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The harmonic problem

In order to obtain the phonon spectra we need to diagonalize the dynamical matrix

In real space ∑
b

Dabe
b
µ = ω2

µe
a
µ

with the dynamical matrix

Dab =

(2)

φ ab√
MaMb

In reciprocal space ∑
b

Dab(q)ebµ(q) = ω2
µe

a
µ(q)

with the dynamical matrix

Dab(q) =
∑
T

(2)

φ ab(T )√
MaMb

e iq·T

In order to get phonon frequencies we need to calculate the second-order force

constants
(2)

φ ab
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Force-constants from DFT

The calculation of the force constants require the calculation of second-derivatives
of V (R)

(2)

φ ab(T ) =

[
∂2V (R)

∂Ra(T )∂Rb(0)

]
R=R0

There are two main approaches to obtain
(2)

φ ab(T ) from DFT

Finite displacements methods
Atoms are displaced from the equilibrium R0 position and the energies
and/or forces are obtained with DFT to later calculate the force-constants
taking numerical derivatives.
These methods are valid also for empirical potentials
Perturbative methods
Quantum mechanical perturbation theory is used to the change in the
electronic density and wave functions, from which the force-constants can be
calculated.
Valid only for DFT approaches, not empirical potentials
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Finite-displacements methods: Frozen phonon

Let’s assume we want to calculate the phonon frequency for phonon mode µ
associated to a particular irrep for which we know the polarization vector eµ
We can move all the atoms according to the normal mode associated to it

ua(Qµ) =
eaµ√
Ma

Qµ

The potential will be then parametrized as

V (Qµ) =
1

2

∑
ab

(2)

φ abua(Qµ)ub(Qµ) +O(Q3
µ) =

1

2
ω2
µQ

2
µ +O(Q3

µ)

Calculating the total energy as a function of Qµ and taking the second derivative
the phonon frequency can be obtained

ω2
µ =

[
d2V (Qµ)

dQ2
µ

]
Qµ=0
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Finite-displacements methods: Frozen phonon

In practice this is done in a supercell

Let’s assume we want to calculate the phonon frequency for phonon mode µ at q
with polarization vector eµ(q)

The normal mode displacement in the is atoms of the crystal distort as

ua(T a)(Qµ(q)) = Re

[
e−iq·T a

εaµ(q)√
Ms

]
Qµ(q)

The q vector will determine the periodicity of the displacement pattern. If a∗, b∗,
and c∗ are reciprocal lattice vectors and

q =
(m1 − 1)a∗

n1
+

(m2 − 1)b∗

n2
+

(m3− 1)c∗

n3
, mi = {1, · · · , ni},

with n1, n2, and n3 integers, then de displacement is commensurate in a
n1 × n2 × n3 supercell

It can be shown that the total energy as a function of the normal mode Qµ(q) is

V (Qµ(q)) = N
1

2
ω2
µ(q)Q2

µ(q),

thus,

ω2
µ(q) =

d2[V (Qµ(q))/N]

dQµ(q)2
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Finite-displacements methods: Frozen phonon

An example:

Let’s calculate the phonon frequency
of the longitudinal (L) mode at X
point of simple cubic Ca:

qX = c∗/2

εL(qX ) =

0
0
1


We displace the atoms as

uα[LqX ](T ) = e−iqX ·T ε
α
L (qX )√

M
A

and calculate the DFT energies as a
function of A

A 1× 1× 2 supercell is enough to
reproduce the pattern

 a
!
1

 a
!
2

 a
!
3
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+V

4
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4
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Which are the problems of the frozen
phonon approach? And benefits?



Finite-displacements methods: force-constants

It is possible to directly obtain the force-constants matrix by calculating with DFT
atomic forces in slightly distorted supercells

In the harmonic approximation the force of an atom can be obtained from the
force-constants as

fa(T a) = −
∑
bTb

(2)

φ ab(T a,T b)ub(T b)

Therefore, the force-constants are

(2)

φ ab(T a,T b) = − ∂fa(T a)

∂ub(T b)

Due to symmetries force constants can be generated by

(2)

φ

β1β2

s′1s
′
2

(T ′1,T
′
2) =

∑
α1α2

Sβ1α1Sβ2α2
(2)

φ

α1α2

s1s2
(T 1,T 2),

which reduces the number of derivatives to be known

As the force-constant only depend on T = T 1 − T 2 it is sufficient to know

(2)

φ ab(T ) = −∂fa(T )

∂ub(0)
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Finite-displacements methods: force-constants

The idea is to calculate these derivatives by finite differences

Take a supercell, displace one atom that belongs to the unit cell as Rb0(0) + ub(0),
and calculate by DFT the forces on the atoms of the supercell. Then,

(2)

φ ab(T ) = −∂fa(T )

∂ub(0)
= −

[
fa(T ;R0b(0) + ub(0))− fa(T ;R0b(0))

ub(0)

]
Repeat the procedure for all the displacements needed to generate by symmetry all
the force-constants for T sc a lattice vector within the supercell

Due to periodic boundary boundary conditions set by the supercell, the dynamical
matrix can be calculated at any q ∈ 1BZ by Fourier transform

Dab(q) =
1

Nsc

∑
T sc

(2)

φ ab(T sc)√
MaMb

e iq·T sc ,

where the sum is limited to the Nsc T sc vectors within the supercell

The obtained dynamical matrix is correct if for a n1 × n2 × n3 supercell

q =
(m1 − 1)b1

n1
+

(m2 − 1)b2

n2
+

(m3− 1)b3

n3
, mi = {1, · · · , ni}.

If not D(q) is approximated by the Fourier transform
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Finite-displacements methods: force-constants

An example:

Force-constants for graphene in a
4× 4(×1) supercell

Only two force calculations are needed
to get the force-constants in the
4× 4(×1) supercell

This method to calculate

force-constants is implemented in

many codes that can be used in

conjunction with any DFT code:

1 Calculate minimum distorsion
patterns in the supercell

2 Calculate the forces for these
distorted structures with a DFT
code

3 Get the force-constants in the
supercell

Displacement	1	

Displacement	2	

PHONOPY
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Finite-displacements methods

Pros:

Straightforwardly implemented in
conjunction with any DFT code

The frozen-phonon approach is very
intuitive physically

From the force-constants the
dynamical matrix can be obtained at
any q as long as the Fourier transform
approximation works

Cons:

Getting the exact dynamical matrix is
limited to the q’s commensurate with
the supercell size

If we want to calculate the phonon
modes for a particular q point exactly,
a huge (even infinite if the q is
irrational) supercell might be needed

Calculations using supercells in DFT
are expensive
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Is the choice of the displacement ub(0)
relevant?



Perturbative methods

Perturbative methods offer the way to calculate D(q) for any q without creating
any supercell

The BOES energies are calculated as

V (R) = 〈Ψe
0(R)|He(R)|Ψe

0(R)〉,

where the wave-function and the Hamiltonian depend parametrically on R. We
need its second derivative

The first derivative (forces) can be calculated with the Hellmann-Feynman theorem

∂V (R)

∂Rb
= −fb = 〈Ψe

0(R)|∂He(R)

∂Rb
|Ψe

0(R)〉 =
∂Vi−i (R)

∂Rb
+

∫
drn(r)

∂Ve−i (r)

∂Rb

The second derivative (force-constants)

(2)

φ ab =

[
∂2V (R)

∂Ra∂Rb

]
R=R0

=

[
∂2Vi−i (R)

∂Ra∂Rb

]
R=R0

+∫
dr
[
∂n(r)

∂Ra

]
R=R0

[
∂Ve−i (r)

∂Rb

]
R=R0

+

∫
drn(r)

[
∂2Ve−i (r)

∂Ra∂Rb

]
R=R0
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Perturbative methods

(2)

φ ab =

[
∂2V (R)

∂Ra∂Rb

]
R=R0

=

[
∂2Vi−i (R)

∂Ra∂Rb

]
R=R0

+∫
dr
[
∂n(r)

∂Ra

]
R=R0

[
∂Ve−i (r)

∂Rb

]
R=R0

+

∫
drn(r)

[
∂2Ve−i (r)

∂Ra∂Rb

]
R=R0

The calculation of the force-constants matrix requires:

The electroncic density at equilibrium n(r)
Calculated from |Ψe

0(R)〉 in DFT

The derivative of the electronic density
[
∂n(r)
∂Ra

]
R=R0

Needs the calculation of
∂|Ψe

0(R)〉
∂Ra

, not obtained in a DFT run
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Linear response theory

A way to obtain the derivative of the density is through linear response theory and
the density response function χ(r , r ′)

In fact the change in the electronic density by a change in the external potential of
the system is

δn(r) =

∫
dr ′χ(r , r ′)δVext(r ′)

Considering that the external potential is the electron-ion interaction in our case[
∂n(r)

∂Ra

]
R=R0

=

∫
dr ′χ(r , r ′)

[
∂Ve−i (r ′)
∂Ra

]
R=R0

The force constants are

(2)

φ ab =

[
∂2V (R)

∂Ra∂Rb

]
R=R0

=

[
∂2Vi−i (R)

∂Ra∂Rb

]
R=R0

+

∫
drn(r)

[
∂2Ve−i (r)

∂Ra∂Rb

]
R=R0

+

∫
drdr ′χ(r , r ′)

[
∂Ve−i (r ′)
∂Ra

]
R=R0

[
∂Ve−i (r)

∂Rb

]
R=R0

= φii
ab + φei−nd

ab + φei
ab
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Linear response theory

The static density response function can be calculated from the non-interacting
density response function χ0(r , r ′) from a Dyson equation

χ(r , r ′) = χ0(r , r ′) +

∫
dξdξ′ χ0(r , ξ)

[
1

|ξ − ξ′| + f xc(ξ, ξ′)

]
χ(ξ′, r ′)

χ0(r , r ′) by definition is the change of the potential due to the change in the KS
potential itself

χ0(r , r ′) =
δn(r)

δVKS(r ′)

It can be calculated as

χ0(r , r ′) =
∑
ij,j 6=i

fi − fj
Ei − Ej

ψ∗j (r ′)ψi (r ′)ψ∗i (r)ψj(r)

where ψi (r) is a KS state and fi the Fermi-Dirac occupation

Calculating χ0 requires a complex sum over excited states
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Linear response theory and dimensionality

Let’s assume the free electron gas model, where φk(r) = 1√
Ω
e ik·r are simple plane

waves and Ek = ~2k2

2m

In this case χ0 = χ

The Fourier transform of the non-interacting response function is analytic in 3D,
2D, and 1D: the Lindhard function

In this approch the contribution to the dispersive part of the force constants
coming from the electron-ion iteraction will give a following contribution to the
phonon frequency

ω2
ei (q) ∼ vc(q)2χ(q)q2

where vc(q) is the Fourier transformed Coulomb potential

The analytical dependence on q of the response fuction will determine the phonon
dispersion

Electrons affect phonons
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Linear response theory and dimensionality

χ0(q) is pathological at q = 2kF

The pathologies are larger for 1D than
for 2D, and for 2D than for 3D

The pathologies are associated to the
Fermi surface nesting

3

0
0.0

0.5

1.0

1.5

2.0

2.5

3D

2D

1D

1 2 3 4

F
(q

) 
/

F
(0

)

q

FIG. 1: (Color online) Momentum dependence of the d-
dimensional static response functions, F (q) = ��(q,! = 0),
corresponding to zero energy transfer, ! = 0. Here, momenta
are expressed in rescaled units, i.e. in units of the Fermi mo-
mentum, kF .

or

~2

2m
F (q) = 2

Z

kkF

ddk

(2⇡)d

⇣ 1

q2 + 2k · q +
1

q2 � 2k · q
⌘

.

(4.3)
Using rescaled coordinates, i.e. by letting k ! k/kF , we
obtain

F (q) =
2kd

F

✏F

Z

k1

ddk

(2⇡)d

2q2

q4 � 4(k · q)2
. (4.4)

We will discuss now the three-dimensional realizations of
the static response function corresponding to d = 1, 2
and 3. We have:

• d = 3 case: We have

F3(q) =
k3

F

⇡2✏F

Z 1

0

k2 dk

Z 1

�1

dµ

q2 � 4k2µ2

=
N3

✏F

3

2q

Z 1

0

k dk log
���q + 2k

q � 2k

��� ,

which gives

F3(q) =
N3

✏F

3

4

h
1 +

1 � ( 1
2q)2

q
log

���
1 + 1

2q

1 � 1
2q

���
i

. (4.5)

• d = 2 case: We have

F2(q) =
k2

F

⇡2✏F

Z 1

0

k dk

Z 2⇡

0

d�

q2 � 4k2 cos2 �
. (4.6)

For q � 2, the above gives

F2(q > 2) =
N2

✏F

4

q

Z 1

0

k dkp
q2 � 4k2

=
N2

✏F

⇣
1 �

p
1 � (2/q)2

⌘
, (4.7)

whereas for q < 2, we obtain

F2(q < 2) =
N2

✏F

4

q

Z 1
2 q

0

k dkp
q2 � 4k2

=
N2

✏F
, (4.8)

Hence, we obtain:

F2(q) =
N2

✏F

h
1 � ⇥(q � 2)

p
1 � (2/q)2

i
. (4.9)

• d = 1 case: We have

F1(q) =
2kF

⇡✏F

Z 1

�1

dk

q2 � 4k2
, (4.10)

which gives

F1(q) =
N1

✏F

1

2q
log

���
1 + 1

2q

1 � 1
2q

��� . (4.11)

In Fig. 1, we depict the momentum dependence of the
above static response functions, F1(q), F2(q), and F3(q).

V. LINDHARD FUNCTIONS

To calculate the Lindhard function, i.e.

�(q,!) =
2

~

Z

kkF

ddk

(2⇡)d
nk(1 � nk+q) (5.1)

⇥
⇣ 1

! � !kq + i⌘
� 1

! + !kq � i⌘

⌘
,

we use the formal identity

1

! ± i⌘
= P 1

!
⌥ i⇡�(!) . (5.2)

Therefore, we have

�(q,!) = Re�(q,!) + i Im�(q,!) , (5.3)

with

Re�(q,!) =
2

~
P
Z

ddk

(2⇡)d
nk(1 � nk+q)

2!kq

!2 � !2
kq

,

(5.4)
and

Im�(q,!) = �2⇡

~

Z
ddk

(2⇡)d
nk(1 � nk+q) (5.5)

⇥
h
�(! � !kq) + �(! + !kq)

i
,

where we introduce the notation

~!kq = ✏k+q � ✏k =
~2

2m

⇣
q2 + 2k · q

⌘
. (5.6)

χ 0 (q) / χ 0 (0)

q(kF )
Fermi surface of the 2D free electron gas
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Linear response theory and dimensionality

ω2
ei (q) is consequently pathological at

q = 2kF yielding to phonon softening

the softening is very pronounced for
1D, less for 2D, and barely appreciable
for 3D

Dimensionality plays a crucial role in
phonon instabilities

2 4 6 8 10 12 14
q (arb. units)

35
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25
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5

0

2 (
q)

 (a
rb

. u
ni
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)

q = 2kF

3D
2D
1D
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Have you ever heard of nesting and
phonon instabilities?



Have you ever heard of nesting and
phonon instabilities?



DFPT

Density functional perturbation theory (DFPT)

A more efficient (and equivalent) approach than calculating the response function
is offered by DFPT

In order to get the derivative of the density, a first order change due to atomic
displacements is assumed in the KS states, the KS Hamiltonian, and the energy

|ψnk〉 → |ψnk〉+ |δψnk〉
HKS → HKS + δVKS

Enk → Enk + δEnk

The linearized KS equation reads

(δVKS − δEnk)|ψnk〉 = −(HKS − Enk)|δψnk〉

This is called the Sternheimer equation
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DFPT

Terms in the Sternherimer equation

(δVKS − δEnk)|ψnk〉 = −(HKS − Enk)|δψnk〉

are

δVKS(r) = δVe−i (r) +

∫
dr ′
[

1

|r − r ′| + f xc(r , r ′)
]
δn(r ′)

δn(r) =
∑
nk

[δψ∗nk(r)ψnk(r) + ψ∗nk(r)δψnk(r)]

where f xc(r , r ′) = δVxc (r)
δn(r ′)

These three equations can be solved self-consistently

At the end of the self-consistent loop the change of the density can be calculated
due to the displacement of ions and, thus, the force constants
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DFPT

The advantage of this method is that we can take a first order change given by
any particular µ mode at any q

(δµqVKS − δµqEnk)|ψnk〉 = −(HKS − Enk)|δµqψnk〉

This will give the density change due to the mode µq, which can be used to
construct the contribution of this mode to the dynamical matrix at q

In order to build the full D(q) it is sufficient to repeat the self-consistent
calculation for all the irreps of the little co-group of q present in the crystal

Due to translational invariance states will be coupled with k and k + q, thus the
perturbed KS state will be |δµqψnk+q〉
In practice this means that the DFPT self-consistent loop requires to calculate the
bands in k + q

Baroni et al., RMP 73, 515 (2001)
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DFPT

Pros:

The calculation can be performed at
any q without the need of a supercell

Implemented in several DFT codes

FCC Li at high pressure
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What is the step that we have to take in
a finite displacement approach to match

the DFPT result?



Effective charges and the LO-TO splitting

In polar semiconductors or insulators the long range character of the Coulomb
interaction gives rise to a macroscopic electric field for the longitudinal optic
phonons in the long wavelength (q → 0) limit

Let’s take a cubic crystal with two atoms per unit cell. The most general quadratic
energy that we can write is

E(u,E) =
1

2
Mω2

0u
2 − Ω

8πN
ε∞E 2 − eZ∗u · E

where ε∞ is the electronic dielectric constant in the static limit, Z∗ are the
so-called Born effective charges, E is the electric field, and M is the reduced mass

The forces and the electrical induction vectors Da are then

fa = − ∂E
∂ua

= −Mω2
0ua + eZ∗Ea

Da = −4πN

Ω

∂E

∂Ea
=

4πN

Ω
eZ∗ua + ε∞Ea
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Effective charges and the LO-TO splitting

The Maxwell equations in the absence of external charges give

∇× E ∼ iq × E = 0

∇ ·D ∼ iq ·D = 0

For the transverse optical (TO) mode (q ⊥ E) E = 0 and, thus,

ωT = ω0

For the longitudinal optical (LO) mode (q ‖ E) D = 0 and, thus,

ωL =
√
ω0 + 4πe2Z∗2ε∞MN/Ω

The TO mode has a higher frequency than the LO mode, the LO-TO splitting

The magnitude of the LO-TO splitting depends on the effective charges on the
ions and the ω → 0 limit of the electronid dielectric function, ε∞
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Effective charges and the LO-TO splitting

The LO creates a dipole at linear order in u, the TO no, so there is an extra
electrostatic term form the LO

This problem occurs only at Γ and gives a non-analytic correction to the dynamical
matrix
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Effective charges and the LO-TO splitting

The general procedure to calculate the force constants at Γ for a polar material is
to calculate the analytic dynamical matrix from DFPT and add the non-analytic
part to it

(2)

φ ab(q = 0) = an
(2)

φ ab(q = 0) +non−an
(2)

φ ab(q = 0)

non−an
(2)

φ

αβ

st (q = 0) =
4πN

Ω
e2 (q · Z∗s)α(q · Z∗t)β

q · ε∞ · q

Note that the non-analytic correction depends on the direction of q

The effective charge tensor Z∗αβs and the static limit of the electronic dielectric
function εαβ∞ can be obtained from DFPT once the derivatives of the KS states
with respect to displacements are known

Baroni et al., RMP 73, 515 (2001)
Giannozzi et al., PRB 43, 7231 (1991)

Gonze et al., PRB 55, 10355 (1997)
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LO-TO splitting in hexagonal BN monolayer
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The LO-TO splitting is direction dependent
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Procedure to obtain phonon spectra in finite displacement
methods

In finite displacements methods once the force constants are known for a supercell
the force constants at any q point are obtained by Fourier interpolation

(2)

φ ab(q) =
1

Nsc

∑
T sc

(2)

φ ab(T sc)e iq·T sc ,

Here Nsc is the supercell size and the sum extends to the Nsc lattice vectors in the
supercell

Then, the phonon frequencies at any q point can later be extracted diagonalizing
the interpolated dynamical matrix

∑
b

Dab(q)ebµ(q) =
∑
b

(2)

φ ab(q)√
MaMb

ebµ(q) = ω2
µ(q)eaµ(q)

This procedure may gives the exact frequencies at q points commmensurate with
the supercell

For other q points the interpolation may not lead to good phononfrequencies
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Procedure to obtain phonon spectra in DFPT

Even if in principle the phonon spectra can be calculated point by point in DFPT,
doing so can be CPU expensive, and a Fourier interpolation method is usually
followed

Calculate with DFPT the dynamical matrices in a regular n1 × n2 × n3 grid of the
first BZ

Build the force-constants by Fourier transform in the commensurate n1 × n2 × n3

supercell
(2)

φ ab(T sc) =
1

Nsc

∑
q∈grid

(2)

φ ab(q)e−iq·T sc

Once the force constants are built we can proceed as in the finite displacements
case and obtain the dynamical matrix at a q point that was not originally in the
grid

Dab(q) =
∑
T sc

(2)

φ ab(T sc)√
Ms1Ms2

e iq·T sc ,
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Convergence with respect to the q point grid or supercell

H3S (Im3̄m, S(2a), H(6b))
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Exercises

1 Show that the dipole created by the TO mode has no linear term on the
displacement and thus does not create any dipole

2 Show that the number of q points commensurate with a given supercell is exactly
the size of the supercell
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