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and their Ab Initio Calculation
Lecture 2: Classical theory of lattice vibrations
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The Born-Oppenheimer approximation and the ionic

problem

@ Solve the electronic part of the Hamiltonian:
He(R) = Te+ Ve—e+ Ve—i(R) + Vi—i(R)
He(R)IVL(R)) = Ex(R)IVa(R))
@ Define the Born-Oppenheimer potential from the ground state of the solution:
V(R) = Eo(R)
@ Solve the ionic problem:
HilW) = [Ti + V(R)] [W5) = Es|W})

@ The BO potential is a complex many-body object that depends on 3Nn,; variables,
where N is the total number of unit cells in the crystal and n,: the number ions in
the unit cell
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Taylor expansion of the V(R) potential

Lattice sites

O @) O o 0O

@ In solids, ionic displacements from the
lattice sites 7s(T) are usually small

compared to the interionic distance: O O O O @)
lul << a -

@ Ry are the ionic positions that O O O @) O
correspond to the minimum of V(R)

@ The classical ionic forces vanish at Ry: Displacements around lattice sites

F {8V(R)] o JORNe! - ® -
OR, R=R, ’

where a labels both an ion and a ® @ e ® ®

Cartesian index. @ o(T) +u, ®
A &
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Are the R positions
the lattice sites 745(T)?



Taylor expansion of the V(R) potential

@ The BO potential V(R) can be Taylor-expanded around Ry as

V(R) = V(Ro)+ Va(R)+ V5(R) + Va(R) +- -,
Va(R) = % Z (g))al--»an(Ral — Rap0) -+ (Ray — Rapo)

@ The n-th order force-constants are given by

((;)) _ | o"V(R)
aan = | 9R, - OR., R=R,
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Does the Taylor expansion reflect the
total potential?



Does the Taylor expansion reflect the
total potential?




Fourier transformed force constants

@ The force constants can be written also explicitly indexing the unit cell, so that
each atom (and Cartesian index) runs for atoms in the unit cell

(n)
¢al~-~an(T1> Tty T")

@ This allows to Fourier transform the force constants as

() (n) . o
G apeoay (@, 0,) = Z G ayeoay(T1, o, To)e'™ Ti... % Tn
Ty---T

where N is the total number of cells in the crystal
@ The anti transform is

) 1 () o o
¢a1~~~an(T15"' 7Tﬂ) = m Z ¢al~~~an(qla"' 7qn)e nh - T

9149,

due to the relation (q in the first BZ)

Z eiq.T = N(;q’o Z eiq‘T = N(sT’o
T q
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Fourier transformed force constants

@ Considering that translating the crystal by a lattice vector it must remain invariant

(m) (n)
¢31"'3n(T1 + T7 R Tn + T) = ¢51...an(T17" B Tn)

@ This implies that all the g points in the Fourier transform are not independent and
must satisfy
a+-+q,=G
where G is a reciprocal lattice vector

@ This can be seen by plugging the condition above in the Fourier anti transform,
which yields the condition

e*"(qlJr"'*qn)T =1
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Space group symmetries

@ In a crystal with atoms at equilibrium
lattice positions 75(T), a space group
operation G leaves the crystal

120° rotation around z axis

invariant:
G = {SIW(S)+T}
Grs(T) = S7(T)+v(S)+T
Grs(T) = 7(T) Y
Here, S is the point group matrix, .
v(S) the fractional translation, T a
lattice vector NbSey (P63/mmc) invariant under 120°

. rotation around z axis
@ The crystal looks exactly the same in

the non-transformed 7(T) and
transformed 7/(T') sites

@ The BO energy must be invariant under
Gg:
V(gT(T)) = V(=(T))
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Symmetries of the force constants

@ Translation:

(n) (n)

¢a1-»-an(T1+ T, T+ T)= 9, a,,(T17"' » Th)

1o

@ Permutation:

¢31“‘3i'“3j"'3n(T1’ Tty T[7 R} TJ: Tn) = ¢31"'5 le T ij R} TI'7 Tn)
@ Space group symmetries:
For G = {S|v(S)} space group operation

(n)P1+Bn e

(n)
¢5{.A.5 (Tgla 7T:1): Z 561 1‘“56" "¢51...5n (Tlv"' 7Tn)
ay--ap

where the operation G = {S|v(S)} transforms the ion at 74(T) into ion at

74 (T') . In this case we have divided the combined a index into a Cartesian index
a and a ion index s
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The harmonic approximation

@ The first non-trivial approximation we can do to the vibrational problem is to
assume the harmonic approximation

@ We assume that atoms oscillate around the Ry positions (classical approximation)
and oscillate around them

@ The potential is truncated at second order

V(R) = V(Ro) + Va(R)

Energy

R, Pposition
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The classical solution of the harmonic problem

@ The BO potential in the harmonic approximation is

1 (2)
= E Z ¢abu3ub
ab

where u, = R, — Ry is the displacement from the reference position with vanishing
classical forces

@ The Newton equation to be solved for the motion of the ions is

Lot {8V7(R)] _ —Z(;)abUb
u=0 b

dt? ou,

@ This type of differential equation is solved with oscillatory functions, so we can

seek solutions of the type
a

e
v M,

where e is a vector that determines how each atom is moving

—iwt

us(t) =

@ Plugging this we obtain the following equation
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The classical solution of the harmonic problem

2
@ This means that the eigenvalues of the matrix % (the dynamical matrix) will
alVlp

determine the w frequencies of the ionic oscillations and the displacements of the
ions will be determined by the eigenvectors e of the same matrix

@ The number of eigenvalues of the matrix will be 3N, = 3n.:N, 3 times the total
number of ions in the crystal

@ We will label with i each eigenmode

()
Z\/W

_ 2 a
€, = w,€,

@ The ionic displacements will be a sum of all eigenmodes

us(t) = Z \/e,%/’iaRe [e_"w“t}
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The classical solution of the harmonic problem

@ The polarization vectors are orthonormal
a_b
E :eue#
I
a _a
E e.&, = Ou
a

@ The dynamical matrix can be constructed as

5ab

(2

©-

ab _ 2 a b
= W€y
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The dynamical matrix in reciprocal space

@ The force constants matrix can be written in the reciprocal space as

@ @ -
¢ab(q) = Z ¢ab(T)e
T

@ Alternatively
)] 1 2 LiaT
¢(T) = N ; ¢ .(q)e

@ In order to write so we have noted that the the harmonic force constants can only
depend on the difference between two lattice vectors

(2 (2
¢ab(T37 Tb) = d)ab(Ta - Tb)
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The dynamical matrix in reciprocal space

@ The dynamical matrix can thus be defined in reciprocal space as

2
¢ ab(q)

v M, M,

@ The eigenvalue problem in reciprocal space is thus solved at each q in the first BZ

> Das(9)es(q) = w’(q)e)i(q)

Das(q) =

@ For each g point there are 3n,: eigenvalues. As there are N g points in the first
BZ, in total 3Nn,: modes

@ Polarization vectors are in general complex and fulfill the following relations

(e (q) = €i(—4))
Z ea*

Ze (@)el(q

6ab

Opw
(2)

% — ; wp(q)e (@)e;(q)
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The harmonic potential in the normal mode basis

@ In real space let's assume the following transformation of the displacements into
the normal mode basis (Q,)

ea
=2
w M.
The potential can be written as an independent sum of harmonic oscillators

1 (2) 1 s o

V(R) = 5 Z @ apUaliy = > ZWMQM

ab W
@ In Fourier space, assuming the relation

us(Ta) = —= )~

The potential becomes (Q.(—q) = Q;;(q))

w

V(R) = Zwu )IQu(a
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The harmonic potential in the normal mode basis

@ The ionic displacements are a linear combination of oscillating harmonic oscillators

@ The kinetic of each oscillator is proportional to ~ kg T

A

Normal coordinate Q
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Displacements in a crystal
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How much do the atoms move if the
mechanical energy is 0 (0 temperature)?

Va(R)



The ionic displacements

Ua a \/72 u(q Q#(q)e_iq‘-ra

@ As the displacements are real we need to assume that

e.(—q) = e'(q)
Qu(-q) = Qu(aq)

@ The wave-like e7"@T factor tells us how the ionic displacements are modulated
from cell to cell
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The ionic displacements: an example

We take a crystal in 2D with one atom in the unit cell and a mode with e, = (1,0).
Each ion in the crystal is at a lattice site T = nia + mb = (ny1, n2). The displacements
for different g modes are the following

&«
N
&
D
w

|
¥
%
O

0.3) (1.3) (23) @33) 0,3)
02) (T2) 22)

0.2) (1.2) (22) 32)
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b b
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The ionic displacements: an example

We take a crystal in 2D with one atom in the unit cell and a mode with e, = (1,0).
Each ion in the crystal is at a lattice site T = nia + mb = (ny1, n2). The displacements
for different g modes are the following

Q@ g 9 Q@ @
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Acoustic and optical modes

!
@
&

@ At g = 0 point (I') there are always ©3) {3) @3 el
three modes in which all ions move
together, translational modes
¢ = (3 -
@ If we displace the ions according to ©2) 2 @2 @2

any of these normal modes, the
harmonic potential will be

parametrized as ) o 3(1,1) 3(2'1) G(a.n
15 2
V(R) = 5w(0)|Q.(0) o G O
0,0) (1,0) (2,0) (3,0)
@ The energy cannot be modified by a a
translational mode g=0
@ The frequency of the translational
modes must be 0. These are the @ If there is more than an atom in the
acoustic modes unit cell there will be other non-zero

frequency modes. These are the
optical modes
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Acoustic and optical modes

a
-— | | | I
m]_ mz 1 : ] :
- | | I I
optical | | | |

= - - i - :". p_l :"r 2

1 1 : 1
acoustic | : : :
-> —_— -> 1 - <+ <=
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Linear dispersion of acoustic modes

@ The frequency of any mode can be obtained from

@ 27
wu(q)—zeus@)\/ﬂ fi(a) =33 et q)fﬂ T (q)

afst aBst T

228
@ As > .+ ¢, (T) =0, this can be written as

()O‘B
st( )
—2 ens(q) === sin’(q - T/2)e// (q)
@ In the g — 0 limit
. @*f -
FIOREED D) WA TCAICH )
afBst T t

@ This implies that acoustic modes will have a linear dispersion with g
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Phonon spectrum

@ The wu(q) frequencies form the honon spectrum

@ Usually plotted for q € 1BZ along high-symmetry lines

40 —
= g0k = | '
3 30 —
g a0k L — -
> I L T

210 — .
O M K T A

NbSe; crystal with P63/mmc space group
Nb:  2b Wyckoff positions
Se:  4f Wyckoff positions
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Quadratic dispersion of out-of-plane acoustic modes in 2D

MEICHELS

@ Apart from the translational invariance solids are also invariant to rotational
symmetry

@ In a strictly 2D material this has special consequences

@ Let's assume that we rotate the atoms in the 2D plane by an infinitesimal rotation
us(T) = 66n x Rso(T), where the rotation axis n is in the 2D plane

@ As this rotation cannot create any force

2)%2

Z . (TTY=0 Va=x,y
=

@ This implies that the out-of-plane flexural acoustic mode (ZA) in 2D materials is
quadratic

2 2
wza(q) ~ q
M. I. Katsnelson and A. Fasolino, Acc. Chem. Res. 46, 97 (2013)
J. Carrete et al., Mater. Res. Lett. 4, 204 (2016)
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Quadratic dispersion of out-of-plane acoustic modes in 2D

MEICHELS

Graphene
1600
\ y-
LO LO
1200 + \ 1
- LA -
5 20 Z0
S 800 TA
3
400 | LA > 1
TA
ZA ZA
0
r M K r

M. I. Katsnelson and A. Fasolino, Acc. Chem. Res. 46, 97 (2013)
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Transformation of the dynamical matrix

Symmetry properties of the dynamical matrix

T

ab(q) - Z \/Mi ’q

@ Permutation:
Implies that D(q) is Hermitian

Das(q) = Dib(q)

and has, thus, real eigenvalues (w?(q) is real)

@ Space group:
Fourier transforming the real space relation for a symmetry operation
={S[v(9)} )
D(Sq) =T (q.9)D(q)"(q,G)

where I'(q,G) is a unitary matrix given by

I—oqozg(q7 ) g 5525 ’5‘7‘(7'51 _97'5{)

5152
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Transformation of the dynamical matrix

Consequences of
D(Sq) =(q.6)D(q)(q.9)

@ Knowing D(q) the dynamical matrix
can be obtained for all the g points
related by a point group matrix: Sq

@ The set formed by all the transformed
q points, {Sq}, is called the star of g

@ Knowing D(q) for the points not
related by Sq is sufficient to generate Obilbao J\T.u()
the dynamical matrix for the whole hitpy s cryethu

1BZ
. . 1BZ and asymmetric cell of P63/mmc
@ These points form the asymmetric cell,

sometimes called, the irreducible BZ
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Symmetrizing the dynamical matrix

@ If a given point group matrix S leaves invariant a q point,
Sq=q+ Gq,
where Gq is the reciprocal lattice vector that brings q into the 1BZ, then
D(q) =T(q,6)D(@)"(q,9)

@ This imposes symmetry conditions to the dynamical matrix

@ The point group operations that satisfy the above equation form the little
co-group of g

@ In case time-reversal symmetry is present, if a given point group matrix S brings q
into —q
Sq=—-q+G_q,
then
D*(q) = (q,6)D(q)(q.9)
because if time-reversal symmetry is present D*(q) = D(—q)

@ This imposes further symmetry conditions to the dynamical matrix
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Symmetrizing the dynamical matrix

An example: D(q) for FCC crystal at X (0, 1,0)

@ The FCC lattice belongs to the Fm3m space
group with atoms in 4a Wyckoff positions

@ It has 48 symmetry operations in the point
group

@ 16 of them (4/mmm) leave the X point
invariant, Sq = q + Gq (e.g. 4¢10)

@ There are also symmetries for which
Sq=-q+G_4 (eg. —1)

@ As in the FCC primitive unit cell there is only A\
one atom, (g, G) = S Suilbag cyllogphic server
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Symmetrizing the dynamical matrix

A+ iBin A+ iBiz Az + iBi3
An example: D(q) = | A2 — iBi2 A2+ iBx Az + iBos | for FCC crystal at X
Az — iBis  Ax — iBxs  Asz+iBs3

(0,1,0)
@ The effect of the inversion through D*(q) = SD(q)S" with
-1 0 0
S1=0 =1 0 | yields

0 0o -1

Auir —iBin Az —iBiz Az —iBis A+ iBir A+ iBiz Az +iBis

A+ Bz Axn —iBxn Ax—iBxs | = | Az —iBiz Ax+iBx Ax+iBx

A +iBis  Ax+iBxs Az —iBss Az —iBis Az —iBx  Asz+ iBs3

@ Thus, D*(q) = D(q), which means that D(q) at X is real
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Symmetrizing the dynamical matrix

A A Az
An example: D(q) = [ A2 A A | for FCC crystal at X (0,1,0)
Az Az Az
@ The effect of the 4], rotation through D(q) = SD(q)S" with
0 0 1
54310 = _01 (1) 8 yields

Ain A A As3 Ax  —Ais
A Axn Ax| = Ax An —An
Az A Asz —Aiz —An  Au

@ Thus, A3z = A11, Az = A1p, A13 =0, and Az = —Ap

@ Applying the same procedure with all 16 operations of 4/mmm

wi(g=X)=wi(qg=X)=Au

Au O 0 2
D(g)=| 0 A 0] —<{"}
(a) 2 {wg(q_x) A,

0 0 Au
lon Errea
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Irreducible representations and deg

@ Crystal symmetries determine the
degeneracies of the phonon modes

@ The number of different frequencies
coincides with the number of (irreps)
of the little co-group of g in which the
atomic displacements are decomposed

@ The dimension of each irrep
determines the number of degenerate
modes associated to it

Decomposition of the mechanical representation of the space group (N. 225)

Wave-vector: X:(0,1,0),(1,0,0),(0,0,1)

Wyckoff

position Decomposition into irreps

192L(cyz) 9 X1+(3) © 9 X2+(3) © 9 X3+(3) © 9 X4+(3) © 16 X5+(6) © 8 X1-(3) © 9 X2-(3) © 9 X3-(3) @ 9 X4-(3) & 16 X5-(6)
5X1+(3) 4 X2+(3) 6 4 X3+(3) © 5 X4+(3) © 9 X5+(8) © 4 X1-(3) © 5 X2-(3) ® 5 X3-{3) & 4 X4-(3) & O X5-(6)
6 X1+(3) © 6 X2+(3) © 4 X3+(3) © 4 X4+(3) © 8 X5+(6) © 3 X1-(3) © 3 X2-(3) © 5 X33) © 5 X4-(3) & 10 X5-(6)
BX1+(3) @3 X2+(3) 6 2 X3+(3) © 2 X4+(3) © 4 X6+(6) & X1-(3) © 2 X2-(3) © 3 X3-(3) & 2 X4-(3) & 5 X5-(6)
BX1+(3) @3 X2+(3) © 2 X3+(3) © 2 X4+(3) © 4 X6+(6) © X1-(3) © 2 X2-(3) © 3 X3-(3) © 2 Xd-(3) 5 X5-(6)
3XT+(3) @ 2X2+(3) & X3+(3) ® 2 X4+(3) © 5 X5+(6) & 2 X1-(3) @ 3 X2-(3) © 2 X3-(3) © Xé-(3) & 5 X5-(6)
2X1+(3) © X2+(3) © X3+(3) © 2 X4+(3) © 3 X6+(6) © X1-(3) @ 2 X2-(3) © 2 X3-(3) @ X4-(3) @ 3 X5-(6)
24e:(x,0,0) 2 X1+(3) © X2+(3) © X3+(3) © X4+(3) © 2 X5+(6) © 2 X3-(3) © Xd-(3) © 3 X5-(6)
240:(0,1/4,1/4) 2 X1+(3) ® 2 X2+(3) © X3+(3) © X4+(3) © 3 X6+(6) © X2-(3) © X3-(3) © 2 X5-(6)
Bo:(1/4,174,1/4) X1+(3) © X5+(6) & X2-(3) & X5-(6)
4b:(112,172,1/2)X3(3) © X5+(6)
42i(0,0,0) 3:(3) & X5:(6)

In parenthesis the dimension of the irreducible representation
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Irreducible representations and degeneracies

NbSe, (P63/mmc) along TMKTA

40 —
@ Crystal symmetries determine the i /—% |
degeneracies of the phonon modes 30_ 3

_— |

() [meV]

@ The number of different frequencies 20

coincides with the number of (irreps) £ 10
of the little co-group of g in which the
atomic displacements are decomposed r M K r A

L

@ The dimension of each irrep
determines the number of degenerate
modes associated to it

@ The number or irreps for the g points
in a high-symmetry line is the same
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The elastic theory

@ In the theory of elasticity, there is no crystal, but the material is described as a
continuum at position r = (x,y, z)

@ A deformation of the material is described with the field u(r)

@ In the harmonic approximation the equation of motion are

p82 ue _ Z Caﬁ'ya 82 u®
ot? = orPrv
o

where ¢®#79 is the elastic tensor
@ Plugging here plane wave solutions
u(r,t) =@ e
we obtain the following equation
pw2ea — Z cxPre qﬁqw e’
Byo

Ashcroft & Mermin, Thomson Learning
Born & Huang, Oxford University Press
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The elastic theory and acoustic modes

@ Comparing the
pw2ea — Z cxpe quw e
Byo
equation with the equation we obtained for the ¢ — 0 limit of the acoustic modes

)"ﬁ
2 st (T) 2 3*
D3 L RO @

it seems that the frequencies are the same
@ Indeed the polarization vectors of the elastic waves are homogeneous translations

@ This means that the frequency of the elastic wave is the g — 0 limit of the
acoustic modes
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The elastic theory and acoustic modes

Elastic wave propagation

Q /45 7 67 77 47 [ (5 (7 5
O 77777777

AT T 7
[ZF

lon Errea Lecture 2



The elastic theory and sound propagation

@ As sound is an elastic wave, the
velocity of sound is the velocity of the
phonon propagation

a
k=1/4 n/a .
@ In analogy to the photon speed ‘_l—m_'—'_'_l—l_’. 0 T

(¢ =X/T = w = cq, with g the wave
number), the velocity of sound of a
wave propagating with wave number g k=1/2 n/a

. e e e |

is e%es _ 0%e 0% T
(@) 2@ ST Tet tente
# alq| e 8 sse & 280 & oo L
when ¢ — 0 kenla
3 ) . - [ ] [ ] L ] L] T
@ There will be three acoustic velocities, ¢ & & ¢ ¢

one for the longitudinal mode
(eca || ) and two for the transversal
modes (e7a }f q)
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Exercises

@ Show that due to translational symmetry
(my17n
b (T, Th)=0
snTh
and that the same holds for the sum over any index n

@ Show that the dynamical matrix in reciprocal space is Hermitian

© Show that applying symmetries for a FCC crystal the dynamical matrix at the X

point is
Aun O 0
D(q) = 0 Ax 0
0 0 Au

lon Errea Lecture 2 46 / 46



	The Born-Oppenheimer potential
	Force constants
	Properties of the force constants
	Space group symmetries

	The harmonic approximation
	Classical solution of the harmonic problem
	The dynamical matrix in reciprocal space
	The ionic displacements in the crystal
	Acoustic and optical modes
	Dispersion of acoustic modes in 3D and 2D

	Symmetries of the dynamcial matrix in reciprocal space
	Symmetrization of the dynamical matrix
	Irreducible representations and degeneracies

	Elastic properties of solids
	Sound waves

	Exercises

	anm0: 
	0.46: 
	0.45: 
	0.44: 
	0.43: 
	0.42: 
	0.41: 
	0.40: 
	0.39: 
	0.38: 
	0.37: 
	0.36: 
	0.35: 
	0.34: 
	0.33: 
	0.32: 
	0.31: 
	0.30: 
	0.29: 
	0.28: 
	0.27: 
	0.26: 
	0.25: 
	0.24: 
	0.23: 
	0.22: 
	0.21: 
	0.20: 
	0.19: 
	0.18: 
	0.17: 
	0.16: 
	0.15: 
	0.14: 
	0.13: 
	0.12: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


