Introduction to the Theory of Lattice Vibrations
and their Ab Initio Calculation

Lecture 7: Anharmonicity Beyond Perturbation Theory:
the SSCHA method
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Two different regimes for anharmonicity

V(R) = Vo + Va(R)+V3(R) + V4(R) + ...

@ Non-perturbative regime:

@ Perturbative regime:
V3(R) + Va(R) +--- ~ V2(R)

V3(R) + V4(R) + KL VQ(R)

Energy
Energy

Displacement Displacement
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Non-perturbative regime in hydrides
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Non-perturbative regime close to a structural instability

Second-order structural
phase transitions in

@ Charge-density wave (CDW)
materials

@ Thermoelectrics

@ Ferroelectrics
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Non-perturbative regime close to a structural instability

CDW in TiSe»
Second-order structural

. . TiSe, Phonon Dispersion
phase transitions in s ;
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Morosan et al., Nat. Phys. (2006)

Calandra et al., PRL (2011)
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Dealing with anharmonicity from first-principles is complex

V(R) = Vo + Va(R) + V5(R) + Va(R) + ...
(m)
V,,(R) =21 ()balman(Ral - ROal) e (Ran - ROa,,)

n! aj---ap

7
Impossible to obtain ¢ Perturbation theory

wan
o @ Requires 3rd and 4th order
@ Limit to 3rd and 4th order
; force-constants
force-constants (very tedious)
Errea et al., PRL (2011) ‘
. . A T
@ Empirical potentials A ' i e
Chen et al., PRL (2014) e %4 TR o--
i i . . B e S Tee--- -7
@ Compressive sensing lattice dynamics @ ) ®)
Zhou et al., PRL (2014) y o
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Dealing with anharmonicity from first-principles is complex

n)

Va(R) =23, 0 @ ooy (Ray — Roay) -+ (Ra, — Roay)

Beyond perturbation theory

@ Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

@ Phonons from velocity autocorrelation functions
Zhang et al., PRL (2014)
@ TDEP: effective temperature dependent V, and V3 from AIMD

Hellman et al., PRB (2011)

@ Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces

@ Variational methods:

@ VSCF: Variational self-consistent field equations
Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)
@ SCHA: Minimization of the free energy with a trial harmonic density matrix

Hooton, Philos. Mag. Ser. (1955)
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Dealing with anharmonicity from first-principles is complex

V(R) = Vo + Va(R) + V5(R) + Va(R) + ...
(n)
Va(R) =23, 0 @ ooy (Ray — Roay) -+ (Ra, — Roay)

Beyond perturbation theory

@ Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

@ Phonons from velocity autocorrelation functions
Zhang et al., PRL (2014)

@ TDEP: effective temperature dependent V> and V3 from AIMD
Hellman et al., PRB (2011)

@ Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces
@ Variational methods:

@ VSCF: Variational self-consistent field equations
Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)

@ SCHA: Minimization of the free energy with a trial harmonic density matrix
Hooton, Philos. Mag. Ser. (1955)

@ SSCHA: Stochastic implementation of the SCHA
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SSCHJ

Stochastic Self-Consistent
Harmonic Approximation

sscha.eu

Journal of Physics: Condensed Matter 33, 363001 (2021)


sscha.eu

The stochastic self-consistent harmonic approximation

(SSCHA)

@ The idea of the SSCHA is to obtain the harmonic density matrix 5 that minimizes

the total free energy

FIA = (Ti+ V), + 5 (n),

@ The probability distribution function that § defines, jr o(R), is a Gaussian and
can be parametrized by centroid positions R and auxiliary second-order force

a)

Energy [eV]

constants ®

b) 08

07

06

-10 -05 0.0 05 10

R [Bohr]
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The SSCHA is a quantum variational method

The exact problem

@ The exact density matrix

H=T:+V(R) pu=e""/zy,

@ The exact free energy

1
F=(Tit V), + 5 (nou),
4
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The SSCHA is a quantum variational method

The exact problem The variational problem

@ Trial density matrix gy from a trial
Hamiltonian

@ The exact density matrix

_ T _ —BH
H=Ti+ V(R) on=e""/2Z4 H=Tion +V(R) jn=e"/Zy

@ Th t f L
€ exact ree energy @ The variational free energy

1
F=(Tit V), + 5 (nou),

FIH = (T + V), + 5 (s,
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The SSCHA is a quantum variational method

The exact problem The variational problem

@ Trial density matrix gy from a trial
Hamiltonian

@ The exact density matrix

_ T _ —BH
H=Ti+ V(R) on=e""/2Z4 H=Tion +V(R) jn=e"/Zy

@ Th t f L
€ exact ree energy @ The variational free energy

1
F=(Tit V), + 5 (nou),

FIH = (T + V), + 5 (s,

y

Variational principle

FH] > F
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The SSCHA is a quantum variational method

The exact problem The variational problem
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Variational principle

FH] > F

lon Errea Lecture 7 11/42



The SSCHA trial Hamiltonian

In the trial Hamiltonian is harmonic and is parametrized with the centroid
positions R and auxiliary second-order force constants ®

1
V(R) = 3 zb: ®.5(Rs — Ra)(Ro — Rb)
Note that this potential is different from the harmonic potential
1 (2)
Va(R) = 5 Zb ¢ ap(Ra = Roa)(Ro — Rov)

The variational free energy will depend only on R and @ so we will write
ﬁ’H — ﬁqzyq: and .7:[7'[] — ]:['R,, ¢]

@ The goal of the SSCHA is to minimize 7[R, ®] with respect to R and ®

@ It is easy to show that the SSCHA free energy can be written as

FIR,®] = Fr + (V = V)

R,

where Fy is the harmonic free energy given by the trial harmonic Hamiltonian
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The SSCHA probability distribution function

@ The SSCHA probability distribution function is a product of Gaussians, exactly as
the harmonic probability distribution function

R) = /det[lll‘l/(27r)]e_% S ap(Ra—Ra) W, (Ry—Rp)

a_b
_ e)e h
u/abl =V M:Ms § % an [1 4 2np(w,)]
" n

pr,o(R) = (R|pr0

where

:R

@ In the equations above the frequencies and the polarization vectors are not the
eigenvalues and eigenfunctions of the harmonic force-constants (w, and e}}), but
of the auxiliary force-constants

&
n

Z q>ab eb — w2
- ‘MM, I Iz

@ Defining the displacement from the centroid as u. = R, — Ra =3_, \;—“WQH, we
can write the distribution in the normal mode basis

@ The average ionic positions are the centroids since

<R>5'R,m =R
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F|[

@ Minimization trajectory in the parameter space (R; ®)

Ho — Hi — H> =  ocoo = Hn
Ri®) — (Ri®):1 — (Rid) — ... = (R;®),

@ At the minimum

2
m

distribution function, not the experimental phonon frequencies and polarization

@ The eigenvalues wj; and the eigenvectors e, of ® define the renormalized probability
vectors. They are auxiliary phonons

@ R are the renormalized positions at which the ionic wave function are centered (the
centroids)

@ F[R,®] is a good variational approximation of the exact free energy
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F|[

@ Minimization trajectory in the parameter space (R; ®)

Ho — Hi — H> =  ocoo = Hn
Ri®) — (Ri®):1 — (Rid) — ... = (R;®),

@ At the minimum

2
m

distribution function, not the experimental phonon frequencies and polarization

@ The eigenvalues wj; and the eigenvectors e, of ® define the renormalized probability
vectors. They are auxiliary phonons

@ R are the renormalized positions at which the ionic wave function are centered (the
centroids)

@ F[R,®] is a good variational approximation of the exact free energy

@ Need the gradient of the functional 7[R, ®]
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The SSCHA gradients

The gradients of 7[R, ®] are

8}—[R7 (b] %
S (R - V(R
R (f(R) — £( )>m
OF[R, ®] A[0]?< v .
- = ——— ( (R(R)— 1, (R Ve (Re — Re
o > i \ (R — (R STV (R —Re) )
a € PR,
We have quantum statistical averages of BO forces f, and BO forces times
displacements. £, (R) = — ", ®.5(R» — Rs) is the force derived from the trial
potential
The A[0] tensor is
dng(w,) 2ng(wy )+1 _
abc h a b _c_d dw - 2w )Wy = Wy
/\[0] bed = e e, ey n w“ —ng(w. " ng(w ng(w,
; dw, 0, Iz Iz B( ::—wf( v) 1+ B(w:l;ls( v) Wy F W

@ With the gradients a gradient-descent minimization can be performed

@ The gradient is symmetrized at every step, so the minimization is performed

respecting the symmetries
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A preconditioned gradient descent

@ The gradient-descent is much more efficient if the descent is preconditioned and
the update of the centroids and auxiliary force constants is performed as

2 -1
(n+1) _ gy(n) O°F OF
eI =T e z; (c’)tb(’)cbab) .

-1
(n+1) _ OF
R —AR Z <8R8Ra> R,

@ The steps Ar and A¢ are adimensional

@ It can be shown that in this case

A <(fb(R) —F(R) DV e (Re - Rc)>

PR,0

R =R 4 ar 30} <fb(R) - fb"(R’)>~
b

PR.®
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The SSCHA self-consistent equation

@ The SSCHA minimization can be performed fixing R and only optimizing the
auxiliary force constants

@ In that case the SSCHA solution will obey the following self-consistent equation

2V
¢ab(R) = <8R38Rb>

@ This self-consistent equation opens a way to implement the SSCHA without using
the gradient-descent approach

Po(R)
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

(V(R) = V(R oo (B(R) = (R)) . ((H(R) ~ £(R)) (Re — Re))

PR, PR, 0

Importance sampling for the quantum statistical averages

@ Quantum statistical averages involve observables that depend on the position

(0)sr, o = tr[r.00] = [ dRO(R)j=.o(R)

PR, 0
@ Create N, ionic configurations in a supercell according to g e),(R): {Ri}i=1,...n.

@ Stochastic evaluation of the integral: (O),,, ~ N% e O(R/)

M
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

(V(R) = V(R oo (B(R) = (R)) . ((H(R) ~ £(R)) (Re — Re))

PR, PR, 0

Importance sampling for the quantum statistical averages

@ Quantum statistical averages involve observables that depend on the position

(0)sr, o = tr[r.00] = [ dRO(R)j=.o(R)

PR, 0
@ Create N, ionic configurations in a supercell according to g e),(R): {Ri}i=1,...n.

@ Stochastic evaluation of the integral: (O),,, ~ N% e O(R/)

@ Requires to evaluate forces and energies in supercells: f(R;), V(R))
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

VR = V(R o (BRI =R R)) o ((A(R)=B(R) (R=R)

R,®

Reweighting for the quantum statistical averages for CG step n > 0

@ The calculated forces and energies can be recycled throughout the CG minimization

J dRO(R)f(.0),(R) = [ ARO(R)2A=®nB 5 o) (R) =~

A(R,0)y ®P
1 N AR, o),,(R/)
Ne £~I=1 O(R )ﬁ(n,o)D(R/)

@ The reweighting procedure is valid as long as

Ne Pr.0),R)
Nc Z’ L p(r, ) (R1) 1

v
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Stochastic calculation of the free energy and its gradient

@ The calculation of the free energy and the gradient need

VR = V(R o (BRI =R R)) o ((A(R)=B(R) (R=R)

R,®

Reweighting for the quantum statistical averages for CG step n > 0

@ The calculated forces and energies can be recycled throughout the CG minimization

J dRO(R)f(.0),(R) = [ ARO(R)2A=®nB 5 o) (R) =~

A(R,0)y ®P
1 N AR, o),,(R/)
Ne £~I=1 O(R )ﬁ(n,o)D(R/)

@ The reweighting procedure is valid as long as

Ne Pr.0),R)
Nc Z’ L p(r, ) (R1) 1

@ The SSCHA can be applied at any degree of theory

@ empirical potentials
@ DFT ab initio
@ Beyond DFT (Monte Carlo, GW, ...)

v
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The SSCHA coming out of statistical range

@ The SSCHA stops the minimization if
the created set of configurations no s
longer resembles j(r . o),

@ This is detected according to the 06
Kong-liu criteria that sets the number
of effective configurations at step n

g
=04
Nc

N — 21:1 P%(I) 03

n - 2 .

(P pnlh)

0.1
where the weights are 001 ‘ _
pall) = ey L e

)o (R1)

@ If at step n N,?ff/Nc < n, where 7 is a number around 0.5, the SSCHA
minimization stops and one should create new configurations with the updated

AR,®),
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The SSCHA convergence threshold

@ The SSCHA calculation is stopped when the values of the gradients become
smaller than a ratio (9) of its estimated error

OF[R, 0] 5| A OFIR, @]
o o®
OF[R, @] 5| A OFIR, @]
IR IR

@ When this criteria is reached in both gradients the calculation is assumed to be
converged

@ The ideal thing is to use a very small § and try to read 0 gradients
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SSCHA calculation flowchart

‘ Generate {R;}7—1,...,n. with px,(R) ‘ j=0

ation of {f(Rr)}

‘ Importance sampling and reweighting to calculate V Fg [H,;] ‘<—

i

CG step: (Reg; @)j — (Req; )41
i

reweighting OK?

j=Ji+1

1 Ne P, (Rr) -
Ne &I=1 py(Ry) —

17

No

Yes

Output quantities: Req, ® and Fp
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SSCHA example in 1D

(a)2s (b)2.5 (C)25
2.0 2.0

1.5

1.0

Energy (mHa)

0.5 0.5]

0.0 0.0]

~05 0.0 0.5 10 %20 —05 00 0.5 1.0
z (ag) z (ay)

lon Errea Lecture 7




SSCHA example in 1D

(@)2s (b) 25
20 2.0
R ¥ S e 4 15
©
I
£
> 10 1.0
)
2
@
c
W oos 05
0.0 o] 00
- - E, ham.
E, pert.
-05 T 05 .
210 -05 0.0 05 10 <10 -05 00 05 10 =10 -05 00 05 1.0
= (ag) = (ap) = (ap)
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SSCHA example in 1D

(b);.5 ()25
2.0 2.0
1.5k - - - = = 1.5

1.5

1.0 1.0

Energy (mHa)

0.5 0.5 0.5]

E, exact 4 g
0.0 - - E,harm.| 00 — 4, exact ] 0-0)
- - E, SCHA — &, harm.
E, pert. — &, SCHA
-0.5 T 0.5 T 0.5
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1
x (ag) z (ag)
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2

supercell
¥
o N.=50
50
= 0
120 2 —s0
= -100
-150
100
25
3 20
= & ® 15
s
H T 10
s - 5
< 60
;
40
20
0 20 40 60 80 100 120 140 160
CG step

20 40 60 80 100 120 140 160
CG step
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2
supercell

F(meV)

a) em™)
Vi
»

0 20 0 60 80 100 120 140 160
G step

20 40 60 80 100 120 140 160
CG step
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2
supercell

20 40 60 80 100 120 140 160
CG step

lon Errea Lecture 7



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2
supercell

gradient
error

-~ Starting
— Popl N=50

40 60 80 100 120 140 160
CG step

lon Errea Lecture 7



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2
supercell

gradient
error

-~ Starting
— PopI N=50
— Pop2N_=50
=50
X r KM W L )
60 80 100 120 140 160
CG step

lon Errea Lecture 7



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2
supercell

N, =50 N, =500

Harmonic
-~ Starting
— Popl N=50
— Pop2N=50

Pop3 N.=50

) 20 40 60 80 100 120 140 160
CG step
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2

supercell

N, =500
- :
> 1
[ 1
100 E |
) I
'] 1

n 50
£ |
< 1
i
He 1
3 I e
— Popl N=50 i
— Pop2N.=50 '
Pop3 N =50 i
50l — Popd N=500 o] g
X r KM W L ) '
!
A
20 40 60 80 100 120 140 160
CG step
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2x2x2

supercell

N, =500
- j
E 1
100 E |
= |
'] 1

T 50
= |
S |
|
He 1
3, b
— Popl N=50 T
— Pop2N.=50 '
: Pop3 N =50 i !
5ol — Pop4 N.=500 ] |
A — N_=50000 ’
= L -
X T KM W L )
I
A
20 40 60 80 100 120 140 160
CG step
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The optimization of the lattice in the SSCHA

@ The SSCHA can be used to relax the lattice parameters of a structure considering
quantum and thermal effects, and full anharmonicity

@ When a lattice is relaxed in standard methods the contribution of the ions to the
energy is neglected as the stress tensor is calculated from V(R)

poo _ N [OV(R)
op Q a&?a,g e=0

@ In the SSCHA we can calculate the stress tensor includes ionic quantum and
thermal effects in the lattice parameters

Pap = _g {%”Z}(v]} e=0 B <P§2(R)>ﬁn,o - % s <ugfsﬁ ' Uffsa>

R, ®

@ For that, apart from forces, the classical Pfg stresses need to be calculated for
each of the structures in the ensemble
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The optimization of the lattice in the SSCHA

@ The ensemble is created with constant lattice and the lattice vectors {a;} are
updated when creating the next ensemble as

a,’-a = 3jo + )\{ai} Z&aga,'ﬁ,
B
with
(Pag = P"0agp)

=0

EapB =
@ P is the target pressure
@ The best A, step is obtained with

1
Maid = 308, By

with By the bulk modulus
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SSCHA calculation flowchart with cell relaxation

Generate the
random ensemble

Root n
P a0 - 5"
reconditionin
(n+1) (n) ¢ Vel = e g,
k3 =2 - \G VB,

Update
the lattice
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Second-order displacive phase transition within the SSCHA

@ Let's take R fixed and calculate the SSCHA free energy for them:

H: 7—I+ %Zabd)ab(Ra*Ra)(Rbeb) —},F('R,)
FIR, ®]
@ The SCHA free energy curvature ,
PF(R) | |
OR.0R [ Fror )
@ The second derivative with respect to E* F |
the order parameter — - 7
@ F(Q) Z dR. PF(R) dRs I .
dQ2 dQ 8R38Rb dQ C \Q T |
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The free energy Hessian is analytic in the SSCHA

F(R)

® @ 0
TR, = Pt D PacoMaaer[O][1+ PA]] 5, B

cdefgh

@ The SCHA auxiliary force-constants: ®

@ A contribution that depends on the 3rd derivatives of the BOES when

@ @ 3
PA[0] << 1: ®A[O]P
) 2*V(R)
q)abr: = aP ab ap
OR:ORsIR: / ;.

4)
@ If ®A[0] is considered we also need to calculate

) 2*V(R)
q)abcd =
OR:0RsORORa / ;.
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free energy Hessian is analytic in the SSCHA

F(R)

® @ 0
TR, = Pt D PacoMaaer[O][1+ PA]] 5, B

cdefgh

@ The SCHA auxiliary force-constants: ®
It is positive definite

@ A contribution that depends on the 3rd derivatives of the BOES when

@ @ 3
PA[0] << 1: ®A[O]P
) 2*V(R)
q)abr: = aP ab ap
OR:ORsIR: / ;.

It is negative definite

4)
@ If ®A[0] is considered we also need to calculate
) 2*V(R)
Paed = 5575 75 75
OROROROR [ ;5.

®3)
The SCHA can only describe second-order phase transitions if ¢ # 0
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The free energy curvature allows to define dynamical

matrices that can describe inginary phonon frequencies

Different dynamical matrices:

@ Harmonic dynamical matrix:

phar — L [62V(R)} _ .
VMM, [OR:0Rs | p_g, M,M,

@ SCHA dynamical matrix calculated at Ro:

D3y = —=—ba

@ Dynamical matrix based on SCHA free energy curvature:

pf _ 1 [82}'(7{)}
T MMy [OR0Rs | g,
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The free energy curvature allows to define dynamical

matrices that can describe inginary phonon frequencies

Different dynamical matrices:

@ Harmonic dynamical matrix:

phar — L [62V(R)} _ .
VMM, [OR.0R, | g_g M,M,

All the problems of the harmonic approximation

@ SCHA dynamical matrix calculated at Ro:

juy

D3y = —=—ba

Includes non-perturbative anharmonic effects, temperature dependence . .. but
positive eigenvalues by definition

@ Dynamical matrix based on SCHA free energy curvature:

pf _ 1 [82}'(7{)}
T MMy [OR0Rs | g,

Correction to D3, including 3rd and 4th order derivatives of the BOES that may
have negative eigenvalues and describe second-order phase transitions
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The free energy curvature can be obtained stochastically

by calculating forces on supercells

*F(R)

® ) L@
TR, = P D Pacoleaer[O][1+ GAL]] g, P

cdefgh
Requires

@ Quantum stochastic average of 3rd derivatives of the BOES
3) 3 V(R)
¢abc_<8R38Rb8RC>ﬁ *Z‘Uepwbq uPu f>P‘R,"

@ Quantum stochastic average of 4th derivatives of the BOES

@) 8*V(R) 1 P LIy F
¢abcd - <8R‘—,8R1,8RC8Rd>ﬁR —Z\U qu \Ucr U u u fd)pH

par

=R, —R,and o =f,+ 3, ®apup
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The free energy curvature can be obtained stochastically

by calculating forces on supercells

*F(R)

® ) L@
TR, = P D Pacoleaer[O][1+ GAL]] g, P

cdefgh
Requires

@ Quantum stochastic average of 3rd derivatives of the BOES
3) 3 V(R)
¢abc_<8R38Rb8RC>ﬁ *Z‘Uepwbq uPu f>P‘R,"

@ Quantum stochastic average of 4th derivatives of the BOES
) 9'V(R) T -
Pibed = s 5252575 — v v e f,
bed <8R28Rb8RC8Rd>- D Vo Vig Vi (W u"u o),
PR,® par
=R,—R.and f, = fot >, Pavn

The free energy curvature can be calculated stochastically as a post-processing by using
importance sampling after the SSCHA minimization
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TAn important remark on the force constants

@) V(R) ®) 2*V(R)
Pove = 55 5p 25 F Pabe =
OR.ORIR: [ ;. OR.OROR: |

b= (VR N[ PVR)
* T \ORORORORs [ 5 7 " | ORORORIR | g,

@ Quantum stochastic averaged of 3rd and 4th order force constants consider higher
order terms, are non-perturbative

@ Quantum stochastic averaged of 3rd and 4th order force constants are taken at the
centroid positions that minimize the free energy, not the Ry positions that
minimize the potential
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An example that models a ferroelectric phase transition

shows the validity of the procedure

. . — AV T=0K T=150 K = T =300 K
@ An anharmonic model potential that 20 : : : : i
describes the ferroelectric transition in 156 pe = 0 aV/A® 1
SnTe (Fm3m — R3m) ol
@ The transition is driven by the optical sl ]
mode at I [ —
125F - 3
100} - ‘ ]
g 7 ‘ ‘ ‘
751
&% D15k pe— 670 ev/AY /
T
E 10 1
3 5P g
0 e
5 E—
-0k . . I~
KM W 02 04 06 08 1 12

Harmonic phonons
SSCHA free energy with/without 3rd order in the potential
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The free energy curvature calculated matches finite

difference calculations

@ @
—— D ¢+ PAP
@ ®

(3) (3)
P+ PAP + PAOARP
60 T T T T T T T T

O ps= 0eV/A® finite diff.
O p3 = 670eV/A* finite diff.

50

40

0 (meV)

30

20

d*F/dQ?|q

10

s L s \ .
0 100 200 300 400
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The phonons obtained from the free energy curvature have

strong corrections beyond the SCHA phonons

— [)(5) D(s»+(ﬁ)za>(0) — ()
125 = -
T =400 K T =400 K =13t
100} }
5\ : =
=
s0F 1 ¢ &/
251 F
T
E -25
3 5ok T=0K ]

100

751

- |
0

25k J L
X T KM W L T X T KM W L

lon Errea Lecture 7 37 /42



Physical phonons need to come from a dynamical theory

@ The SSCHA auxiliary solution defines non-interacting Green's functions which are
exactly like the harmonic

@ The SSCHA solution can be used to build a fully dynamical theory based on a
Dyson equation

Pa(q)

v MM,
where G is the non-interacting Green's function based on the SSCHA auxiliary
force-constants

@ The SSCHA self-energy is

G;bl(% Iw”) = [Gfb]il(qr Iw") - rlab(q7 Iw”) = (iw")26ab - - nab(q, Iw")

Ms(q, icon) L S 0 ihgrliwn]l + @Al
ab\q, 1Wn) = —F——= acd/\cdef [IWn 1Wn|]efgh P ghb
MaMb cdefgh

with

. h a b c d
Nobed[iwn] = Z4ww eje e e,

poUTH
[ ) m() — ms()) (s )L+ o) + ()
(= w)? — (iwn)? (u +w)? — (iwn)?

lon Errea Lecture 7 38/42



Physical phonons need to come from a dynamical theory

Two interesting limits of the theory

@ If anharmonicity is small, the theory recovers the perturbative limit where the
self-energy is given by the tadpole, loop, and bubble self-energies

@ The static limit of the theory has Dirac-delta like peaks at the eigenvalues of the
dynamical matrix derived from the Hessian of the free energy
Gazl(q7 iwn) = _Dz'a‘:b
And a remark

@ This theory allows to calculate the spectral function and phonon lifetimes in
systems with very stron anharmonicity in which the harmonic and perturbative

approaches collapse. It makes possible the calculation of the thermal conductivity
possible in these cases
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The spectral function

@ All we said about the spectral function will be valid here, with the difference that
the non-interacting frequencies are the SSCHA auxiliary frequencies

@ In the no-mode-mixing approximation the spectral function can be written as

1 —Im[Z,(q,w)]
oaw) = o %: {(w — Re[Z4(q, w)])? + Im[Z,.(q, w)]?

Im[Z,(q,w)]
(w + Re[2.(q,w)])* + Im[Z,.(q, w)]?

Jr

where

Z,(q.) = \/%2(a) + Nu(g, + in)
@ In the perturbative limit the spectral function will be a sum of Lorentzians with

peaks at Re[Z.(q,wu(q) + in)] and the half-width at half maximum (HWHM)
~Im[Z,.(q. 0, (q) + in)] with

Re[M,.(q,w.(q) + in)]
2w, (q)

Im[M.(q,w.(q) + in)]

2w,(q)

Re[Z.(q,w.(q) +in)] ~ w.(q)+

Im[Z,.(q,w.(q) + in)]
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The spectral function

HsS

Full === Lorentzian === Perturbative
0.25

0.2

o (meV™1)

0.1

0.05

25 50 75 100 125 150
w (meV)

Bianco et al., PRB (2018)
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Exercises

@ Show that
<R>ﬁn,o =R

@ Inspired from the gradient equation with respect to the force constants and the
relation (00/0R.); . . =3, v,! (Oup) ;.. , show that

»Pv
¢ab(R) - <8R38Rb >f’o(7{)
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