Low Dimensional Systems and Nanostructures

Ion Errea ion.errea@ehu.eus

- 1. Length scales and low dimensional systems
- 2. Electronic states in confined systems and low dimensions
- 3. Response properties of the electron system in reduced dimensions

Outline

- 1.1 Nano, meso, and macro scales
- 1.2 Dimensionality
 - Chemical bonding approach
 - Physical length scales approach
 - De Broglie length, Fermi wave-length
 - Mean free path
- 1.3 Transport regimes
- 1.4 Examples of low-dimensional systems
 - 2D: transition metal dichalcogenides, semiconducting chalcogenides, layered halogen compounds, graphene, FeSe
 - 1D: polymers, inorganic chains, nanotubes, metallic wires, nanowires on surface
 - 0D: fullerenes, quantum dots, atomic clusters, synthetic nanocrystals

Outline

1.5 Fabrication and characterization techniques

- Nanolitography
- Atomic Force Microscopy (AFM)
- Scanning Tunneling Microscope (STM)
- Molecular Beam Epitaxy (MBE)

1.6 Exercise

1.1 Nano, meso, and macro scales

Macro scale

- The scale of our everyday life
- The properties of materials are defined by physical bulk properties:
 - Color
 - Density
 - Stiffness
 - Sound velocity
 - Bending rigidity
 - ..
- Classical mechanics are enough

1.1 Nano, meso, and macro scales

Meso scale

- The scale in between the bulk and the atomic limits
- Mesoscopic physics study the properties of small condensed objects
- Bulk properties of materials may be used and classical mechanics may be used
- Quantum mechanical effects appear and may be important

1.1 Nano, meso, and macro scales

Nano scale

- The scale of the atomic limit
- Bulk properties make no sense
- The quantum nature of the electrons is crucial
- Quantum mechanical description

1.1 Nano, meso, and macro scales

meso

Natural things

Man-made things

1.2 Dimensionality

Chemical bonding approach

ionic bonding electron transferred from Na to Cl

covalent bonding atoms share electrons

metallic bonding ions surrounded by free electrons

molecular bonding weak electrical attraction binds molecules

© 2010 Encyclopædia Britannica, Inc.

1.2 Dimensionality

Chemical bonding approach

- In a given compound there might be units strongly bonded by covalent bonds
- These units interact among themselves by weak forces, e.g. hydrogen bonds, Van der Waals forces.
- Depending on the dimension of the unit: 0D, 1D, 2D, 3D systems

Chemical bonding approach: 0D

 P_4Se_3

Chemical bonding approach: 1D

Chemical bonding approach: 2D

Chemical bonding approach: 3D

Diamond

1.2 Dimensionality

Van der Waals forces

- Intermolecular forces, or forces between strongly bonded covalent units
 - **Debye forces:** Dipole-dipole interactions
 - **Hydrogen bonds:** Dipoledipole interactions with hydrogen
 - London dispersion forces: Instantaneous dipoleinduced dipole interactions in non-polar materials
 - Dipole-induced dipole interactions

Van der Waals forces

 Debye forces (hydrogen bonds): Dipole-dipole interactions

1.2 Dimensionality

Van der Waals forces

• London dispersion forces: Instantaneous dipole-induced dipole interactions in non-polar materials

Instantaneous uneven distribution of electrons in He atom Instantaneous dipole Induced dipole on neighboring He atom. Resultant attractive force

Van der Waals forces

Dipole-induced dipole
 interactions

F~r⁻⁶

1.2 Dimensionality

Physical length scales approach

- Based on size dependence of a physical property, e.g. electronic or phonon transport
- Reduced dimension if the dimension of the sample is smaller than a characteristic length L₀

 $L_x, L_y, L_z < L_0$

0D: Quantum dot

1D: Quantum wire

2D: Quantum well

1.2 Dimensionality

Physical length scales approach:

• **De Broglie wavelength**: The (wave)length at which a particle with momentum *p* shows wave-like (quantum mechanical) behavior

Fermi wavelength:
 The (wave)length at which an electron in a metal with energy *E_F* (Fermi energy) shows wave-like (quantum mechanical) behavior

$$\lambda = h/p$$
$$\omega = ck$$

$$\lambda_F = \sqrt{\frac{h^2}{2mE_F}}$$
$$v_F = \frac{h}{\lambda_F m}$$

Physical length scales approach:

Element	E _F (e∨)	v _F (10 ⁶ m/s)	λ_F (Å)
Li	4.74	1.29	5.65
Be	7.08	1.28	5.69
К	2.12	0.86	8.47
Pb	9.47	1.83	3.98

1.2 Dimensionality

Physical length scales approach:

• Mean free path: $L_{m{m}}$

The average distance an electron travels before it experiences a scattering process that changes its initial momentum

- Elastic scattering:
 - When the energy of the electron is conserved
 - Impurity scattering mainly
- Inelastic scattering:
 - When the energy of the electron is not conserved
 - Electron-electron and electronphonon scattering mainly

It is related to the relaxation time τ , for a material with carrier velocity v.

$$L_m = v\tau$$

1.2 Dimensionality

Physical length scales approach:

1.3 Transport regimes

Transport through a constriction:

 $L_m \gg L$

1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

1. Length scales and low dimensional systems 1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

1. Length scales and low dimensional systems 1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

Exist in the 2D limit

Novoselov et al., PNAS (2005)

1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

N. Sabari Arul and V. Devaraj Nithya., "Two Dimensional Transition Metal Dichalcogenides" (2019)

1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

Metallic TMDs phase diagrams with charge-density waves (CDWs) and superconductivity (SC)

1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

Similar phase diagram to the high-temperature superconductors

1.4 Examples of low-dimensional systems

2D: Transition metal dichalcogenides (TMDs)

Contradicting results about the CDW temperature in the 2D limit

Xi et al., Nat. Nanotech. (2015)

Ugeda et al., Nat. Phys. (2015)

1.4 Examples of low-dimensional systems

2D: Semiconducting chalcogenides

"Numbering system adopted by the International Union of Pure and Applied Chemistry (UPAC).

D Encyclopædia Britannica, Inc.

1.4 Examples of low-dimensional systems

2D: Semiconducting chalcogenides

Crystal structures and phase diagrams

Rock-salt structure

Distortions of rock-salt structure

1.4 Examples of low-dimensional systems

2D: Semiconducting chalcogenides

Very good thermoelectric materials

1.4 Examples of low-dimensional systems

2D: Semiconducting chalcogenides

Synthesized in the 2D limit and possible ferroelectricity

REPORTS

FERROELECTRICITY

Discovery of robust in-plane ferroelectricity in atomic-thick SnTe

Kai Chang,^{1,2*} Junwei Liu,^{3,1,2*} Haicheng Lin,^{1,2} Na Wang,^{1,2} Kun Zhao,^{1,2} Anmin Zhang,⁴ Feng Jin,⁴ Yong Zhong,^{1,2} Xiaopeng Hu,^{1,2} Wenhui Duan,^{1,2} Qingming Zhang,^{4,5} Liang Fu,³ Qi-Kun Xue,^{1,2} Xi Chen,^{1,2}† Shuai-Hua Ji^{1,2,6}†

Stable ferroelectricity with high transition temperature in nanostructures is needed for miniaturizing ferroelectric devices. Here, we report the discovery of the stable in-plane spontaneous polarization in atomic-thick tin telluride (SnTe), down to a 1–unit cell (UC) limit. The ferroelectric transition temperature T_c of 1-UC SnTe film is greatly enhanced from the bulk value of 98 kelvin and reaches as high as 270 kelvin. Moreover, 2- to 4-UC SnTe films show robust ferroelectricity at room temperature. The interplay between semiconducting properties and ferroelectricity in this two-dimensional material may enable a wide range of applications in nonvolatile high-density memories, nanosensors, and electronics.

Science (2016)

1. Length scales and low dimensional systems 1.4 Examples of low-dimensional systems

2D: Graphene

A. Geim K. Novoselov

Nobel Prize Physics 2010

"for groundbreaking experiments regarding the two-dimensional material graphene "

1.4 Examples of low-dimensional systems

2D: FeSe

- Superconductivity in bulk FeSe at 9K
- On monolayer on top of $SrTiO_3$ at 65-109K

1.4 Examples of low-dimensional systems

1D: Polymers and organic molecules

1.4 Examples of low-dimensional systems

1D: Inorganic chains

K₂Pt(CN)₄Br_{0.2} H₂O

1.4 Examples of low-dimensional systems

1D: Carbon nanotubes

1. Length scales and low dimensional systems 1.4 Examples of low-dimensional systems

1D: Metallic wires

Gold wires produced with STM

Ohnishi et al., Nature (1998)

1.4 Examples of low-dimensional systems

1D: Nanowires on surfaces

Ferromagnetic one-dimensional monatomic metal chains

Gambardella et al., Nature (2002)

1.4 Examples of low-dimensional systems

1D: Overview of some properties

Та	Table 6.3-1. Quasi-one-dimensional materials (SC: superconductorTr:room temperatureGIC:graphite intercalation compound				
co	mpound	peculiarity			
1)	TTF-TCNQ	Peierls transition			
	(TMTSF)2ClO4	$T_{ m c}=1.3~{ m K~SC}$			
	(TMTSF) ₂ PF ₆	$T_{\rm c}=0.9~{ m K~SC}$			
		(under pressure)			
2)	KCP	Peierls transition			
	$K_2Pt(CN)_4Br_{0,2} \cdot H_2O$				
3)	$Hg_{2.86}AsF_6$	SC			
4)	$(SN)_x$	${T}_{ m c}=0.33~{ m K}$			
	$(\mathrm{SNBr}_{0,4})_x$	${T}_{ m c}=0.35~{ m K}$			
		3D-SC			
5)	$(CH)_x \cdot SbF_5$	Peierls transition			
6)	$(=C=)_x$	α -Carbyne			
	$(-C=C-)_x$	β -Carbyne			
7)	TaS_3	Peierls transition			
	NbSe ₃				
8)	graphite	semi-metal			
	$GIC (SbF_5)$	two-dimensional			
	$GIC (AsF_5)$				
	GIC (C_8K)	$T_{\rm c} = 0.2 \mathrm{KSC}$			
9)	copper	metal			
	aluminium				
		three-almensional			

G. Lehmann, P. Ziesche, "Electronic properties of metals" 1990

1. Length scales and low dimensional systems 1.4 Examples of low-dimensional systems

OD: Fullerenes

C₆₀

1.4 Examples of low-dimensional systems

0D: Quantum dots

- Semiconducting particles of few nanometers
- Also called artificial atoms
- Size dependent properties

1.4 Examples of low-dimensional systems

OD: Atomic clusters

 Clusters can be formed when a hot plume of atoms or molecules in a gas are cooled by collision with raregas atoms much as droplets of water are formed when hot steam cools and condenses

1.4 Examples of low-dimensional systems

OD: Atomic clusters

P. Jena and A. W. Castleman, "Introduction to Atomic Clusters" (2010)

1.4 Examples of low-dimensional systems

OD: Synthetic nanocrystals

- Chemical synthesis of nanoparticles of CdS, CdSe, CuCl
- Size control (from few nm to 200 nm)

1.5 Fabrication and characterization techniques

Nanolitography

- Techniques for etching, writing, printing at the nanoscale
 - Optical litography
 - Electron-beam litography
 - Scanning proble litography
 - Nanoimprint litography

1.5 Fabrication and characterization techniques

Nanolitography

https://www.youtube.com/watch?time_continue=189&v=PWV9pvdRBNY&feature =emb_logo 1. Length scales and low dimensional systems 1.5 Fabrication and characterization techniques

Atomic Force Microscopy (AFM)

- Detects the fluctuations of the tip induced by the forces of the sample
- Can be used
 for litography

1.5 Fabrication and characterization techniques

Scanning Tunneling Microscope (STM)

- Controls the current tunneled from the sample to the atomic tip.
- Can be used to image and manipulate individual atoms.
- Atomic resolution.

1.5 Fabrication and characterization techniques

Perform a literature search and find a material that can be synthesized in low dimensions and or in its bulk form it has low-dimensional features.

- Which are the features in its electronic properties that make it behave as a low-dimensional material?
- Is there any other particular property that makes it behave as a lowdimensional system?