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Abstract

In this topic we will analyze how the electronic system responds to the
presence of an external field. This response determines how the electrons
interact with each other after the application of an external interaction.
Thus, response properties are crucial to understand how a material will
respond to the interaction with an external experimental probe, i.e., an
electronmagnetic probe, or also to a simple distortion of the lattice po-
tential. We will make use of linear response theory within the nearly free
electron model in which the response is determined by the Lindhard func-
tion. The Lindhard function will be calculated for the static case in 3D,
2D, and 1D. The impact of the static response function on the phonons will
be analyzed, focusing on the different effects observed depending on the
dimension of the system. The differences will be underlined. Finally,the
dynamical Lindhard function will be given also for different dimensions.
The impact on plasmon dispersions will be discussed.
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1 Linear response theory

Let’s assume we have a system of electrons whose density is n(r) and is the
solution of a general separable time independent Hamiltonian H0. Let’s assume
the Hamiltonian for each electron is diagonalizable:

H0|ψi〉 = Ei|ψi〉. (1)

The electronic density will therefore be

n(r) =
∑

i

fiψ
∗
i (r)ψi(r), (2)

where fi is the Fermi-Dirac occupation factor of state i. In case we have a free
electron gas the density will be homogeneous and the Hamiltonian will equal
the kinetic energy. If suddenly there is an external time-dependent potential
Vext(r

′, t′) that starts acting on this electronic system, it will impose a change
on the electron density. If the interaction is weak, we can adopt linear response
theory and assume that the change in the density at time t and position r will
be

δn(r, t) =

∫ ∞

−∞
dt′
∫
dr′ χ(r, r′, t− t′)Vext(r′, t′). (3)

χ(r, r′, t − t′) is the so-called density response function. Fourier transforming
the equation above to the frequency regime, we have the following equation

δn(r, ω) =

∫
dr′ χ(r, r′, ω)Vext(r

′, ω). (4)

From the equation above we see that the response function can be defined from

χ(r, r′, ω) =
δn(r, ω)

δVext(r′, ω)
(5)

as well. If we want to study the ultimate effect of the interaction between the
external probe on the electronic system, we need to focus on the static limit at
ω = 0:

δn(r) =

∫
dr′ χ(r, r′)Vext(r

′), (6)

where we have dropped the ω dependence for simplicity. In other words, the
response function will tell us how the electronic system will respond to the
presence of the external field.

The density response function also determines how the potential felt by the
electrons is effectively affected by the rest of the electrons when the interac-
tion with the external probe is turned on. Let’s assume we have an electron
in position r and that it is independent from the rest (this is like a Hartree
approximation). The interaction potential with the rest of the electrons before
the probe is turned on will be

V (r) =

∫
dr′e2

n(r′)
|r− r′| . (7)
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When the external potential is switched on, the density will change as discussed
above and the potential that the electron feels will be modified to

V ′(r, ω) = Vext(r, ω) +

∫
dr′e2

n′(r′, ω)

|r− r′| , (8)

where n′(r, ω) is the new density of the system affected by the presence of
the external field. If we calculate the change in the total potential felt by the
electron, we have

δV (r, ω) = V ′(r, ω)− V (r) = Vext(r, ω) + e2
∫
dr′dr′′

χ(r′, r′′, ω)

|r− r′| Vext(r
′′, ω)

=

∫
dr′
[
δ(r− r′) + e2

∫
dr′′

χ(r′′, r′, ω)

|r− r′′|

]
Vext(r

′, ω)

=

∫
dr′ε−1(r, r′, ω)Vext(r

′, ω), (9)

where we have defined the inverse of the dielectric function as

ε−1(r, r′, ω) =
δV (r, ω)

δVext(r′, ω)
= δ(r− r′) + e2

∫
dr′′

χ(r′′, r′, ω)

|r− r′′| . (10)

We can see that the dielectric function is screening the external potential due
to the presence of the other electrons of the system. Screening is one of the
most important concepts in material science as it is key when determining the
response of the material to any external probe. Thus, the dielectric matrix
determines the optical properties of materials and it is a key concept whenever
we want to study the perturbation of the electronic system with respect to small
change of the interactions.

1.1 Non-interacting response function in the static limit

Sometimes it is confusing in the literature the fact that also a non-interacting
density response function is defined as

χ0(r, r′, ω) =
δn(r, ω)

δV (r′, ω)
, (11)

where now the functional derivative is taken with respect to the full potential
V = Vee + Vext. Using the chain rule, we can determine the relation between χ
and χ0:

χ(r, r′, ω) =
δn(r, ω)

δVext(r′, ω)
=

∫
dr′′

δn(r, ω)

δV (r′′, ω)

δV (r′′, ω)

δVext(r′, ω)

=

∫
dr′′χ0(r, r′′, ω)

[
δ(r′ − r′′) +

δVee(r
′′, ω)

δVext(r′, ω)

]
. (12)

The dependence of the electron-electron interaction on the density n yields to
a self-consistent Dyson-like equation for the interacting response function χ,
which may be complicated to solve.
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The non-interacting response function, however, can be easily calculated as
long as we know the eigenfunctions and eigenvalues of the electronic system
before the external interaction is swithched on. We are assuming that that is
the case. When the Vext is turned on the Hamiltonian will be shifted to

H = H0 + δV. (13)

In order to calculate χ0 we need to calculate the change in the density. We are
going to do it on the static limit in which ω = 0. Assuming that δV is small
(and Hermitian), using first order perturbation theory, the eigenfunction will be
shifted as

δψi(r) =
∑

j 6=i

〈ψj |δV |ψi〉
Ei − Ej

ψj(r). (14)

Thus, the change in the electronic density at linear order will be

δn(r) =
∑

i

fi [ψ∗i (r)δψi(r) + δψ∗i (r)ψi(r)]

=
∑

i

fi


∑

j 6=i

〈ψj |δV |ψi〉
Ei − Ej

ψ∗i (r)ψj(r) +
∑

j 6=i

(〈ψj |δV |ψi〉)∗
Ei − Ej

ψ∗j (r)ψi(r)




=
∑

ij,j 6=i

fi − fj
Ei − Ej

〈ψj |δV |ψi〉ψ∗i (r)ψj(r)

=
∑

ij,j 6=i

fi − fj
Ei − Ej

∫
dr′δV (r′)ψ∗j (r′)ψi(r

′)ψ∗i (r)ψj(r). (15)

Consequently, the non-interacting response function at the static level is

χ0(r, r′) =
δn(r)

δV (r′)
=
∑

ij,j 6=i

fi − fj
Ei − Ej

ψ∗j (r′)ψi(r
′)ψ∗i (r)ψj(r). (16)

2 Static response function of the free electron
gas

So far we have only assumed that the Hamiltonian for each electron is separable.
Here we will assume that instead we have free electrons, so that the Hamiltonian
is just the kinetic energy and the unperturbed eigenfunctions are plane-waves
and the eigenenergies are parabolic. The good quantum number will be the
wave number k. It is important to remark that in this limit the non-interacting
and interacting response functions are the same, χ0 = χ, because the potential
is 0 before the interaction is turned on. This is sometime not obvious in the
literature.

In the following we will calculate the static response function χ (or χ0) for
the free electron gas in 3D, 2D, and 1D. As we will see the dimension plays
a crucial role on the properties of the response functions, and this has clear
physical consequences.
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2.1 Lindhard response function in 3D

Substituting plane-waves solutions ψi(r) = eik·r/
√
V in Eq. (16), where V is

the volume of the solid, we see that

χ0(r, r′) =
1

V 2

∑

kk′,k6=k′

fk − fk′

Ek − Ek′
e−i(k−k

′)·(r−r′), (17)

where Ek = ~2k2

2m . As we can see the response function only depends on the
distance between r and r′. This is expected for a homogeneous medium like the
electron gas. In general this is not true. Thus, we can write

χ0(r− r′) =
1

V 2

∑

kk′,k6=k′

fk − fk′

Ek − Ek′
e−i(k−k

′)·(r−r′). (18)

It is convenient to Fourier transform the response function as

χ0(q) =

∫
dreiq·rχ0(r) =

1

V

∑

kk′,k 6=k′

fk − fk′

Ek − Ek′
δq,k−k′ (19)

so that we finally obtain

χ0(q) =
1

V

∑

k

fk − fk−q
Ek − Ek−q

, (20)

where q cannot be 0. This is the so-called Lindhard response function.
In order to calculate the explicit form of the Lindhard function, we will

assume that we are at 0K, which implies that

fk = 2θ(kF − k), (21)

where we are assuming the spin degeneracy of the state. Then,

χ0(q) =
2

V

1

(2π)3/V

∫
dk
θ(kF − k)− θ(kF − |k− q|)

~2

2m (k2 − (k− q)2)

=
−m

2π3~2

∫
dkθ(kF − k)

(
1

q2 + 2k · q +
1

q2 − 2k · q

)
. (22)

Let’s perform first the integral
∫
dkθ(kF − k)

1

q2 + 2k · q = 2π

∫ kF

0

dkk2
∫ π

0

dθsinθ
1

q2 + 2kq cos θ

=
π

q

∫ kF

0

dkk ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣ . (23)

Considering the q→ −q exchange, we readily can see that
∫
dkθ(kF − k)

1

q2 − 2k · q = −π
q

∫ kF

0

dkk ln

∣∣∣∣
−q/(2k) + 1

−q/(2k)− 1

∣∣∣∣

=
π

q

∫ kF

0

dkk ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣ . (24)
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Thus,

χ0(q) =
−m
π2~2

1

q

∫ kF

0

dkk ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣

=
−m
π2~2

1

q

[
k2

2
ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣−
∫
dkk2

(
1

q + 2k
+

1

q − 2k

)]kF

0

=
−m
π2~2

1

q

[
k2

2
ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣−
∫
dk

(
−q/2 + q2/4

(
1

q + 2k
+

1

q − 2k

))]kF

0

=
−m
π2~2

1

q

[(
k2

2
− q2

8

)
ln

∣∣∣∣
q/(2k) + 1

q/(2k)− 1

∣∣∣∣+
qk

2

]kF

0

=
−m
π2~2

1

q

[(
k2F
2
− q2

8

)
ln

∣∣∣∣
q/(2kF ) + 1

q/(2kF )− 1

∣∣∣∣+
qkF

2

]
. (25)

This is usually rewritten as

χ0(q) =
−m
π2~2

kFFL(q/(2kF )), (26)

where

FL(x) =
1

2
+

1− x2
4x

ln

∣∣∣∣
1 + x

1− x

∣∣∣∣ . (27)

2.2 Lindhard response function in 2D

For a 2D electron gas, the Lindhard function looks in analogy as

χ0(q) =
1

A

∑

k

fk − fk−q
Ek − Ek−q

. (28)

A rather lengthy calculation (exercise 1) yields in this case

χ0(q) =

{
−m
π~2

(
1−

√
1− (2kF /q)2

)
, q > 2kF

−m
π~2 , q < 2kF

. (29)

2.3 Lindhard response function in 1D

For a 1D electron gas, the Lindhard function looks in analogy as

χ0(q) =
1

L

∑

k

fk − fk−q
Ek − Ek−q

. (30)

A simpler calculation (exercise 2) yields in this case

χ0(q) =
−2m

π~2
1

q
ln

∣∣∣∣
1 + 2kF /q

1− 2kF /q

∣∣∣∣ . (31)

In Fig. 2.3 the Lindhard function for the free electron gas in the 3D, 2D, and
1D cases is shown. It is clear that the results are extremely different depending
on the dimension.
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FIG. 1: (Color online) Momentum dependence of the d-
dimensional static response functions, F (q) = ��(q,! = 0),
corresponding to zero energy transfer, ! = 0. Here, momenta
are expressed in rescaled units, i.e. in units of the Fermi mo-
mentum, kF .

or

~2

2m
F (q) = 2

Z

kkF

ddk

(2⇡)d

⇣ 1

q2 + 2k · q +
1

q2 � 2k · q
⌘

.

(4.3)
Using rescaled coordinates, i.e. by letting k ! k/kF , we
obtain

F (q) =
2kd

F

✏F

Z

k1

ddk

(2⇡)d

2q2

q4 � 4(k · q)2
. (4.4)

We will discuss now the three-dimensional realizations of
the static response function corresponding to d = 1, 2
and 3. We have:

• d = 3 case: We have

F3(q) =
k3

F

⇡2✏F

Z 1

0

k2 dk

Z 1

�1

dµ

q2 � 4k2µ2

=
N3

✏F

3

2q

Z 1

0

k dk log
���q + 2k

q � 2k

��� ,

which gives

F3(q) =
N3

✏F

3

4

h
1 +

1 � ( 1
2q)2

q
log

���
1 + 1

2q

1 � 1
2q

���
i

. (4.5)

• d = 2 case: We have

F2(q) =
k2

F

⇡2✏F

Z 1

0

k dk

Z 2⇡

0

d�

q2 � 4k2 cos2 �
. (4.6)

For q � 2, the above gives

F2(q > 2) =
N2

✏F

4

q

Z 1

0

k dkp
q2 � 4k2

=
N2

✏F

⇣
1 �

p
1 � (2/q)2

⌘
, (4.7)

whereas for q < 2, we obtain

F2(q < 2) =
N2

✏F

4

q

Z 1
2 q

0

k dkp
q2 � 4k2

=
N2

✏F
, (4.8)

Hence, we obtain:

F2(q) =
N2

✏F

h
1 � ⇥(q � 2)

p
1 � (2/q)2

i
. (4.9)

• d = 1 case: We have

F1(q) =
2kF

⇡✏F

Z 1

�1

dk

q2 � 4k2
, (4.10)

which gives

F1(q) =
N1

✏F

1

2q
log

���
1 + 1

2q

1 � 1
2q

��� . (4.11)

In Fig. 1, we depict the momentum dependence of the
above static response functions, F1(q), F2(q), and F3(q).

V. LINDHARD FUNCTIONS

To calculate the Lindhard function, i.e.

�(q,!) =
2

~

Z

kkF

ddk

(2⇡)d
nk(1 � nk+q) (5.1)

⇥
⇣ 1

! � !kq + i⌘
� 1

! + !kq � i⌘

⌘
,

we use the formal identity

1

! ± i⌘
= P 1

!
⌥ i⇡�(!) . (5.2)

Therefore, we have

�(q,!) = Re�(q,!) + i Im�(q,!) , (5.3)

with

Re�(q,!) =
2

~
P
Z

ddk

(2⇡)d
nk(1 � nk+q)

2!kq

!2 � !2
kq

,

(5.4)
and

Im�(q,!) = �2⇡

~

Z
ddk

(2⇡)d
nk(1 � nk+q) (5.5)

⇥
h
�(! � !kq) + �(! + !kq)

i
,

where we introduce the notation

~!kq = ✏k+q � ✏k =
~2

2m

⇣
q2 + 2k · q

⌘
. (5.6)

χ 0 (q) / χ 0 (0)

q(kF )

Figure 1: Response function of the free electron gas in different dimensions.

3 Linear response and phonon instabilities

As we can see in Fig 2.3, the χ0 response function has singularities at q = 2kF at
all dimensions. However, the singularities are stronger for systems with reduced
dimension. This has consequences on several properties that are somewhat
related to the response function.

For instance phonon frequencies are affected by the static response function.
When we are dealing with phonons we need to consider in the electronic Hamil-
tonian at least the Coulomb electron-ion interaction as well as the Coulomb
ion-ion interaction:

H(R) = Te + Vei(R) + Vii(R), (32)

where

Vei(R) = −
∑

iI

ZIe
2

|ri −RI |
=
∑

i

Vext(ri) (33)

Vii(R) =
1

2

∑

IJ

ZIZJe
2

|RI −RJ |
. (34)

Here R denotes the parametric dependence of the electronic Hamiltonian on
the ioninc positions. The potential in which the ions move is defined by the
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Figure 2: Solution of Eq. (40) for different dimensions, but assuming that
the Coulomb potential is always the 3D and that the prefactor in the response
function is the 3D one. In other words only the adimensional part of the response
function is modified.

ground state energies of this Hamiltonia. These ground state electronic energies
form the Born Oppenherimer potential V (R). In the harmonic approximation
the phonon frequencies are obtained diagonalizing the so called force-constant
matrix

∂2V (R)

∂RαI ∂R
β
J

, (35)

where RαI is the α Cartesian component of ion I. Let’s first take the first
derivative, which is easily considered due to Hellman-Feynman theorem:

∂V (R)

∂RβJ
= 〈Ψ(R)|∂H(R)

∂RβJ
|Ψ(R)〉 =

∂Vii(R)

∂RβJ
+

∫
drn(r)

∂Vext(r)

∂RβJ
. (36)

When taking the second derivative we obtain

∂2V (R)

∂RαI ∂R
β
J

=
∂2Vii(R)

∂RαI ∂R
β
J

+

∫
drn(r)

∂2Vext(r)

∂RαI ∂R
β
J

+

∫
dr
∂n(r)

∂RαI

∂Vext(r)

∂RβJ
. (37)

The first to addends are rather straightforward to calculate as they just depen-
dent on the density. The tricky part is the calculation of the last term due to
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the derivative of the density. However, linear response theory allows simply to
calculate that rather easily as

∂n(r)

∂RαI
=

∫
dr′

∂n(r)

∂Vext(r′)
∂Vext(r

′)
∂RαI

=

∫
dr′χ(r, r′)

∂Vext(r
′)

∂RαI
. (38)

In this way the last term of the force constants can be written as

ΦαβIJ =

∫
drdr′χ(r, r′)

∂Vext(r
′)

∂RαI

∂Vext(r)

∂RβJ
. (39)

In this way can see that how the response function affects the phonon properties.
In order to illustrate the effect of dimensionality on the phonons, we will

assume that we have a hydrogen crystal and that the response function is the
one of the free electron like gas. Fourier transforming Eq. (20) we obtain

Φαβ(q) ∼ ω2(q) ∼ vc(q)2χ(q)qαqβ , (40)

where ω(q) would be the contribution of this term to the phonon frequencies.
In Fig. 3 we see that depending on the dimension this force constants are more
or less anomalous. As the instabilities are larger in 1D, we clearly see that
the 1D lattice is much more unstable at q = 2kF , than the higher dimension
systems. Indeed, at 3D there is no subtlety at q = 2kF . This means that the 1D
system has a much stronger tendency towards lattice instabilities than higher
dimension systems. Indeed Peierls already said that the 1D lattice formed by a
free electron gas was unstable at q = 2kF and it should distort opening a gap in
the electronic structure. This is what it is called a Peierls transition. At higher
dimensions, however, it is not so clear if the electronic response function itself
is capable of making the lattice unstable at q = 2kF or more in general for q
points with Fermi surface nesting. Usually, other effects like the electron-phonon
coupling are needed to make a higher dimension system unstable.

4 Dynamic response function of the free elec-
tron gas

In Sec. 1 we obtained the general expression of the non-interacting static re-
sponse function (see Eq. (16)). As we have seen, the static limit of the response
function is useful to analyze the effect of interactions that do not depend on time,
or that reach an equilibrium state with the interaction turned on. That is why
the potential imposed by the lattice and phonons can be derived from the static
response function as described in Sec. 3. However, electromagnetic probes used
to measure materials are often oscillating fields that impose a potential that
depends explicitly on time, or in frequency. In this case the non-interacting
response function should be calculated by Eq. (11).

Let’s assume that at t = −∞ the Hamiltonian of the system is H0, who is
separable and we know its eigenvalues and eigenfrequencies. Then, the time-
dependent interaction is turned on so that the Hamiltonian is changed to

H = H0 + δV (t)eηt, (41)
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where η is a small positive number that ensures that at t = −∞ we recover
H = H0. In order to calculate the time-dependent density change, δn(r, t), we
need to solve the time-dependent Schrödinger equation

i~
∂|Ψi(t)〉
∂t

=
(
H0 + δV (t)eηt

)
|Ψi(t)〉. (42)

We can expand the true eigenfunctions of H in the basis of the eigenfunctions
of the time-dependent Schrödinger equation with δV = 0:

|Ψi(t)〉 =
∑

j

αij(t)e
−iEjt/~|ψj〉. (43)

Plugging this equation into Eq. (42), we obtain the following relation:

i~
∂αij(t)

∂t
=
∑

k

αik(t)ei(Ej−Ek−i~η)t/~〈ψj |δV (t)|ψk〉. (44)

As we want to stick to lowest linear order in the interaction, we can assume that
it is possible to make a Taylor expansion to the coefficients themselves so that
at linear order

αij(t) = δij +
(1)
α ij(t). (45)

Substituting this in Eq. (44) and keeping only linear terms on
(1)
α and δV , we

see that

i~
∂
(1)
α ij(t)

∂t
= ei(Ej−Ei−i~η)t/~〈ψj |δV (t)|ψi〉. (46)

This differential equation can be easily solved as

(1)
α ij(t) = − i

~

∫ t

−∞
dτei(Ej−Ei−i~η)τ/~〈ψj |δV (τ)|ψi〉, (47)

so that at lowest order the perturbed time-dependent wave function is

|Ψi(t)〉 = e−iEit/~|ψi〉 −
i

~
∑

j

δn(r, t) = |ψj〉. (48)

With the time-dependence of the wave functions described at linear order,
we can proceed to evaluate the time-dependent change in the density:

δn(r, t) =
∑

i

fiΨ
∗
i (r, t)Ψi(r, t)−

∑

i

fiψ
∗
i (r)ψi(r). (49)

Substituting Eq. (48) here, we obtain at linear order in δV the following change
in density:

δn(r, t) =
i

~
∑

ij

(fi−fj)ei(Ej−Ei)t/~ψ∗j (r)ψi(r)

∫ t

−∞
dτe−i(Ej−Ei+i~η)τ/~〈ψi|δV (τ)|ψj〉

(50)
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Calculating the Fourier transform of it we obtain

δn(r, ω) =
∑

ij

fj − fi
~ω + Ej − Ei + i~η

〈ψi|δV (ω)|ψj〉ψ∗j (r)ψi(r). (51)

We can now calculate the non-interacting response function easily following Eq.
(11), which yields

χ0(r, r′, ω) =
∑

ij

fj − fi
~ω + Ej − Ei + i~η

ψ∗i (r′)ψi(r
′)ψ∗j (r)ψi(r) (52)

and precisely coincides with the static non-interacting response function of Eq.
(16) in the ω = 0 limit.

The dynamical non-interacting response function that we have obtained is
valid for any H0 Hamiltonian that has independent electrons, in other words,
which is separable. This is the case, for instance, in the free electron case,
where H0 is simply the kinetic energy of the electrons and the wave functions
are plane-waves, as well as in density-functional theory (DFT), where H0 is the
Kohn-Sham Hamiltonian and the wave functions the Kohn-Sham states.

4.1 Dynamic Lindhard response function in 3D

As mentioned above in the free electron gas we have ψi(r) = eik·r/
√
V as the

wave functions, where V is the total volume of the crystal and the good quan-
tum number is the wave number. Plugging this into Eq. (52) and Fourier
transforming we obtain the dynamic Lindhard function in 3D:

χ0(q, ω) =
1

V

∑

k

fk − fk−q
~ω + Ek − Ek−q + i~η

. (53)

Due to the presence of the small positive number η that ensures causality, the
non-interacting response function is complex. This makes more complicated
than in the static case the calculation of the sum over k points. The real part
of the result is the following [2]:

Reχ0(q, ω) =
kFm

2π2~2

[
− 1 +

4(q/kF )2 − q4−
8(q/kF )3

ln

∣∣∣∣
1 + q2−/(2q/kf )

1− q2−/(2q/kf )

∣∣∣∣

− 4(q/kF )2 − q4+
8(q/kF )3

ln

∣∣∣∣
1 + q2+/(2q/kf )

1− q2+/(2q/kf )

∣∣∣∣

]
, (54)

where q2± = ~ω/EF ± (q/kF )2. The analytic part of the imaginary is rather
complex (see Ref. [2]), but it is easy to understand what its meaning is. From
Eq. (53) and using the formal identity

lim
η→0

1/(a± iη) = P(1/a)∓ iπδ(a), (55)
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Figure 3: Imχ0(q, ω) for the free electron gas in 2D (left panel) and 3D (right
panel). Figure taken from Ref. [1].

where P denotes the principal value, we see that

Imχ0(q, ω) = −π 1

V

∑

k

(fk − fk−q)δ(~ω + Ek − Ek−q) (56)

so that it will be non-zero only when the energy transfer from the external
probe, ~ω, excites one electron with energy Ek to an empty state at Ek−q, or
the other way around. Due to the parabolic band dispersion, in the free electron
case this is limited to

~2q2

2m
− ~2kF q

m
≤ ~ω ≤ ~2q2

2m
+

~2kF q
m

. (57)

In this range the imaginary part of the Lindhard response function will be non-
zero, as shown in Fig. 4.1.

4.2 Dynamic Lindhard response function in 2D

In the 2D case

χ0(q, ω) =
1

A

∑

k

fk − fk−q
~ω + Ek − Ek−q + i~η

. (58)

A tedious calculation [2] yields

Reχ0(q, ω) =
m

π~2

[
− 1− sgn(q2−)θ(|q2−|/(2q/kF )− 1)

kF
q

√∣∣∣∣
q2−

2q/kF

∣∣∣∣
2

− 1

+ sgn(q2+)θ(|q2+|/(2q/kF )− 1)
kF
q

√∣∣∣∣
q2+

2q/kF

∣∣∣∣
2

− 1

]
, (59)
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for the real part of the dynamical response function. The imaginary part is
also non-zero exclusively for the region determined in Eq. (57). In Fig. 4.1 the
imaginary part is shown as a color plot.

4.3 Dynamic Lindhard response function in 1D

In the 1D case

χ0(q, ω) =
1

L

∑

k

fk − fk−q
~ω + Ek − Ek−q + i~η

. (60)

A tedious calculation [2] yields

Reχ0(q, ω) =
m

π~2q

[
ln

∣∣∣∣
1 + q2−/(2q/kF )

1− q2−/(2q/kF )

∣∣∣∣− ln

∣∣∣∣
1 + q2+/(2q/kF )

1− q2+/(2q/kF )

∣∣∣∣

]
, (61)

for the real part of the dynamical response function. The imaginary part is also
non-zero exclusively for the region determined in Eq. (57).

5 Plasmon dispersion of the free electron gas in
3D and 2D

A plasmon is a collective excitation of the electrons of the system, different
from electron-hole excitations. A plasmon, consequently, can be defined as the
capacity of the electron system to create an induced electric field without any
external perturbation. Inverting Eq. (10) we see that, in Fourier space, we have

δVext(q, ω) = ε(q, ω)δV (q, ω). (62)

Thus, we can have a plasmon excitation, that is non-vanishing induced poten-
tial δV , if the dielectric function vanishes. In practice, we need that the real
part of the dielectric function vanishes, but if the imaginary part is non-zero,
the plasmon excitation will be damped and as it will decay into electron-hole
excitations.

Fourier transforming Eq. (10) we obtain for the free electron gas, where
dependence on the position only is on r− r′,

ε−1(q, ω) = 1 + vc(q)χ(q, ω), (63)

with vC(q) the Fourier transform of the Coulomb potential. At linear order,
this gives

ε(q, ω) = 1− vc(q)χ(q, ω). (64)

or
ε(q, ω) = 1− vc(q)χ0(q, ω). (65)

for the free electron gas, as χ0 = χ in this case. Thus, in order to obtain plasmon
dispersion relations we need to solve the 1− vc(q)χ0(q, ω) = 0 equation in the
free electron case.
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In order to solve that equation for the 3D and 2D free electron gas, it is good
to note that the Fourier transform of the Coulomb potential is the following:

vc(q) =
4πe2

q2
(66)

in the 3D case, while

vc(q) =
2πe2

q
(67)

in the 2D case. In the 1D limit the Fourier transform of the Coulomb potential
is not well defined, so we will not considered the 1D plasmon dispersion.

In the q → 0 limit (Exercicse 4) for the 3D case the plasmon dispersion that
is obtained is the following:

ω(q) = ωp +
3v2F
10ω2

p

q2, (68)

where

ωp =

√
4πe2n

m
(69)

is the plasma frequency of the 3D electron gas that depends on the square root
of the electronic density. As we can see, at q = 0 long wave-length limit, there
is a collective plasmonic excitation precisely at the plasma energy. This is the
excitation that precisely gives color to bulk metals. Then, the plasmon shows a
quadratic dispersion, until it enters into the region in which the imaginary part
of the dielectric is non-zero and it decays. In the 2D case (Exercise 5) instead,
there is no collective excitation that survives in the q = 0 long wave-length
limit, but the plasmon disperses as ∼ √q with the following equation:

ω(q) =

√
2πne2

m
q +

3

4
v2F q

2. (70)

This shows that the plasmon dispersion of a free electron gas is intrinsically
different depending on the dimension of the system. Since in the 2D case the
dispersion is linear at very small wave number, the 2D free electron gas is
often named as the “acoustic plasmon”. This has implications on the optical
properties of materials, and, it is sometimes claimed, that the presence of a very
low energy plasmonic excitation may play an important role in the coupling with
other exictations of lower energies, like phonons. In Fig.
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Figure 4: Plasmon dispersion together for the free electron gas in 2D (left panel)
and 3D (right panel). The plasmon decays when it enters in the electron-hole
excitation continuum. Figure taken from Ref. [1].

6 Exercises

1. Show that the Lindhard function for the 2D electron gas is the one given
in Eq. (29). The following integral may be useful:

∫ 2π

0

dφ
1

q2 − 4k2 cos2 φ
=

{
2π

|q|
√
q2−4k2

, q > 2k

0 , q ≤ 2k
. (71)

2. Show that the Lindhard function for the 1D electron gas is the one given
in Eq. (31).

3. Discuss the singularities of the static Lindhard function in 1D, 2D, and
3D.

4. Show that the plasmon dispersion in the 3D electron gas in the long wave-
length limit is given by Eq. (68).

5. Show that the plasmon dispersion in the 2D electron gas in the long wave-
length limit is given by Eq. (70).

15


	Linear response theory
	Non-interacting response function in the static limit

	Static response function of the free electron gas
	Lindhard response function in 3D
	Lindhard response function in 2D
	Lindhard response function in 1D

	Linear response and phonon instabilities
	Dynamic response function of the free electron gas
	Dynamic Lindhard response function in 3D
	Dynamic Lindhard response function in 2D
	Dynamic Lindhard response function in 1D

	Plasmon dispersion of the free electron gas in 3D and 2D
	Exercises

