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Two different regimes for anharmonicity

V (R) = V0 + V2(R)+V3(R) + V4(R) + . . .

Perturbative regime:
V3(R) + V4(R) + · · · � V2(R)

Non-perturbative regime:
V3(R) + V4(R) + · · · ∼ V2(R)
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Non-perturbative regime in hydrides

Ice X

Benoit et al., Nature (1998)
Caracas, PRL (2008)
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Non-perturbative regime close to a structural instability

Second-order structural
phase transitions in

Charge-density wave (CDW)
materials

Thermoelectrics

Ferroelectrics

Morosan et al., Nat. Phys. (2006)

CDW in TiSe2

Holt et al., PRL (2001)

Calandra et al., PRL (2011)
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Dealing with anharmonicity from first-principles is complex

V (R) = V0 + V2(R) + V3(R) + V4(R) + . . .

Vn(R) = 1
n!

∑
a1···an

(n)

φ a1···an
(Ra1 − R0a1 ) · · · (Ran − R0an )

Impossible to obtain
(n)

φ a1···an

Limit to 3rd and 4th order
force-constants (very tedious)
Errea et al., PRL (2011)

Empirical potentials
Chen et al., PRL (2014)

Compressive sensing lattice dynamics
Zhou et al., PRL (2014)

Perturbation theory

Requires 3rd and 4th order
force-constants
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Dealing with anharmonicity from first-principles is complex

V (R) = V0 + V2(R) + V3(R) + V4(R) + . . .

Vn(R) = 1
n!

∑
a1···an

(n)

φ a1···an
(Ra1 − R0a1 ) · · · (Ran − R0an )

Beyond perturbation theory

Ab initio molecular dynamics (AIMD): Newtonian mechanics with DFT forces

Phonons from velocity autocorrelation functions

Zhang et al., PRL (2014)

TDEP: effective temperature dependent V2 and V3 from AIMD

Hellman et al., PRB (2011)

Path integral molecular dynamics (PIMD): quantum dynamics with DFT forces

Variational methods:

VSCF: Variational self-consistent field equations

Bowman, J. Chem. Phys. (1978); Monserrat et al., PRB (2013)

SCHA: Minimization of the free energy with a trial harmonic density matrix

Hooton, Philos. Mag. Ser. (1955)

SSCHA: Stochastic implementation of the SCHA
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The stochastic self-consistent harmonic approximation
(SSCHA)

The idea of the SSCHA is to obtain the harmonic density matrix ρ̃ that minimizes
the total free energy

F [ρ̃] = 〈Ti + V 〉ρ̃ +
1

β
〈ln ρ̃〉ρ̃

The probability distribution function that ρ̃ defines, ρ̃R,Φ(R), is a Gaussian and
can be parametrized by centroid positions R and auxiliary second-order force
constants Φ
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The SSCHA is a quantum variational method

The exact problem

The exact density matrix

H = Ti + V (R) ρH = e−βH/ZH

The exact free energy

F = 〈Ti + V 〉ρH
+

1

β
〈ln ρH〉ρH

The variational problem

Trial density matrix ρ̃H from a trial
Hamiltonian

H = Tion + V(R) ρ̃H = e−βH/ZH

The variational free energy

F [H] = 〈Ti + V 〉ρ̃H +
1

β
〈ln ρ̃H〉ρ̃H

Variational principle

F [H] ≥ F
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The SSCHA trial Hamiltonian

In the trial Hamiltonian is harmonic and is parametrized with the centroid
positions R and auxiliary second-order force constants Φ

V(R) =
1

2

∑

ab

Φab(Ra −Ra)(Rb −Rb)

Note that this potential is different from the harmonic potential

V2(R) =
1

2

∑

ab

(2)

φ ab(Ra − R0a)(Rb − R0b)

The variational free energy will depend only on R and Φ so we will write
ρ̃H → ρ̃R,Φ and F [H]→ F [R,Φ]

The goal of the SSCHA is to minimize F [R,Φ] with respect to R and Φ

It is easy to show that the SSCHA free energy can be written as

F [R,Φ] = FH + 〈V − V〉ρ̃R,Φ

where FH is the harmonic free energy given by the trial harmonic Hamiltonian
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The SSCHA probability distribution function

The SSCHA probability distribution function is a product of Gaussians, exactly as
the harmonic probability distribution function

ρ̃R,Φ(R) = 〈R|ρ̃R,Φ|R〉 =
√

det[Ψ−1/(2π)]e−
1
2

∑
ab(Ra−Ra)Ψ−1

ab
(Rb−Rb)

where

Ψ−1
ab =

√
MaMb

∑

µ

ea
µe

b
µ

a2
µ

aµ =
~

2wµ
[1 + 2nB (wµ)]

In the equations above the frequencies and the polarization vectors are not the
eigenvalues and eigenfunctions of the harmonic force-constants (ωµ and ea

µ), but
of the auxiliary force-constants

∑

b

Φab√
MaMb

e
b
µ = w

2
µe

a
µ

Defining the displacement from the centroid as ua = Ra −Ra =
∑
µ

ea
µ√
Ma

Qµ, we
can write the distribution in the normal mode basis

The average ionic positions are the centroids since

〈R〉ρ̃R,Φ
= R
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The SSCHA minimization

Conjugate-gradient (CG) minimization of F [R,Φ]

Minimization trajectory in the parameter space (R; Φ)

H0 → H1 → H2 → . . . → Hn

(R; Φ)0 → (R; Φ)1 → (R; Φ)2 → . . . → (R; Φ)n

At the minimum

The eigenvalues w2
µ and the eigenvectors ea

µ of Φ define the renormalized probability

distribution function, not the experimental phonon frequencies and polarization

vectors. They are auxiliary phonons

R are the renormalized positions at which the ionic wave function are centered (the

centroids)

F [R,Φ] is a good variational approximation of the exact free energy

Need the gradient of the functional F [R,Φ]
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The SSCHA gradients

The gradients of F [R,Φ] are

∂F [R,Φ]

∂Ra
= −

〈
fa(R)− f Va (R)

〉
ρ̃R,Φ

∂F [R,Φ]

∂Φcd
=

∑

ab

Λ[0]abcd

√
MaMbMcMd

〈(
fb(R)− f Vb (R)

)∑

e

Ψ−1
ae (Re −Re)

〉

ρ̃R,Φ

We have quantum statistical averages of BO forces fa and BO forces times
displacements. f Va (R) = −∑b Φab(Rb −Rb) is the force derived from the trial
potential

The Λ[0] tensor is

Λ[0]abcd =
∑

µν

~
4wνwµ

e
a
νe

b
µe

c
νe

d
µ

{
dnB (wµ)

dwµ
− 2nB (wµ)+1

2wµ
, wν = wµ

nB (wµ)−nB (wν )

wµ−wν − 1+nB (wµ)+nB (wν )

wµ+wν
, wν 6= wµ

With the gradients a gradient-descent minimization can be performed

The gradient is symmetrized at every step, so the minimization is performed
respecting the symmetries
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A preconditioned gradient descent

The gradient-descent is much more efficient if the descent is preconditioned and
the update of the centroids and auxiliary force constants is performed as

Φ(n+1) = Φ(n) − λΦ

∑

ab

(
∂2F

∂Φ∂Φab

)−1
∂F
∂Φab

R(n+1) = R(n) − λR
∑

a

(
∂2F

∂R∂Ra

)−1
∂F
∂Ra

.

The steps λR and λΦ are adimensional

It can be shown that in this case

Φ
(n+1)
ab = Φ

(n)
ab − λΦ

〈(
fb(R)− f Vb (R)

)∑

c

Ψ−1
ac (Rc −Rc )

〉

ρ̃R,Φ

R(n+1)
a = R(n)

a + λR
∑

b

Φ−1
ab

〈
fb(R)− f Vb (R)

〉
ρ̃R,Φ
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The SSCHA self-consistent equation

The SSCHA minimization can be performed fixing R and only optimizing the
auxiliary force constants

In that case the SSCHA solution will obey the following self-consistent equation

Φab(R) =

〈
∂2V

∂Ra∂Rb

〉

ρ̃Φ(R)

This self-consistent equation opens a way to implement the SSCHA without using
the gradient-descent approach
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Stochastic calculation of the free energy and its gradient

The calculation of the free energy and the gradient need

〈V (R)− V(R)〉ρ̃R,Φ
,
〈
fb(R)− f Vb (R)

〉
ρ̃R,Φ

,
〈(

fb(R)− f Vb (R)
)

(Rc −Rc )
〉
ρ̃R,Φ

Importance sampling for the quantum statistical averages

Quantum statistical averages involve observables that depend on the position

〈O〉ρ̃R,Φ
= tr[ρ̃R,ΦO] =

∫
dRO(R)ρ̃R,Φ(R)

Create Nc ionic configurations in a supercell according to ρ̃(R,Φ)0
(R): {RI}I =1,...,Nc

Stochastic evaluation of the integral: 〈O〉ρH0
' 1

Nc

∑Nc
I =1 O(RI )

Requires to evaluate forces and energies in supercells: f(RI ),V (RI )
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Stochastic calculation of the free energy and its gradient

The calculation of the free energy and the gradient need

〈V (R)− V(R)〉ρ̃R,Φ
,
〈
fb(R)− f Vb (R)

〉
ρ̃R,Φ

,
〈(

fb(R)− f Vb (R)
)

(Rc −Rc )
〉
ρ̃R,Φ

Reweighting for the quantum statistical averages for CG step n > 0

The calculated forces and energies can be recycled throughout the CG minimization

∫
dRO(R)ρ̃(R,Φ)n (R) =

∫
dRO(R)

ρ̃(R,Φ)n
(R)

ρ̃(R,Φ)0
(R)
ρ̃(R,Φ)0

(R) '
1

Nc

∑Nc
I =1 O(RI )

ρ̃(R,Φ)n
(RI )

ρ̃(R,Φ)0
(RI )

The reweighting procedure is valid as long as

1
Nc

∑Nc
I =1

ρ̃(R,Φ)n
(RI )

ρ̃(R,Φ)0
(RI )
∼ 1

The SSCHA can be applied at any degree of theory

empirical potentials

DFT ab initio

Beyond DFT (Monte Carlo, GW, . . . )
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The SSCHA coming out of statistical range

The SSCHA stops the minimization if
the created set of configurations no
longer resembles ρ̃(R,Φ)n

This is detected according to the
Kong-liu criteria that sets the number
of effective configurations at step n

Neff
n =

∑Nc
I =1 ρ

2
n(I )

(∑Nc
I =1 ρn(I )

)2

where the weights are

ρn(I ) =
ρ̃(R,Φ)n

(RI )

ρ̃(R,Φ)0
(RI )

0 2 4 6 8 10

Q [arb. units]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ̃
(Q

)

ρ̃0

ρ̃n

If at step n Neff
n /Nc < η, where η is a number around 0.5, the SSCHA

minimization stops and one should create new configurations with the updated
ρ̃(R,Φ)n
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The SSCHA convergence threshold

The SSCHA calculation is stopped when the values of the gradients become
smaller than a ratio (δ) of its estimated error

∣∣∣∣
∂F [R,Φ]

∂Φ

∣∣∣∣ < δ

∣∣∣∣∆
∂F [R,Φ]

∂Φ

∣∣∣∣
∣∣∣∣
∂F [R,Φ]

∂R

∣∣∣∣ < δ

∣∣∣∣∆
∂F [R,Φ]

∂R

∣∣∣∣

When this criteria is reached in both gradients the calculation is assumed to be
converged

The ideal thing is to use a very small δ and try to read 0 gradients
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SSCHA calculation flowchart

Yes

No

Yes

No

CPU intensive: DFT ab initio calculation of {f(RI )}I=1,...,Nc

reweighting OK?

1
Nc

∑Nc
I=1

ρHj
(RI)

ρH0
(RI)

≃ 1 ?

minimum found?

Output quantities: Req , Φ and FH

CG step: (Req ; Φ)j → (Req ; Φ)j+1

Importance sampling and reweighting to calculate ∇FH [Hj ]

Generate {RI}I=1,...,Nc with ρH0(R) j = 0

H0 = Hj
j = j + 1
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SSCHA example in 1D
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell
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SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Ion Errea Lecture 7 26 / 42



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Pop1 N
c
=50

Ion Errea Lecture 7 26 / 42



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Pop1 N
c
=50

Pop2 N
c
=50

Ion Errea Lecture 7 26 / 42



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Pop1 N
c
=50

Pop2 N
c
=50

Pop3 N
c
=50

Ion Errea Lecture 7 26 / 42



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Pop1 N
c
=50

Pop2 N
c
=50

Pop3 N
c
=50

Pop4 N
c
=500

Ion Errea Lecture 7 26 / 42



SSCHA calculation example

Model calculation with empirical
potentials for SnTe with a 2×2×2
supercell

X Γ K M W L Γ

-50

0

50

100

ω
 (

cm
-1

)

Harmonic
Starting

Pop1 N
c
=50

Pop2 N
c
=50

Pop3 N
c
=50

Pop4 N
c
=500

N
c
=50000

Ion Errea Lecture 7 26 / 42



The optimization of the lattice in the SSCHA

The SSCHA can be used to relax the lattice parameters of a structure considering
quantum and thermal effects, and full anharmonicity

When a lattice is relaxed in standard methods the contribution of the ions to the
energy is neglected as the stress tensor is calculated from V (R)

PBO
αβ = −N

Ω

[
∂V (R)

∂εαβ

]

ε=0

In the SSCHA we can calculate the stress tensor includes ionic quantum and
thermal effects in the lattice parameters

Pαβ = −N

Ω

[
∂F [R,Φ]

∂εαβ

]

ε=0

=
〈
PBO
αβ (R)

〉
ρ̃R,Φ

− N

2Ω

∑

s

〈
uαs f

β
s + uβs f

α
s

〉
ρ̃R,Φ

For that, apart from forces, the classical PBO
αβ stresses need to be calculated for

each of the structures in the ensemble

Ion Errea Lecture 7 27 / 42



The optimization of the lattice in the SSCHA

The ensemble is created with constant lattice and the lattice vectors {ai} are
updated when creating the next ensemble as

a′iα = aiα + λ{ai}
∑

β

εαβaiβ ,

with

εαβ =
Ω

N
(Pαβ − P∗δαβ)

P∗ is the target pressure

The best λ{ai} step is obtained with

λ{ai} =
1

3ΩB0

with B0 the bulk modulus
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SSCHA calculation flowchart with cell relaxation
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Second-order displacive phase transition within the SSCHA

Let’s take R fixed and calculate the SSCHA free energy for them:

H = Ti + 1
2

∑
ab Φab(Ra −Ra)(Rb −Rb)

F [R,Φ]

}
→ F(R)

The SCHA free energy curvature

∂2F(R)

∂Ra∂Rb

The second derivative with respect to
the order parameter

d2F(Q)

dQ2
=
∑

ab

dRa

dQ

∂2F(R)

∂Ra∂Rb

dRb

dQ
Q

V

FT =0

FT <Tc

FT >Tc

En
er

gy
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The free energy Hessian is analytic in the SSCHA

∂2F(R)

∂Ra∂Rb
= Φab +

∑

cdefgh

(3)

Φacd Λcdef [0][1 +
(4)

ΦΛ[0]]−1
efgh

(3)

Φghb

The SCHA auxiliary force-constants: Φ

It is positive definite

A contribution that depends on the 3rd derivatives of the BOES when
(4)

ΦΛ[0] << 1:
(3)

ΦΛ[0]
(3)

Φ

(3)

Φabc =

〈
∂3V (R)

∂Ra∂Rb∂Rc

〉

ρ̃R,Φ

It is negative definite

If
(4)

ΦΛ[0] is considered we also need to calculate

(4)

Φabcd =

〈
∂4V (R)

∂Ra∂Rb∂Rc∂Rd

〉

ρ̃R,Φ

The SCHA can only describe second-order phase transitions if
(3)

Φ 6= 0
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The free energy curvature allows to define dynamical
matrices that can describe inginary phonon frequencies

Different dynamical matrices:

Harmonic dynamical matrix:

Dhar
ab =

1√
MaMb

[
∂2V (R)

∂Ra∂Rb

]

R=R0

=
1√

MaMb

φab

All the problems of the harmonic approximation

SCHA dynamical matrix calculated at R0:

DS
ab =

1√
MaMb

Φab

Includes non-perturbative anharmonic effects, temperature dependence . . . but
positive eigenvalues by definition

Dynamical matrix based on SCHA free energy curvature:

DF
ab =

1√
MaMb

[
∂2F(R)

∂Ra∂Rb

]

R=R0

Correction to DS
ab including 3rd and 4th order derivatives of the BOES that may

have negative eigenvalues and describe second-order phase transitions

Ion Errea Lecture 7 32 / 42



The free energy curvature allows to define dynamical
matrices that can describe inginary phonon frequencies

Different dynamical matrices:

Harmonic dynamical matrix:

Dhar
ab =

1√
MaMb

[
∂2V (R)

∂Ra∂Rb

]

R=R0

=
1√

MaMb

φab

All the problems of the harmonic approximation

SCHA dynamical matrix calculated at R0:

DS
ab =

1√
MaMb

Φab

Includes non-perturbative anharmonic effects, temperature dependence . . . but
positive eigenvalues by definition

Dynamical matrix based on SCHA free energy curvature:

DF
ab =

1√
MaMb

[
∂2F(R)

∂Ra∂Rb

]

R=R0

Correction to DS
ab including 3rd and 4th order derivatives of the BOES that may

have negative eigenvalues and describe second-order phase transitions

Ion Errea Lecture 7 32 / 42



The free energy curvature can be obtained stochastically
by calculating forces on supercells

∂2F(R)

∂Ra∂Rb
= Φab +

∑

cdefgh

(3)

Φacd Λcdef [0][1 +
(4)

ΦΛ[0]]−1
efgh

(3)

Φghb

Requires

Quantum stochastic average of 3rd derivatives of the BOES

(3)

Φabc =

〈
∂3V (R)

∂Ra∂Rb∂Rc

〉

ρ̃R,Φ

= −
∑

pq

Ψ−1
ap Ψ−1

bq 〈upuq f̃c〉ρ̃R,Φ

Quantum stochastic average of 4th derivatives of the BOES

(4)

Φabcd =

〈
∂4V (R)

∂Ra∂Rb∂Rc∂Rd

〉

ρ̃R,Φ

= −
∑

pqr

Ψ−1
ap Ψ−1

bq Ψ−1
cr 〈upuqur f̃d〉ρH

ua = Ra −Ra and f̃a = fa +
∑

b Φabub

The free energy curvature can be calculated stochastically as a post-processing by using
importance sampling after the SSCHA minimization
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TAn important remark on the force constants

(3)

Φabc =

〈
∂3V (R)

∂Ra∂Rb∂Rc

〉

ρ̃R,Φ

6=
(3)

φ abc =

[
∂3V (R)

∂Ra∂Rb∂Rc

]

R0

(4)

Φabcd =

〈
∂4V (R)

∂Ra∂Rb∂Rc∂Rd

〉

ρ̃R,Φ

6=
(4)

φ abcd =

[
∂3V (R)

∂Ra∂Rb∂Rc∂Rd

]

R0

Quantum stochastic averaged of 3rd and 4th order force constants consider higher
order terms, are non-perturbative

Quantum stochastic averaged of 3rd and 4th order force constants are taken at the
centroid positions that minimize the free energy, not the R0 positions that
minimize the potential
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An example that models a ferroelectric phase transition
shows the validity of the procedure

An anharmonic model potential that
describes the ferroelectric transition in
SnTe (Fm3̄m→ R3m)

The transition is driven by the optical
mode at Γ

Harmonic phonons

SSCHA free energy with/without 3rd order in the potential
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The free energy curvature calculated matches finite
difference calculations
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The phonons obtained from the free energy curvature have
strong corrections beyond the SCHA phonons
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Physical phonons need to come from a dynamical theory

The SSCHA auxiliary solution defines non-interacting Green’s functions which are
exactly like the harmonic

The SSCHA solution can be used to build a fully dynamical theory based on a
Dyson equation

G−1
ab (q, iωn) = [G S

ab]−1(q, iωn)− Πab(q, iωn) = (iωn)2δab − Φab(q)√
MaMb

− Πab(q, iωn)

where G S is the non-interacting Green’s function based on the SSCHA auxiliary
force-constants

The SSCHA self-energy is

Πab(q, iωn) =
1√

MaMb

∑

cdefgh

(3)

Φacd Λcdef [iωn][1 +
(4)

ΦΛ[iωn]]−1
efgh

(3)

Φghb

with

Λabcd [iωn] =
∑

µν

~
4wνwµ

e
a
νe

b
µe

c
νe

d
µ

×
[

(wµ − wν)(nB (wµ)− nB (wν))

(wµ − wν)2 − (iωn)2
− (wµ + wν)(1 + nB (wµ) + nB (wν))

(wµ + wν)2 − (iωn)2

]
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Physical phonons need to come from a dynamical theory

Two interesting limits of the theory

If anharmonicity is small, the theory recovers the perturbative limit where the
self-energy is given by the tadpole, loop, and bubble self-energies

The static limit of the theory has Dirac-delta like peaks at the eigenvalues of the
dynamical matrix derived from the Hessian of the free energy

G−1
ab (q, iωn) = −DF

ab

And a remark

This theory allows to calculate the spectral function and phonon lifetimes in
systems with very stron anharmonicity in which the harmonic and perturbative
approaches collapse. It makes possible the calculation of the thermal conductivity
possible in these cases
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The spectral function

All we said about the spectral function will be valid here, with the difference that
the non-interacting frequencies are the SSCHA auxiliary frequencies

In the no-mode-mixing approximation the spectral function can be written as

σ(q, ω) =
1

2π

∑

µ

[ −Im[Zµ(q, ω)]

(ω − Re[Zµ(q, ω)])2 + Im[Zµ(q, ω)]2

+
Im[Zµ(q, ω)]

(ω + Re[Zµ(q, ω)])2 + Im[Zµ(q, ω)]2

]

where

Zµ(q, ω) =
√
w2
µ(q) + Πµ(q, ω + iη)

In the perturbative limit the spectral function will be a sum of Lorentzians with
peaks at Re[Zµ(q, ωµ(q) + iη)] and the half-width at half maximum (HWHM)
−Im[Zµ(q, ωµ(q) + iη)] with

Re[Zµ(q, wµ(q) + iη)] ∼ wµ(q) +
Re[Πµ(q, wµ(q) + iη)]

2wµ(q)

Im[Zµ(q, wµ(q) + iη)] ∼ Im[Πµ(q, wµ(q) + iη)]

2wµ(q)
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The spectral function

H3S

Bianco et al., PRB (2018)
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Exercises

1 Show that
〈R〉ρ̃R,Φ

= R
2 Inspired from the gradient equation with respect to the force constants and the

relation 〈∂O/∂Ra〉ρ̃R,Φ
=
∑

b Ψ−1
ab 〈Oub〉ρ̃R,Φ

show that

Φab(R) =

〈
∂2V

∂Ra∂Rb

〉

ρ̃Φ(R)
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