Introduction to the Theory of Lattice Vibrations and their Ab Initio Calculation Lecture 9: Quantum and Anharmonic Effects in Superhydrides

Ion Errea

Dept. Applied Physics, University of the Basque Country (UPV/EHU), San Sebastian, Spain

Centro de Fsica de Materiales (CSIC-UPV/EHU), San Sebastian, Spain

Donostia International Physics Center, San Sebastian, Spain

University of Science and Technology Beijing

March and April 2022

Universidad Euskal Herriko del País Vasco Unibertsitatea Trails Physics Center Centro de Fisca de Materiales

I High-temperature superconductivity in hydrogen-based superconductors

2 Electron-phonon interaction in anharmonic crystals

Superconductivity in hydrogen-based superconductors

Superconductivity in hydrogen-based superconductors

$$S = \frac{T_c}{\sqrt{T_{c,\mathrm{MgB}_2}^2 + P^2}}$$

Lecture 9

I High-temperature superconductivity in hydrogen-based superconductors

2 Electron-phonon interaction in anharmonic crystals

Electron-phonon interaction in anharmonic crystals

 The superconducting properties of materials can be calculated from the Eliashberg spectral function α²F(ω)

$$\alpha^{2} F(\omega) = \frac{1}{N(E_{F})N^{2}} \sum_{\substack{\mu \mathbf{q} \\ knm}} |g_{m\mathbf{k}+\mathbf{q},n\mathbf{k}}^{\mu}|^{2} \delta(E_{\mathbf{k}n}) \delta(E_{\mathbf{k}+\mathbf{q}m}) \delta(\omega - \omega_{\mu}(\mathbf{q}))$$

where $N(E_F)$ is the electronic DOS at the Fermi level and

$$g_{m\mathbf{k}+\mathbf{q},n\mathbf{k}}^{\mu} = \sum_{a} \frac{e_{\mu}^{a}(\boldsymbol{q})}{\sqrt{2M_{a}\omega_{\mu}(\boldsymbol{q})}} \langle \psi_{m\mathbf{k}+\boldsymbol{q}} | \left[\frac{\partial V_{KS}}{\partial u_{a}(\boldsymbol{q})} \right]_{\boldsymbol{R}=\boldsymbol{R}_{0}} |\psi_{n\mathbf{k}}\rangle$$

• If we want to include anharmonic effects in the Eliashberg function, we substitute the harmonic phonon frequencies and polarization vectors by the anharmonic ones (auxiliary of those coming from the free energy Hessian)

$$\alpha^{2}F(\omega) = \frac{1}{N(E_{F}^{\mathcal{R}_{0}})N^{2}} \sum_{\substack{\mu q \\ knm}} |\mathsf{g}_{m\boldsymbol{k}+\boldsymbol{q},n\boldsymbol{k}}^{\mu}|^{2} \delta(E_{\boldsymbol{k}n}^{\mathcal{R}_{0}}) \delta(E_{\boldsymbol{k}+\boldsymbol{q}m}^{\mathcal{R}_{0}}) \delta(\omega - \mathtt{w}_{\mu}(\boldsymbol{q}))$$

with the electron-phonon coupling calculated at the \mathcal{R}_0 positions

$$\mathbf{g}_{m\mathbf{k}+\mathbf{q},n\mathbf{k}}^{\mu} = \sum_{a} \frac{\mathbf{e}_{\mu}^{a}(\boldsymbol{q})}{\sqrt{2M_{a}\mathbf{w}_{\mu}(\boldsymbol{q})}} \langle \psi_{m\mathbf{k}+\boldsymbol{q}}^{\mathcal{R}_{0}} | \left[\frac{\partial V_{KS}}{\partial u_{a}(\boldsymbol{q})} \right]_{\boldsymbol{R}=\mathcal{R}_{0}} | \psi_{n\mathbf{k}}^{\mathcal{R}_{0}} \rangle$$

Calculating the critical temperature

• With $\alpha^2 F(\omega)$ the electron-phonon coupling constant can be calculated

$$\lambda = 2 \int_0^\infty d\omega \frac{\alpha^2 F(\omega)}{\omega}$$

• The superconducting critical temperature can also be calculated with Allen-Dynes modified McMillan equation

$$T_c = \frac{f_1 f_2 \,\omega_{\text{log}}}{1.2} \exp\left[-\frac{1.04(1+\lambda)}{\lambda - \mu^*(1+0.62\lambda)}\right]$$

with μ^{\ast} the effective repelling electron-electron interaction and

$$\begin{split} \omega_{\log} &= & \exp\left(\frac{2}{\lambda}\int d\omega \frac{\alpha^2 F(\omega)}{\omega}\log\omega\right) \\ f_1 &= \left[1 + (\lambda/\Lambda_1)^{3/2}\right]^{1/3} & f_2 = 1 + \frac{(\bar{\omega}_2/\omega_{\log} - 1)\lambda^2}{\lambda^2 + \Lambda_2^2} \\ \Lambda_1 &= 2.46(1 + 3.8\mu^*) & \Lambda_2 = 1.82(1 + 6.3\mu^*)(\bar{\omega}_2/\omega_{\log}) \\ \bar{\omega}_2 &= & \left[\frac{2}{\lambda}\int d\omega\alpha^2 F(\omega)\omega\right]^{1/2} \end{split}$$

 With α²F(ω) the Migdal-Eliashberg (isotropic) equations can be solved alternatively (more exact theory)

$$Z_n = 1 + \frac{\pi T}{\omega_n} \sum_m \frac{\omega_m}{\sqrt{\omega_m^2 + \Delta_m^2}} \lambda_{nm}$$
$$\Delta_n = \frac{\pi T}{Z_n} \sum_m \frac{\Delta_m}{\sqrt{\omega_m^2 + \Delta_m^2}} (\lambda_{nm} - \mu^*)$$

where

$$\omega_n = (2n+1)T\pi$$
 and $\lambda_{nm} = \int d\Omega \frac{2\Omega}{(\omega_n - \omega_m)^2 + \Omega^2} \alpha^2 F(\Omega)$

 $\bullet\,$ The temperature at which Δ_0 vanishes determines the superconducting critical temperature

Migdal-Eliashberg equations

Atomic hydrogen

Borinaga et al., PRB (2016)

I High-temperature superconductivity in hydrogen-based superconductors

2 Electron-phonon interaction in anharmonic crystals

Inverse isotope effects in palladium hydrides

PdD has a higher T_c than PdH

Hemmes et al., PRB (1989)

Anharmonic effects in palladium hydrides

PdH (0 GPa, 0 K)

Errea et al., PRL (2013)

Anharmonic effects in palladium hydrides

PdH (0 GPa, 0 K)

Errea et al., PRL (2013)

Anharmonic effects in palladium hydrides induce the inversion of the isotope effect

Errea et al., PRL (2013)

I High-temperature superconductivity in hydrogen-based superconductors

2 Electron-phonon interaction in anharmonic crystals

Record superconductivity in hydrogen sulfide

LETTER

doi:10.1038/nature14964

Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov1*, M. I. Eremets1*, I. A. Troyan1, V. Ksenofontov2 & S. I. Shylin2

H_3S is an anharmonic electron-phonon superconductor

The quantum nature of the proton symmetrizes the hydrogen bonds in H_3S

• Total energy as a function of ${\cal R}$

$$E(\mathcal{R}) = E_{BO}(\mathcal{R}) + E_{vib}(\mathcal{R})$$

• The total energy calculated along the path defined by the reaction coordinate *Q*:

$$\mathcal{R}(Q) = \mathbf{R}_{Im\bar{3}m} + Q(\mathbf{R}_{R3m} - \mathbf{R}_{Im\bar{3}m})$$

The quantum nature of the proton symmetrizes the hydrogen bonds in H_3S

• Total energy as a function of ${\cal R}$

$$E(\mathcal{R}) = E_{BO}(\mathcal{R}) + E_{vib}(\mathcal{R})$$

• The total energy calculated along the path defined by the reaction coordinate *Q*:

$$\mathcal{R}(Q) = \mathbf{R}_{Im\bar{3}m} + Q(\mathbf{R}_{R3m} - \mathbf{R}_{Im\bar{3}m})$$

Lecture 9

The quantum nature of the proton symmetrizes the hydrogen bonds in H_3S

• Total energy as a function of ${\cal R}$

$$E(\mathcal{R}) = E_{BO}(\mathcal{R}) + E_{vib}(\mathcal{R})$$

• The total energy calculated along the path defined by the reaction coordinate *Q*:

$$\mathcal{R}(Q) = \mathbf{R}_{Im\bar{3}m} + Q(\mathbf{R}_{R3m} - \mathbf{R}_{Im\bar{3}m})$$

Lecture 9

The quantum symmetrization has a large impact on phonons and the superconducting T_c

Errea et al., Nature (2016)

We determine the transition pressure by interpolating the obtained energies

We determine the transition pressure by interpolating the obtained energies

Errea et al., Nature (2016)

I High-temperature superconductivity in hydrogen-based superconductors

2 Electron-phonon interaction in anharmonic crystals

LaH_{10} a record superconductor

Drozdov et al., Nature (2019)

Strongly distorted phases of LaH₁₀

Quantum structural relaxations in LaH_{10}

Errea et al., Nature (2020)

Quantum structural relaxations in LaH₁₀ $R\bar{3}m$

Ion Errea

Lecture 9

Quantum structural relaxations in LaH_{10} C2

The energy landscape is quantum

Errea et al., Nature (2020)

Anharmonic phonons for $Fm\bar{3}m$ LaH₁₀

Errea et al., Nature (2020)

Ion Errea

Lecture 9

T_c in agreement with experiments

Quantum anharmonic enhancement of superconductivity

- Superhydrides are strongly affected by anharmonicity and quantum effects, both in the crystal structure and the phonon spectra, strongly affecting the superconducting properties
- Quantum anharmonic effects can enhance the superconductivity by stabilizing structures that would otherwise be unstable classically at much lower pressures