step two: the remaining metallic
bands need to accommodate two valence electrons. Since these two bands have very similar
dispersions, both become approximately half-filled. As a consequence, the system is now suit-
able to suffer a Peierls transition. This two-step mechanism is consistent with the calculations
of Ref. [77] and the experimental evidence in Ref. [52].

Figure 5.6 (a) shows the evolution of the energy and the band structure of our system as
function of the shear distortion. One of the zigzag wires wasdisplaced along the y-direction
by a magnitude∆y with respect to the other. For each displacement the distance between the
wiresd was optimized. A gap is opened in the interaction band which widens with increasing
∆y. For distortions larger than∆y ∼0.5 Å the Fermi level enters in this gap. This is reflected
in the behaviour of the energy that starts to decrease at thispoint. This behaviour translates
in an energy barrier of∼5 meV per In atom. The system is then left with two metallic bands
that cross the Fermi level at nearby points in reciprocal space. This is also the case for the real
In/Si(111)-4×1 surface as can be seen in Fig. 5.6 (b). However, in this case the behaviour of
the total energy is different. Although still in the range ofa few meV per In atom for moderate
distortions, the shear deformation always increases the energy of the system.

5.4 Distortion of the wires

We now study the effect of doubling the periodicity along thewires. We consider a quite
simple Peierls-like distortion: the length of one every four bonds is shorten (the undistorted
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Figure 5.7: Peierls distortion. (a) Scheme showing four inequivalent Peierls-like distortions: the lenght of one of
the bonds (indicated by an arrow) is modified by the same amount in both wires; different distortions correspond
to different relative positions of the distorted bonds and are numbered according to the labels of the different
bonds in the right wire. Panels (b) and (c) show the total energy per indium atom as a function of the modified
bond length for distortions 1 (solid), 2 (dashed), 3 (dotted), 4 (dash-dotted). Panel (b) corresponds toα=90◦

(∆y=2.15 Å), while in panel (c)α=154◦ (∆y=1.05 Å). The insets show the band structures close to the Brillouin-
zone boundary for distortions 1 and 2 in panel (b), and 2 in panel (c). Energies in the band structures are referred
to the Fermi level.

bond length is 3.045 Å). The distortion is identical for bothwires. Still we have four dif-
ferent possibilities according to the different relative locations of the distorted bonds in the
neighboring wires. This is illustrated in Fig. 5.7 (a). While doubling the unit cell, the four
distortions break the symmetry of the system in different ways. This detail is quite important.
The distortions open a gap atπ

2a
due to the periodicity doubling. However, since the Fermi

points do not exactly lie in that position, this does not guarantee that the system will become
semiconducting. This is more clear for the extreme shear distortion (∆y=2.15 Å,α=90◦). In
this case there is a mirror plane parallel to the axis of the wires which is only preserved by
“distortion 1”. As a consequence of this symmetry, the band structure of the system submitted
to the “distortion 1” presents a band crossing and the systemremains metallic. For the other
three distortions the band crossing is avoided due to the break of symmetry and a gap opens
at the Fermi level. This can be appreciated in Fig. 5.7 (b). For α 6=90◦ the symmetry gap is
always opened, although its magnitude depends again on eachparticular structural distortion.
Figures 5.7 (b) and (c) present the total energy for the different Peierls-like distortions (a shear
deformation has been previously applied to the system). “Distortion 2” and “distortion 4” are
always the most favorables. It is worth noting that the structure proposed in Ref. [77] can be
understood as the result of applying a combination of a sheardistortion and the Peierls-like
“distortion 2” presented above.

5.5 Conclusions

In summary, we have studied the electronic structure of the indium zigzag wires seen on
the In/Si(111)-4x1 reconstruction. The different surfacebands are identified and classified
according to their origin and their response to different structural distortions. We confirm
that the combination of a shear and a Peierls distortion, proposed in Ref. [77], provides a
reasonable and robust route for the observed metal-insulator transition in this system. Our
results also point to an electronic driving force of this transition.



Chapter 6

Si(557)/Au

6.1 Introduction

Probably, the first observation of gold-induced ordering onthe Si(557) surface was performed
by Jalochowski et. al. [26] and has attained lot of interest in recent years [19,27,29,30,32–34,
36–38,58,62,69,70]. The present geometrical model is baseon x-ray diffraction studies [29]
andab-initio calculations [69, 70] and is illustrated in Fig. 6.1. The terraces of Si(557)/Au
have a width of∼19 Å (or 11 atoms) and each terrace contains a monatomic chainof gold
atoms running parallel to the step-edge. Because of its one-dimensional features, the Si(557)-
Au surface has been proposed as an experimental realizationof a one-dimensional metal [27],
one of the main motivations why it has been subject to such an intensive research. In spite of
all the effort, the electronic structure of this system is not yet completely understood.

The first angle-resolved photoemission (ARP) study by Segovia et al. [27] found a spec-
trum dominated by a one-dimensional metallic band. This band was shown to split in two
peaks near the Fermi level (EF ), and this was interpreted as signature of separated charge
and spin low-energy excitations as predicted by Luttinger theory of the one-dimensional elec-
tron gas [105, 106]. However, later photoemission data seemed to discard this interpretation.
According to Losioet al. [19] (see also Fig. 6.3 and Fig. 6.4) the observed splitting would
correspond to two distinct proximal bands which cross EF at neighboring, although different,
positions of the surface Brillouin zone. However, the origin of these bands was unclear. Fi-
nally, Ahnet al. [30] have recently suggested that only one of the bands is truly metallic and
suffers a metal-insulator transition upon cooling. This observation was correlated with the
temperature dependence of the scanning tunneling microscopy (STM) images: the step-edge
undergoes a periodicity doubling consistent with a Peierls-like instability (see Fig. 6.11). Thus
these authors concluded that at least one of the two proximalbands should be associated with
the atoms forming the step-edge.

In contrast with the electronic structure, the geometry of the Si(557)-Au reconstruction
seems to be quite well established. A detailed model was proposed by Robinsonet al. [29]
on the basis of X-ray diffraction data, which has been corroborated by first-principles density
functional (DFT) calculations [70] (see Fig. 6.1). Unfortunately, the calculated band structure
only presentsone one-dimensional metallic band exhibiting a considerable dispersion and
a width consistent with the experimental observations [70]. Thus, the observed two-band
photoemission spectrum remains unexplained from a theoretical point of view.

67
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We will demonstrate in Sec. 6.2 with DFT calculations, that the observed ARP spectra
is consistent after all with the model geometry and that the two proximal bands appear as a
consequence of the spin-orbit (SO) splitting of the most dispersive surface state. The large
effect of SO splitting on gold-derived surface states has been demonstrated previously by
ARP experiments and calculations on Au(111) [123,124]. Theorigin and magnitude of the SO
splitting is similar in the present case. The inversion symmetry is always broken at the surface,
thus the spin splitting of bands with no spatial degeneracy becomes possible. This suggests
that atomic wires formed by heavy atoms deposited on semiconducting surfaces could be used
in the fabrication of spin transistors [125] and spin-filterdevices [126]. Interesting phenomena
can also appear associated with the competition between electron-electron interactions and SO
coupling in one-dimension [127,128].

The SO model has received some experimental support recently. Measurements of the
plasmon dispersion in the Si(557)-Au surface by Nagaoet al. [36] point to the importance of
the SO interaction in this system. Furthermore, very recentphotoemission measurements in
the Si(553)-Au surface, which shows a band structure very similar to the Si(557)-Au recon-
struction [1] (one can compare Figs. 6.3 and 7.1) seem to confirm that the origin of the two
proximal bands is the SO splitting [62]. However, the authors of this reference arrived to this
conclusion based on the observed pattern of avoided crossings in the band structure. This in-
direct method was used by Himpsel and coworkers [62] since the requirements of energy and
angle resolution are difficult to combine with the low count rate imposed by spin detection.
Thus the band structure of the Si(557)-Au surface is still a matter of certain debate that needs
further experimental and theoretical work to be fully understood.

In Secs. 6.3-6.4 we show how the temperature dependence of several experimentally mea-
surable quantities [30, 33, 34], such as Scanning-Tunneling Microscopy (STM) and Spec-
troscopy (STS) images, projected Density of States (PDOS) and Local Density of States
(LDOS) could stem from the buckling of the step-edge whose atoms alternate between up
and down positions. A given "up-down" configuration and the reverse one are separated by a
small energy barrier. At room temperature the step-edge fluctuates between both structures,
and for example the STM images only reflect the average surface electronic and atomic struc-
ture. Upon cooling the step-edge buckling can be revealed using STM, producing the apparent
doubling of the periodicity. This implies a Peierls-like phase-transition. However, the order-
disorder (freezing of “dynamical fluctuations”) or displacive (Peierls-like) character of this
transition is still a matter of certain debate [33, 71, 103].Due to the nature of the structure,
we initially favored an order-disorder model. However, this might be in conflict with some
of the observations made during the metal-insulator transition that accompanies the structural
distortion [33,71]. This aspect is discussed in detail in Sec. 6.3.

In Sec. 6.5 we also perform Molecular Dynamics (MD) simulations in the timescale of
picoseconds and observe that the step-edge indeed fluctuates with the periodicity of∼ 0.5
ps. This movement is accompanied with several other atomic movements that contribute to
the metallicity of the system at high temperatures, backingup our explanation of the metal-
insulator transition.

In this chapter, both the DZ and DZP basis for silicon were used, while the DZP:s-SZ:d
basis-set was used for gold. The pseudopotentials and pseudo-orbitals correspond to the LDA-
flavour, i.e. toAu.vps ,Si.psf andH.psf in Tab. 2.1.

The results presented in this chapter have been presented intwo publications, Ref. [71,
103].
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Figure 6.1: Top (a) and side (b) view of the structure of the Si(557)-Au reconstruction. The larger circles (Au)
correspond to the gold atoms. The most prominent features ofthe surface are highlighted: a row of adatoms (ad),
restatoms (res), a buckled step-edge with up-edge (B) and down-edge (A) Si atoms, and a chain of gold atoms
with alternating Si-Au-Si bond angles (α andβ).

6.2 Effect of the spin-orbit interaction

Fig. 6.1(a) shows the relaxed structure of the Si(557)-Au reconstruction [69, 70]. This struc-
ture is almost identical to the experimentally proposed model [29]. The atoms labelled with
“Au” stand for the gold atoms occupying silicon substitutional positions on the middle of
the terraces. The corresponding band structure, along the direction parallel to the steps, is
shown in Fig. 6.2. Panel (a) shows the results from a non spin-polarized calculation, using the
VASP [118] code, with the local density approximation (LDA)for the exchange-correlation
potential. This band structure is almost identical to that reported in Ref. [70] using the SIESTA
code. Several surface bands and resonances can be identified, all of them with negligible dis-
persion in the direction perpendicular to the steps. The different symbols reflect their main
atomic character (see Sec. 2.4.2). The unoccupied band marked with open triangles comes
from the adatoms (labeledad in Fig. 6.1(a)), while the occupied one is related to the restatoms
(labeledres). In principle, every atom in the step-edge has a dangling-bond pointing per-
pendicularly to the step, which would give rise to a very flat half-filled band. This unstable
situation leads to a buckling of the step-edge that doubles the unit cell and forms two bands
marked by open squares in Fig. 6.2. The band with larger weight in the "up" (B) atoms is fully
occupied, while the band associated with the "down" (A) atoms has a small occupation. Notice
that the step-edge bands have a very small dispersion. Thus they cannot explain the observed
ARP spectra, as was recently suggested by Ahnet al. [30]. Contrary to the initial interpreta-
tion of the ARP data [27], none of the surface bands in the proximity of EF has a clear Au
6s character. This is a direct consequence of the larger electron affinity of gold as compared
to silicon: the 6s Au character appears several eV below EF . The sole surface bands exhibit-
ing an appreciable gold component in Fig. 6.2 are marked withcircles.These bands mainly
come from the 3p states of the silicon atoms neighboring to the Au chains (atoms D and C).
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Figure 6.2: Electronic band structure for calculation not including (a), and including (b) the spin-orbit interaction.
Energies are referred to the Fermi level. Surface states have been marked with different symbols according to
their main atomic character (see text).

Figure 6.3: E(k||) band dispersions of surface states along the [11̄0] direction, which is parallel to the chains.
High photoemission intensity is shown dark. The right/leftasymmetry is due to different polarization of the
photons, with the perpendicular component of A large at positive k||. Picture taken from Ref. [19].
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Figure 6.4: Experimental band dispersion of the metallic surface state on Si(557)-Au near the Fermi level EF ,
measured by E, k multidetection (center). High photoemission intensity is shown dark. Two nearly degenerate
bands are observed with a splitting that increases towards EF . Picture taken from Ref. [28]

However, they also show a strong contribution from the 6p states of gold, so they are better
assigned to the Si-Au bonds. We find a flat band (open circles) associated with the Au-SiD

bonds, and a dispersive (filled circles) corresponding to the Au-SiC bonds. This last band is
theonly onethat presents a dispersion and width consistent with the photoemission data.

Fig. 6.2(b) depicts the same band structure once the effect of the SO interaction has been
included in a non-collinear spin calculation. We still get anon spin-polarized ground state.
The changes are negligible for most surface bands. This is expected since most of them are
localized in regions far from the gold atoms or have a very small dispersion, i.e. small group
velocities. However, the dispersive Au-SiC band develops a considerable SO splitting. This
brings the calculated band structure in reasonable agreement with the experimental spectra.
The experiments [19,28,30] show a∼300 meV splitting near EF (see Fig. 6.4). This splitting
exhibits a linear dependence as a function ofk‖ with a∼1.2 eV Å slope. This can be compared
with our calculated∼200 meV splitting at EF and∼1.4 eV Å slope.

Even though the two SO-split bands are a robust feature predicted for this surface, the
states at the Fermi energy are strongly affected by the otherbands shown in Fig. 6.2(a) and
(b). In our calculations both SO-split bands are metallic; however, there is a band gap just
above EF . This gap relates to the presence of a row of adatoms in the terrace, which induces
an alternation of the SiC-Au-SiC bond angle between 101.8o and 109.6o. The presence of this
gap drives the surface very close to becoming semiconducting. The metallicity of the system
is due to the very small partial occupation of the upper step-edge band that pins the position
of EF .

If the step-edge band is lifted by∼0.1 eV the surface becomes insulating in agreement
with some of the most recent experimental observations [30,32, 33]. Taking into account the
use of LDA, and the very different origin of both bands, the existence of inaccuracies of a few
hundreds of meV in their relative positions is not surprising. In fact, the limitations of LDA to
describe the excitation spectra associated with the dangling bonds in silicon surfaces has been
studied in detail by several authors. For example, in the case of the Si(001)-(2×1) [129] and
Si(111)-(2×1) [130] the gap between the occupied and unoccupied surfacebands is widened
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Figure 6.5: Schematic picture of a plausible model, based onthe theoretical band structure, of the metal-insulator
transition in the Si(557)-Au surface controlled by the buckling of the step-edge. (a) Shows the insulator situation
for the equilibrium, low temperature, structure. The Si-Aulabel indicates the spin-split gold bands with a gap
∆Au due to the periodicity doubling caused by the row of silicon adatoms in the terrace. The buckling of the step
edge opens a gap∆edge, leaving an occupied band coming from the up-edge atoms (B) and an unoccupied band
coming from the down-edge atoms (A). The position of the Fermi level is indicated by EF , andh = |hB − hA|
is the height difference between the atomsB andA in the step edge. Panel (b) shows the metallic situation
for h ∼0. If the buckling of the step edge takes place through a displacive distortion,h ∼0 corresponds to
the high-temperature undistorted configuration. If the transition takes place through an order-disorder transition,
configurations close toh ∼0 will have a larger weight as the temperature is increased.

∼0.5 eV using the GW approximation for the electron self-energy. The unoccupied surface
bands appear shifted to higher energies with respect to the occupied surface and bulk states.
The GW approximation provides a better description of the exchange and correlation effects
than the LDA. In particular, the use of a non-local self-energy allows for a better description of
the electronic exchange which is crucial for an appropriatetreatment of the relatively localized
silicon dangling-bonds. The origin of the step-edge bands in Si(557)-Au is very similar to, for
example, the surface bands associated with the tilted dimers in the Si(001)-(2×1) surface.
Therefore, we can expect a shift of the unoccupied step-edgeband to higher energies by a few
tenths of eV using a description of the exchange and correlation beyond DFT-LDA.

6.3 Step-edge buckling and the metal-insulator transition

We proceed to demonstrate how the theoretical model of Figs.6.2 and 6.1 contains all the
necessary ingredients to justify the appearance of a metal-insulator transition driven by the
step-edge distortion. Fig. 6.5 schematically presents themain ingredients and clarifies a pos-
sible mechanism for such transition. These are:

(i) due to the periodicity doubling imposed by the presence of aneighboring row of silicon
adatoms, a band gap∆Au appears in the Si-Au bands at the Brillouin zone boundary;

(ii ) the buckling opens a gap between occupied and unoccupied levels at the step edge
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∆step, the size of this gap depends on the strength of the step-edgedistortion, i.e. is a function
of |h| = |hB − hA| the difference between the height of up (B) and down-edge (A)atoms
along the step edge (see Fig. 6.1);

(iii ) the Fermi level position is controlled by the relative position of the upper step-edge
band (this band is unoccupied at low temperature, its energybeing dependent on the step-edge
distortion) and the top of the occupied Si-Au bands;

(iv) if the alignment of the Si-Au and step-edge bands is appropriate, a change in size of
∆step will drive a metal-insulator transition (compare Fig. 6.5 (a) and (b)).

If the band structure of Si(557)-Au is qualitatively similar to that in Fig. 6.5 (see Sec. 6.2),
a displacive-like transition of the step edge between a distorted (h = heq) low-temperature
and an undistorted (h ∼ 0) high-temperature configurations will be accompanied by a tran-
sition from an insulator to a metallic state as the temperature is raised in agreement with the
experimental observations [30]. Thus the connection between the step-edge distortion and
the metal-insulator transition of the Si-Au bands has been established: the metallic/insulator
character is determined by the position of EF , the size of∆step controls EF , and∆step is
determined by the strength of the distortionh.

We could think the step-edge transition to be order-disorder, with the system fluctuating
between two equivalent equilibrium configurations at room temperature. This is in complete
analogy with the “dynamical fluctuation" model accepted forthe Sn/Ge(111) and related sur-
faces [131] and was our first suggestion of the character of the transition [71]. On the other
hand, such an order-disorder transition would make difficult the direct application of the model
of the metal-insulator transition sketched in Fig. 6.5. Thedisplacive or order-disorder char-
acter of the phase transition depends on the ratio between the energy gain associated with
the local distortion and interaction between distortions created in nearby sites, and how such
interaction decays with distance. As a function of these parameters, there is a continuous
crossover between both types of phase transitions [108,132,133]. Unfortunately, the informa-
tion necessary to fully characterize the step-edge structural transition in the Si(557)-Au cannot
be obtained fromab initio calculations using small unit cells and thus is beyond the scope of
the study. We notice, however, that the time spent by the system in configurations with small
values ofh (slightly distorted step edge), and thus metallic, increases as the temperature is
raised even in the case of an order-disorder transition.

In the following sections we will analyze the changes of the electronic structure as a func-
tion of the step-edge distortion. We will see that these results support the plausibility of the
model proposed in Fig. 6.5 and reproduce most of the featuresof the recent STM and STS
experiments. [33,34,37]

6.4 Step-edge buckling: energetics and band structure

Fig. 6.6 presents the total energy as a function of the step-edge bucklingh. With the DZP
basis set the buckling distortion is favorable by at least 120 meV, with a DZ basis set, like the
one that we used in our first study of this problem [71], these values are reduced to∼30meV
and 0.4Å. The value of the distortion at equilibriumheq is 0.65 Å. A value ofh corresponds
to a given up-down configuration along the step-edge, while−h corresponds to the reverse ar-
rangement. Therefore, with find equilibrium configurationsatheq and−heq. Notice, however,
that one of them is slightly more stable (by 11 meV). This asymmetry is due to the different
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Figure 6.6: Total energy calculated with a DZP (open circles) and DZ (filled circles) basis sets as function
of the relative height (h) of the step-edge atoms. Notice theslight asymmetry of the curve corresponding to
the inequivalency of the two step-edge positions due to the presence of a row of adatoms in thesameterrace.
Three configurations, corresponding to different sizes of the step-edge buckling are selected: configuration (1)
corresponds to a negligible buckling, (2) to an intermediate value and (3) is close to the optimum strength of
the distortion. The local density of states and band structure of these configurations are analyzed and presented
below in Figures 6.7, 6.8 and 6.12

registry of the two step-edge atoms with respect to the silicon adatoms on thesameterrace,
which are located∼12 Å away. Both step-edge positions are equivalent respect to the closest
adatom row, located∼7 Å away from the step edge.

The results using the DZP basis for the energetics of the buckling distortion seem to be
more consistent with the experimental observation. The value of 30 meV obtained with the
DZ basis is too small to explain the observed stabilization of the step-edge buckling at tem-
peratures of 78 K [33]. However, we should stress two points here. On the one hand, present
theoretical methods [134] are probably not accurate enoughto reliably estimate the small
energy associated with the step-edge distortion in the Si(557)-Au surface. We can expect con-
siderable inaccuracies associated with the use of approximate DFT functionals. On the other
hand, this quantity is not sufficient to determine the apparent transition temperature in a real
system with defects (see, for example, the “vacancies" in the step edge and the adatom row of
the Si(557)-Au surface in Fig. 6.11 and Fig. 6.15). It has been shown [135] that the presence
of defects can stabilize locally a reconstruction well above the phase transition temperature of
the system. Given the very small energy differences betweendifferent reconstructions of the
surface, the presence of defects is usually a very strong perturbation. Defects typically pin a
particular surface configuration in their neighborhood. Therefore, the temperature at which
a single step-edge configuration starts to be resolved in theSTM images will depend criti-
cally on the type and the density of defects present on the Si(557)-Au surface. For example,
the room temperature STM images of Krawiecet al. [34] resolve the step-edge modulation in
clean sections of the step-edge of at least 10 nm limited by defects. The stabilization of the pe-
riodicity doubling of the step edge at room temperature nearby defects has also been observed
by other authors [28, 33]. Since the appearance of a relatively large density of defects seems
unavoidable in this surface, the estimation of the transition temperature from calculations of
the “perfect" surface can be questionable.

In Fig. 6.6 we have selected three different configurations corresponding to, (1) a very
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(1) (2) (3)

Figure 6.7: Band structures of the three configurations selected in Fig. 6.6. The different symbols indicate the
main atomic character of the different surface bands. Filled squares for bands coming from the gold atoms
and their neighboring silicon atoms, diamonds for the step-edge atoms, and open circles for the adatoms and
restatoms. In the case of the step-edge, the (partially) unoccupied band corresponds to the down-edge atoms (A
in Fig. 6.1), while the fully occupied one comes from the up-edge (B). As expected the band coming from the
adatoms is unoccupied while the restatom band is fully occupied. Energies are referred to the Fermi level.
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Figure 6.8: Density of states projected onto the step-edge atoms for the three configurations selected in Fig. 6.6.
The energies are referred to the Fermi level.
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Figure 6.9: Experimental normalized dI /dV spectra on the step edges at 300 K (red) and 78 K (blue). The spectra
near Fermi level (bias zero) are enlarged in the inset. Each spectrum is averaged over several equivalent positions
along the step edges. Picture taken from Ref. [33].

small step-edge distortion (h=0.06Å), (2) an intermediate value (h=0.25Å) and, (3) close to the
equilibrium configuration (h=0.70Å). The corresponding band structures along the direction
of the step edge are plotted in Fig. 6.7. The different surface bands are marked according
to their main atomic character. Solid (blue) squares indicate the Si-Au bands, open (red)
circles mark those bands associated with the adatoms and restatoms, and (yellow) diamonds
correspond to the bands coming from the step-edge atoms. We see that only those bands
that come from the step-edge atoms are modified as we change the strength of the buckling
distortion. The step-edge gap∆edge is strongly reduced as the size of the distortion diminish.
The difference between the average position of the step-edge bands is 0.9 eV for configuration
(3), but only 0.2 eV for the structure (1). The occupied step-edge band, associated with the up-
edge atoms, is always very flat (dispersion smaller than 0.1 eV), and its position evolves from
-0.8 eV (below EF ) in (3) to -0.17 eV in (1). The behavior of the “unoccupied" step-edge band,
coming from the down-edge atoms, is somewhat more complex. For configurations (1) and (2)
this band is pinned at EF , whereas its average position in (3) is∼0.15 eV above EF . This is in
agreement with our proposal for the metal-insulator transition. However, while the dispersion
of the band is very small for configurations (1) and (2), for structure (3) it becomes∼0.35 eV.
As a consequence of the strong dispersion, the band presentsa small partial occupation also
in configuration (3). This small occupation may be an artifact of the DFT-LDA calculation as
pointed out in Sec. 6.2.

As expected, when the step-edge bucklingh is reduced, the down-edge atom band is
shifted to lower energies and this shift is accompanied by a charge transfer from the Si-Au
band to the step-edge. However, we can expect this charging to be moderate and the occupa-
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tion of this band should always remain relatively small. Indeed, going from configuration (3)
to (2) shifts down the center of the band∼0.2 eV, while going from configuration (2) to (1)
this band does not considerably move respect to the other surface bands. As a consequence,
the closing of the step-edge gap implies a larger movement ofthe occupied step-edge band,
which moves∼0.6 eV to higher energies. This asymmetric closing of the step-edge gap is
a distinct feature of our theoretical model of the Si(557)-Au and has been claimed to be in
disagreement with the experimental evidence [33]. In fact,the observed gap closing in the
dI/dV spectra on the step edge reported in Ref. [33] and presented in Fig. 6.9 is apparently
symmetric. However, if we examine these data in detail we canfind several features that are in
qualitative agreement with the predictions of our model. For example, the differences between
the low and room temperature data are more significant for theoccupied part of the spectrum.
In particular, a strong peak located at∼0.7 eV below EF in the low temperature spectrum dis-
appears at room temperature. This energy coincides nicely with the position of the occupied
step-edge band in our low temperature configuration (3).

6.5 Simulated STM and STS images

The ground state structure of Fig. 6.1 and the electronic bands shown in Fig. 6.2 can perfectly
explain the low-temperature STM images of the surface in Fig. 6.11. The step-edge exhibits
a buckling, with A atoms lying∼0.7 Å below B atoms. Furthermore, a high contrast between
these two types of silicon atoms is guaranteed. Empty-stateSTM images will preferentially
show A atoms, while filled-state images will reflect the location of B atoms.

The simulated images using Tersoff-Hamann theory (see Sec.2.4.1) can be found in
Fig.6.10 (a), the upper part of the panel corresponding to the ground-state configuration and
the lower part to the reversed step-edge buckling. The images are very similar. They are
dominated by two chains showing a double periodicity along the step-edge direction in good
agreement with low-temperature images reported for this system [19, 30]. One of the chains
is the row of adatoms. The other corresponds to the step-edge, where only every other atom is
visualized.

The situation changes at higher temperatures. The time necessary to flip between the
different step-edge configurations gets shorter as the temperature increases. Given the size
of the calculated energy barrier, at room temperature one can expect that STM images show
a time average of the electronic and atomic structure of the surface. This corresponds to an
order-disorder model of the transition and has been modelled in Fig. 6.10 (b) by averaging the
STM images of the two structures. As a consequence, the double periodicity is lost and all the
atoms in the step-edge appear with similar intensities. This explains the apparent periodicity
doubling observed by Ahnet al. [30] upon cooling. A similar effect would be observed if the
transition is of a displacive type. In such case the room temperature structure will not show a
periodicity doubling. However, taken into account the small energy barrier and the behaviour
of silicon surfaces, it is quite tempting to identify the transition with freezing of the dynamical
fluctuations.

In Fig. 6.8 we show the projected density of state (PDOS) ontothe step-edge atoms as a
function of the energy. This can be directly compared with the dI/dV spectra measured on
the step edge and presented in Fig. 6.9 The solid (blue) curvepresents the PDOS for the
our low temperature configuration (3). Below EF we find the main peak at -0.71 eV in good
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Figure 6.10: Simulated STM images at low (a) and high temperature (b) for a +0.7 V bias voltage (empty states).
The upper part of panel (a) corresponds to the ground state structure, while the lower part is obtained with the
reversed step-edge configuration. Panel (b) combines both images.

Figure 6.11: Experimental Empty-state STM images at (a),(c) 300 and (d),(e) 78 K with a sample bias of (a),(d)
Vs=1.0 and (c),(e) 0.7 V. The structural model of Si(557/Au is shown in (b) schematically, where the large and
small circles denote Au and Si atoms, respectively. Picturetaken from Ref. [30].
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Figure 6.12: Calculated maps of the density of states as a function of the energy for the Si(557)-Au surface.
Panels (a), (c) and (e) show the result for a buckled step-edge (corresponding to configuration (3) in Fig. 6.6).
Panels (b), (d) and (f) correspond to a negligible step-edgebuckling (using configuration (1) in Fig. 6.6) The
density of states is integrated in various energy ranges: from -0.9 to -0.5 eV (panels e and f), from -0.45 to -0.15
eV (panels c and d) and from -0.15 to 0.15 eV (panels a and b), with zero corresponding to the Fermi energy. The
locations of one adatom row and one step edge are indicated by“ad" and “edge", respectively. The dimension of
each image is∼ 3.3 nm× 1.5 nm. The used gray scale (arbitrary units) is indicated.

agreement with the experiment. We also find the contributioncoming from the bulk states up
to ∼0.2 eV below EF . At higher energies we find a gap in the PDOS. Two peaks, at EF and
0.24 eV above EF , appear due to the dispersion of the down-edge atom band. Besides the
small occupation of the down-edge atom band, which is not observed in the experiment and
gives rise to a peak at EF , the main peak at -0.71 eV and the gap extending down to -0.2 eV
agree with the observed low temperature dI/dV spectra. For configurations (2) and (1) the
main occupied peak shifts to higher energies and, as a consequence, the gap in the PDOS is
considerably reduced. Although the changes are more modestabove EF than below EF , we
also observe a shift to lower energies of the main unoccupiedpeak that becomes pinned at
EF . Configurations like (1) and (2) are only available at high temperature. If the structural
transition is purely displacive, then the high temperaturespectra can be identified with the
curve for structure (1). However, in an order-disorder transition the high temperature dI/dV
corresponds to an average of the curves obtained for different structures. Since STM is a local
probe, such an average has to reflect the dynamics of the fluctuation process, not just a thermal
average. Thus, we can expect structures similar to configuration (1) to have a strong weight in
this average.

Thus we have seen that our model can explain some features of the dI/dV obtained on
the step edge of the Si(557)-Au surface. It is also interesting to note that these experiments
mainly reflect the changes in the atomic and electronic structure of the step edge. The curves
in Fig. 6.8 do not contain features directly related with theSi-Au bands that dominate the pho-
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Figure 6.13: Experimental color STM topographic images of Si(557)-Au at (a) 300 and (c) 78 K Vs= +1.5 V.
dI/dV maps at (b) 300 and (d) 78 K, which were acquired by CITS measurements at the given bias voltages, si-
multaneously with the constant current topography. Here, the intensity scale of the dI /dV maps, which represents
local density of states (LDOS), is given at the bottom. Picture taken from Ref. [33].
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Figure 6.14: Simulated STM images with bias of (a) -1.0 V and (b) +0.6 V. Plots in (c) and (d) show the calculated
topography along the step edge (“edge") and the row of adatoms (“ad") respectively. Solid lines are for empty
states (positive bias) and dashed lines for occupied states(negative bias). The used scan lines are indicated by
dotted lines in (a) and (b).
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Figure 6.15: The 9.75×13.5 nm2 Experimental STM topography images of the same area of the Si(557)/Au
surface recorded at two different sample biases U=-1.0 V (a)and U=1.0 V (b) with the tunneling current I=0.05
nA. The bottom panels show profile lines perpendicular to thechains, indicated by long arrows in the main
panels. Picture taken from Ref. [34].

Figure 6.16: Experimental STM cross sections along two different chain structures in the Si(557)/Au surface
(see Fig. 6.15). Along chain C for bias voltage U=-1.0 V (solid line) and +1.0 V (dashed line), the bottom panel,
along chain D. Picture taken from Ref. [34].

toemission. In our model the metal-insulator transition ofthe Si-Au bands is a consequence
of the change in position of the down-edge atom band, from above EF to be pinned at EF .

Fig. 6.12 shows the calculated maps of the local density of states (LDOS). These maps can
be compared with the dI/dV maps of Fig. 6.13. The LDOS maps of the surface were produced
mimicking the experimental procedure: first we find the “tip height"Ztip(x, y) corresponding
to a constant current image at a positive bias of +2.0 V (the results of the LDOS maps do not
significantly depend on this voltage),

I =
∫ EF +V

EF

dǫ ρ(x, y, Ztip(x, y), ǫ) = constant, (6.1)

whereρ(r, ǫ) is the local density of states calculated for the energyǫ at pointr. We then plot
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the local density of states on the surfaceZtip(x, y) integrated in small energy intervals∆V as
an approximation to the measured dI/dV maps

LDOS(x, y, V ) =
∫ EF +V +∆V/2

EF +V −∆V/2
dǫ ρ(x, y, Ztip(x, y), ǫ). (6.2)

The size of the intervals∆V depends on the fineness of the k-sampling and the dispersion of
the bands. For typical calculational parameters∆V cannot be too small. In our case we have
divided the range between +0.15 eV and -0.9 eV in two intervals of 0.3 eV and one of 0.4 eV,
which correspond to the main position of the different surface bands in the low temperature
structure.

In agreement with the experimental results, the data in Fig.6.12 are dominated by features
coming from the step edge and the adatom-restatom row, that correspond respectively to the
α andβ chains of Fig. 6.13. At low temperatures and small voltage (panels (a) and (c)) the
LDOS maps are dominated by the signal coming from the restatoms at∼0.3 eV below EF .
We can only see extremely faint features associated with thestep edge and the Si-Au chain
in the middle of the terrace. We need to go to lower energies, around -0.8 eV, to observe a
strong feature associated with the step edge (panel (e)). Wecan also see an increase in the
intensity of the signal coming from the middle of the terrace. This corresponds to a relatively
flat band associated with one of the three silicon atoms bonded to each gold atom. This surface
resonance is not clearly marked in Fig. 6.7 but is marked withopen circles in the band structure
of Fig. 6.2. The bonds between gold and the other two silicon atoms generate the dispersive
Si-Au band seen in photoemission that, however, only produces a very weak signal in the STM
and STS images. At high temperature (panels (b), (d) and (f))the situation changes as seen in
the experiment: the step-edge becomes clearly visible at low voltages.

Recently, Krawiecet al. [34] have reported an interesting experimental result. While the
topography of one of the two atomic rows that characterize the STM images of the Si(557)-
Au depends on the sign of the applied bias voltage, it remainsunchanged for the other wire.
They suggest that the different behavior is an indication that both wires are made of different
materials, gold and silicon (see Fig. 6.15 and Fig. 6.16). However, we claim that this ex-
perimental observation can be perfectly understood using the present structural model where
the two prominent chains are assigned to the step edge and theadatom row respectively. The
step edge shows a reverse corrugation as function of the biaspolarity, whereas this does not
happen for the adatom row. The silicon adatoms are∼1.3 Å higher than the other atoms in
the surface layer, except for the restatoms that only lie∼0.8 Å below. Although the adatoms
produce more pronounced features at positive bias and the restatoms at negative bias, for scan
lines taken along the rows of adatoms the atomic topography dominates over the electronic
effects. Therefore, the STM images show maxima at the adatompositions irrespective of the
sign of the applied voltage. This can be seen in Fig. 6.14 (d).The corrugation is larger for
empty states and the data are in good qualitatively agreement with the images of Krawiecet al.
in Fig. 6.16. In contrast, the electronic effects dominate for the scans taken along the buck-
led step-edge, and the topography can show a pronounced biasdependence. This is shown
in Fig. 6.14 (c), again in good qualitative agreement with the data for chain C in Fig. 6.16.
Notice that we use our low temperature structure (with fullydeveloped step-edge buckling) to
generate the images in Fig. 6.14. Although the experiments of Krawiecet al. are made at room
temperature, the use of this geometry is justified by the factthat these authors concentrate in
structure of the step edge of a few nanometers bounded by defects. The presence of defects
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stabilizes the step-edge distortion up to room temperaturefor this relatively short chains, as
was mentioned above.

It is interesting to note that one of the criticisms of Yeomet al.[33] towards the low temper-
ature structure proposed by Robinsonet al. [29] and Sánchez-Portalet al. [70, 71] was based
on the predictions, using such structural model, of the appearance of a step-edge modulation
for both, empty and occupied states [71]. According to Yeomet al., such modulation could
only be observed for empty states. However, this is disagreement with the results presented
in Ref. [34] that we just have discussed above. Of course, onecould argue that the step-edge
modulation observed in the presence of defects is differentfrom the modulation stabilized at
low temperature. However, most experiments to date have been performed on samples with
a considerable concentration of defects and the observations of Krawiecet al. seem to agree
with the predictions from theory. Thus, it is quite temptingto identify the distortions observed
at low temperature and in the presence of defects. Furthermore, the simulated STM images
seem to reproduce the change in the relative intensity of thestep edge and the adatom row as
a function of voltage. In Fig. 6.14 (a) and (b) we can see that for a voltage of -1.0 V the step
edge is more intense that the adatoms, whereas for +0.6 V the situation is reversed. This is in
agreement with the STM images shown in Fig. 6.15, although might be strongly dependent
on the tunneling conditions (e.g. this change is not so clearin the data in Fig. 2 of Ref. [33]).

The agreement of the simulations in Fig. 6.14 with experiment is qualitative. From a
more quantitative point of view there are some discrepancies: i) the calculated corrugations
are too large, andii ) the step edge shows a larger corrugation for occupied states than for
empty states, which is not observed in the experiment [34]. We should point here that we
are using the simple Tersoff-Hamann [99] theory for our simulations. In this theory the STM
images are obtained from the local density of states of the surface according to Eq. 6.1 and
all the effects induced by the tip are neglected. The observed discrepancies are probably
related to the simple theoretical treatment and the use of a basis set of confined atomic orbitals
in our calculations [84, 120]. This basis set is numericallyvery efficient. However, due to
the short cut-off radii of the orbitals, it is not adequate tosimulate the smooth decay of the
wavefunctions towards the vacuum and tends to emphasize thestructural corrugation over the
electronic effects and, in general, leads to an overestimation the surface corrugation. This also
explains, at least partially, the second discrepancy. The empty states images might be also
influenced by the difficulties of the DFT calculations to properly describe the excited states.

6.6 Molecular Dynamics Simulations

Our MD simulations have been performed using a DZ basis set, similar to that used in the
initial studies of the structural properties of the Si(557)-Au surface. [69–71] With this basis
set we can perform simulations of several picoseconds. Although less complete than the DZP
basis set the structural and electronic properties obtained with the DZ basis set are very similar
to those described above. Fig. 6.17 shows the behavior of several degrees of freedom during
the last 4 ps of one of our MD simulations. The total simulation time is 8 ps (8000 time steps).
The temperature of the system oscillates around 300 K after athermalization time of∼1 ps.
Our simulation cell contains one unit cell of the Si(557)-Ausurface. With this “small" cell
we cannot obtain a realistic picture of the structural transition in the surface. Furthermore,
we have seen that the use of a DZ basis set causes a severe underestimation of the energy
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Figure 6.17: Last 4 ps of a molecular dynamics simulation of the Si(557)-Au reconstruction performed at a
temperature of∼300 K. A DZ basis set was used for this calculation and the total simulation time is 8 ps. Panel
(a) displays the height of different atoms as a function of time (see also Fig. 6.1): adatom (ad, greed dashed),
restatom (res, solid black) and the step-edge atoms (B, solid blue and A, dashed red). The two inequivalent Si-
Au-Si bond angles (α andβ) are presented in panel (b). The vertical lines mark the instantaneous configurations
for which the band structures are shown in Fig. 6.18

barrier between the two step-edge equilibrium configurations (the barrier is∼30 meV and
the equilibrium step-edge distortionheq ∼0.4 Å). However, the MD simulations are a very
important tool to understand the coupling between different vibrational modes and between
the atomic and electronic degrees of freedom. In particular, we want to check if a well-defined
fluctuation of the step edge exists at high temperatures and how this movement is coupled
with other vibrational modes. We also study the effect in theelectronic structure of atomic
movements that can be excited at reasonable temperatures and are different from the step-edge
fluctuation studied in detail above.

Fig. 6.17 shows a clear oscillation of the step-edge, the atoms changing their relative po-
sitions and residing for intervals of less than 1 ps in a givenup-down configuration. We can
also observe that the system spends a considerable amount oftime in configurations where
the step-edge distortionh is small (corresponding to a small step-edge gap∆edge). Besides
the step edge, other degrees of freedom show strong fluctuations in spite of the moderate tem-
perature. Particularly remarkable are the cases of the restatom (marked withres in Fig. 6.17,
see also Fig. 6.1), the Si-Au-Si bond angles (α andβ) and, to less extent, the adatom (ad).
As a consequence, the corresponding energy levels also exhibit a considerable movement dur-
ing the simulation. The case of the step-edge bands has been studied in detail in Sec. 6.2.
The bands associated with the restatom and the adatom oscillate with an amplitude of up to
∼0.2 eV. This can be easily appreciated for the adatom band (flat band∼0.5 eV above EF ) in
the band structures shown in Fig. 6.18 corresponding to different snapshots of the simulation.
This movement might be one of the reasons why a well-defined restatom state has not been
detected in photoemission experiments [19] on this surfaceand why the adatom band appears
as a relatively broad structure between 0.5 and 1 V (with its maxima at∼0.7 V) in recent STS
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Figure 6.18: Band structures (calculated with a DZ basis set) corresponding to the snapshots selected in Fig. 6.17.
For configurations (ii), (iii) and (v) (upper panels) the dispersive Si-Au band clearly crosses EF and the down-
edge atom band is pinned at EF whereas, for configurations (i), (iv) and (vi) (lower panels), the lower branch of
the Si-Au band lies below EF and a tiny gap is developed between this band and the down-edge atom band, i.e.
EF lies within the Si-Au band gap∆Au.

spectra obtained at room temperature [37]. The Si-Au-Si bond angle has an important influ-
ence on the Si-Au band that dominates the photoemission of the surface. The presence of a
row of adatoms induces a periodicity doubling in the terraces of the surface that is reflected in
an alternating Si-Au-Si bond angle and the opening of a gap∆Au in the dispersive Si-Au band.
In the equilibrium configuration the values of these two angles are 111.6 and 103.7 degrees
respectively forβ andα. In Fig 6.17 we see that these values change by∼ ±10 degrees along
the simulation. Changing the Si-Au-Si bond angles changes the size of the∆Au gap and thus
influences the metallic or insulating character of the instantaneous configurations.

The influence of the coupling between the electronic and atomic degrees of freedom in the
band structure is clearly shown in Fig 6.18 and Fig. 6.19. We stress that these band structures
are calculated with a DZ basis set and, therefore, differ slightly from those shown in Fig. 6.7,
calculated with a more complete DZP basis. Fig 6.18 shows theband structure for a few
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Figure 6.19: Average band structure (calculated with a DZ basis set) during the last 3 ps of the molecular
dynamics simulation of the surface at room temperature shown in Fig 6.17. The average is done over 151
configurations (i.e., the band structures are calculated atintervals of 20 fs). The time average is compared with
the band structure for the equilibrium configuration.

selected structures (indicated in Fig. 6.17). Fig 6.19 shows the band structure averaged over
the last 3 ps of the simulation (using 151 different configurations, each one taken every 20 fs)
and compares it with the band structure for the equilibrium structure. The three band structures
in the upper panels of Fig 6.18 are clearly metallic: the dispersive Si-Au band crosses EF and
the down-edge atom band is pinned at the Fermi level. For configurations (ii) and (iii) there is
an evident reduction of the Si-Au gap∆Au and a shift in the position of the Si-Au band. This
is due to the change of theα andβ angles that become quite close or, like in structure (ii), even
appear reversed respect to the equilibrium configuration. For configuration (v) we can also see
that the step-edge gap∆edge is almost closed due to the very similar height of both step-edge
atoms. The three lower panels of Fig. 6.18 show semiconducting band structures where the
lower branch of the Si-Au band is fully occupied and a small gap is developed between the
down-edge atom band and the Si-Au band. As a consequence, theFermi level lies inside∆Au.
This is particularly clear in the case of configuration (i). In the three configurations, angles
α andβ differ by a similar or larger amount than in the equilibrium structure and the step
edge shows a considerable buckling. This guarantees large values of∆Au and∆step and thus
insulating configurations of the surface.
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The results of the MD simulation indicate that at room temperature we find large fluctua-
tions of∆edge and∆Au. According to our model of the electronic structure of the Si(557)-Au
surface (schematically summarized in Fig. 6.5) this implies that at room temperature the
system alternates between metallic and insulating configurations. This phenomenon does not
depend on the character of the ground state, which will be insulating if the values of∆Au and
∆step are large enough in the equilibrium configuration.

Interestingly, many bands that can be found in the equilibrium band structure produce
very faint signals in the MD average shown in Fig. 6.19. This is the case, for example, of the
adatom band and the occupied (up-edge atom) step-edge band which almost disappear from
the average. The restatom band also produces a quite weak andbroad structure around -0.2 eV.
The most visible features in the MD averaged band structure are: i) the occupied part of the
Si-Au band which extends from EF at the zone boundary down to -0.6 eV where it merges
with the bulk bands and the unoccupied branch of the Si-Au band from∼0.4 eV above EF to
higher energies,ii ) a quite flat feature coming from the unoccupied step-edge band right above
EF (and thus not visible by photoemission) and,iii ) the silicon bulk bands extending around
Γ from∼0.5 eV below EF towards lower energies.

6.7 Conclusions

We have presented a detailed discussion of the electronic structure of the Si(557)-Au surface
and its coupling to the structural degrees of freedom. Our calculations are based on the struc-
tural model for the low temperature phase of the surface obtained from X-ray diffraction [29]
and density functional calculations [70]. The results are compared with recent experimental
information obtained by ARP [28,30], STM and STS [33,34,37]. Our main observations are:

i) The band splitting observed in the experimental electronicband structure is successfully
reproduced, pointing out the important role played by the spin-orbit coupling in this system.
The spin-orbit splitting in this class of systems has also been reported experimentally very
recently [32, 62]. From a general perspective, this raises the question of whether systems
composed by atomic-scale wires of heavy atoms on semiconducting substrates can be used to
create or transport spin-polarized currents, and thus be useful for future electronic devices.

ii ) Contrary to the claims of Yeomet al., we have seen that the calculations using the
theoretical structural model in Fig. 6.1 provide nice qualitative agreement with the STM and
STS images obtained at low temperatures [33] and around structural defects that stabilize the
step-edge distortion up to room temperature [34]. Togetherwith the successful description
of the experimental band structure, these results give further support to the current structural
model of the Si(557)-Au surface.

iii ) We have shown that the theoretical band structure is close to a metal-insulator transi-
tion. The transition is controlled by the relative positions of the dispersive gold-derived and
the flat step-edge bands. The later splits into an occupied and an unoccupied band separated
by a gap∆edge whose size depends on the degree of step-edge buckling, while the former
shows a gap∆Au associated with the presence of a row of adatoms doubling theperiodicity
along the[1̄10] direction. If∆Au and∆edge are large enough the surface becomes insulating
at low temperature (see Fig 6.5).

iv) At low temperature the step-edge distortion is large and sois ∆edge. As the temperature
increases, configurations with a smaller step-edge buckling, and thus with a smaller∆edge,
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are available. For sufficiently small values of∆edge the system becomes metallic. We argue
that this is consistent with the observation of a metal-insulator transition in the Si(557)-Au
transition [30].

v) In the present model the metal-insulator transition is accompanied by an asymmetric
(respect to EF ) closing of the gap. Yeomet al. claimed that this is in disagreement with their
experimental results. However, we argue that our data provide a simple explanation to the
strong changes observed for the occupied states in the dI/dVspectra taken over the step-edge
by these authors [33] (a strong peak at -0.71 eV in the low temperature spectra disappears at
higher temperatures).

vi) Our simulated dI/dV maps are in good qualitative agreementwith the experimental
results at both low and high temperatures. We assume that at room temperature the system
spends a considerable amount of time in structures with a small step-edge distortion. The
step edge produces a strong signal that dominates the dI/dV maps of these structures at low
voltages, however, in the low temperature structure the step edge does not produce any distinct
feature at small voltages.

vii) Molecular dynamics simulations of the system show that, besides the fluctuation of the
step edge, other vibrational modes are present at room temperature and also have an influence
on the electronic structure. In particular, the oscillation of the Si-Au-Si bond angles changes
considerably the∆Au gap. Most configurations with small∆Au are metallic and contribute
efficiently to the metallic character of the surface at room temperature.

viii ) Below EF the MD averaged band structure is dominated by a gold derivedband that
extends from EF down to -0.6 eV where it merges with the bulk silicon bands. Other sur-
face bands in the occupied part of the spectrum produce weaker features due to the thermal
fluctuations of the structure. This seems in agreement with the observed photoemission.

The results presented in this chapter seem to correctly explain many of the experimental
observations on the Si(557)-Au surface. However, further theoretical and experimental work
is still necessary to understand this surface. In particular, it is necessary to characterize the
dynamics of the structural transition [133] and its relation with the observed metal-insulator
transition. Furthermore, the photoemission data of Ahnet al. [30] suggest that only one of
the dispersive bands that dominate the spectrum of the Si(557)-Au suffers the metal-insulator
transition. This is difficult to explain within the current theoretical model, where the appear-
ance of two bands is due to the spin-orbit splitting. The disorder associated with the presence
of defects and the different photoemission matrix elementsof the two bands can be behind this
observation and have to be analyzed before driving further conclusions from this observation.
Finally, we have seen that the calculated LDA ground state ofthe Si(557)-Au is metallic. This
is due to the small overlap between the down-edge atom band and the dispersive Si-Au band.
We have argued that this failure could be corrected with an improved treatment of the elec-
tron exchange and correlation that would provide a better description of the excited electronic
states. This is challenging due to the large cell necessary to study the Si(557)-Au surface.
However, it would be very interesting to direct future efforts along this direction.
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Si(553)/Au

7.1 Introduction

The existence of the Si(553)/Au reconstruction - exhibiting clear one-dimensional properties
both in STM images and in the band structure - was recently demonstrated by Crain et. al. [58].
The physical properties of the Si(553)/Au have many similarities with the Si(557)/Au recon-
struction studied in the previous chapter, but it bears two very important structural differences:
(i) the terraces are cut into opposite direction than in the Si(557)/Au and (ii) the terrace-width
is narrower, consisting only of nine silicon atoms (in the case of Si(557)/Au they are twelve).
In the electronic structure, the existence of a metallic one-dimensional band with a peculiar
∼ 1

4
filling has been reported for the Si(553)-Au surface [1, 58] (see also Fig. 7.1). This

quarter-filled band could create an opportunity for observing large spin-charge separation if
electron-electron interactions (U) could be increased, for example, using a somewhat different
substrate. This is in contrast with half-filled bands, whichare unstable against a Mott-Hubbard
transition for large values of U, preventing the observation of a Luttinger metal [1].

In the STM images, some interesting effects are seen in the terrace step-edge (that is the
most brightest feature in STM). Snijders, et. al. [64] find a lowering of the symmetry in the
step-edge to×2, as the temperature is lowered from room temperature down to ∼ 100 K
and a×3 periodicity below∼ 40 K, accompanied with a×2 periodicity at the middle of the
terrace [64]. Ahn. et. al., [59] find a similar behaviour and both authors observe a gap-opening
in the electronic structure corresponding to the differentperiodicities (see also Figs. 7.2 and
7.14).

Althought there is lot of experimental data available on theSi(553)/Au reconstruction
[1, 58, 59, 61, 63, 64], its geometry on the atomic level is still not completely established. As
a starting point, it would be interesting to obtain the high-temperature (×1 periodic) structure
in order to understand the peculiar electronic structure seen in the experiments. With this
objective, in Sec. 7.2, we first propose five models based on our earlier experience with the
closely related Si(557)/Au surface of Chap. 6. Then, in Secs. 7.3-7.7 we go even further and
develop a labelling scheme for finding all physically sound surface geometries. This method
can be applied in general to all similar surface reconstructions and it allows us to enumerate the
amount of different geometries and generate them automatically. We use it to check a large
group (210 in total) of trial geometries for the Si(553)/Au reconstruction and find various
energetically very stable models. We also test some surfacegeometries featuringπ-bonding
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Figure 7.1: Experimental angle-resolved photoemission data of the band dispersion (c) and Fermi surface (b) of
the Si(553)-Au chain structure. The Brillouin zone is givenin (a), together with a tight binding fit to the Fermi
surface. Three metallic bands disperse through the Fermi level (EF =0), two of them about12 filled and one∼ 1

4
filled. High photoemission intensity is shown dark. kx is along the [11̄0] chain direction and ky along [112̄].
Picture taken from Ref. [58].

chains.
At least within our computational scheme, the new models areenergetically comparable or

even more favourable than the sole structure proposed to date for the Si(553)-Au surface [1].
Band structures are analyzed and the possible origin of the dispersive one-dimensional bands
in this reconstruction is discussed.

In the final section 7.8, we test, usingab-initiocalculations the proposition made by Ghose,
et. al. [61] for the Si(553)/Au structure. This model, basedon the x-ray diffraction experiment
is quite a peculiar one, involving twice the amount of gold than other proposals [58–60,63,64].
The stability, geometric- and electronic-structure of this model are analyzed.

Parameters according to Tab. 2.2 and corresponding to the LDA approximation (Si.psf ,
H.psf andAu.vps ) are used throughout this chapter. Some calculations usingthe VASP
code are performed in Sec. 7.7.

Some of the results of this chapter have been published in Ref. [102].

7.2 Structures based on analogies

In this section, we base our investigation of the Si(553)-Aureconstruction on a plausible
analogy with the closely related and better known Si(557)-Au surface of Chap. 6. Both
surfaces contain steps along the[11̄0] direction. In fact, the orientation of the chains along
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Figure 7.2: Experimental STM topographs of Si(553)-Au at (a) 300 and (b) 45 K for an area of 10x10 nm2 at 0.2
and 0.5 V biases (empty states), respectively. The ball and stick model in (a) shows the cross-sectional view of
the unreconstructed Si(553) surface with steps and a narrowterrace. Picture taken from Ref. [59].

the[11̄0] directions seems to be common to all the silicon reconstructions forming monatomic
gold chains [1]. We recall some properties of the Si(557)-Aureconstruction from Chap. 6:i)
Gold atoms occupy substitutional positions in the top Si layer in the middle of the terraces;
ii ) the atoms close to the step-edge are strongly rebonded, forming a structure reminiscent
of the so-called honeycomb chain (HC) [66];iii ) the structure doubles its periodicity along
the direction of the steps due to a buckling of the atoms in thestep-edge;iv) there is also
a row of adatoms on each terrace. The miscut direction is opposite for the Si(553)-Au and
the Si(557)-Au surfaces. This would open the possibility ofa different rearrangement of the
step-edge in both cases. However, we do not consider this possibility here, and our models for
the Si(553)-Au are fabricated using the building blocks listed above.

We recall from Sec. 3.4 and from Chap. 4 and Chap. 6 the importance of the HC structure
for the gold induced reconstructions; the HC is known to occur in the Si(557)-Au surface [29,
69, 70]. We saw in Chap. 4 that it is also the key ingredient of arecent proposal for the
structure of the Si(111)-(5×2)-Au reconstruction. The HC structure is illustrated again in
figure 7.3. We see that the HC structure involves two unit cells of the unreconstructed Si(111)
surface, with one atom removed from the top Si layer. This flattens the surface and removes
surface stress as was discussed in Sec. 3.4. The inset of figure 7.3 shows a side view of
the HC. The unsaturated bonds are illustrated, and the mechanism behind this reconstruction
was explained in Sec. 3.4. We recall from Sec. 3.4 that the electron count in the HC is
odd, so one additional electron is needed to yield an electronic closed-shell structure. If there
is a neighbouring alkali-metal atom, it donates one electron to the HC, thus contributing to
the stabilization of the structure. In the case of gold, which has a stronger electron affinity,
the situation is different. Gold is likely to take electronsaway from the silicon structure. In
principle, this does not prevent an electronic stabilization mechanism: one electron may be
transferred to the 6s Au state, leading again to a closed-shell structure. However, in reality we
are far from thisionic situation. As we saw in the case of the Si(111)/Au-5x2 and Si(557) in
Chaps. 4,6, the states of gold are strongly hybridised with those of the neighbouring silicon
atoms creating several dispersive bands that are, in principle, metallic.
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The structural elements presented above can be used to buildmany models for the gold
induced reconstructions on stepped silicon surfaces. The length of the terraces and the registry
with the underlying silicon layers (assumed to be unreconstructed) impose some geometrical
restrictions. Some of these were explained in Sec. 3.5. The effect of the introduction of the
HC in the Si(111) is schematically illustrated in figure 7.3.While flattening the surface, the
HC creates a stacking fault towards the[1̄1̄2] direction ( at the right of the HC in the figure)
that can be avoided by introducing a surface dislocation (SD). In the upper part of figure 7.3
the SD is introduced immediately after the HC, thus recovering the perfect stacking of silicon.
On the lower part of the figure the stacking fault remains until the SD is introduced.

b

a a

Stacking faultHoneycomb Chain

Surface dislocation
HC from side

b
aa

Figure 7.3: Some structural patterns appearing in the metalinduced reconstructions of the Si(111) surface. The
bonds within the surface bilayer are indicated by solid lines while dotted lines are used for the underlying bilayer.
The atoms occupying the highest positions in the surface bilayer are represented by solid circles. Open circles
are used for those in the lower bilayer. A side view of the HC structure is shown in the inset.

To name our structural models of the Si(553)-Au surface we have developed a notation
which we believe may be useful for other similar systems (this notation will be further de-
veloped in Sec. 7.4). The first double-layer in the unreconstructed Si(111) can be expressed
using a 1×1 unit cell with a two atoms basis. This entity is named “S”. Ifthis block contains a
stacking fault (i.e. its bonds coincide with those of the second double-layer) it is called “Sf ”, f
standing for faulted. HC has a 2×1 unit cell and is indicated by “H”. The SD is indicated with
“D”. It is basically equal to “S”, but one of its atoms is over coordinated. Using this notation,
the upper part of figure 7.3 can be abbreviated as (starting from the HC) HDS and the lower
part as HSfD. The substitution of a silicon atom by gold is indicated using a+ superscript.

Our models for the Si(553)-Au surface can be seen in figure 7.4. Models I to V are gen-
erated by placing the HC structure with the accompanying dislocation, and the chain of gold
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Figure 7.4: Relaxed structures of the different models for the Si(553)-Au surface studied here. Models I to V are
proposed from an analogy with the structure of the Si(557)-Au surface. Structure VI has been proposed recently
by Crainet. al.[1]. Large circles indicate gold atoms. Some of the atoms arelabelled (see figure 7.5). The inset
clarifies the orientation of the steps.

Table 7.1: Relative surface energies (in meV/Å2) of different structures of the Si(553)-Au surface. The numbers
in the first column refer to figure 7.4, while the names of the models are assigned according to the nomenclature
explained in the text. Column labelled×1 presents the results for the smaller unit cell (with a single Au atom).
The systems in columns×2 and×3 included, respectively, two and three unit cells along thestep direction.
This was done in order to study the stability of the step-edgerespect to several structural distortions. However,
the relaxed structures always returned to an almost perfectundistorted×1 periodicity. The×1 and×2 slabs
contained four silicon double-layers, while the×3 slabs only had three silicon double-layers. The number in
parenthesis was obtained using a DZP basis.

Model ×1 ×2 ×3

I HD+S 0 0 0
II HS+

f D 1.4 - -
III HDS+ 7.0 7.3 -
IV S+HD 11.3 - -
V SS+H 5.3 (5.6) 6.0 5.8
VI Crain et. al. - - 5.7

atoms in different positions of the terrace. Model VI has been previously proposed by Crain
et al. [1]. The unit cell of the structure VI is three times larger along the step direction than
that of the other models. This is due to the extra Si atoms attached to the step-edge: there are
two atoms every three possible sites. This was proposed as anexplanation for the 1×3 super-
lattices (see Fig. 7.2) frequently observed in the STM images [1,58]. We have decided not to
impose the appearance of superlattices in our models. Instead we studied the stability of the
step-edge against structural distortions that might be responsible of the periodic modulation
in the STM images, analogical to the case of the Si(557)-Au surface and Sec. 6.3.

The main results of this section can be found in figure 7.4 and table 7.1, where the relaxed
structures and the relative surface energies of the different models of the Si(553)-Au recon-
struction are presented. Model I is the most stable structure. It presents a strong similarity
with the Si(557)-Au reconstruction (see Fig. 6.2). The HC isplaced at the step-edge and the
gold atoms reside in the middle of the terrace. The main differences in the present case are
the presence of a SD, associated with the HC and the differentorientation of the steps, and



94 Chapter 7. Si(553)/Au

the absence of adatoms due to the smaller terrace. Models I and II only differ in the position
of the SD and have almost degenerate energies. Changes in thelocation of the gold chain
have stronger impact in the energy. This becomes clear by comparing models I and III, which
solely differ in the site occupied by the gold atoms. This suggests that the ideal location of
the gold chain is in the middle of the terrace, as was previously found for the Si(557)-Au
reconstruction [69,70].

We also tried structures where the HC has been moved away fromthe step-edge. In both
cases, model IV and V, this yields to an increase of the surface energy. This seems to in-
dicate that the HC is an especially stable rearrangement of the step-edge in vicinal Si(111)
surfaces. In fact, in the case of Si(557)-Au surface, the HC structure formed spontaneously at
the step-edge during the geometrical optimisations using density-functional calculation [69].
The model IV, with the gold chain in a position neighbouring to the step-edge, is the most
unstable configuration. This points again to the larger stability of the gold substitution in the
middle of the terraces.

The model by Crainet al. [1] (model VI) is indeed a simple variant of model V. A silicon
dimer is attached to two of the step-edge atoms and another two silicon atoms in the terrace.
This creates a×3 modulation along the step-edge direction similar to what has been observed
in some STM images [1, 58] (see also Fig. 7.2). Interestingly, the addition of these silicon
dimers leaves the surface energy almost unchanged (see table 7.1). This is consistent with the
observation of large variations in the concentration of theextra silicon atoms attached to the
step edge and, probably, a high mobility of these atoms. Again this seems to be consistent
with the STM observations.

As was explained in Secs. 6.3-6.5, in the case of the Si(557)-Au surface the doubling
of the periodicity observed with the STM can be explained as aresult of a buckling of the
step edge. Since this could also provide an explanation for the modulations observed in the
Si(553)-Au surface, we have explored the stability of two ofour models (I and V) respect
to similar distortions. We have used supercells containingtwo or three unit cells along the
step. Our relaxations started from structures where one of the atoms of the step edge was
moved either upwards or downwards by∼0.3 Å. In some cases, the atoms with unsaturated
dangling-bonds in the terrace (see figure 7.4) were also moved upwards in an attempt to force
their charging with electrons transferred from the step edge. In the case of model I this would
leave a metallic step-edge band, susceptible to favour structural distortions. In other cases,
the whole structure was relaxed under the constriction of a particular step-edge configuration.
However, in all cases we were unable to stabilize the step-edge buckling. Once all the degrees
of freedom were optimized the structures always returned toan almost perfect×1 periodicity.

We now turn our attention to the electronic band structures of our most stable models.
Based on earlier studies of the Si(557)-Au surface we expectto find two surface bands with
different dispersions near the Fermi level associated withthe Si-Au bonds [69, 70], similar to
those depicted in Fig. 6.2. In the present case, these shouldbe a flat band originating from the
Si2-Au bonds, and a dispersive band coming from the more overlapping Si1-Au bonds (see
figure 7.4 for the labelling of the atoms). In the present calculations we have only included
scalar-relativistic effects for gold. In fact, the effect of the spin-orbit interaction is expected to
be negligible for the total energy of these surfaces (we havezero spin polarization). However,
as we demonstrated in Sec. 6.2, the dispersive Si1-Au band shows a considerable spin-orbit
splitting (up to∼200 meV near the Fermi level). As depicted in Fig. 7.1, the photoemission of
the Si(553)-Au surface shows a half-occupied band featuring a clear splitting, almost identical
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Figure 7.5: Panel (a) illustrates the Brillouin zones for the (×1) and (×3) periodicities along the step-edge. The
pathΓ-ZB×2-ZB×1-ZB′

×2-M′ is parallel to the steps, while M′-Γ is perpendicular. The band structure of the
systems HD+S and SS+H are plotted in panels (b) and (c), respectively. Bands pertaining to the Si1-Au and
Si2-Au bonds(solid and open circles, respectively), to the step edge (squares), and to the dangling bonds in the
terraces (diamonds) are indicated. The atomic labels are consistent with those in figure 7.4. The insets show a
schematic representation of the most prominent surface bands.

to that observed for the Si(557)-Au, and a dispersive quarter-filled band at lower binding
energies. We think that the surface bands showing splittingin the experiment have to be
identified with those coming from the Si1-Au bonds.

Figure 7.5 (b) and (c) show the band structures of the models Iand V, respectively. The
different symbols reflect the main atomic character of the surface bands, as obtained from a
Mulliken population analysis (see Sec. 2.4.2). In figure 7.5(b) we can find an almost fully
occupied band pertaining to the Si1-Au bonds very close to the Fermi level. A dispersive band,
coming from the dangling bonds in the terraces, appears practically empty. The agreement
with the experimental spectra of Fig. 7.1 could be improved if the population of this band
would increase. Such electron can occur associated with thepresence of extra silicon atoms
attached to the step-edge [1], or to the terraces (see Sec. 4.4). A surface band associated
with the step-edge crosses the Si1-Au band and almost reaches the Fermi level. There is no
evidence of this band in the experiment. The band structure of model II is almost identical
to the band structure of model I. A more thorough analysis on model (II) is done during the
systematic search of structures in Sec. 7.5.

The band structure of model V (figure 7.5 (c)) features both a dispersive and a flat bands
associated with the Si-Au bonds. The step-edge gives rise toa metallic band with a small
filling. The presence of this band implies that structural distortion of the step-edge with an
electronic driving force are possible. However, as described above, we have failed to stabilize
such distortion in our calculations up to now.

The band structure of the model VI is presented in figure 7.6. The larger unit cell makes
the comparison with the band structures in figure 7.5 somewhat complicated due to the back-
folding of the bands. There is a clear gap in the Si1-Au band associated with the symmetry
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Figure 7.6: As in figure 7.5 (b) and (c), but for model VI.

breaking induced by the silicon dimers attached to the step-edges and to some of the atoms
in the terraces. The changes in the three Au-Au distances in the unit cell are -0.12, -0.16 and
+0.28 Å, while the corresponding Si1-Au-Si1 bond angles are 103◦, 100◦ and 115◦. Notice that
the possible mirror symmetry of the structure is also brokenin our final relaxed configuration.
This can also be noticed in the slight buckling of the silicondimers, visible in figure 7.3.

None of the band structures of the models provided in this section are able to explain the
photoemission data of Fig. 7.1 for the Si(553)-Au surface. However, some of the main quali-
tative features are reasonably described by the band structure of model V, shown in figure 7.5
(c). There are two metallic bands with quite similar dispersions. One of them is close to half-
filled and comes from Si1-Au bonds (and, therefore, likely to exhibit an observable spin-orbit
splitting). The other one comes from the step-edge and presents a small fractional filling.
However, the band originating from the Si2-Au bonds is not seen in the experiment and the
details of the band structure are far from those observed experimentally.

7.3 Strategy of the structural search

In the previous section we generated “manually” configurations for the Si(553)/Au reconstruc-
tions using different physical (electron-counting, coordination, etc.) arguments. This way we
were able to search only through a relatively small amount ofstructures, five in total. We
would now like to search through a larger set of reconstructions and, somehow, calculate or at
least enumerate all “reasonable” surface coordinations.

According to our experience with the silicon reconstructions, almost any trial geometry
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that is not completely absurd relaxes to a nearby local minimum. However, the number of local
minima scales roughly exponentially with the number of atoms involved in the reconstruction
and the problem becomes intractable for large cells. Apart from this heuristic approach one
can use more sophisticated algorithms that can automatically find optimum geometries. Some
examples are simulated annealing [136, 137] and Monte Carlosimulations of different types,
including genetic algorithms [138–140]. Monte Carlo techniques have been traditionally used
to find cluster geometries [141], and have been recently extended to find surface reconstruc-
tions [142, 143]. Unfortunately these methods are computationally very expensive requiring
long simulations with thousands of evaluations of the system energy (and interatomic forces
in some cases). Particularly, genetic algorithms are very powerful but typically need hun-
drends of generations, each one containing tens of trial geometries [141]. Therefore, they are
mostly restricted to the use of empirical interatomic potentials which, however, might not be
sufficiently accurate to reproduce the energetics of the different geometries explored.

In the present work we adopt a compromise between these two ideas. Due to the lack of
reliable empirical potentials to represent the interaction between the gold and silicon atoms
in the surface, we need to explore the energetics of the different models of the Si(553)-Au
reconstruction at the density functional or similar level of theory. This precludes the use of
Monte Carlo algorithms to perform a global search of the reconstruction structure. However,
we do not want to restrict our search to explore a “few" structural models. Thus, we will rather
make asystematicsearch of the optimum surface model within a large family of physically
motivated structures. Our approach is the following:

i) a family of likely structural models for the Si(553)-Au surface reconstruction is defined
using a heuristic procedure based on the analogy with other related and better known surfaces;

ii ) a compact notation is designed to label unambigously each of the possible structures
within this family;

iii ) from each of these labels, a trial geometry is generated automatically and an initial
constrained relaxation is performed to avoid the appearance of unphysical bond distances;

iv) “fast" density functional calculations using SIESTA are used to relax each of the struc-
tures to its closest local energy minimum;

v) the most stable configurations from stepiv) are studied using more time consuming
“accurate" SIESTA calculations;

vi) finally, since the energy differences between different structural models are quite small,
we check the energy ordering of our most stable configurations using a different methodology:
plane-wave calculations using the VASP code.

By “fast" SIESTA calculations we mean here calculations performed using small basis
sets (i.e, with a small number of basis orbitals per atom, like SZ or DZ basis sets [84, 86]),
limiting the number of k-points and optimized degrees of freedom and/or using less stringent
criteria than usual for the convergence of the self-consistency cycles. These approximations
substatially reduce the computational cost. Therefore, itbecomes possible to relax the hun-
dreds of different configurations within our family of structures. We will see below that the
energies obtained in this first step are reliable enough to select a set of a few tens of structures
containing the most promising structural candidates. “Accurate" SIESTA calculations are per-
formed for these configurations using DZP basis sets, a larger k-sampling and well converged
self-consistency. We can see that the use of a code that utilizes basis sets of atomic orbitals
is instrumental for this gradual increment of the accuracy of the calculations: while the pseu-
dopotentials, density functional, and basic numerical scheme remains unchanged, the size of
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the basis set (the main factor limiting the size of the studied systems and the computational
time) can be varied. This provides a very convenient way to deal with the trade-off between
computational speed and accuracy of the calculation.

In the following we present in detail the hierarchy of approximations used to perform our
simulations. As a starting point we automatically generateapproximate coordinates for all
possible structures fulfilling certain conditions. These conditions will be explained in detail
in the next section. Our family of structural models is basedon plausible analogies with the
structure of other related surface reconstructions like the Si(557)-Au or Si(111)-(5×2)-Au.
While reasonable atomic coordinates within the plane of theterrace (that we take as thexy-
plane) are relatively easy to guess due to the registry with the sub-surface bilayer, the height
of the different atoms in the surface bilayer is more problematic. For this reason, in the first
relaxation (namedSz hereafter) only the atoms in the topmost bilayer are allowedto relax in
thez-direction (normal to the terrace). This relaxation step ensures the interatomic distances
to be reasonable without changing the topology of the surface bilayer and its registry with the
underlying atoms. For theSz relaxations we use a SZ basis set and a 2×1 k-sampling. To
further accelarate the simulations the parameter determining the convergence of the density
matrix in each relaxation step (DM.Tolerance [144]) is set to 10−3. The typical value given
to this parameter to ensure a very good convergence of the self-consistent solution is 10−4.
However, we have checked that increasing this value to 10−3 only introduces small errors in
the calculation of energy and forces: for example, the maximum force difference during the
relaxation of a few representative structures of those studied here was less than 0.01 eV/Å
when the two different convergence criteria were used. In spite of this moderate effect on the
results, in some cases increasing the value of DM.Toleranceto 10−3 reduces considerably the
number of steps per self-consistency cycle. In the next step(namedSy hereafter) all atoms are
allowed to move (except the silicion atoms in the bottom of the slab and the hydrogen atoms
directly bonded to them). However, in order to preserve the topology of the selected configu-
ration, the positions of the atoms along the direction parallel to the step edges (y-axis) is fixed.
Other parameters have the same value as in the relaxationSz. The purpose of the relaxations
Sz andSy is to provide a sound initial configuration from the coordinates generated automati-
cally. Using this corrected guess we can proceed further allowing all degrees of freedom in the
slab to relax and using a more complete DZ basis set and accurate 8×4 k-sampling. We call
this theD⋆ relaxation. Finally, in theD relaxations we further decrease the tolerance for the
covergence of the elements of the density matrix to its usualdefault value in SIESTA [144] of
10−4. We use a DZP basis set for our most accurate relaxations (DP hereafter). Adding a po-
larization shell withd symmetry can be especially important to accurately describe “unusual"
coordinations of the silicon atoms which cannot be described with simplesp hybridizations.

The use of this series of optimization schemes with ever-increasing accuracy (Sz→Sy→D⋆

→D→DP ) is much more efficient than starting directly with a relaxation at theDP or similar
level. The reason for this efficiency gain is twofold:i ) the initial coordinates used to start each
relaxation have been optimized at the previous level and, therefore, they are an initial guess of
increasing quality;ii ) the energy estimates obtained with the less accurate relaxations, already
at theSy level, are accurate enough to allow discarding many of the possible configurations in
favor of the most favorable models. This is the case even if attheSy level we use a minimal
basis set, a thin slab of two bilayers and we fix the atomic coordinate parallel to the step edge
in order to preserve the selected bonding topology. One has to take into account that a mini-
mal basis for Si contains only four orbitals, a DZ basis eightorbitals, and a DZP basis thirteen
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orbitals. Thus the computational cost changes dramatically when changing the basis set size.
Additional gains are obtained by using smaller k-samplingsand reducing the number of step
in each self-consistent cycle.

7.4 Structural models: a labelling scheme

The structural models that we are considering for the Si(553)-Au reconstruction are based on
the analogy with the Si(557)/Au and the Si(111)/Au-5x2 reconstructions of Chaps. 4 and 6.
The most important features of the most stable structural models of these surfaces are:

i) the reconstruction only involves the atoms in the topmost bilayer;
ii ) the gold atoms occupy substitutional positions in the surface layer, which are much

more favorable than adatom-like sites;
iii ) positions of gold in the middle of terraces are favored overstep-edge decoration;
iv) frequent appearance of the honeycomb chain (HC) structure.
Fig 7.7 (a) shows a schematic view of an unreconstructed Si(553) surface. Taking into ac-

count the pointsi) andii ) we only explore here reconstructions generated adding an additional
bilayer ontop of this unreconstructed substrate. One of thesilicon positions is replaced by a
gold atom. Different registries with underlying bilayer are allowed, as well as, the presence
of HC structures. Fig 7.7 (b), (c) and (d) show a few possible structures. Structure (b) re-
covers the unreconstructed surface. Structure (c) presents stacking fault in the middle of the
terrace with the accompanying surface dislocations with under- and over-coordinated atoms
(indicated by arrows in Fig. 7.7). In panel (c) the surface bilayer contains a HC structure in the
middle of the terrace. Notice that the HC reconstruction also creates a stacking fault towards
the [1̄1̄2] direction (i.e., towards the inner part of the terrace). This stacking fault has to be
corrected in order to connect with the bulk structure. Therefore, it is necessary to introduce a
surface dislocation with over-coordinated atoms (marked with an arrow).

In Sec. 7.2 we explored a few structural models for the Si(553)-Au reconstruction based
on an analogy with the Si(557)-Au surface. Here we want to move a step further and to make
a comprehensive search among the structural models that canbe built following the rules
(i)-(iv) presented above. We considerall possible structures where the atoms of the topmost
bilayer present coordinations between 2 and 4 with other atoms in the same bilayer. The final
coordination depends on the registry with the underlying silicon structure. One of the silicon
atoms in the unit cell is replaced by a gold atom. The Si(553)-Au reconstruction is known to
suffer several distortions that increase the size of the unit cell along the step direction as the
temperature is decreased. [59, 64] However, here we only consider models that preserve the
×1 periodicity of the silicon substrate along the steps and, therefore, are relevant to model the
high temperature structure.

We have developed a simple labelling scheme for the family ofstructural models that fulfill
the criteria presented above. We can label each structure and thus count the total number of
different trial structures within this family. Furthermore, this scheme can be easily translated
into a procedure to automatically generate the trial geometries. The basis of our labelling
procedure can be found in Fig. 7.8. First, the possible positions within thexy plane of the
surface atoms are discritized and approximated by the points of a grid. The grid is formed by
nine columns and two rows. The nine columns correspond to thepositions of the atoms along
the [112̄] direction in the terrace of an unreconstructed Si(553) surface (see the Fig. 7.7 (b)).
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Figure 7.7: (a) Schematic view of the unreconstructed Si(553) surface. The steps run parallel to the[1̄10] di-
rection and are oriented towards the[112̄] direction. The rectangle indicates the “unit cell"within the terrace,
containing nine inequivalente silicon sites (with four unsaturated dangling-bonds). Panels (b), (c) and (d) show
configurations generated by adding a silicon bilayer on top of the structure in panel (a). The different recon-
structions explored in this paper are obtained by changing the structure of this surface bilayer and/or its registry
with the underlying atoms. Open triangles represent atoms in the topmost atoms and solid circles the higher
atoms in the second bilayer. These structures (and all the structures considered in the present work) preserve a
×1 periodicity along the step. Structure (b) recovers an unreconstructed silicon structure. Structure (c) presents
a surface dislocation close to the step egde that generates astacking fault (SF) that is later corrected creating
another surface dislocation in order to connect with the bulk structure. Surface dislocations create under- and
over-coordinated atoms which appear indicated by arrows. Model (d) presents a honeycomb-chain (HC) structure
and the accompanying surface dislocation.

Second, all possible structures created by distributing the atoms among the grid points can
be translated into a sequence of nine numbers. The position along the horizontal coordinate
(column) is indicated by the order in the numerical sequence. The first number corresponds to
the atoms at the step edge. For a given column, a “2” (“4") indicates that a silicon (gold) atom
is located in the higher row, i.e., in the middle of the rectangular terrace unit cell, whereas
a“1" (“3") indicates that a silicon (gold) atom sits over a grid point in the lower row. A “0"
indicates that there are no atoms in that column. Using this scheme, the unreconstructed
Si(553) surface in Fig. 7.7 (b) can be label as (1,2,2,1,1,2,2,1,1), while structures in panels (c)
and (d) would receive the label (1,2,2,2,1,1,2,1,1) and (1,2,2,1,0,1,2,1,1), respectively. Other
examples, corresponding to models already studied in Sec. 7.2 can be found in Fig. 7.8.
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(b)

(1,2,0,2,1,4,2,1,1)

(d)

(1,2,0,2,1,3,2,1,1)

HC

Figure 7.8: (a) and (c) show two possible structures for the Si(553)-Au surface already explored in Sec. 7.2.
These structures are characterized by the presence of a HC structure close to the step-edge. Solid lines indicate
the bonds between atoms in the topmost bilayer of a given terrace, thin dashed lines correspond to the underlying
silicon bilayer, and thick dashed lines indicate a few bondsof the upper terrace. The small solid circles mark the
positions of the higher silicon atoms in the underlying bilayer The large open circles mark the substitutional sites
occupied by the gold atoms. The rectangle corresponds to theterrace “unit cell". Panels (b) and (d) schematically
explain how the structure of the surface bilayer can be translated into a sequence of nine numbers. First the
possible positions of the atoms are approximated by the points of a grid. The grid is formed by nine columns and
two rows. The position along the horizontal coordinate is indicated by the order in the numerical sequence. The
first number corresponds to the atoms at the step edge. A “2” (“4") indicates that a silicon (gold) atom is located
in the higher row, i.e., in the middle of the rectangular cell. A “1" (“3") indicates that a silicon (gold) atom sits
over a grid point in the lower row. A “0" indicates that there are no atoms in that column.

In principle, using our notation we can generate M differentmodels, with

M = 2(NSi+1) 9!

(8 −NSi)!NSi!
(7.1)

and NSi being the number of silicon atoms in the surface bilayer. Since we always have one
gold atom, the total number of atoms in the terrace unit cell is Natm=NSi+1. We consider
here structures with NSi=7. In this way, the family of structures studied here includes the five
models already discussed in Sec. 7.2. Furthermore, having Natm=8 is a necessary condition
to allow for the formation of the HC structure, which is one ofthe common building blocks to
several gold induced reconstructions in Si(111) and vicinal Si(111) surfaces (see above). With
NSi=7 we have M=18432 different models. This large number can beconsiderably reduced
imposing a few constraints to ensure that the models represent physically sound structures.
These constraints are:a) in order to connect with the bulk structure the last number of the
series must be either 1 or 3;b) the dangling-bonds of the underlying silicon bilayer mustbe
saturated either by an atom or by a dimer as in the HC structure, therefore the first number
of the labelling sequence must be always 1 or 3,c) the fifth number must be 0, 1 or 3 (if 0,
then the neighboring numbers must be either 1 or 3), andd) the third and seventh number
must be 0, 2 or 4 (if 0, then the neighboring numbers in the sequence must be 2 or 4);e) to
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ensure the connectivity within the surface bilayer, a non-zero number in the sequence cannot
be surrounded by zeros andf) two or more zeros cannot appear together. Taken into account
conditions (a)-(f), the number of possible configurations with Natm=8 and NSi=7 is reduced
to M=210. In the following section we will explore these 210 configurations using “fast”
SIESTA calculations, as decribed in the previous section, and a few tens of the most stable
configurations will be selected to perform more accurate SIESTA and VASP calculations.

Our notation provides information about the connectivity within the surface bilayer and
the registry with the substrate. From a given sequence of nine numbers we can generate a
trial geometry. However, we lack information about the heights of the different atoms. Due
to this and to the discretization of positions in thexy-plane, the bond lenghts and angles in
the automatically generated structures can considerably depart from the correct values. For
this reason, as a first step to get sound initial configurations we need to perform constraint
relaxations that, while preserving the bonding topology ofthe selected configuration avoid
unphysical bond distances and angles. We use theSz andSy relaxations described in the
previous section for this.

Besides the family of structures described above, we have explored a few structural models
based on theπ-bonded chain reconstruction of the Si(111) surface. [114,145,146] In principle,
our notation cannot describe these bonding pattern: it can only describe structures which
are based on a “flat” surface bilayer. This is partially due tothe lack of information about
the atomic heights. However, we can modify our notation to describe theπ-bonded chain
structures. This is done allowing for a double occupation ofthe columns and is schematically
illustrated in Fig. 7.9. These double occupation indicatesthe position of theπ-bonded chain
in the structure. We still have the ambiguity about the relative height of atoms in theπ-
bonded chain, which is known to be tilted. There are two possibilities which are usually
referred as negative or positive tilt. [147] In our notationthese two different tilts of theπ-
chain are indicated by the order of the pair of indices, the second index corresponding to
the higher atom. In Fig. 7.9 we present a Si(553) surface reconstructed with the negative tilt
chain. This negative tiltπ-chain block corresponds to the label (...,1,0,2,21,1,...), while the
label (...,1,0,2,12,1,...) denotes the positive tilt structure. Both configurations are quite similar
and first-principles calculations predict them to be almostdegenerate in energy and separated
by a very small energy barrier. [148, 149] Experimentally the positive tilt structure has been
traditionally favored. [145–147] In the case of the Si(553)stepped surface, our calculations
predict the negative tilt structure to be slightly more stable.

This notation opens the possibility of generating and studying all possible structures con-
taining theπ-bonded chain. However, we have not pursued this approach here and we limit to
consider nine different structural models that are obtained after the substitution of one silicon
atom by a gold atom in different positions of aπ-bonded chain reconstruction similar to that
shown in Fig 7.9.

Next we take advantage of the methodology described in sections 7.3 and 7.4 to make an
extensive search of the structure of the Si(553)-Au reconstructions. We make a systematic
search within the 210 structures that can be generated with the notation presented in Sec. 7.4
(models based on “flat” bilayers with different coordinations and registries with the susbtrate)
with seven silicon atoms and one gold atom in the terrace unitcell. We also present results
from a much more restricted search for structures based on theπ-bonded chain reconstruction
(see Sec. 3.3.2). Finally the most stable structures from these two searches are studied using
accurate SIESTA and VASP calculations. We present results for the band structure and the
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(a)

pi−chain pi−chain

(b)
1 0 2 0 2 1 1 
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(1,0,2,21,1,0,2,21,1)

Figure 7.9: (a) Scheme of aπ-bonded chain reconstruction of the Si(553) surface, and (b) the proposed notation
for such structure. The presence of theπ-bonded chain at a certain location is indicated by the double occupation
of the corresponding column, the second atom of this pair occupies the higher position along theπ-chain.

simulated STM structures of some of the final models.

7.5 Systematic search: “flat” bilayers with Natm=8

We first explore the energy of the 210 possible configurationsusing our fastest relaxation
schemes,Sz andSy, described in Sec. 7.3. These calculations transform an initial structure
automatically generated from a given label into a physically sound structure. In spite of the
thin slab and minimal basis utilized, the relative energiesobtained at theSy level (∆E1) al-
ready provide a good guide to eliminate the most unstable structures. In Table 7.2 we can find
a list with the 80 most stable configurations (∆E1 ≤∼33 meV/Å2) obtained afterSy relax-
ations. Several of the initial structures converge to the same configuration, so these 80 trial
structures give rise only to∼40 different models. This is clearly seen in Fig.(7.11), where the
plateaus in the energy curve correspond to this “lumping” ofseveral initial geometries into a
single geometry. These transformations typically take place by a displacement of the surface
bilayer as a whole, thus changing its registry with underlying substrate, or by the movement
of a vacancy to a neighboring position (using our notation this corresponds to a transforma-
tion (..,0,1,2,..)→ (..,1,0,2,..)). This happens for example in the case of the (1,2,2,1,1,0,4,1,1)
initial structure, that transforms into a configuration that is better described with the label
(1,2,0,2,1,1,4,1,1) and is one of the most stable structures. This can be seen in Fig. 7.10

The 68 most stable structures, as predicted by∆E1, are then calculated again, this time
with more accurate relaxation schemes up to theDP level (for details, see Tab. 7.2). Hereafter,
we will refer these final relative energies with∆E2. A comparison between∆E1 and∆E2 can
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.10: Relaxation of the structure generated from thelabel (1,2,2,1,1,0,4,1,1) at theSy level. Insets (a)
and (b) present a top and a lateral view of the automatically generated structure. Inset (c) presents the structure
after the relative heights of the atoms have been corrected by theSz relaxation. In point (d) we have already
reached a structure similar to the configuration that we wantto explore. However, this configuration is not stable
and transforms by the displacement of the surface bilayer (inset (e)) into a different structure. The final structure,
shown in inset (f), is better described by the (1,2,0,2,1,1,4,1,1) label.

be found in Tab. 7.2 and Fig. 7.11. From Fig. 7.11 we observe that again, several initial
configurations end up in only few final geometries, but in a slightly different way than in the
case of∆E1. Some of these final geometries are marked with labels f1-f10both in Fig. 7.11
and Tab. 7.2.

The labelled final structures are shown in Fig. 7.12. The fastSy relaxations (∆E1) pre-
dicted f1 to be most stable configuration. It exhibits a HC structure at the step-edge, while
the gold atom is located at a surface dislocation in the middle of the terrace. The presence
of a surface dislocation is necessary to recover the bulk stacking disrupted by the HC. The
position of the gold atom seems reasonable, gold should be a better option than silicon to sit
at the dislocation since gold does not exhibit strong directional bonding. However, using a
more complete basis set (already a DZ basis gives the correctresult) and a thicker slab the f2,
f3 and f4 geometries become the most favorable structures (they are almost degenerate and
∼4 meV/Å2 more stable than f1). This points to the importance of using more complete (and
thus flexible) basis sets when the coordination of the surface atoms departs from simplesp
hybridization (like in the case of the HC structure or at the surface dislocations).

Our results indicate that the configurations featuring a HC structure at the step edge (simi-
lar to the Si(557)-Au structure) are the most stable, at least within the family of reconstruction
considered here. This confirms the results obtained in Sec. 7.2, where we only studied six
different models. The configurations f4 and f2 in the presentstudy correspond with the most
stable structures obtained in Sec. 7.2 (named respectivelyI and II in that reference). Also
configuration f8, f9 and f10 correspond to structures III, IVand V in Sec. 7.2. Configuration
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f2,f3,f4
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f8

f9

f10

Figure 7.11: Relative energies after fastSy (∆E1, solid circles) and accurateDP (∆E2, open diamonds) relax-
ations for the systems listed in Tab. 7.2. The system labels f1-f10 correspond to those of Tab. 7.2 and Fig. 7.12.

f3, however, is a new configuration exhibiting a double honeycomb structure similar to that
found in some models of the Si(111)-(5×2)-Au reconstruction (see Chap. 4).

In Sec. 7.4 we pointed out that our labelling scheme excludes, in principle, structures
based on theπ-bonded chain reconstruction. However, in Fig. 7.12 we can find one structure
where theπ-bonded chain reconstruction has emerged spontaneously. In configuration f6 the
gold atom is located very close to the step edge. The initial structure corresponds to a largely
unreconstructed terrace. It is well known [115] that the energy barrier for the transformation
from the unreconstructed Si(111) to theπ-bonded chain Si(111)-(2×1) reconstruction is very
small. Therefore, the appearance of theπ-bonded chain in this case is not very surprising.

The experimental electronic band structure, as determinedby photoemission experiments [1,
1, 59], presents three bands with parabolic dispersion and strong one-dimensional character.
Two of them are similar to those found for the Si(557)-Au surface and, therefore, can be as-
signed to the spin-split bands formed from the hybridization of Au 6p states with thesp lobes
of the neighboring Si atoms, as proposed in Chap. 6. The thirdband appears centered around
the same point in reciprocal space, but at higher energies and thus with a lower occupation
around1

3
.

In Fig. 7.13 we can find the band structures of the models f2 andf3. The band structure
of the model f4 can be found in Fig. 7.5b. The geometries of f2 and f4 are very similar
(see Fig. 7.12) but their band structures present some smallbut essential differences. Both
models present one dispersive one-dimensional band comingfrom the hybridization of gold
with its silicon neighbors. This band can be identified with the spin-split bands observed in
the Si(553)-Au surfaces [1,62] and Si(557)-Au [28]. Two other surface bands appear close to
the Fermi level: a dispersive band coming from a silicon dangling-bond in the surface and a
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No. Initial configuration ∆E1

(meV/Å2)
∆E2

(meV/Å2)

1 1,2,2,0,1,1,4,1,1 0.00 0.00
2 1,2,2,1,0,1,4,1,1 0.00 0.00
3 1,2,2,1,1,0,4,1,1 0.00 0.00
4 1,2,0,2,1,1,4,1,1 0.00 0.00 (f1)
5 1,0,2,2,1,1,4,1,1 0.01 -0.01
6 1,2,2,0,1,3,2,1,1 5.51 -4.27
7 1,2,2,1,0,3,2,1,1 5.51 -4.29
8 1,0,2,2,1,3,2,1,1 5.51 -4.26
9 1,2,2,1,3,0,2,1,1 5.53 -4.30
10 1,2,0,2,1,3,2,1,1 5.54 -4.28 (f2)
11 1,2,2,1,1,0,2,3,1 6.08 -4.02
12 1,2,0,2,1,1,2,3,1 6.09 -4.01 (f3)
13 1,2,2,0,1,1,2,3,1 6.09 -4.02
14 1,2,2,1,0,1,2,3,1 6.09 -4.01
15 1,0,2,2,1,1,2,3,1 6.12 -4.02
16 1,0,2,2,1,4,2,1,1 6.21 -4.42
17 1,2,0,2,1,4,2,1,1 6.23 -4.46 (f4)
18 1,2,2,0,1,4,2,1,1 6.29 -4.45
19 1,2,0,2,3,2,2,1,1 7.47 1.75 (f5)
20 1,2,2,0,3,2,2,1,1 7.49 1.73
21 1,0,2,2,3,2,2,1,1 7.49 1.74
22 1,0,4,1,1,2,2,1,1 14.69 9.55 (f6)
23 1,2,2,1,1,0,2,4,1 14.76 -0.20
24 1,2,2,1,0,1,2,4,1 14.76 -0.20
25 1,2,2,1,1,2,0,4,1 14.77 -0.21
26 1,2,0,2,1,1,2,4,1 14.77 -0.17 (f7)
27 1,2,2,0,1,1,2,4,1 14.78 -0.20
28 1,2,2,1,1,2,4,0,1 14.82 -0.18
29 1,0,2,2,1,1,2,4,1 15.41 -0.20
30 1,0,2,2,1,3,2,2,1 17.49 16.12
31 1,2,0,2,1,3,2,2,1 17.49 16.13
32 1,2,2,0,1,3,2,2,1 17.50 5.77
33 1,0,2,3,1,2,2,1,1 21.98 1.89
34 1,0,2,4,1,2,2,1,1 22.57 5.00
35 1,2,2,1,1,2,0,2,3 23.49 12.80
36 1,2,2,1,1,2,2,0,3 23.49 12.79
37 1,2,2,1,0,1,2,2,3 23.64 11.70
38 1,2,2,0,1,1,2,2,3 23.68 11.55
39 1,2,2,1,1,0,2,2,3 23.72 12.78
40 1,0,2,2,1,1,2,2,3 23.79 12.20

No. Initial configuration ∆E1

(meV/Å2)
∆E2

(meV/Å2)

41 1,2,2,0,3,1,2,1,1 23.88 7.47
42 1,2,2,3,0,1,2,1,1 23.90 7.48
43 1,2,2,3,1,0,2,1,1 23.91 7.47
44 1,2,0,2,3,1,2,1,1 23.91 7.47
45 1,0,2,2,3,1,2,1,1 23.91 7.47
46 1,2,0,2,1,1,2,2,3 24.13 12.18
47 1,2,0,2,1,2,4,1,1 25.23 7.76
48 1,0,2,2,1,2,4,1,1 25.24 7.77
49 1,2,2,0,1,2,4,1,1 25.24 7.77
50 1,2,0,2,1,2,2,3,1 25.41 4.17 (f8)
51 1,2,2,0,1,2,2,3,1 25.41 4.13
52 1,0,2,2,1,2,2,3,1 25.42 4.13
53 1,2,0,4,1,2,2,1,1 25.67 11.56
54 1,2,4,0,1,2,2,1,1 25.72 11.50
55 1,4,2,0,1,1,2,1,1 26.31 9.40
56 1,4,2,1,0,1,2,1,1 26.34 9.40
57 1,4,2,1,1,0,2,1,1 26.36 9.40 (f9)
58 1,4,0,2,1,2,2,1,1 27.35 12.50
59 1,0,4,2,1,2,2,1,1 27.35 12.49
60 1,2,4,0,1,1,2,1,1 27.37 15.34
61 1,4,2,0,1,2,2,1,1 27.40 12.50
62 1,2,2,3,1,2,2,0,1 27.62 2.66
63 1,2,2,3,1,2,0,2,1 27.63 2.66 (f10)
64 1,2,2,3,0,1,2,2,1 27.63 2.68
65 1,4,2,1,1,0,2,2,1 28.08 11.52
66 1,0,4,2,1,1,2,2,1 28.09 9.70
67 1,4,2,1,0,1,2,2,1 28.09 9.75
68 1,4,2,0,1,1,2,2,1 28.09 9.75
69 1,2,2,1,0,3,2,2,1 28.91
70 1,2,0,4,1,1,2,1,1 29.48
71 1,2,4,1,0,1,2,1,1 29.48
72 1,2,4,1,1,0,2,1,1 29.51
73 1,0,2,1,1,4,2,1,1 32.35
74 1,1,2,4,1,0,2,2,1 33.05
75 1,1,2,4,1,2,2,0,1 33.05
76 1,1,2,4,1,2,0,2,1 33.06
77 1,2,0,2,3,1,2,2,1 33.43
78 1,2,2,0,3,1,2,2,1 33.43
79 1,0,2,2,3,1,2,2,1 33.43
80 1,2,0,2,1,2,2,1,3 33.48

Table 7.2: Results from the automatic structural search. Total energies∆E1 are obtained using a thin slab of only
two silicon bilayers and the fastest (and less accurate) relaxations (Sz andSy). Only the 80 most stable config-
urations (out of the total 210 studied structures) are included in this table, with a maximum energy difference of
∆E1 ∼ 33 meV/Å2. The configurations are numbered according to their predicted stability. The initial config-
urations are labelled using the notation developed in Sec. 7.4. The 68 most stable structures, according to∆E1

are also calculated using a thicker slab of four bilayers andour accurate SIESTA calculations (D⋆→D→DP ),
resulting in the energy∆E2. Many of the initial configurations converge to a single configuration, this degener-
acy being slightly different in the case of∆E1 and∆E2 (see also Figs.(7.11) and (7.12)). Some of these single
configurations have been indicated by (f1)-(f10).
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Figure 7.12: Final geometries (at theDP level) for a few selected configurations from those listed inTab. 7.2
and Fig. 7.11. For (f2) and (f3) some symbols for the population analysis of the band structure have been added
(see Fig. 7.13).

(f2) (f3)

Figure 7.13: Band structures for models f2 and f3, calculated using SIESTA. The atomic character of different
bands is indicated with the same symbols as in Fig. 7.12. Filled squares indicate the contribution coming from
the gold atoms and their silicon neighbors, open circles that coming from the atoms at the step edge, and open
diamonds that of some silicon atoms in the surface presenting some unsaturated bonds.
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band derived from the atoms at the step edge (that has a HC structure). These bands are also
present for both models. However, while in the case of the f4 structure the step-edge band is
completely filled and the dangling-bond band is empty (Fig. 7.5b) in the case of the f2 model
these two bands cross and the dangling-bond band has a small occupation of∼ 1

5
electrons

closer to the experimental observation.
The population of the different bands can be roughly understood taking into account the

larger electron affinity of gold and the HC structure [66] as compared to other atoms in the sur-
face. The population of the dangling-bond band is thus depleted in favor of the other surface
bands. The differences between the f2 and f4 structures are more subtle. These two models
only differ in the position of the surface dislocation. Energetically this structural change has
small consequences and both structures are almost degenerate. However, it changes the occu-
pation of the dangling-bond band. In the case of the f2 model the dislocation involves the gold
atoms and some of the silicon atoms of the HC structure. This increases slightly the energy of
the bands associated with the HC and, as a consequence, the step-edge band transfers some of
its population to the dangling-bond band.

Fig. 7.13 also shows the band structure of the f3 model. The dangling-bond band is missing
in this case. This spoils the comparison with experiment. The other two bands (gold and step-
edge derived) are very similar to those found for the f2 and f4models. This is reasonable
taking into account the similar gold site and structure of the step-egde.

Fig. 7.23 (b) shows the band structure of the f2 model calculated including the spin-orbit
interaction with the VASP code. The band structure is in excellent agreement with that calcu-
lated using SIESTA. It also confirms that all the bands close to EF with a significant weight in
the gold atoms exhibit a splitting that has its origin in the spin-orbit interaction.

Although the band structure of the model f2 does not exactly reproduce the photoemission
results [1, 1, 59], particularly the characteristic band fillings mentioned above, it has some
clear qualitative similaritires with them. We find two bandswith similar dispersions, with
their minima∼1 eV and∼0.5 eV below the Fermi energy at the Brillouin-zone boundary.
This corresponds very well to the photoemission data. Furthermore, the band with its minima
at lower energy shows a notable band splitting near the Fermienergy due to the spin-orbit
interaction. The is in good agreement with the experiments.However, the band structure of
Fig. 7.23 (b) has two important differences compared to the photoemission data. Firstly, the
dangling-bond band presents an important spin-orbit splitting associated with its appreciable
hybridization with gold (see Fig. 7.13). This splitting is not observed in the experiments.
Secondly, the theoretical band structure has one extra bandnot seen in photoemission. This
band is associated with the HC structure at the step-edge edge and has its minimum atΓ,
contrary to the case of the other two bands.

We can also compare the predictions for our models with the experimental STM images. In
Fig. 7.15 and Fig. 7.16 we show the simulated STM images at different voltages for the f2 and
f4 models. In agreement with the experimental images [59,63,64] the most prominent feature
is the step edge. Within the terrace we find signals coming from the row of gold atoms and its
neighboring HC structure. The gold chain is seen as a continuous line for occupied states and
presents more structure for empty states. For both positiveand negative voltages we can also
distinguish a signal coming from the unsaturated silicon dangling bond in the terrace close
to the step edge. The step edge and the gold chain could be identified with the two parallel
chains reported by Snijderset al.[64] In their recent experiment, they observe a strong polarity
despendence in the STM images, and in particular, find zigzagstructures for empty states and
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Figure 7.14: Experimental (a) empty state and (b) filled state (±0.5 V, 50 pA) STM images taken simultaneously
at RT. Insets show magnifications. The structure in the chains is indicated with dots. Picture taken from Ref. [64].

+1.0 +0.5

−1.0 −0.5

Figure 7.15: Simulated STM images, calculated using SIESTA, for model f2. The insets of the panels indicate
the bias voltage in Volts. Some features having a strong polarization with respect to the voltage are indicated by
filled circles.
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+1.0 +0.5

−1.0 −0.5

Figure 7.16: Simulated STM images, calculated using SIESTA, for model f4. The insets of the panels indicate
the bias voltage in Volts. Some features having a strong polarization with respect to the voltage are indicated by
filled circles.

ladder configurations for filled states. In figures 7.15 and 7.16 we have sketched some possible
candidates for this kind of behaviour. For f2 (Fig. 7.15), the ladder structure in filled states
could result from the registry of the step-edge with respectto the gold atoms. For empty-states
images the step-edge becomes slightly more visible and the zigzag geometry could result from
the atoms inside the honeycomb-chain. In the case of model f4(Fig. 7.16), we can identify
two entities that change their registries when going from filled to empty states. They are the
step-edge and the complex formed by Au and the surface dislocation. They show, similar to
the experiment, ladder and zigzag configurations respectively for filled and empty states.

7.6 Restricted search: structures based on theπ-bonded chain

We first explore two models of the Si(553) stepped silicon surface where the terraces are
fully covered by a (2×1) π-bonded chain reconstruction. They correspond to two slightly
different arrangements of theπ-bonded chain (Fig 7.17). Our most stable geometry (model
p0) correspond to the so-called negatively tiltedπ-bonded chain. [147] In low energy electron
diffraction experiments of the flat Si(111) surface the positive-tilt π-bonded chain is usually
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(a)

(b)

Figure 7.17: Two possible models of the Si(553) surface based on aπ-bonded chain reconstruction of the terraces.
Model p in panel (a) and model p0 in panel (b).

(a)

(b)

Figure 7.18: Top (a) and side (b) view of the relaxed structure of the p4 model.

favored over the negative tilt. [145–147] However, first-principles DFT calculations predict
both structure to be very close in energy and there are conflicting claims about which of them
is more stable. [148,149]

We now proceed to make all possible substitutions of siliconby gold in the surface bilayer.
This gives rise to nine different models for the Si(553)-Au reconstructions that we name pX,
with X=1 corresponding to a substitution at the step edge andX>1 to a substitution in the
terrace. The final energies after accurate SIESTA relaxations (DP level) are listed in Tab. 7.3.
In several cases the initial structure was not stable and suffers strong modifications during the
relaxation. These changes are also summarized in Tab. 7.3. Model p4, illustrated in Fig. 7.18,
is the most stable structure. Theπ-bonded chain where the gold substitution takes place trans-
forms into a structure similar to the unreconstructed Si(111) surface. This is reasonable taking
into account the atomic configuration of gold and confirms thetendency of gold to occupy
substitutional positions in the middle of the terraces. [1,69,70]

The next most favorable model, p2, is illustrated in Fig. 7.19. Again theπ-bonded chain
where the substitution took place has disappeared. However, this time a configuration rem-
iniscent of the HC structure has formed in the middle of the terrace. This transformation is
accompanied by an expansion of the surface bilayer (see the forward movement of the step-
edge atoms in Fig. 7.19).

The band structure calculated for the p2 model, shown in Fig.7.19 (c), presents similar
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Figure 7.19: Top (a) and side (b) view of the relaxed structure of the p2 model. (c) Electronic band structure. The
symbols highlight those surface bands with an appreciable weight from the surface atoms marked with the same
symbols in panel (b). The inset shows a schematic representation of the most prominent surface bands. The HC
structure in the middle of the terrace is indicated by a box.

Si−Au
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Figure 7.20: Top (a) and side (b) view of the relaxed structure of the p2⋆ model, obtained after the reconstruction
of the step edge. (c) Electronic band structure. The symbolsindicate those surface bands with an apprecia-
ble weight from the surface atoms marked with the same symbols in panel (b). The inset shows a schematic
representation of the most prominent surface bands. The HC structure is highlighted by a box.

characteristics to the experimental band structure (see the previous section). We can see in
Fig. 7.19 (c) that the p2 model presents two metallic dispersive bands centered at point K in
the zone boundary. One of theses bands is associated with theSi-Au bonds between gold
and the neighboring silicon atoms in the step edge. It has a considerable gold weight and,
therefore, is expected to exhibit a splitting if the spin-orbit coupling is taken into account.
The other band, however, is mainly derived from the unsaturated dangling bonds of the silicon
atoms at the step edge and presents a smaller filling. As expected, theπ-bonded chain structure
that remains in the terrace does not give rise to any metallicband.

The electron pocket of the step-edge band around K has an occupation of∼1/4, quite close
to that found in the experiment. There is another small electron pocket associated with the
step-edge aroundΓ which is not observed in the experiment. Thus we can assign a population
of ∼0.4 to the surface bands with a larger weight in the step-edgeatoms. The dispersive
band with a mixed silicon-gold character has an occupation of ∼0.6 electrons. Therefore, the
total population associated with the step-edge derived surface bands is one. This is somewhat
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Figure 7.21: Side view of the p5∗ model. The HC structure emerges and is highlighted by a box.

Name Configuration ∆E (meV/Å2)

p (1,0,2,12,1,0,2,12,1) 1.82
p0 (1,0,2,21,1,0,2,21,1) 0.00

p1 (3,0,2,21,1,0,2,21,1) 14.92
p2 (1,0,4,21,1,0,2,21,1)→(1,4,2,1,1,0,2,21,1) 4.13
p3 (1,0,2,41,1,0,2,21,1)→(1,2,4,1,1,0,2,21,1) 8.15
p4 (1,0,2,23,1,0,2,21,1)→(1,2,2,3,1,0,2,21,1) 0.00
p5 (1,0,2,21,3,0,2,21,1)→(1,2,0,2,1,3,2,21,1) 7.07
p6 (1,0,2,21,1,0,4,21,1)→(1,2,2,1,1,4,2,1,1) 9.13
p7 (1,0,2,21,1,0,2,41,1) 8.30
p8 (1,0,2,21,1,0,2,23,1) 11.98
p9 (1,0,2,21,1,0,2,21,3) 15.90

p2⋆ -4.28
p4⋆ -2.69
p5⋆ 0.38

Table 7.3: Relative surface energies of different structures based on aπ-bonded chain reconstruction of the
terraces of the Si(553) and Si(553)-Au surfaces. Models p and p0 correspond to the clean silicon surface. pX
corresponds to the substitution of a gold atom in position “X" of structure p0. During the relaxation process
several of these structures transform into configurations with a different bonding topology. This change is also
indicated. pX⋆ refers to pX configurations after the formation of bonds between the step edge and the neighboring
π-chain structure. All energies correspond to our most accurate SIESTA calculations.

surprising if we take into account that the Si atoms at the step-edge have, in principle, three
electrons to populate these surface bands. However, one of these electrons is transferred to the
Au 6s states (which appear several eV below EF ) and the other electron populates states with
large contribution from the HC structure (which does not exhibit any metallic band).

Further investigation of the p2 model reveals that it is a metastable configuration. Perform-
ing the relaxations with a more stringent force tolerance of0.01 eV/Å results in a more stable
structure. This structure, labelled p2⋆ and illustrated in Fig. 7.20, exhibits a strong rebonding
of the step edge. Theπ-bonded chain suffers a small translation along the[1̄10] direction in
order to saturate the dangling bonds at the step edge. The newposition of the atoms of the
π-bonded chain seems to be a compromise between creating a surface dislocation and saturat-
ing the dangling bonds at the step edge. The band structure, shown in Fig. 7.20 (c), is quite
similar to that of the p2 model. The role of the step-edge atoms is now played by the silicon
atoms that formed theπ-bonded chain. A quite dispersive surface band, coming fromthese
atoms, appears centered at K. Another dispersive band with astrong gold weight appears at
lower energies. Although the topology of the band structureresembles that observed in the
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experiment, the filling of the parabolic silicon band is in this case close 0.4, i.e. larger than
that observed experimentally. Fig. 7.20 (c) also highlights one of the bands associated with
the HC structure, showing a characteristic dispersion. [66]

The band structure of model p2⋆, calculated using VASP and including the spin-orbit inter-
action (Fig. 7.23 (a) ) shows quite good, although not perfect agreement, with the experiments.
As in the case of the f2 model (see above), due to the spin-orbit interaction the dispersive bands
suffer a splitting proportional to their weight in the gold atoms in the surface. Thus, the split-
ting is much larger for the dispersive band starting at lowerenergies. Again, in contradiction
with the experimental observations we find some degree of splitting also for the parabolic band
appearing at higher energies, although this splitting is smaller. The overall conclusion from
Fig. 7.23 (a) is that the p2⋆ outperforms the f2 model in terms of reproducing the photoemis-
sion results.

The simulated STM images for this structural model are shownin Fig. 7.22. The depen-
dence on the polarity seems to be much larger than for models f2 and f4. The structure of the
STM images becomes more complex when going from filled to empty states as several “spots”
appear and the identification of zigzag or ladder-like structures becomes quite arbitrary.

Models p4 and p5 exhibit a similar rebonding of the step edge as explained above in the
case of p2 and p2∗. However, these new geometries, p4⋆ and p5⋆, are not as stable as p2⋆

(see Tab. 7.3). Geometry p5⋆ also develops the HC structure in the terrace as can be seen in
Fig. 7.21.

7.7 Most stable structures: combined SIESTA and VASP re-
sults

In Tab. 7.4 we compare the converged energies of the most stable models found in the previous
sections for the Si(553)-Au reconstruction. As discussed in the previous sections, these models
have been foundi) using a systematic search among all possible model based ona flat surface
bilayer and eight atoms in the terrace unit-cell and,ii ) the substitution of gold in different
positions of aπ-bonded reconstruction of the Si(553) terraces. These two classes of models
have different number of atoms. In order to compare the relative surface energies we need
to define the chemical potential of silicon. Since the surface should be in equilibrium with
bulk, we have chosen the chemical potential equal to the total energy of a silicon atom in bulk.
Since the energy differences are quite small we have decidedto perform the calculations of
the most stable structure with a different methodology in order to cross-check our results. We
have used the plane-wave code VASP for this purpose. [118, 119] We can see that there is an
excellent agreement between SIESTA and VASP results. Geometries f4 and f2 (see Fig. 7.12)
are the most stable structural models of those found in this extensive structural search. These
two models can be considered degenerate within the precision of the calculations.

Models f2 and f4 were already obtained as the most stable onesin the much more restricted
structural search of Sec. 7.2. The present calculations confirm that they are certainly among
the most stable reconstructions of Si(553)-Au surface thatonly involve the topmost bilayer.
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+1.0 +0.5

−1.0 −0.5

Figure 7.22: Simulated STM images, calculated using SIESTA, for model p2⋆. The insets of the panels indicate
the bias voltage in Volts.

Name ∆E (meV/Å2)
SIESTA VASP

p2* 4.85 4.93
p4* 6.44 6.54
p5* 9.51 9.13
f1 4.63 4.27
f2 0.17 -0.08
f3 0.42 0.51
f4 0.00 0.00

Table 7.4: Relative surface energies of our most stable models calculated using both SIESTA and VASP.
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(a) (b)

Figure 7.23: Band structures calculated using VASP and including the spin-orbit coupling for (a) model p2⋆ and
(b) model f4.
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7.8 The double-row model

The proposal for the structure of the Si(553)-Au reconstruction by Ghoseet. al. [61] can be
seen in Fig.7.24 (a) and (b). The main features are the doublerow of gold atoms located
at the step edge of the Si(553) surface and the silicon adatoms residing right below some
of these gold atoms. This reconstruction is quite differentfrom the other and better known
structures induced by the deposition of gold on vicinal Si(111) surfaces like the Si(557)/Au
of Chap. 6 and the models for the Si(553)/Au of the previous sections. Particularly surprising
is the position of the gold atoms at the step edge. It has been shown by density functional
calculations in several similar surfaces that the silicon subsitutional sites in the middle of the
terraces are typically more favorable for gold [69, 70, 102]. Another striking fact is the very
large distance between the gold atoms along the step edge (see Fig. 7.24 (a)). This distance
(∼3.8 Å) has to be compared, for example, to the nearest neighbor distance in bulk gold
(2.9 Å). In the direction perpendicular to the step edge we find two slightly different Au-Au
distances,∼2.7 Å and∼2.8 Å. These distances are intermediate between the bond length
of the gold dimer (2.5 Å) and that of bulk. Another peculiarity of this structure is that the
silicon terrace remains basically unreconstructed. This is in clear contrast with other systems
like the Si(557)-Au and the Si(111)-(5×2)-Au studied in previous chapters. For example, the
HC structure is absent in the model studied here. Thus, the gold double-row model proposed
by Ghoseet. al. can be pictured as a collection of gold dimers attached to theedges of the
terraces of a largely unreconstructured Si(553) surface. The gold dimers are oriented along
the normal to the step edge. There are two types of gold dimers. This configuration can be
justified for one of these dimers, which bonds to a silicon adatom in the terrace below with a
reasonable Si-Au distance of∼2.4 Å. However, this arrangement seems rather artificial and
unstable for the other dimer. We performed structural relaxations to study the stability of this
structural model. As we will see below the model turns out to be unstable and its structure is
greatly modified during the relaxation. One could always argue that this result is a pathology
of the local density approximation or other approximationsused in this work. For this reason
we have perfomed constrained relaxations that, while optimizing some of the bond lengths
and bond angles, preserve the main characteristics of the structure in Ref. [61]. The electronic
band structure and the simulated STM images are then calculated for this optimized structure
and compared to the available experimental information.

Fig. 7.24 (c) and (d) shows the result of a constrained relaxation in which the relative
positions of the gold atoms are not allowed to change (i.e. the gold atoms cannot move respect
to each other). All other degrees of freedom are optimized:i) the position of the center of
mass of the gold atoms and,ii ) the positions of all the silicon atoms in the slab, except those
in the lowest layer which remain in perfect bulk positions. As a stronger scatterer, the gold
positions should be the most reliable in the experiment [29,61]. This justifies the approach
followed here. After this constrained relaxation, the silicon atoms of the first layer reconstruct
to some extent. The atoms labeled “up” and “b” (see Fig. 7.24 (c) and (d)) give rise to a
buckling of the surface, discussed in Sec. 3.3, in which there is a charge transfer from the
lower atom to the the elevated one. This is clearly reflected in the electronic band structure
shown in Fig. 7.24 (e). The “up” atom creates a fully occupiedband with small dispersion
(solid circles), while a more dispersive unoccupied band (open squares) is associated with the
“b” atom. Atom labeled “db” has a partially occupied dangling-bond. The corresponding
dispersive metallic band (solid squares) can be found closeto the Fermi level in Fig. 7.24 (e).
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Figure 7.24: The model of Ghoseet. al.[61] for the Si(553)-Au reconstruction (a and b, panel (a) also shows the
unit cell vectors). The same structure after constrained relaxation (c and d) and the corresponding band structure
(see text). The main atomic character of the surface bands isindicated with different symbols in panel (e) which
correspond to those used to label different atoms in panels (c) and (d). The diamonds correspond to the gold
atoms in the step edge and their neighboring silicon atoms. The inset of panel (e) illustrates the Brillouin-zone
of the Si(553)-Au reconstruction. The Brillouin-zone of a 2×2 supercell of the unreconstructed Si(111) surface
is also shown for comparison. TheΓ-Y and K-X directions are parallel to the gold wires.
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Several surface bands appear associated with the gold atomsand their neighboring silicon
atoms in the step edge (open diamonds). However, all these bands are quite flat. This is
in contrast with the band structures of other reconstructions of gold in vicinal Si(111). In
those cases the gold atoms occupy silicon substitutional positions in the middle of the terraces
and produce quite dispersive one-dimensional bands that dominate the photoemission spectra
(see previous sections and Chaps. 4-6). Furthermore, in Chap. 6 it was shown that the
presence of gold induces a spin-orbit splitting of the hybrid silicon-gold bands that explains the
observation of two proximal one-dimensional bands in the Si(557)-Au surface [28, 30]. The
photoemission of the Si(553)-Au surface also shows two proximal half-filled bands similar
to those of the Si(557)-Au [1, 58, 59]. Therefore, it is tempting to associate these bands with
the gold wires and their silicon neighbors in analogy to the case of Si(557)-Au. Since in the
present calculations we are not including the spin-orbit interaction, these two proximal bands
should appear as a single dispersive band. Unfortunately, adispersive band associated with
the gold atoms is completely absent in Fig. 7.24 (e). The bandcoming from the partially
occupied dangling-bonds in the “db” atoms could be identified with the∼1/4 filled band (see
Fig. 7.1) of the Si(553)-Au [1,58,59]. However, this identification is also not very clear since
in the experiment this band goes down to much lower energies.We can thus conclude that
the band structure calculated for the model proposed by Ghose et al. fails to reproduce the
photoemission data. Of course, given the discrepancy in thegold coverage reported in the
photoemission work [1, 58] and the x-ray diffraction work ofGhoseet al. [61], it is perfectly
plausible that we are dealing with different reconstructions of the surface. In such case, the
data reported in Fig. 7.24 (e) can be considered as the predicted electronic band structure for
the double row model proposed by Ghoseet al. using the local density approximation.

Simulated STM images for filled and empty states are presented in Fig. 7.25. The gold
atoms show as alternating bright spots along the [1̄10] direction with a×2 periodicity. This
periodicity reflects the alternating heights of the gold atoms induced by the presence of a row
of silicon adatoms below them. Another feature with×2 periodicity is seen in the middle of
the terrace as a result of the buckling of the silicon surfacelayer. In spite of the difference in the
reported gold coverages we can insist in comparing with the available experimental images [1,
58–60]. At room temperature the step edge is observed in the experiment as a continous
bright line. Another less pronounced feature is found in themiddle of the terrace with a×2
modulation already at room temperature. At low temperaturethe terrace chain shows a more
clear×2 periodicity, while the line at the step edge develops a×3 modulation. While the
doubling of the periodicity in the middle of the terrace is reproduced by the model studied
here, the image produced by the step edge is quite different.The appearance of bright spots in
the step edge is linked to the presence of the silicon adatom in the terrace below. One could
then speculate on creating a better agreement with the STM images by introducing an adatom
only every three unit cells. However, this could hardly produce the observed temperature
variation. We can thus conclude that the STM images predicted for the double row model of
the Si(553)-Au reconstruction differ considerably from the reported STM images.

So far we have analyzed the results obtained for a structure optimized under the restriction
that the gold atoms remain at the experimentally determinedpositions. We can now release
this constraint and, starting from this partially relaxed structure, fully optimized the geometry
of the surface. By doing this we discover that the proposal ofGhoseet al. is not stable,
at least within our computational approach. Although we do not find strong changes in the
silicon terrace, the structure of the gold double-row is completely modified. This is clearly
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(a)
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Figure 7.25: Simulated STM images of the double row model [61] of the Si(553)-Au reconstruction after con-
strained relaxation: panel (a) for a +1.0 V bias voltage (empty states), and (b) for -1.0 V bias voltage (filled
states). Panel (c) shows the corresponding atomic configuration viewed from the side.

seen in Fig. 7.26, where we show the structure of the surface after 300 steps of unconstrained
structural relaxation. The gold atom that was initially sited on top of the silicon adatom has
moved to a new position on top of the neighboring rest-atom. The configuration of the silicon
adatom has also changed considerably. The adatom moves to a higher position, its height
over the terrace being now comparable to that of the gold atoms. This movement is possible
because the adatom breaks a bond with one of the silicon surface atoms and adopts a bridge-
like configuration. This broken bond is replaced by a new Si-Au bond. Although the structure
shown in Fig. 7.26 is not completely relaxed, it becomes clear that the model of the surface
proposed in Ref. [61], based on a silicon step edge decoratedwith gold dimers, is not stable. In
particular, the adsorption of one of the gold atoms on top of asilicon adatom is avoided. This
is consistent with previous density functional calculations [67,70]. In these calculations it was
shown that the adsorption of gold as an adatom over the silicon surface is quite unfavorable
compared to the substitution of the gold atoms in the surfacelayer.



7.9. Conclusions 121

(a)

(b)

Figure 7.26: Top (a) and lateral (b) view of the double row model [61] of the Si(553)-Au after 300 steps of
unconstrained structural relaxation.

7.9 Conclusions

Our study of the Si(553)/Au surface reconstruction has covered three different subjects: (i)
In Sec. 7.2 we presented five new models for the Si(553)-Au surface constructed using the
silicon honeycomb structure of Sec. 3.4 and the substitution of the gold atoms in the surface
layer. These models were compared to an earlier proposal [1], which corresponds to one of
our models (model V) with the addition of silicon dimers at the step edge. Although the en-
ergy differences between different structures are relatively small, one of our models (model I)
was clearly the most favourable. Unexpectedly, the attachment of extra silicon atoms to the
step edge in model V has little effect on the surface energy. This might open a route for the
modification of the structures. We also investigated the possibility to induce periodic modula-
tions in the structures that might lower the energy and reproduce some of the patterns seen in
the STM images (Fig. 7.2) [58, 59]. However, although further investigation is necessary, the
few structures considered in Sec. 7.2 proved to be quite stable against distortions that would
double or triple the unit cell. Neither the band structures of our models nor that of the model
proposed by Crainet al. [58], seem to provide a complete description of the photoemission
spectra. However, the band structure of the models I and V present some of the main features
of the experimental data.

(ii) We continued the investigation in Sec. 7.4 by presenting a labelling scheme for gen-
erating geometries with different coordinations of the surface atoms. We used this idea to
make an exhaustive study of the Si(553)-Au reconstruction when the number of atoms in the
first double-layer is N-1, where N is the number of atoms of theunreconstructed surface. The
removal of one atom is crucial if one wishes to introduce honeycomb-chains on the surface
(with analogy to the Si(557)-Au surface of Chap. 6) and eliminate dangling bonds. On the
other hand it creates surface-dislocations and/or stacking-faults that cost extra energy. We con-
sidered all possible combinations of these elements with all possible gold-substitutional sites,
for all systems in which the coordination between the atoms in the first double-layer can vary
from 2 to 4. Imposing some physically meaningfull constraints (not allowing isolated atoms,
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etc.), we found out that the number of different reconstructions is 210. We then proceeded in
calculating the total energy of all these structures takingan advantage of a scheme, where we
gradually made finer and finer calculations by changing the basis set, k-point sampling and the
accuracy of self-consistency. The results confirmed that wehad already found the most opti-
mal structures in Sec. 7.2; in general, systems featuring the honeycomb-chain at the step-edge
were observed to be the most stable ones. The notation was also used to make the generation
of other trial geometries easier; in particular, we used it to generateπ-bonding structures (hav-
ing the same number of atoms N, as the unreconstructed surface) and then substituted silicon
atoms by gold.

The most stable ones among all the studied structures where those having a honeycomb-
chain in the step-edge and a gold-atom in the middle of the terrace. These structures were
observed to have similar polarization with respect to the tunneling voltage as seen in the ex-
perimental STM images [64]. The most stable one of these structures has also a band structure
reminiscent to that of the photoemission experiment of Fig.7.1, althought instead of a sin-
gle band and a doublet band, as seen in the photoemission, twodoublet bands appear due to
the spin-orbit interaction. On the other hand, the most stable structure among theπ-bonding
models reproduces the photoemission results [58,59] extremely well, including a single and a
doublet parabolic bands. Unfortunately it is less stable than the most stable model featuring a
HC on the step-edge. We suggested that the correct Si(553)/Au geometry might then be some
combination of theπ-bonding structure and the honeycomb-chain at the step-edge.

(iii) In Sec. 7.8 we tested the double row model proposed by Ghoseet al. [61] for the
Si(553)-Au reconstruction. We address the stability of themodel, as well as its electronic
band structure and STM images. Using the geometry obtained in a constrained structural re-
laxation, which preserves the main characteristic of the proposal of Ref. [61], we calculate the
band structure and STM images. We only find a dispersive band with fractional filling close to
the Fermi level. This band comes from the silicon dangling-bonds in the surface and its energy
position and filling seems quite different from the bands observed in the photoemission exper-
iments [58, 59]. Dispersive bands associated with the gold atoms and their silicon neighbors
are completely absent, which also seems to be in disagreement with the experimental evi-
dence [58,59,71]. At variance with the room temperature experimental STM images [58,59],
our simulated STM images do not show the step edge as a continuous bright line, but exhibit
a ×2 modulation associated with the presence of the adatoms in the neighboring terrace. In
the low temperature experimental images the step edge develops a×3 periodicity [59]. It
might be possible to induce this×3 periodicity in our calculated STM images by modifying
the adatom content. However, it is not clear how this could reproduce the temperature depen-
dence. In summary, the calculated band structure and STM images for the model proposed
in Ref. [61] do not provide a good agreement with the available experimental information for
this surface. Of course, it might be argued that this is a consequence of the different gold cov-
erage in the different experimental approaches [58, 61]. Infact, it is possible that the surface
reconstructions studied by x-ray diffraction in Ref. [61] and by photoemission and STM in
references [58], [59], and [60] are different. Unfortunately, the structure provided by Ghoseet
al. [61] is unstable, at least at the level of the local density approximation. When the geometry
is relaxed without any constraints the structure of the golddouble-row attached to the step
edge severely modifies from the proposal of Ref. [61]. Therefore, we propose that the data of
Ghoseet al. should be reanalyzed in the light of the present results and new proposal for the
structure of the Si(553)-Au surface obtained.
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Implementation of the LDA+U method

8.1 Introduction

The LDA+U method was developed by Anisimov and co-workers [150–153] with the objec-
tive to improve the treatment of the electron-electron interaction for localized electrons within
the LDA description.

It can be shown that LDA implicitly assumes the electron-electron interactions, that for
localized electrons can be described with Hubbard parameter U, to be small compared to
the band width W [150]. However, for very localized electrons, while the band width may
be small, the electron-electron interactions can be quite big. A classical example are the
transition-metal oxides, were a strong localization of themetallic d-electrons take place.

This limitation of LDA manifests in several deficiencies, including the self-interaction of
the electrons. The exhange interaction in LDA is obtained from a free electron gas of similar
density. However, for localized electrons this approximate treatment of the exchange gives
rise to the interaction of a given electron with itself. As electrons get more localized (and as
W gets smaller), the self-interaction becomes more and moresignificant.

The LDA+U method has proven very succesfull with materials featuring partially filled
d or f shells [153]. The computational cost is comparable to an LDA calculation and the
few parameters needed by this method, can be calculated fromfirst principles (this will be
discussed in Sec. 8.4). For this reason we came forward to implement it into the SIESTA
code.

8.2 Theory and methods

We proceed to obtain the standard, rotationally invariant LDA+U implementation by Anisi-
mov, et. al. [153]. On the way we learn how the self-interaction and exchange energy terms
are obtained.

By minimizing the total energy of Eq. (2.1) using the Slater determinant of Eq. (2.2) as a
trial wavefunction, one obtains the expression for the Hartree-Fock (HF) energy:

〈Ψ|H|Ψ〉 =
∑

i

∫

drψ∗
i (r)(T̂ + Vext)ψi(r) + Eee, (8.1)

123
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where Eee is the electron-electron interaction:

Eee =
∑

(i,σ)6=(j,σ′)

∫
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e2
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i (r′)ψσ∗
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j (r). (8.2)

We rewrite this:

Eee =
1

2

∑

i,j,σ,σ′

∫

drdr′
e2

|r − r′| |ψ
σ
i (r)|2||ψσ′

j (r′)|2

−1

2

∑

i,j,σ

∫

drdr′
e2

|r − r′|ψ
σ∗
i (r)ψσ

i (r′)ψσ∗
j (r′)ψσ

j (r)

= EH + Eexc, (8.3)

where the first term (EH ) is known as the Hartree energy and the last term (Eexc) is the so-
calledexchangeterm. One observes that now the indices run over alli, σ andj, σ′. This has
been achieved by adding and subtracting the termi=j of the electron-electron interaction of
Eq. (8.2). The positive term is included into the EH and the negative one into the Eexc term,
this way obtaining a more symmetric form at Eq. (8.3). Hartree energy can also be written
using the electron-density only:

EH =
1

2

∫

drdr′
e2

|r− r′|ρ(r)ρ(r
′), (8.4)

whereρ(r) is the total electron density (including both spins).
We recall that the electron-electron interaction in LDA is approximated by Eee=EH+Exc,

where EH is the Hartree term and Exc is the exchange-correlation energy which is parametrized
from the results of a homogeneous electron gas.

The self-interaction problem is now easy to understand: in the LDA approximation the
electron self-interaction, i.e. the terms of the Hartree energy with(i, σ)=(j, σ′) are supposed
to cancel with Exc (that is including the exchange energy). However, since theexact Exc is not
known and is parametrized from simple model systems like thehomogeneous electron gas,
this cancellation is incomplete.

We now consider the possibility to go beyond the LDA, and in some approximate way,
include the electron-electron and exchange terms of Eq. (8.3) for electrons tightly localized
around the atomic center. For very delocalized electrons wedo not need to worry since the
LDA description is quite appropriate. We start by considering a set of orthonormal atomical
orbitals|φi〉 at the same site. Our objective is to calculate exactly the EH+Eexc total energy
of Eq. (8.3) for an isolated system consisting of these orbitals. The eigenstates of this sys-
tem are then|ψσ

α〉 (σ and k are the spin and eigenvalue indexes, respectively) that are linear
combinations of|φi〉, i.e.

|ψσ
α〉 =

∑

n

an
ασ|φn〉. (8.5)

For later use, we introduce the following occupation numberoperator:

n̂σ
kl =

∑

i

|φk(ri)〉ŝσ〈φl(ri)| (8.6)
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whereŝσ operates on spinσ only. Using a Slater determinant, constructed with the eigenstates
of Eq. (8.5), as the wavefunction, leads to the following expectation value for the operatorn̂σ

kl

nσ
kl = 〈Ψ|n̂σ

kl|Ψ〉 =
∑

α

ak∗
ασa

l
ασ. (8.7)

Using Eq. (8.5) with the Hartree term in Eq. (8.3) results in:

EH =

1

2

∑

ijσσ′

(

∫

drdr′
e2

|r− r′|φ
∗
i′(r)φj′(r)φ

∗
i′′(r

′)φj′′(r
′)

)

∑

i′j′i′′j′′
ai′∗

iσ a
j′

jσa
i′′∗
j′σ′a

j′′

jσ′

=
1

2

∑

i′j′i′′j′′

∑

σσ′

(

∫

drdr′
e2

|r − r′|φ
∗
i′(r)φj′(r)φ

∗
i′′(r

′)φj′′(r
′)

)

×(
∑

i

ai′∗
iσ a

j′

iσ)(
∑

j

ai′′∗
jσ′a

j′′

jσ′)

(8.8)

Using Eq. (8.7) and changing the names of the indices (namelym→i’,m’→j’, m”→i”,m”’ →j”),
gives

EH =

=
1

2

∑

{m}σσ′

Umm′′m′m′′′nσ
mm′nσ′

m′′m′′′

=
1

2

(

∑

{m}σ
Umm′′m′m′′′nσ

mm′nσ
m′′m′′′ +

∑

{m}σ
Umm′′m′m′′′nσ

mm′n−σ
m′′m′′′

)

, (8.9)

where

Umm′′m′m′′′ =
∫

drdr′
e2

|r− r′|φ
∗
m(r)φm′(r)φ∗

m′′(r′)φm′′′(r′). (8.10)

In a similar fashion, for the exchange term we obtain:

Eexc = −1

2

(

∑

{m}σ
Umm′′m′′′m′nσ

mm′nσ
m′′m′′′

)

. (8.11)

By combining Eq. (8.9) and Eq. (8.11) we get finally:

EH + Eexc =
1

2

∑

{m}σ

(

Umm′′m′m′′′nσ
mm′n−σ

m′′m′′′

+(Umm′′m′m′′′ − Umm′′m′′′m′)nσ
mm′nσ

m′′m′′′

)

. (8.12)

We have now expressed correctly the electron-electron interaction for an isolated system (con-
sisting of orbitalsφi). The energy in Eq. (8.12) depends through the occupation numbersnσ

mm′

on the wavefunctionΨ. We now wish to use this expression for an isolated system to correct
the LDA energy of localized electrons. This connection is established by calculating the oc-
cupation numbers using the LDA wavefunction.

Due to the fact that we are considering two “disconnected” systems (the isolated orbitals
and the LDA system), the Coulombic interactions in Eq. (8.10) are effective interactions (in
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the Anderson model language, they are “renormalized”) and they must be screened by the
surrounding electronic density. These effective interactions are the only parameter needed in
the LDA+U method. If we define two effective (empirical for the time being) parameters, U
and J as

U =
1

(2l + 1)2

∑

mm′

Umm′mm′ = F 0 (8.13)

J =
1

2l(2l + 1)

∑

m6=m′

Umm′m′m =
F 2 + F 4

14
(8.14)

then any of the integrals in Eq. (8.12) can be expressed by:

Um,m′′,m′,m′′′ =
∑

k

ak(m,m
′, m′′, m′′′)F k, (8.15)

the terms Fk being the slater integrals and

ak(m,m
′, m′′, m′′′) =

4π

2k + 1

k
∑

q=−k

〈lm|Y q
k |lm′〉〈lm′′|Y q

k
∗|lm′′′〉, (8.16)

where F-values can be determined from the U and J values givenas an input to the LDA+U
scheme (see Eq. (8.13) and Eq. (8.14)). The terms in Eq. (8.16) include integrations over
three spherical harmonics, and can be calculated using the Wigner-3j symbols [154].

It is necessary to add some terms to Eq. (8.12) in order to properly define a correcting
energy functional,

EU [{n}] =
1

2

∑

{m},σ

{

Um,m′′,m′,m′′′nσ
m,m′n−σ

m′′,m′′′ +

(

Um,m′′,m′,m′′′ − Um,m′′,m′′′,m′

)

nσ
m,m′nσ

m′′,m′′′

}

−1

2

(

UN(N − 1) − J [N↑(N↑ − 1) +N↓(N↓ − 1)]
)

. (8.17)

The last line in Eq. (8.17) is a correction-term to cancel outthe electron-electron interaction
already taken into account by the original LDA total energy.This way, the average electron-
electron interaction energy included in the LDA calculation is removed by the term1

2
UN(N−

1) and the correct energy is put explicitly by the sum in Eq. (8.17). The final, corrected
LDA+U energy functional is then:

ELDA+U = ELDA + EU , (8.18)

where ELDA is the LDA functional of Eq. (2.5). The functional of Eq. (8.17) is originally due
to Anisimov, et. al. [153]. There exists also simplified versions (see, for example [155]).

In order to get the potential resulting from Eq. (8.17) to include it into the LDA calcula-
tions, we apply the variational principle with eachnσ

m,m′ and obtain:

VU =
∑

m,m′

|m, σ〉V σ
m,m′〈m′, σ|, (8.19)
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where the elementsVm,m′ are as follows:

Vm,m′ = Um,m′′,m′,m′′′n−σ
m′′,m′′′ +

(

Um,m′′,m′,m′′′ − Um,m′′,m′′′,m′

)

nσ
m′′,m′′′ . (8.20)

Here we have also adopted the notation:

〈m, σ| = ŝσ〈φ(r)|, (8.21)

where the orbitalφ(r) has the magnetic quantum numberm andŝσ is operating on spinσ only.
In a practical LDA+U calculation, the occupation numbersnσ

m,m′ are calculated as in Eqs.
(2.38)-(2.39) (when calculating occupation numbers, one must set Vηκ=1). Then the potential
term Eq. (8.19) is evaluated (again using Eqs. (2.38)-(2.39)) and the SCF cycle of the KS
scheme is let to converge the system. After this initial SCF cycle, charge transfer has occurred
and the occupation numbers have changed, so one has to calculate the occupations again. This
changes the potentials so a new SCF cycle must be performed. Therefore, we have two nested
self-consistency loops. One in the density for fixed occupations and one in the occupations
themselves. The details for controlling this extra SCF cycle are described in Sec. 8.5.

8.3 Hubbard U and orbital occupations

The U parameter in Eq. (8.13) is frequently regarded as an effective parameter Ueff=U-J. This
equals in setting J=0 in Eq. (8.13). Then the energy of the “+U” correction in Eq. (8.17) can
also be expressed in terms of the eigenvaluesλσ

i of the occupation matrixnσ
m,m′ [155]:

EU =
U

2

∑

σ

∑

i

λσ
i (1 − λσ

i ). (8.22)

This expression clearly shows that the correction term in LDA+U favors integer occupations.
It also provides a simple way to check our numerical implementation that uses equation (8.17)
to calculate the total energy and the Hamiltonian. In fact, in the limit J=0 the energies calcu-
lated directly from Eq. (8.22) perfectly reproduce those given by SIESTA.

8.4 Calculating the effective Hubbard parameter U

In Eq. (8.17), the average electron-electron interaction in LDA is approximated by the term:

Eee
LDA =

1

2
UN(N − 1), (8.23)

where N is the total occupation of the shell we wish to treat with the LDA+U. One could then,
in principle, change the occupation number N, see how the LDAenergy of the system changes
and from this variation get the value of U (assuming that other energy terms show vanishing
variation with respect to N), by simply fitting the {ELDA,N} values to Eq. (8.23). One could
also use the second derivative of the total energy and Eq. (8.23):

∂2ELDA

∂N 2 ≈ ∂2Eee
LDA

∂N 2 = U (8.24)
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These techniques can be employed if one has a good control over the occupation number
N. This is the case, for example, in the Linear Muffin Tin Orbital (LMTO) method. In the
LMTO method one can isolate an atom, by neglecting the hybridization of its orbitals with the
rest of the system and this way forcing the desired occupation [151, 156, 157]. One can also
exploit the Janak theorem:

ǫi =
∂E(N)

∂ni
, (8.25)

where E is the total energy, ni the occupation of the statei andǫi its eigenvalue, in order to
determine the U from the eigenvalue shifts. For example, Anisimov and Gunnarsson [151]
use the following formula with the iron d-orbitals:

U = ǫ
(n

2
+

1

2
,
n

2

)

− ǫ
(n

2
+

1

2
,
n

2
− 1

)

, (8.26)

whereǫ(n ↑, n ↓) is the spin-up 3d eigenvalue, depending on the spin-up (n ↑) and spin-down
(n ↓) 3d occupations. U can thus be determined from the shift in the d eigenstates.

Pickett et. al [158] use a variation of the constrained charge scheme [159] for the deter-
mination of U. Their idea consists of applying small potential shifts to a given atom (orbitals
of Eq. (8.5)) and see how the system responds to this small perturbation. Potential shifts are
projector-like potential terms:

Vi = |φi〉w〈φi|, (8.27)

wherew is the potential shift andφi is an atomic orbital. One can then show (see below), that

U ≈ ∂w

∂N
, (8.28)

where the potential shiftw has been applied to all of the orbitals of the shell andN is again
the total occupation of the shell.

In the following, we use similar notation to that of Gironcoli and Cococcioni [155]. We
start by introducing the constrained-LDA functional:

E[{qI}] =
min

n(r), αI

{

ELDA[n(r)] +
∑

I

αI(nI − qI)
}

, (8.29)

where nI , qI andαI are the occupation numbers, the constrained occupation numbers and
the Lagrance multipliers, respectively. Here the indexI goes over the atoms in the unit cell
and nI is the total occupation of the desired shell. The constrained occupation numbers qI

represent the desired occupation for atomI. Lagrance multipliers maintain the number of
electrons constant. One can, via a Legendre transformation[158], pass to a functional where
the independent variable are theαI ’s:

E[{αI}] =
min
n(r)

{

ELDA[n(r)] +
∑

I

αInI

}

. (8.30)

In this case, one chooses a set ofαI ’s (usually only one of them is different from zero), and
then performs the self-consistent LDA calculation to minimize the E[{αI}].

Because E[{αI}] is the minimum according to the variational principle, italso satisfies:

∂E[{αI}]
∂nJ

= 0. (8.31)



8.5. Details of the implementation 129

This way we get, using Eq. (8.30) and remembering thatαI ’s are kept constant (the variational
minimization was done for a chosen set ofαI ’s):

∂ELDA[n(r)]

∂nJ
+ αJ = 0 ⇔ ∂ELDA[n(r)]

∂nJ
= −αJ . (8.32)

In the next derivative, theαI ’s are allowed to vary. We thus take a derivative over all self-
consistent electron-densities (there is a self-consistent electron density for each set ofαI ’s):

U =
∂2E[n(r)]

∂n2
J

= −∂αJ

∂nJ
. (8.33)

Here we have used the Eq. (8.24).
In Eq. (8.33) we have assumed:

ᾱ = F (n̄), (8.34)

whereᾱ = (α1, α2, ..., αN) and n̄ = (n1, n2, ..., nN), but in the calculations we impose the
potential shifts̄α and get the occupations, so

n̄ = F−1(ᾱ). (8.35)

In the calculations, we thus first create the matrix:

U−1
IJ =

∂nI

∂αJ
(8.36)

and then invert it to get the U=U11.

8.5 Details of the implementation

In our implementation of the LDA+U we use the same routines tocreate the atomic orbitals
and the projectors〈m, σ|. The projectors created for one atom species are then identical to a
SZ basis. From this basis one can choose which projectors〈m, σ| are used. (for example, in
the case of iron, one would choose the d-orbitals).

The projectors in one atomic center should not overlap with the ones in the neighboring
atoms (otherwise, the occupation numbers are not well defined). For this reason, one should
use highly localized projectors (setting thePAO. proj_U_ energyshift to a high value,
see below), or alternatively, cut the interaction range of the projector, usingPAO.proj_U_radii
andPAO.proj_U_alpha switches (see below). We recommend the latter approach; this
way the orbital shape is more similar to the orbital of an isolated atom. This method is also
consistent with earlier LDA+U studies in the literature.

In the following subsections, we explain the new program switches needed to control the
LDA+U calculation. We have chosen the same format as in the SIESTA manual. The new
output files produced by the LDA+U are also described.

8.5.1 New program switches

PAO.proj_U_energyshift (real energy): The cutoff radius of projectors〈m, σ|, defined with
an energy cutoff exactly the same way as inPAO. energyshift .
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Default value: 50 meV

Note: User should take care that the projectors from different atomic sites do not over-
lap, either by setting this parameter to a high value, or using thePAO.proj_U_radii
parameter instead.

PAO.proj_U_radii (real length): The cutoff radius of projectors〈m, σ|. Near this cutoff
value, the projector goes smoothly to zero
(seePAO.proj_U_alpha ).

Default value: 1000.0 a 0

Note: Must be used together with thePAO.proj_U_alpha parameter.

PAO.proj_U_alpha (real): The projector is set to zero, by multiplying its radial partwith
( 1

1+e(αr−rcut)
), where rcut is the parameterPAO.proj_U_radii andα thePAO.proj_U_alpha .

This way the projector goes smoothly to zero.

Default value: 1.0

Note: For example, with the iron d-orbitals and
PAO.proj_U_energyshift =50 meV, a nice value for this parameter is 50.
One should always check the behaviour of the projector in thefile LDAU.

proj_U (data block): Defines the atoms and orbitals that are assigned with a LDA+Uprojec-
tor. Each line gives the type label and the l and m quantum numbers. Here an example
for the iron d-orbitals:

%block proj_U
Fe 2 -2
Fe 2 -1
Fe 2 0
Fe 2 1
Fe 2 2
%endblock proj_U

ldaU_U (real energy): The value of U. The parameters Fk are calculated using the values
of U and J as described in the previous section. Currently, the Slater integrals and the
parameters are calculated only for d- and f-electrons.

Default value: 0.0 eV

ldaU_J (real energy): The value of J.

Default value: 0.0 eV

ldaU_maxiters (integer): This number controls the occupation number self- consistency cy-
cle. When value of this parameter is >1, then the LDA+U occupation numbers nm,m′ are
converged. This means that in the end of every SCF cycle, the occupation numbers are
recalculated, and then a new SCF cycle with the new LDA+U potentials (that depend on
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the nm,m′) is started. This procedure is repeated until the convergence of nm,m′, as de-
fined in ldaU_stop , is reached or until the occupation numbers have been calculated
ldaU_maxiters times.

WhenldaU_maxiters =1, the LDA+U potential is included into the Hamiltonian af-
ter the single SCF cycle has converged. The wavefunctions are calculated using this
modified Hamiltonian and then the program stops. This is usefull for preliminary cal-
culations and testing the quantitative effects of U and J.

Default value: 2

Note: When this switch is >1, the user should increase considerably the amount of
MaxScfIterations which in this case means thetotal amount of SCF itera-
tions to converge the occupation numbers.

ldaU_stop (real): The error in the occupation numbers at step k is defined as follows:

∆N = max{|nk
m,m′ − nk+1

m,m′ |}, (8.37)

where nkm,m′ is the cross-occupation numberm,m′ at step k of the iteration.

Default value: 0.001

Note: Since the error∆N consists of summations over the density matrix elements, it
should be one order of magnitude greater thanDM.Tolerance .

ldaU_scfmaxiters (integer): Maximum value of SCF iterations for one step of the occupation
number iteration.

Default value: 1000

ldaU_init (logical): When the nm,m′ converged density matrix is stored into the disk, it con-
tains the information to calculate nm,m′ and continue the iteration. When this switch is
set to.true. , the occupation numbers are calculated from the.DM file before the SCF
cycle starts and the LDA+U projectors are applied from the very start of the cycle.

Default value: .false.

Note: Works better when used together withMixSCF1 set to.true.

ldaU_tm (logical): If this switch is .true. then the transformation of the U-matrix is
done. The review paper of Anisimov, et. al. [153], considered spherical harmonicsY m

l .
However, we are using real spherical harmonicsSm

l which are related to the spherical
harmonics by:

Sm
l =















(−1)m

i
√

2
(Y

|m|
l − Y

|m|
l

∗
) m < 0,

Y 0
l m = 0,

(−1)m
√

2
(Y m

l + Y m
l

∗) m > 0.

(8.38)
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This transformation can be expressed in matrix form for realspherical harmonics with
quantum number l as~Sl = C l~Yl. The matrixC l has the following form:

C
l =

1√
2

































i(−1)l 0 · · · 0 . . . 0 −i
0 i(−1)l−1 . . . 0 . . . −i 0
...

...
. . .

... . .
. ...

...

0 0 . . .
√

(2) . . . 0 0
...

... . .
. ...

. . .
...

...
0 (−1)l−1 . . . 0 . . . 1 0
(−1)l 0 . . . 0 . . . 0 1

































(8.39)

The matrices of the type Um,m′,m′′,m′′′ = 〈m,m′′|Vee|m′, m′′′〉 in Eq.(8.10) must then be
transformed by:

Um,m′′,m′,m′′′ =
∑

{M}
UM,M ′′,M ′,M ′′′C l∗

m,MC
l∗
m′′,M ′′C l

m′,M ′C l
m′′′,M ′′′ (8.40)

Default value: .true.

Note: This is basically a switch for debugging and should not be changed by the user.

ldaU_constrained (logical): By using this switch, one can calculate charge-constrained cal-
culations. These calculations can be used in determining the value of the parameters
U and J as described in the previous section. When this switchis set to.true. , the
LDA+U potential term in Eq. (8.19) is substituted by:

Vconstr =
∑

m,σ

|m, σ〉ασ
m〈m, σ|, (8.41)

whereαm is the potential shift, for orbital m (see Eq. (8.27))

Default value: .false.

Note: See alsopotential_shift_orb_eV andpotential_shift_eV

potential_shift_orb_eV (data block): Defines the energy shiftsαm in the units of eV as fol-
lows:

%block potential_shift_orb_eV
1 2 -0.1
2 3 0.1
%endblock potential_shift_orb_eV
In the case of iron, this would set a potential shift ofαm=−2 = −0.1 eV to the atom num-
ber 1 and a potential shift ofαm=−1 = 0.1 eV to the atom number 2 (the enumeration
of orbitals starts from s and is ascending with respect to thequantum number m).

Note: Used only ifldaU_constrained is set to.true.

potential_shift_eV (data block): Defines the energy shiftsαm in the units of eV as inpotential_shift_orb_eV
but without the orbital number; the potential shift is applied to the entire shell.
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LatticeConstant 4.36 Å
DM.MixingWeight 0.025
DM.Tolerance 0.00018
DM.NumberPulay 9
PAO.proj_U_energyshift 50 meV
PAO.proj_U_radii 1.310 Å
PAO.proj_U_alpha 50
DM.ElectronicTemperature 50 meV

Table 8.1: Some SIESTA parameters used in the calculations of FeO. The lattice constant was optimized.

Note: Used only ifldaU_constrained is set to.true.

ldaU_forces (logical): If this switch is set to.true. , then the force and stress resulting
from the additional U energy term are added to the total forceand stress.

Default: .true.

ldaU_disk (integer): When this parameter is 1, the program writes the occupationnumbers
into the fileOCCU. When setting this parameter to 2 the occupations are red from the
file OCCU.

Default: 0

8.5.2 Output files

A single file calledLDAUis produced. It includes the projectors as function of radial distance
as well as information about the occupation numbers, occupation number convergence and the
forces. To see the convergence, usecat LDAU | grep -i “max” . TheLDAUfile also
gives two different LDA+U total energies. Other one as defined Eq.(8.17), labelled asTotal
LDA+U energy . This energy is added to the total energy returned by Siesta.The expectation
value of the LDA+U potential of Eq.(8.19) is also calculatedand labelled asTotal LDA+U
energy1 .

8.6 A test application of the LDA+U: FeO

The transition metal oxides are a classical example of Mott-insulators, where the effect of us-
ing LDA+U instead of the LDA should be important. The LDA+U prefers integer occupation
numbers for the d-shells of iron (either fully occupied or unoccupied), breaking the symme-
try of the system in this way and opening gaps in the electronic structure. In the case of the
FeO, the standard (S)LDA predicts the system to be metallic,while the LDA+U corrects this
situation and gives an insulating system instead [160].

Using the FeO as a test system, we wish to perform test calculations with various values
for the parameter U and compare our results with an earlier calculation [160].

The antiferromagnetic phase of FeO (AFII) is illustrated inFig. 8.1. It consists of iron
planes, normal to the (111) direction. The spin-polarization of neighboring planes is different
and the planes are separated by oxygen.

First of all, some standard SIESTA parameters to converge the FeO calculations are pre-
sented in Tab. 8.1. A band structure from a standard (S)GGA calculation is presented in Fig.



134 Chapter 8. Implementation of the LDA+U method

(a) (b)

Y
Γ

Z
K

A

U

B

K

Figure 8.1: (a) The antiferromagnetic structure of FeO plotted in a box. The sides of the box have the dimension
of the lattice constant. Iron atoms with spin up (down) are colored with black (green). Oxygen atoms are
indicated with red color. Several (111) planes are indicated. (b) The irreducible Brillouin zone of FeO.

Figure 8.2: The band structure from a (S)GGA calculation of FeO. The notation corresponds to the special points
in the irreducible Brillouin-zone as described in Fig. 8.1b. Bands with iron s-character and oxygen p-character
are highlighted with black and white circles, respectively. Circle size is proportional to the character.

φ(
r)

r (ang)

Figure 8.3: The radial part of the projectors, consisting ofan iron d-orbital, created with the parameter switches
PAO.proj_U_energyshift =50 meV, PAO.proj_U_radii = 1.3 Å and PAO.proj_U_alpha = 50.



8.6. A test application of the LDA+U: FeO 135

E
ne

rg
y 

(e
V

)
E

ne
rg

y 
(e

V
)

E
ne

rg
y 

(e
V

)
(b)(a)

(c) (d)

(e) (f)

Figure 8.4: Band structure calculations with the (S)GGA+U method. With U=2 (a-b), U=4 (c-d) and U=6 (e-f).
In (a),(c) and (e), the parameterldaU_maxiters =1, while in (b),(d) and (f)ldaU_maxiters =1000 (i.e.
the self-consistent cycle in the occupations was converged). States with Fe d-orbital character are marked with
circles and circle size is proportional to the weight the state has in the d-orbitals.

Figure 8.5: Convergence of the occupation number when U=6. Iteration step refers to the occupation number
self-consistency step and∆N is the convergence of Eq. (8.37).
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(b)(a)

Figure 8.6: An analysis of the A1g character of the bands (see text) for (a) U=0 and (b) U=6 (withoccupation
number self-consistency). The circle size is comparable tothe A1g character.

U dxy dyz dz2 dxz dx2
−y2 total

0 0.93 (0.26) 0.93 (0.28) 0.93 (0.14) 0.94 (0.28) 0.93 (0.26)4.66 (1.22)
6 0.94 (0.49) 0.95 (0.28) 0.94 (0.02) 0.95 (0.13) 0.95 (0.18)4.71 (1.10)

Table 8.2: Orbital occupations for spin up (down) when z-axis is parallel to the (111) direction. Occupations for
the atom with the majority spin up.

8.2. We see that oxygen p- and iron s-states form bands with a rather wide bandwith, while
the flat bands (localized electrons) near the Fermi-level are all due to the Fe d-states.

The radial part of the projector used in the GGA+U calculations and the parameters used
to create it are presented in Fig. 8.3. Calculations using different U-values were performed.
The resulting band structures are plotted in Fig. 8.4.

In Fig. 8.4 the cases (a,c,e) correspond to test calculations, where the self-consistency in
the occupation number was not performed. When this extra self-consistency is included in the
calculation, usually 5-15 occupation number steps are needed in order to meet the requirement
ldaU_stop = 0.002 (see Fig. 8.5). Without the self-consistency in the occupations the fully
occupied d-bands are pushed downwards in energy. However, the Ef continues to be pinned
by some of the d-bands. We observe that when the occupation number cycle is converged,
we recover the correct behaviour and the resulting band-gapin the iron d-states is≈ U. As
the occupations are changing, they result in a non-symmetric orbital charges that breaks the
symmetry of the system and open gaps. This is an example of Mott-insulating behaviour.

We now wish to test the rotational invariance of our LDA+U implementation and com-
pare our band structures to those of Mazin and Anisimov [160]. We first recall from the
Ligand Field Theory (LFT) that d-orbitals can be divided into bonding eg (dz2,dx2−y2) and
non-bonding t2g (dxy,dxz,dyz) orbitals (the eg orbitals bonding with oxygen). Following Mazin
and Anisimov [160], we consider the linear combination A1g= 1√

3
(dxy+dxz+dyz) and for this

reason, rotate the system so that the z-axis is perpendicular to the [111] planes. After the rota-
tion, A1g=3z2-(x2+y2), where z is parallel to [111]. Now we can analyze the A1g character of
the bands, by considering their dz2 and dx2−y2 characters. In Fig. 8.6, we plot the band struc-
ture of the rotated system and get results similar to those ofMazin and Anisimov [160]; the flat
band lowering down to the oxygen manifold as the U is increased results almost purely from
the A1g orbitals (although the weight is relatively small comparedto some other bands). While
rotating the system, we have also tested the rotational invariance of our LDA+U method; the
band structures in Fig. 8.6 are identical to those of Fig. 8.4.

We took some preliminary steps in order to evaluate the valueof U in FeO. In Fig. 8.7 we
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Figure 8.7: Total occupations of the iron atoms of FeO for theatom in which the potential shift is applied (solid)
and the neighboring iron atom (dashed).

have plotted the total occupation of the d-shell as functionof the potential shift. We used the
switchpotential_shift_eV , so the whole d-shell is subject to the potential shift. Using
the simple formula Eq. (8.28), we get U≈13.0 eV. Using the formula of Eq. (8.36) yields a
similar result.

Although the value of U depends on the exact shape of the projectors used, the present
estimation of U seems a bit too large. We are in the process of exploring the reasons for
this overestimation of U in SIESTA and how it depends on the shape and localization of the
projectors.

8.7 Another test application: Sr2VO4

One of the first experimental studies of the Srn+1VnO3n+1 compounds were performed by
Cyrot et. al. [80] and Nozaki et. al. [81]. The motivation forsynthesizing these compounds
lay in their structure: (i) they have 2-dimensional character due to the VO-planes (separated
by Sr atoms) and (ii) the chemical environment for vanadium is such that a strong magnetic
moment can be achieved. Both of these characteristics are thought to be the reason for the
onset of superconduction in some high-Tc materials [81]. These compounds, consisting of
VO-layers separated by Sr are illustrated in Fig. 8.8.

In this section we make a brief study of the Sr2VO4 compound using the LDA+U method.
With the LDA, the system turns out to be conductor, while in the experiment it is semiconduct-
ing. This compound has already been studied using very sophisticated Path-Integral Renor-
malization Group method combined with DFT [82] yielding thecorrect semiconducting na-
ture. We will analyze in detail the electronic properties ofthis system and show that with the
LDA+U this problem can be solved: by studying VO4 planes we show how the LDA+U, by fa-
voring integer occupations, breaks the symmetry between the d-orbitals of vanadium, making
the compound semiconducting in this way, in accordance withthe experimental evidence.

In the calculations presented here we take U as a parameter and vary it between 2 and 6 eV,
which according to our experience seem reasonable values for 3d transition metals. J is taken
to be zero. According to Sec. 8.2 this is equivalent to havingF 2=F 4=0.

In this section, we use a slightly different projector than in the case of FeO. Instead of
using free-atom like orbitals with a steep cut, like those ofFig. 8.3 created using parameters
PAO.proj_U_radii and PAO.proj_U_alpha , we employ thePAO.proj_U_energyshift
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Figure 8.8: Crystal structure of Srn+1VnO3n+1, for (a) n=1 (b) n=2 (c) n=3 and (d) n=∞. Picture taken from
Ref. [81].

Figure 8.9: Radial dependence of the projector|m〉 (rc=2.32 a.u.) and the most extendedd basis orbital
(rc=5.03 a.u.) of the V atoms.

switch to confine the projectors within some cutoff radius. This is illustrated in Fig. 8.9. The
confinement radius of the LDA+U projector is 2.32 a.u., compared with the 5.03 a.u. of the
d orbitals. We have checked that changing the radius of the|m〉 projectors does not produce
significant changes in the results as far as the projectors are quite localized. However, a direct
comparison of the results obtained with different projectors is difficult since the value of U
depends on the choice of projector.

8.7.1 Electronic band structure of Sr2VO4

The pseudopotentials and basis sets correspond to theV.psf , Sr.psf andO.psf in Tab.
2.2. We use a tetragonal unit cell that contains two VO4−

4 planes and a k-sampling of 4×4×3.
Our calculations of the Sr2VO4 compound show that the ferromagnetic arrangement within

the VO4 planes (perpendicular to thec axis) is∼100 meV per V atom more stable than the
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Order ∆E(meV/atom) µB a c
Paramagnetic 122 – 3.827 12.755
FM 0 0.88 3.837 12.732
AFM I -2 0.88 3.837 12.731
AFM II +78 0.02 3.839 12.690

Table 8.3: Energy differences per V atom (∆E) in meV, local magnetic moment in each V atom (µB), and relaxed
lattice parameters calculated for Sr2VO4 with different magnetic orders using GGA.
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Figure 8.10: Band structure of the Sr2VO4 compound calculated with GGA. (a) Paramagnetic configuration, and
(b) ferromagnetic configuration (full lines for majority spin and dashed lines for minority spin). Energies are
referred to the Fermi level.

antiferromagnetic arrangement within the plane (AFMII) and ∼120 meV than the paramag-
netic compound. Once the ferromagnetic order is set up in theplane, the ferromagnetic and
antiferromagnetic (AFMI) stacking of the planes are almostdegenerate. This implies that the
magnetic interaction between the planes is quite small. In the ferromagnetic phase, the V atom
presents a localized magnetic moment of∼0.9µB. Thus it can pictured as a V4+ ion.

8.7.2 VO4−
4 plane

We have decided to start our investigation of the effect of the U-Hubbard term using the
smallest relevant unit necessary to make a reasonable description of the Sr2VO4 compound.
We have used charged VO4−

4 planes. The structure of the oxygen octahedra is taken from the
Sr2VO4 geometry and is illustrated in Fig. 8.11.

The valence configuration of vanadium is 3d34s2 while that of oxygen 2s22p4. The effect
of the Sr2+ ions is supposed to be, as a first approximation, just to dope the VO4 planes
with extra-electrons. For this reason we charge the VO4 planes with four extra electrons, this
way mimicking the situation in the real compound. Now the oxygen p-orbitals still need 4
electrons to get a closed p-shell, leaving only one electronfor the vanadium atom. In the LDA
approximation this electron is most probably distributed between all the vanadium d-orbitals.
This situation is likely to change when using the LDA+U that favors the integer occupation
numbers.
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Figure 8.11: (a) VO4 plane. The vanadium atom is marked with a black sphere and theoxygen atoms with red
spheres. with filled circles. Coordinate directions used inthis section are indicated by arrows. (b) The irreducible
Brillouin-zone of a VO4 plane.
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Figure 8.12: Band structure of a VO4−4 plane as calculated with GGA

In Fig. 8.12 we can find the band structure around the Fermi energy of such charged plane
as calculated with GGA and the same parameters used for Sr2VO4 (except the in-plane k-
sampling which was increased to 10×10). The distance between planes is 30 Å and, therefore,
the interaction between planes, if any, is purely electrostatic.

For the majority spin the Fermi level is pinned by two bands coming from thedxz and
dyz orbitals, which are degenerate by symmetry. These bands canaccommodate two elec-
trons. However, the using simple electron counting arguments described above we would
assign only oned electron to each V atom. In principle structural distortions, that makedxz

anddyz inequivalent, could open a band gap and render a semiconducting system. In practice,
our relaxations, at least at the GGA level show very small distortions (of course this is not
completely conclusive since the relaxations were started from quite symmetric geometries).
The GGA occupations (Eq. 8.6) of the different orbital of thed-shell are in the range 0.3-
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Figure 8.13: Band structure of a VO4−4 plane as calculated with GGA+U scheme with U=6 eV and J=0, starting
from a converged GGA density.

0.6, the larger occupations are for thedxz anddyz orbitals. The magnetic moment (difference
between spin up and down occupation) is only significant for the dxz, dyz anddxy orbitals:
µxz=µyz=0.42,µxy=0.13. The non-diagonal terms, nm,m′ with m6=m′, of the occupation ma-
trix restricted to thed-shell are identically zero.

We introduce now a Hubbard U. The band structures presented here are obtained using
U=6 eV and J=0. Fig. 8.13 shows the calculated band structurewhen the GGA+U calculation
is started from the GGA result. We can see that the occupiedd bands are shifted to lower
energies, whereas the unocuppiedd bands are pushed to higher energies. However, a band
gap cannot be developed because thexz-yz symmetry is preserved. In fact, the structure
of the occupation matrix is almost identical to that found inthe case of GGA, with all the
non-diagonal elements equal to zero.

However, we know that, due to the self-interaction correction included in the Hartree-
Fock-like Hubbard term that we have added to our Hamiltonian, the system will tend to select
integer occupations rather than fractional occupations. In other words, thed electron should
occupy only one electronic state wich, in regards of the bandstructure of the VO−4

4 plane, can
be assumed to have the form|d〉=cos(θ)|yz〉+sin(θ)|xz〉 The corresponding occupation matrix
takes the form n↑xz,xz=sin(θ)2, n↑yz,yz=cos(θ)2, n↑xz,yz=n↑yz,xz=sin(θ) cos(θ), and zero otherwise.
In the following, we use such occupation matrix to start our GGA+U calculations.

We observe that onlyθ=0◦ (90◦), and θ=45◦ are stable. These means that only start-
ing from these occupations the structure of the occupationsmatrices is preserve during the
self-consistency. In factθ=0◦ corresponds to an energy maximum andθ=45◦ to an energy
minimum. All intermediate values ofθ converge to theθ=45◦ solution. The corresponding
band structure can be seen in figures 8.15 and 8.14, while the total energies are displayed in
Table 8.4. We have also tried to stabilize solution where theelectron occupies adxy orbital.
However, such configuration turns out to be unstable and converges to solutions where the
charge has been transferred to thedxz anddyz orbitals.
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Table 8.4: Change in the total energy of a GGA+U calculation of a VO4−
4 plane as a function of the presence or

absence of orbital ordering.
Calculation ∆E(meV)

U=6 eV U=4 eV
GGA symmetry 0 0
|yz〉 occupied +44 –
1√
2
(|yz〉+|xz〉) occupied -63 +28
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Figure 8.14: Band structure of a VO4−4 plane as calculated with the GGA+U scheme. Initially, thed electron is
forced to occupy a state with1√

2
(|yz〉+|xz〉) symmetry. U=6 eV, J=0.

We have tried to use smaller values of U. With U=4 eV, the solution where only thedyz

orbital is occupied turns out to we unstable and we get a solution similar to the original GGA,
i.e. with half occupieddxz anddyz orbitals. With U=2 eV only this type of solutions, with two
half occupiedd orbitals, were obtained.

Notice that the energy gain due to the symmetry breaking associated with the orbital order-
ing is the same order of magnitude than the energy gain associated with the spin polarization
(see Table 8.3). It is also clear that we can now open a gap. Indeed there is a clear gap
between occupied and unocupiedd states for the majority spin. However, the system does
remain metallic due to the quite small overlap of two bands. These bands must have a strong
oxygen character since they do not move appreciably even when the value of U applied to the
d-shell of V is increased to 8 or 10 eV. As we will see below, thisdoes not happen for the
Sr2VO4 compound. Therefore, one has to be quite careful in order to drive conclusions from
the VO4−

4 plane. Indeed, we will see that the results for the charge ordering are quite different
for the bulk compound. Particularly thedxy orbital tends to be favored over the dxz and dyz.
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Figure 8.15: As in Fig. 8.14, but the electron occupies a state of |yz〉 symmetry.

Table 8.5: Change in the total energy (per V atom) of the FM SrVO4 compound calculated with GGA+U as a
function of the selected orbital ordering. In parenthesis data calculated using a finer k-point mesh of 6×6×3

Symmetry ∆E(meV/V)
U=6 eV U=4 eV U=2 eV

|xz〉 +72 +34 (+48) -2
1√
2
|yz〉+|xz〉) +33 -7 (+6) -5

|xy〉 0 0 0

8.7.3 Band structure of Sr2VO4 with the LDA+U method

In Table 8.5 we can see the total energies of the different charge orderings in bulk Sr2VO4.
Contrary to the case of the simplified model based on the VO4−

4 plane, for the bulk material the
solution with dxy fully occupied is not only stable, but the most favorable forlarge values of the
U parameter. For U of 4 eV the solution with|d〉=|yz〉+|xz〉 occupied becomes more favorable,
although the energy difference is so small that lies within the error bar of the calculation (see
the change of sign in some of the small energies in Table 8.5 for the lager 6×6×3 k sampling).

Figures 8.16, 8.17 and 8.18 show the band structure of Sr2VO4 for different charge order-
ings and different values of U. For most charge orders a full gap is only developed for U=6 eV.
Only in the case of full occupation of|xy〉. the gap is already present for the whole Brillouin
zone for a smaller value U=4 eV.

It is quite interesting to see that the results for the VO4−
4 plane are different from those of

bulk Sr2VO4. This indicates that the details of the structure, not just the vanadium atoms and
their nearest neighbors, are important to understand the electronic structure of this compound
and, most probably, other compounds of the same family like Sr3V2O7.
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Figure 8.16: Band structure of the Sr2VO4 compound. Calculated Energies referred to the Fermi level.

Figure 8.17: Band structure of the Sr2VO4 compound. Calculated Energies referred to the Fermi level.
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Figure 8.18: Band structure of the Sr2VO4 compound. Calculated Energies referred to the Fermi level.
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Chapter 9

Conclusions

The main subject of this thesis is the theoretical study of the physical properties of quasi one-
dimensional metal-induced surface reconstructions in Si(111) and vicinal Si(111) surfaces. In
spite of the experimental interest [2–56,58–64] the geometry and detailed electronic properties
of many of these reconstructions are still unknown. Therefore one of our main purposes was
to propose atomic geometries for these structures and then compare the theoretical results,
obtained using the SIESTAab-initio method, with the available experimental data. We were
able to identify plausible model geometries and, by studying the properties of such models,
we could find explanations for observed physical phenomena in these surfaces. The second
topic of this thesis was the implementation and testing of the LDA+U method in SIESTA
that is described in Chap. 8. With the LDA+U method we can improve the description of
electron-electron interactions in many systems. The application of this method for the surface
reconstructions studied in this thesis and other complex systems will be the subject of future
work.

In Chap. 2 we presented a summary of the methodology used throughout this work. We
reviewed briefly the DFT and the local orbital formalism usedby SIESTA. In Sec. 2.2.6,
we also derived some formulas for the implementation of the LDA+U method as described
in Chap. 8. In Sec. 2.3 we listed the pseudopotentials and basis sets used throughout this
work. Some tools interesting to compare the computational data with the experiment were
also briefly explained. These were the simulation of Scanning-Tunneling Microscopy images
and the Mulliken population analysis to determine the atomic origin of the electronic states.

We reviewed in Chap. 3 some of the reconstructions that take place when metals are
deposited on the Si(111) surface in the submonolayer regimeand discussed some of the ob-
servations of photoemission and STM experiments. Some of them are, to name few, the quasi
one-dimensional free-electron like bands seen in photoemission, one-dimensional row-like
structures seen in STM experiments and the metal-insulatortransitions that take place when
the temperature is lowered, usually accompanied by band-gap opening seen by photoemission
and a change of the periodicity of the STM images. Some of the bands also exhibit a splitting
that was originally attributed to the Luttinger-liquid. Aswe pointed out in this chapter, with
our models and results based on theab-initio calculations, we have been able to explain very
satisfactorily most of the mentioned physical phenomena. Most of these models assume that
the metals form monatomic wires, situated in silicon substitutional sites.

In Sec. 3.3, in order to understand better what happens on these surface reconstructions,
we looked at some of the typical structural patterns appearing in the reconstructions of clean

147
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Si(111) surfaces, such as the buckling,π-bonding and the adatom reconstructions. We dis-
cussed how each one of these reconstructions solves the problem of the elimination of the
dangling bonds while minimizing the surface strain. We alsoexplained, in Sec. 3.4, the theory
behind the so-called honeycomb-chain Si(111) reconstruction that seems to be a key ingredi-
ent when certain metals are deposited on the Si(111) surface. In Sec. 3.5 some general aspects
of the silicon stacking and coordination were discussed. Finally, in Sec. 3.6 we performed
test calculations on the buckling,π-bonding and the adatom reconstructions. We tested the
convergence of the calculations with respect to several computational parameters, such as the
basis-set, slab-thickness and the k-point sampling and compared our results to earlier pub-
lished ones.

The first quasi one-dimensional surface reconstruction we studied is the Si(111)-5x2/Au
[2–25,67,68] presented in Chap. 4. We started by making a brief review of the history of this
reconstruction, pointing out that the first observation of this surface reconstruction was made
some thirty years ago, and that ever since, as the experimental methods have been evolving,
the different propositions for its atomic level geometry have been flourishing. We discussed
the latest experimental results, involving photoemissionand STM experiments and studied
with ab-initio calculations some of the recent models proposed for this surface reconstruction.
During this study, we found a totally new geometry for the Si(111)-5x2/Au, that is not only
energetically more favorable than the earlier models, but also reproduces very well the results
of a very recent photoemission experiment and, to some extent the experimental STM images.
We also studied the energetics of the different models as function of the adatom content that
seems to be a crucial ingredient not only in the Si(111)-5x2/Au, but as well in other similar
surface reconstructions. In STM images the adatoms can be observed as bright, irregular
protrusions distributed quite randomly on the surface. We find that our model becomes less
favorable than an earlier model proposed by Erwin [67], whenthe adatom content is very
high. As we pointed out, all this implies that the adatoms play a very important role when
determining the correct atomic level geometry of the Si(111)-5x2/Au surface reconstruction.

In Chap. 5 we studied the Si(111)-4x1/In reconstruction [39–57, 72–79]. A reasonable
model for the atomic geometry of this surface at room temperature already exists that has been
tested withab-initio calculations and reproduces very well the experimental data. This geom-
etry consists of two parallel indium zigzag-wires embeddedin the silicon substrate. However,
the experiments show that the Si(111)-4x1/In features a metal-insulator transition as the tem-
perature is lowered from∼ 300 K down to∼ 130 K. Atomic-level geometry for this low-
temperature phase has not yet been fully established. This phase-transition manifests itself
both in the photoemission, where gaps open simultaneously in the surface bands, and in the
STM images, where the symmetry is lowered to 8×2. We studied this phenomena - its origin
lying in the coupling and distortion of the indium wires - by using a simplified model: we kept
the two zigzag In wires as in the real surface model and substituted the neighboring Si atoms
in the substrate by hydrogen. We verified that this simplifiedmodel is able to capture the
essential behaviour of electrons and found out that two classes of surface bands can be found:
(i) two bands associated with states within the In-wires and(ii) a band associated with the
interaction between the two wires (coming from unsaturatedIn dangling-bonds). We found
out that a shear-distortion, as proposed earlier by Gonzalez, et. al. [78] where the zigzag-
wires slide with one respect to another, opens a gap in the interaction band. This gap-opening
modifies the filling of the two remaining bands in such a way that the Peierls-distortion in
them becomes favorable. We also studied the possible Peierls-distortions that can take place
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within the zigzag-wires and found out that one of them is optimal. All the observations are
consistent with the experimental data and might be important in understanding similar surface
reconstructions featuring monatomic double-wires.

Chap. 6 studies the Si(557)/Au reconstruction [26–38,69–71] that could be considered as
the most well-known and widely studied quasi one-dimensional, gold-induced surface recon-
struction in vicinal Si(111). For this surface reconstruction there exists an atomic-level geom-
etry that seems to explain quite well the experimental data,the most important feature being
the parabolic band that has its origin in the Si-Au bonds. However, there was a characteristic
feature in the photoemission spectra - a splitting of the parabolic band - that was interpreted
in various different ways in the past, including the Luttinger-liquid behaviour, just to name
one. As we showed in Chap. 6, this splitting is probably due tothe spin-orbit interaction.
This observation has also been backed-up by a very recent photoemission experiment [62].
We also addressed the metal-insulator transition and the accompanying periodicity doubling
in the STM images as the temperature is lowered. We assigned this behaviour to the freezing
of dynamical fluctuations that have their origin in the atomsat the step-edge of the silicon
terraces of the Si(557) surface: in the equilibrium configuration of the model geometry, the
step-edge atoms are in alternating up-down positions alongthe step-edge. We studied the en-
ergy landscape as a function of the structural distortion and found a double energy-minimum;
if the relative height of the atoms ish then there is a minimum ath0 and at−h0. As the tem-
perature is increased, the atoms should move between the configurationsh0 and−h0 and visit
configurations such ash = 0 (atoms at the same height) quite often. In low temperatures the
atoms are “freezed” at−h0 or h0 and this explains the periodicity doubling seen in the STM
images. Based on a detailed analysis of the band structure weconcluded that the configura-
tions withh=0 are metallic, while those withh = h0 or h = −h0 are semiconducting. The
metal-insulator transition is then observed because the system is more likely to visit config-
urations withh ≈ 0 as the temperature is higher, while, again freezing to a semiconducting
configurations at low temperatures.

We tested this hypothesis by producing theoretical scanning-tunneling microscopy, scanning-
tunneling spectroscopy and projected density of states data at different values ofh and compar-
ing them to the experimental data. Low temperature data wereproduced with valuesh = h0

and the high temperature data were mimicked with configurationsh ≈ 0. In each one of these
cases the results were very satisfactory.

We also madeab-initio molecular dynamics simulations to see if the step-edge fluctuation
actually takes place. We found out that the step-edge indeedfluctuates as we thought and that
it is accompanied with other vibrational modes that contribute to the metallicity of the system.
These are, for example, the fluctuation of the Si-Au bond angles.

In Chap. 7 we made an extensive study of the Si(553)/Au reconstruction [1, 58–64]. This
reconstruction has been found only very recently and a plausible geometrical model that would
reproduce the experimental data has not yet been proposed. This reconstruction features a
quite unique electronic spectra, having two proximal half-filled and another∼ 1

4
filled band.

This makes this system very interesting, because a fractionally filled band with a such a small
filling would be ideal to create the Luttinger liquid, because it might avoid the Mott-Hubbard
metal-insulator transition. We searched for the lowest total energy model for this surface re-
construction systematically and based our search on analogies with the Si(557)/Au and other
similar systems, considering building blocks found on them, such as surface dislocations and
the honeycomb chains. We also developed a systematic notation that allowed us to enumerate
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and generate automatically all physically reasonable surface topologies for this class of sur-
face reconstructions. It included a step-by-step refining of theab-initio calculations, allowing
for a considerable reduction of the time used for structuralrelaxations. After using this sys-
tematic scheme to try a large number (210) of candidates for the atomic-level geometry for the
Si(553)/Au surface, we end up with few structures that are most stable in the terms of the total
energy and also reproduce reasonably well the electronic spectra and the STM images when
compared to the experimental data.

The theory behind the LDA+U method and its implementation into SIESTA were de-
scribed in Chap. 8. We first discussed the origin behind the failure of the LDA approximation
to treat localized electrons. After this we considered how this could be corrected by using the
Hartree-Fock method and derived the formulas of the standard, rotationally invariant LDA+U
scheme due to Anisimov, et. al. [153] and also considered thepossibility to calculate U by
ab-initio calculations. Then, in Sec. 8.5, we described the new program switches used to con-
trol the LDA+U method and after this, in Sec. 8.6 tested our implementation of the LDA+U
method by doing calculations of the FeO compound. For FeO, wewere able to reproduce ear-
lier results by Mazin, et. al. [160], where the FeO is seen to develop a gap when the LDA+U
method is used. We also tested the rotational invariance of the method, but failed to get a rea-
sonable value for the Hubbard-parameter U usingab-initio calculations only. This last aspect
must be studied in detail in future.

In Sec. 8.7 we studied the effect of the LDA+U onab-initio calculations of the Sr2VO4

compound [80–82]. As we discussed in the same chapter, this compound might be important
in understanding the high-Tc superconductors. According to the standard LDA calculations,
this compound is metallic, although in the experiments it isobserved to be semiconducting.
We showed, by studying charged VO4 layers, how using the LDA+U, the symmetry of the
vanadium d-orbitals in the layer can be broken and a gap can opened in the electronic structure,
this way obtaining an electronic spectra that is in accordance with the experiment. This was
also shown to be true in the case of the whole Sr2VO4 compound.

Finally, I believe that the work presented in this thesis hascontributed to the fundamen-
tal understanding of the quasi one-dimensional metal-induced silicon surface reconstructions.
Since these surfaces might be important from a technological point of view, a point that was
discussed in Sec. 3.1, the results obtained in this thesis might be an important, although small,
building block in the future exploitation of these surfaces.

The LDA+U is quite simple, semi-empirical, yet very efficient method for correcting some
well-known pathologies of the LDA, and the implementation presented in this thesis will be
included in the future distributions of the SIESTA program package.
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