Un destello azul para desvelar la clave del origen del Universo

  • Un equipo interdisciplinar de científicos liderado por investigadores del DIPC, Ikerbasque y la UPV/EHU, ha demostrado que es posible construir un sensor ultrasensible basado en una nueva molécula fluorescente capaz de detectar el tipo de desintegración nuclear clave para saber si un neutrino es o no su propia antipartícula.
  • Los resultados de este estudio, publicados en la prestigiosa revista Nature, tienen un gran potencial para determinar la naturaleza del neutrino y responder así a preguntas fundamentales sobre el origen del Universo.

Representación artística de la nueva molécula fluorescente capaz de descifrar la naturaleza de los neutrinos.

¿Por qué nuestro Universo está hecho de materia? ¿Por qué existe todo tal y como lo conocemos? Estas preguntas están relacionadas con uno de los problemas más importantes sin resolver en física de partículas. Dicho problema es el de la naturaleza del neutrino, que podría ser su propia antipartícula, tal como aventuró el malogrado genio italiano Ettore Majorana hace casi un siglo. Si ello fuera así, podría explicarse la misteriosa asimetría cósmica entre materia y antimateria.

En efecto, sabemos que el Universo está hecho casi exclusivamente de materia. Sin embargo, la teoría del Big Bang predice que el Universo primigenio contenía la misma cantidad de partículas de materia y antimateria. Esta predicción es consistente con los “pequeños Big Bang” que se forman en las colisiones de protones en el gigantesco acelerador LHC del CERN, donde siempre se observa una producción simétrica de partículas y antipartículas. ¿Dónde fue, entonces, a parar la antimateria del Universo temprano? Un posible mecanismo apunta a la existencia de neutrinos pesados que fueran su propia antipartícula y por lo tanto pudieran desintegrarse tanto a materia como a antimateria. Si se da un segundo fenómeno, denominado violación de carga y paridad (esto es, si el neutrino favorece ligeramente en sus desintegraciones la producción de materia sobre la de antimateria), entonces habría podido inyectar un exceso de la primera sobre la segunda. Después de que toda la materia y la antimateria del universo se aniquilaran (con la excepción de este pequeño exceso), el resultado sería un cosmos hecho sólo de materia, de las sobras del Big Bang. Podríamos decir que nuestro Universo son los restos de un naufragio.

Juan José Gómez-Cadenas delante del detector del Experimento NEXT que dirige en el Laboratorio Subterraneo de Canfrac (LSC).

Es posible demostrar que el neutrino es su propia antipartícula observando un raro tipo de proceso nuclear llamado desintegración doble beta sin neutrinos (bb0nu), en el que simultáneamente dos neutrones (n) del núcleo se convierten en protones (p) y se emiten además dos electrones (e) que se escapan fuera del átomo. Este proceso puede darse en algunos isótopos raros, como el Xenón-136, que tiene en su núcleo 54 p y 82 n, además de 54 e en su forma neutra. El experimento NEXT (dirigido por J.J. Gómez-Cadenas, del DIPC e IKerbasque y D. Nygren, de la Universidad de Texas en Arlington), sito en el laboratorio subterráneo de Canfranc (LSC), busca estas desintegraciones utilizando cámaras de gas a alta presión.

Cuando un átomo de Xe-136 sufre una desintegración espontánea bb0nu, el resultado del proceso es  la producción de un ion doblemente cargado de Bario-136 (Ba2+), con 54 e y un núcleo formado por 56 p y 80 n, y dos electrones (Xe à Ba2+ + 2e).

El experimento NEXT se ha centrado hasta el momento en observar estos dos electrones, cuya señal es muy característica del proceso. No obstante, la desintegración buscada es extremadamente rara y la señal esperada del orden de una desintegración bb0nu por tonelada de gas y año de exposición. Esta señal tan débil puede quedar completamente enmascarada por el ruido de fondo debido a la omnipresente radioactividad natural.  Sin embargo, si además de observarse los dos electrones se detecta el átomo ionizado de bario, el ruido de fondo puede reducirse a cero, ya que la radioactividad natural no produce este ion. Observar un solo ion de Ba2+ en un gran detector de bb0nu es tan extremadamente difícil que hasta hace poco se consideraba impracticable. Pero una serie de trabajos recientes, entre los que destaca el recién publicado en la revista Nature, demuestra que la hazaña podría conseguirse en un plazo de tiempo razonable.

En la fotografía, de izquiera a derecha. Celia Rogero (CFM), Francesc Monrabal (DIPC, Ikerbasque), Pablo Herrero (DIPC), José Miranda (SGIker, sentado), Beñat Olave (POLYMAT), Borja Aparicio (UPV/EHU). Fernando Cossío (UPV/EHU), sentado en el centro. I. Rivilla (DIPC), Thomas Schäfer (POLYMAT, sentado), Zoraida Freixa (UPV/EHU, Ikerbasque), sentada y David Casanova (DIPC, Ikerbasque).
Crédito UPV/EHU

El trabajo mencionado, concebido y dirigido por los investigadores F.P. Cossío, Catedrático de la Universidad del País Vasco (UPV/EHU) y director científico de Ikerbasque, y J.J. Gómez-Cadenas, Profesor Ikerbasque del Donostia International Physics Center (DIPC), cuenta con un equipo que incluye científicos del DIPC, la UPV/EHU, Ikerbasque, el Laboratorio de Óptica de la Universidad de Murcia (LOUM), el Centro de Física de Materiales (CFM, centro mixto CSIC-UPV/EHU), POLYMAT, y la Universidad de Texas en Arlington (UTA). Gómez-Cadenas ha destacado que “el resultado de esta colaboración interdisciplinar que combina entre otras disciplinas, física de partículas, química orgánica, física de superficies y óptica, es un claro ejemplo de la apuesta que recientemente ha hecho el DIPC por abrir nuevas líneas de investigación. El objetivo no es solo generar conocimiento en otros campos, distintos a los habituales del centro, sino también de buscar terrenos híbridos y crear proyectos interdisciplinares que, en muchas ocasiones, como esta, pueden ser los más originales”.

El estudio parte de la idea, propuesta por uno de los autores del artículo, el prestigioso científico D. Nygren (UTA), inventor de tecnología de cámaras de proyección temporal (TPCs) en las que se basan numerosos experimentos de física de partículas (entre ellos NEXT).

David Nygren, Profesor Distinguido Presidencial de la Universidad de Texas en Arlington (UTA).
Crédito UTA

En 2016 Nygren propuso la posibilidad de capturar el Ba2+ con una molécula capaz de formar un complejo supramolecular con este y de proporcionar una señal característica cuando esto ocurre, a modo de indicador molecular. En trabajos posteriores, Nygren y su grupo han diseñado un tipo de indicadores llamados “interruptores” capaces de brillar más intensamente cuando capturan un ion Ba2+. El grupo de Cossío y Gómez-Cadenas ha seguido una estrategia diferente, diseñando un indicador capaz de capturar selectivamente el Ba2+ y que no sólo brilla más intensamente al atrapar el ion, sino que cambia de color, contribuyendo así a una clarísima observación de la señal sobre el ruido de fondo. La síntesis de este indicador molecular bicolor, denominado FBI (las siglas en inglés de Fluorescent Bicolor Indicator),  se ha realizado bajo el liderazgo del investigador I. Rivilla del DIPC. Si se ilumina con luz ultravioleta una molécula FBI sin bario, esta emite fluorescencia en el rango de la luz verde, con un espectro de emisión estrecho de alrededor de 550 nm. En cambio, cuando esta molécula captura Ba2+, su espectro de emisión se desplaza hacia el azul (420 nm). Esto hace posible identificar la presencia de Ba2+ a partir de la observación de una molécula FBI azul.

Juan M. Bueno, Rosa Martínez y Pablo Artal en el laboratorio del microscopio multifotónico de la Universidad de Murcia (UMU).

Cabe destacar que los sistemas experimentales de microscopía multifotónica utilizados en el LOUM por el grupo de P. Artal para la detección espectral verde/azul se basan en los desarrollados previamente para obtener imágenes de la córnea del ojo humano en vivo. Es un ejemplo de entrelazado de uso de una tecnología única en el mundo para aplicaciones biomédicas en un problema fundamental de física de partículas. “La apuesta por combinar ciencia básica e implementaciones instrumentales novedosas es esencial para abrir nuevas líneas de investigación que permitan responder a la gran cantidad de preguntas que los científicos nos planteamos a diario” afirma J.M. Bueno, Catedrático de Óptica del LOUM.

Tal y como ha explicado Cossío, “lo más complicado de la parte química del trabajo fue diseñar una nueva molécula que cumpliera los estrictos (casi imposibles) requisitos impuestos por el experimento NEXT. Esta molécula debía brillar mucho, capturar bario con extrema eficacia (el bb0nu es un evento rarísimo y ningún catión podía desperdiciarse) y emitir una señal específica que permitiera detectar la captura sin ruido de fondo. Además, la síntesis química del nuevo sensor FBI debía ser eficiente para poder tener muestras ultrapuras en cantidad suficiente para su instalación en el detector. La parte más gratificante fue comprobar que, tras muchos esfuerzos por parte de este equipo multidisciplinar, efectivamente, nuestro sensor FBI específico y ultrasensible funcionaba tal y como estaba previsto”.

Además del diseño y caracterización de FBI, el artículo ofrece la primera demostración de la formación de complejos supramoleculares en medio seco. Este hito se ha conseguido preparando una capa de moléculas FBI sobre una pastilla comprimida de sílice y evaporando sobre esta capa una sal de perclorato de bario. Z. Freixa, profesora Ikerbasque asegura: “la preparación de FBI sobre sílice ha sido una solución rápida para esta prueba de concepto. Un poco de alquimia casera nunca viene mal”. La evaporación en vacío ha sido realizada por la científica del CSIC en el CFM, C. Rogero y su estudiante de doctorado P. Herrero-Gómez. Rogero, una experta en física de superficies, asegura: “fue uno de esos momentos Eureka, cuando nos dimos cuenta de que disponíamos del know-how para demostrar por primera vez que una molécula es capaz de atrapar un dicatión en medio seco. Pusimos manos a la obra y salió bien casi al primer intento”.

El siguiente paso de este proyecto será construir un detector basado en FBI para la detección de la desintegración doble beta sin neutrinos o bb0nu, para lo que Gómez-Cadenas y F. Monrabal del DIPC junto D. Nygren y sus colaboradores de UTA ya están desarrollando la propuesta conceptual. Este futuro experimento, que podría estar en marcha en unos pocos años sería capaz de buscar sucesos bb0nu libres de ruido de fondo gracias a la identificación de los dos electrones y el átomo de bario producidos en la reacción y tendría un gran potencial para descubrir si el neutrino es su propia antipartícula, lo que permitiría responder a preguntas fundamentales sobre el origen del Universo, incluyendo la de por qué estamos aquí.

*****************

Donostia International Physics Center (DIPC)
El DIPC es un centro de investigación cuya misión es realizar y catalizar la investigación de vanguardia en física y disciplinas afines, así como transmitir la cultura científica a la sociedad. Ubicado en Donostia / San Sebastián, DIPC nace de la alianza estratégica entre instituciones públicas y empresas privadas. Desde 2008, el DIPC es un ‘Basque Excellence Research Center’ (BERC) del Departamento de Educación del Gobierno Vasco, y recientemente en 2019 ha sido reconocido como Centro de Excelencia “Severo Ochoa” por la Agencia Española de Investigación.
http://dipc.ehu.eus

 

Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU)
La Universidad del País Vasco/Euskal Herriko Unibertsitatea es la principal institución de educación superior del País Vasco y una de las más importantes de España en cuanto a volumen de resultados docentes, investigación, e innovación y desarrollo tecnológico. Actualmente está clasificada entre las 500 mejores universidades del mundo, según el ranking de Shanghái. La UPV/EHU cuenta con implantación en todos los territorios de la Comunidad Autónoma Vasca. Es una universidad pública, con vocación investigadora, enraizada en la cultura vasca, abierta al mundo, que desarrolla un importante liderazgo intelectual dentro de la sociedad en que se inserta y con un claro compromiso ético y social. Tres campus, veinte centros de estudio y una amplia oferta académica de grado y de posgrado son sus referencias académicas. Más de 50.000 personas acuden diariamente a la universidad, como alumnado, profesorado y personal de investigación y de gestión, para desarrollar su trabajo. La UPV/EHU tiene la calificación de Campus de Excelencia Internacional, concedido por el Ministerio de Educación tras una evaluación independiente, y ha impulsado, en colaboración con la Universidad de Burdeos, un campus transfronterizo único en Europa.
https://www.ehu.eus

Ikerbasque – Fundación Vasca para la Ciencia
IKERBASQUE es el resultado de una iniciativa del Departamento de Educación del Gobierno Vasco que pretende reforzar la apuesta por la investigación científica mediante la atracción, recuperación y consolidación de investigadoras/es excelentes de todo el mundo.

https://www.ikerbasque.net

 

Laboratorio de Óptica de la Universidad de Murcia (LOUM)
El LOUM es un grupo de investigación dirigido por el Prof. Pablo Artal que desarrolla instrumentación óptica avanzada para su uso en biomedicina. Es uno de los grupos líderes mundiales en aplicaciones de técnicas de óptica adaptativa y manipulado de frentes de onda para la evaluación y la corrección de la visión.
http://lo.um.es

 

Centro de Física de Materiales (CFM, CSIC-UPV/EHU)
Nacido en 1999 como iniciativa conjunta del Consejo Superior de Investigaciones Científicas (CSIC) y la Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), el CFM tiene como objetivo impulsar las fronteras del conocimiento en la investigación de la ciencia avanzada de materiales, reuniendo equipos estables y con un historial de excelencia en la investigación científica, creando un entorno de excelencia internacional, basado en la diversidad y la igualdad de oportunidades, que contribuya activamente a fomentar la cultura científica. La calidad del trabajo de CFM ha sido reconocida por el Gobierno Vasco otorgando a la asociación MPC, órgano instrumental del CFM, la categoría de centro de Investigación de Excelencia Básica (BERC).
https://cfm.ehu.es

 

Basque Center for Macromolecular Design and Engineering POLYMAT Fundazioa (POLYMAT, UPV/EHU)
POLYMAT fue reconocido en 2012 por el Gobierno Vasco como un centro de investigación de excelencia básica (BERC). Ubicado en Donostia / San Sebastián, tiene como misión ser un centro de investigación orientada y estratégica a nivel internacional en polímeros en colaboración con la Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU) y en cooperación con los principales centros de investigación en este ámbito a nivel nacional e internacional, que sea acorde con los intereses de la sociedad, contribuyendo a su desarrollo y bienestar social. El objetivo principal es contribuir a los desafíos sociales del siglo XXI, como la energía, la sostenibilidad y la salud impulsando la difusión y transferencia de conocimiento en materiales poliméricos para su aprovechamiento por la comunidad científica y la sociedad en general.
http://www.polymat.eu

 

University of Texas at Arlington (UTA)
La Universidad de Texas en Arlington es una universidad pública de investigación en Arlington, Texas, a medio camino entre Dallas y Fort Worth. La universidad fue fundada en 1895 y estuvo en el Sistema Universitario A&M de Texas  durante varias décadas hasta que se unió a Universidad de Texas en 1965.
https://www.uta.edu