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Abstract

Using molecular dynamics simulations and potential energy surfaces of ab-initio quality,

we show that direct pick-up of N adsorbates by gas-phase N is a highly efficient channel for

N2 formation on Ag(111). This recombination process, called Eley-Rideal, was traditionally

associated to lighter projectiles and regarded as marginal, but here we obtain reactivities for
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N of & 35% even at incident energies of a few eV. The good agreement found between simu-

lated and published experimental energies of the desorbed N2 is a fingerprint of this otherwise

elusive recombination.
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Among the various elementary processes that occur in everyday gas-surface reactions, those

resulting in the recombination and desorption of molecules deserve a special attention, as they

regulate the replenishment of the surface active sites. One of these processes, the direct Eley-Rideal

(ER) recombination has been found to be a marginal phenomenon, only observed experimentally

for incoming light atoms (H,D).1–9 Originally postulated as an atom exchange,10–12 the ER process

is nowadays assigned to the direct recombination of an incoming gas-phase species that picks up

a surface adsorbate to conform a molecular compound that desorbs during the collision. Even if

the initial measurements pointed to ER cross sections of about 2−5 Å2,4,6,9 subsequent theoretical

studies demonstrated that they were around one order of magnitude smaller because most of the

recombination events proceed after few collisions of the incoming (H,D) atom with the surface,

i.e., through the slower hot-atom (HA) process.13–18

In the scope of reactive ion scattering (RIS), C abstraction from a graphite surface by N+

ions has been characterised by experiments, and found to happen after several collisions with the

substrate19 Recombination of neutral atomic species heavier than (H,D) has been experimentally

studied in the context of CO formation and CO oxidation on metal surfaces. In all cases, CO

and CO2 formation is dominated by the Langmuir-Hinshelwood (LH) recombination in which the

species involved in the reaction are fully thermalized with the surface.20–22 Also in these systems,

the direct ER pick-up events are accepted to play a very minor role. Within this context, the recent

experiments by Ueta et al. suggesting the existence of direct recombination on the N-covered

Ag(111) surface between gas-phase and adsorbed N atoms are certainly intriguing.23,24 All the

more so when recent simulations of N2 formation on the W(100) surface also exhibit low ER

probabilities.25

In this letter we demonstrate that thermal and hyperthermal gas-phase N scattered off N-

covered Ag(111) is indeed a prototype system that fulfills all the requirements to observe a highly

efficient direct ER recombination. This outcome poses a new scenario for the study of gas-surface

interactions, as it shows that fast direct recombination channels may be active in contrast to the

usual assumption of neglecting them, specially for large atomic projectiles.
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The complex modeling of the ER mechanism has been successfully attained by a careful mix-

ing of the ab-initio potential energy surfaces calculated for gas-phase N and N2 impinging, re-

spectively, on the (1× 1) N-covered and clean Ag(111) surfaces. Importantly, our calculations

nicely reproduce the recent measurements by Ueta et al. using N and N2 mixed molecular beams

reflected off clean and N-covered Ag(111).23,24 In these experiments a small amount of molecules

is detected at outgoing polar angles Θ f < 40◦ off N-covered Ag(111), but not off clean Ag(111)

(see filled and open triangles in Figure 1). The authors cautiously interpreted the existence of those

molecules as an indirect evidence of a recombination process taking place on the N-covered sur-

face. The calculations in the present letter prove unambiguously that the origin of those molecules

is a surface reaction. Quantitative agreement with the experimental energy angular spectra sup-

ports the interpretation. Moreover, we show that at least 1/3 of the impinging atoms result in an

ER event. All in all, the present molecular dynamics (MD) study confirms that Ref.24 contains

the first experimental fingerprint of N2 formed by ER reaction, a process that up to now has been

exclusively detected for incoming light atoms.

First, we have simulated the scattering dynamics of N2 molecules off clean Ag(111). The

interaction between N2 and Ag(111) has been modeled by a six-dimensional (6D) potential energy

surface (PES), which has been constructed from interpolation of ab-initio energies evaluated for a

dense set of {x,y,z} coordinates of the N-atoms and frozen Ag positions. Those ab-initio energies

have been calculated within the density functional theory using ultrasoft pseudopotentials26 and

the PW91 generalized gradient approximation27 for the exchange and correlation functional. The

interpolation has been carried out using the corrugation reduction procedure method.28 We find that

the molecule-surface interaction is, overall, strongly repulsive. Further details on the calculations

can be found in Ref.29

Classical 6D MD simulations have been performed with molecular projectiles that are set to

match the experimental settings, including incoming polar angles Θi = 60◦ and a broad distribution

of translational kinetic energies with average value 〈Ei〉 = 5.6 eV and f whm = 6.3 eV, i.e. we

use an effusive beam.24 Initially, the N2 molecules are not rotationally or vibrationally excited.
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An optimal description of the dynamics is achieved when including an energy loss channel into

Ag lattice vibrations by means of the Generalized Langevin Oscillator (GLO) model30–33 using

the same implementation of Refs.,34–36 where the surface vibration frequencies are taken from

experimental values for Ag(111).37 The agreement between theory and experiment is exceedingly

good for the resulting angular distribution of final-to-initial translational energy ratios, 〈E f 〉/〈Ei〉,

as shown in Figure 1. The analysis of the angular distribution of scattered molecules together with

additional calculations for monoenergetic beams explain the distinctive V -shaped experimental

distributions, nicely reproduced here by theory. Since the molecules in the beam with higher Ei can

access more corrugated regions of the PES, they produce broader angular distributions than the less

energetic ones, as shown in the middle panel of Figure 1. For this reason, on average, the effusive

molecular beam has a . 40◦ spread and, importantly, the tails of the distribution are dominated by

the more energetic molecules. As a result the final-to-initial translational energy ratio increases the

more the scattered N2 departures from specularity. In agreement with the experiment, there is no

hint of dissociative sticking in the simulations and no molecules are detected at Θ f < 40◦.

On the N-covered surface, however, a small amount of N2 molecules leave the N-covered

surface at Θ f < 40◦ with intensities about 50 times smaller than the specular peak.24 The off-

specular signal is consistent with a corrugated PES, as it is the case for N-atoms but not for N2

molecules, which suggests an underlying molecule formation on the surface. In this respect, MD

studies on the (1×1) N-covered Ag(111) surface with a 3D PES have shown that every adsorption

trajectory ends up in a N(g)-N(a) bond, where N(g) and N(a) denote gas-phase N atoms and N

adsorbates, respectively. Despite the limitations of a 3D description, which keeps N(a) at frozen

coordinates, this theoretical result also points to N2 formation.36 The progressive cleaning of the

N(a) via N2 formation also explains the experimental observation that the N-atom scattering data

on N-covered Ag(111) resemble that of the clean surface. Those recombination processes compete

in turn with the replenishment of clean Ag(111) patches by N(g). Thus, a fundamental question that

raises here is the efficiency of the recombination processes. We show next that the ER mechanism,

which sets a lower boundary value of the total N2 yield, is unusually efficient.
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A good formulation of the problem should contain both the large potential corrugation brought

by the N-coverage and N(a) mobility to account for eventual desorption events. With this in mind,

our model PES uses energies of ab-initio quality and is constructed as sketched in Figure 2 by

merging (i) the 3D PES for N(g) approaching the (1× 1) N-covered Ag(111) for N(g)-N(a) dis-

tances d > Rs and (ii) the 6D PES for the N2 molecule approaching the clean surface for d < Rs.

When N(g) crosses the boundary from the 3D to the 6D region, N(a) is allowed to move and may

become an atom of a N2 molecule. The choice Rs = 2.2 Å for the boundary ensures negligible

discontinuities when integrating the equations of motion. Details on the PES continuity and the

settings of the MD simulations performed on the merged PES can be found in the SI.29

Figure 3 shows the fraction of atomic trajectories that result in N2 formation by ER, where

we observe that & 35% of the projectiles in the experimental effusive beam used in the calcula-

tion succeed to react with surface species. It is a fast process with typical simulation times below

<0.4 ps for the effusive atomic beam, and therefore the rigid surface approximation is well justi-

fied. Inclusion of GLO in the dynamics has a non-negligible impact, albeit small, in the reaction

probability for Ei < 2 eV. For those Ei values, energy exchange with the Ag(111) lattice reduces the

ER efficiency by ∼ 10%. This uncommonly large efficiency, specially at incident energies as high

as Ei = 7 eV, is a non-trivial outcome of the dynamics of the system. Slower N(g) with Ei < 2 eV

increase further the reaction probability. Low-energy projectiles visit lower energy regions of the

PES, so that the dynamics is dictated by the highly exothermic and barrierless character of the reac-

tion (9.8 eV are dissipated by a single N2 formation, whilst only just 2.01 eV are needed to desorb

each N(a)38). On similar grounds, CO formation by ER at C-covered Pt(111) with Ei(O)< 0.5 eV

was predicted to proceed with 97% efficiency by early MD simulations.39 However, later molec-

ular beam experiments showed that LH was the dominant mechanism for CO recombination in

this system.20 On N-covered W(100), the existence of an energy barrier makes N2 formation by

ER less efficient than on N-covered Ag(111), despite the reaction being also exothermic.25,40 In

the case of H2/Cu(111), the H-H interaction is repulsive when the atoms lie close to the metal,

and most recombinations are driven by HA.14 In other words, the efficiency of the reaction de-
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pends on the balance between several interactions: atom-surface, atom-atom, etc. The nature of

the recombination mechanism relies thus in the chemical interaction between the neutral atoms on

the surface. Effective ER with heavy ions has been measured in RIS. However, the ER scenario

for ions in RIS is different to the one with neutral atoms, since the recombination mechanism is

due to the electrostatic ion-adsorbate attraction (ion-dipole) and it is effective only for physisorbed

atoms.41,42

The angular dependence of the molecular translational energy is accounted for in the molecular

beam experiments by Ueta et al.,24 and it is in reasonable agreement with the theoretical value from

MD simulations that use the atomic effusive incident beam, as shown in Figure 1 for Θ f < 40◦ in-

plane directions. At Θ f > 40◦ N2 molecules originated by ER contribute only to . 3% of the

total N2 intensity, and therefore those 〈E f 〉/〈Ei〉 values are dominated by N2 reflection. This

is due to the fact that most formed N2 molecules leave the surface at out-of-plane directions,

and thus they are not to be observed in the experimental spectra. The angular distribution of in-

plane N2 molecules formed by ER is shown at the top panel of Figure 1. These intensities are

about two orders of magnitude smaller than the intensities of in-plane scattered N2 (middle panel),

in reasonable agreement with the experimental observations.24 The theoretical 〈E f 〉/〈Ei〉 values

at Θ f < 40◦ are somewhat larger than the experimental ones because secondary recombination

processes are not captured by the current PES model. These would yield, if any, slower products

as the HA longer surface residence times allow for further energy dissipation into the substrate.

The good agreement in 〈E f 〉/〈Ei〉 strongly indicates that most of those observed N2 molecules at

Θ f < 40◦ result from a ER reaction.

Reactive trajectory tracking unveils the ER mechanism at the atomic scale. For a N(g)-N(a)

pair, a ER reaction impact parameter, b, is defined as sketched in Figure 2. For a given target atom

N(a), Figure 4 shows the initial impact parameter distributions of all the incident atoms, P0(b), and

the reactive ones (i.e. those that will result in an ER event), Pr(b). The potential outside the shaded

region in Figure 2 is able to steer the N(g) projectile, deflecting it towards a target other than the

one it was initially set to collide with. If the potential far from the surface were negligible, the N(g)

7



atoms would move along straight trajectories and would impinge on N(a) with impact parameters

Rth ≤ b ≤ Rs due to the shadowing effect of neighbouring adsorbates. The steering effect comes

through as an Ei-dependent shift towards larger b values in the distributions, so that they start

at b > Rth and take values b > Rs. The lower the Ei, the stronger the steering, which evidences

the long range attraction exerted by a dense N(a) coverage. The distribution P0(b) is maximal

at b ' 2 Å, under the current incidence geometry. Pr(b) is double peaked, and the peak position

and width changes with Ei. The peaks in Pr(b) can be assigned to two distinct recombination

mechanisms. At large b values, the N(g) momentum component along the N(g)-N(a) direction is

small, and therefore the net attractive force between both atoms acts long enough as to produce the

adsorbate abstraction. At low b values, N(g) approaches N(a) fast enough to enter the repulsive

region of the PES. A collision occurs that destabilizes N(a) from its equilibrium adsorption site

(it retracts downwards by an average ∆z = 0.2 and 0.4 Å for Ei = 1 and 4 eV, respectively) and

the recoiling N(g) can easily drag it along. This peak height is smaller at larger Ei, since the

recoil may be too fast for N(a) to follow the projectile. If we consider the quotient Pr(b)/P0(b)

between the distributions of the reactive and all the incoming N(g)-atoms, it turns out that the

collision (abstraction) mechanism has an approximate maximum efficiency of 75% (100%) at all

Ei values. Nevertheless, the global likelihoods of these two mechanisms in the actual dynamics are

very different, as only a few N(g) atoms are beamed onto the surface at small b initial conditions

[see P0(b) curves in Figure 4]. Double peaked distributions have been reported in the formation of

HCl on Au(111) by ER,15 too. In contrast, a small b mechanism is not possible at W(100), since

repulsion between N-atoms exists at vertical distances 2.0− 2.5 Å that deflects N(g) towards the

N(a) sides.25

The decrease in efficiency when energy exchange with the lattice is included in the model using

GLO (see Figure 3) is mainly associated to the collision reactive channel. As shown in Figure 4

the low-b peak height is decreased upon inclusion of GLO, while the high-b peak of Pr(b) remains

unaffected. Since the lattice is allowed to move, a fraction of the energy released in the collision is

transferred to the substrate and N(a) does not acquire enough energy to become unbound from the
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hollow site. The N-N bond formation on Ag(111) is exothermic by ∼ 7 eV, thus large amounts of

energy are released that are shared between the product and the substrate. On the one hand, we have

checked that the formed N2 products leave the molecule at high rovibrationally excited states. On

the other hand, we can extract information on the average energy transferred to the substrate upon

molecule formation by comparing the formed N2 average kinetic energies in GLO and adiabatic

frozen surface simulations. We find that this energy transfer is 1.57 eV for an incident effusive

atomic beam of 〈Ei〉= 4.3 eV. For a monoergetic beam of Ei = 7.0 eV, 2.42 eV can be transferred

to substrate lattice vibrations. This energy is large enough to induce desorption of N adsorbates

and create hot atoms, increasing N2 production by indirect mechanisms that are beyond the scope

of the present work.

Since it is difficult to distinguish experimentally HA from ER products,43,44 MD studies come

in as a valuable tool in the study of gas-surface reaction pathways. They have shown that the ER

cross-section for HCl formation on Au(111) is σ < 1 Å2 (about 10% of the HCl yield),16 instead

of the initially reported experimental value σ = 2 Å2.4 For (H,D) reacting on Cu(111), theory also

yields smaller cross-sections (σ < 0.5 Å2, equivalent to 3.2-4.4% of the H2 or HD products)13,14

than experiments σ = 5 Å2.2,5 Less than 5% of the N2 formed on W(100) follows from ER with

cross-sections σ = 0.4 Å2.25 Considering this background, it is remarkable to find that the single

collision ER route towards N2 on Ag(111) with efficiency > 35% (σ > 2.5 Å2) as shown in Fig-

ure 3, even with the use of much more energetic projectiles than in the aforementioned reactions.

A competingly efficient N-atom sticking process on clean Ag(111) is present for Ei ≤ 1.5 eV, but

drops fast to negligible values for Ei ≥ 2 eV.38 The ER efficiency obtained in this work is a lower

boundary value to the total N2 yield, that may also result from HA or LH. Therefore, the surface

cleaning may be significant also for projectiles below 2 eV and a fast adsorbate removal from the

N-covered Ag(111) is foreseen that would explain the experimental observation that reflected N-

atom distributions on clean and N-covered Ag(111) are almost identical24 despite the significant

differences in their PES topographies.36 An accurate description of the cleaning-replenishment cy-

cles would require knowledge of the kinetic constants of the individual events. Nevertheless, since
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N2 recombination probabilities are larger than N sticking probabilities on Ag(111),38 it seems

plausible that cleaning dominates as the experiment is being conducted on the covered surface.

In summary, we have shown that impinging N projectiles of ∼eV energies on N-covered

Ag(111) can result in the efficient formation of N2 by fast pick-up events, also known as Eley-

Rideal (ER) processes. We find that at least 35% of the incident N will recombine following this

mechanism. This result sharply contrasts with what is known for other gas-surface systems where

ER has a lesser weight and is typically restricted to light projectiles. The high N2 yield found here

is mainly due to the relatively long-ranged attractive and barrierless nature of the N-N interaction

potential in the presence of the Ag(111) surface. This finding establishes the necessary conditions

for efficient ER recombination and, importantly, poses a new scenario for many surface reactions,

where now fast direct pick-up should be seen as a relevant product desorption channel.
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Figure 1: Top panel: angular distribution of N2 molecules formed by ER upon atomic N scattering
on N-covered Ag(111), which leave the surface at in-plane directions in GLO simulations. Middle
panel: angular distribution of N2 reflected in-plane off clean Ag(111) in an adiabatic frozen surface
simulation. In these two panels, the solid (dashed) line corresponds to an effusive (monoenergetic)
beam. Bottom panel: angular distribution of the final-to-initial energy ratio of in-plane detected
N2. Large open and filled triangles correspond to the experimental results of Ref.24 on clean
and N-covered Ag(111). Small symbols are theoretical results from MD using effusive incident
beams. Small circles and squares are obtained from adiabatic frozen surface and GLO simulations,
respectively, of N2 reflected off clean Ag(111), and small diamonds correspond to N2 formed by
ER of N scattering on N-covered Ag(111). The inset shows the in-plane scattering geometry.
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Figure 2: Schematic view of the incidence geometry used to simulate the ER events. The spheres
with radius Rs denote the range around each surface adsorbate where the 6D PES is to be used.
The impact parameter b is defined as the minimum distance between the N(g) incident direction at
time t = 0 and the target N(a). The curved trajectory describes a case of projectile steering in the
V 3D region.

Figure 3: The open symbols denote the efficiency of the ER process as a function of the incident
N(g) kinetic energy Ei in simulations of atomic N scattering on N-covered Ag(111). Filled symbols
account for the efficiencies obtained when an effusive atomic beam of 〈Ei〉= 4.3 eV is used. The
ER cross-section, σ , can be formulated as the efficiency times the area per adsorbed atom.
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Figure 4: Initial impact parameter distributions of all the incident N(g) atoms, P0 (solid line), and
the ones that result in ER reactions of atomic N on N-covered Ag(111), Pr, obtained from GLO
(dashed line) and adiabatic frozen surface calculations (dotted line). The vertical lines indicate
the geometrical threshold values (see text) for the PES boundary choice made in the present work,
Rs = 2.2 Å.
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Construction of the 6D PES

The interaction energy of the N2 molecule with the Ag(111) surface is described with a full adi-

abatic six-dimensional (6D) potential energy surface (PES) that depends on the center of mass

position RCM = (XCM,YCM,ZCM) and the internal coordinates (r,θ ,ϕ) of the molecule. The PES

is constructed from the interpolation of 6578 ab-initio energies corresponding to 11 values for r,

23 for ZCM and 26 for different configurations of (XCM,YCM,θ ,ϕ).

All ab-initio data are obtained using the DFT “Vienna Ab initio Simulation Program” (VASP)

code 1 that operates with a plane-wave basis set. The exchange and correlation energy is calcu-

lated with the generalized gradient approximation (GGA) and the Perdew-Wang energy functional

(PW91) .2 The electron-core interaction is described with ultra-soft pseudopotentials .3 Prelim-

inary calculations have been performed to ensure that all ab initio energies are calculated to a

prescribed accuracy. Thus, the energy cutoff in the plane-wave expansion is 453 eV; the frac-

tional occupancies are determined through the broadening approach of Methfessel and Paxton4

with N=1 and σ=0.2; and, given the surface’s hexagonal geometry, the Brillouin-zone integration

is performed with a 5x5x1 Gamma Centered Grid of special k points.5

The theoretical lattice constant obtained from a bulk calculation is a=4.17 Å. This leads to an

interlayer spacing of d=2.408 Å. The Ag(111) surface is modeled by a 5-layer slab with a supercell

vector along the normal to the surface (OZ axis) of 10d. Under these conditions and keeping the

third layer fixed, the interlayer distance is relaxed to get the surface equilibrium geometry. These

relaxation corrections are however found to be almost negligible (around 0.1%) for both the first

and second interlayer distances. Once obtained, the relaxed geometry of the slab is kept frozen

for the calculations that follow. The ab-initio energies for the N2/Ag(111) system are obtained

using a (2× 2) surface structure (0.25 coverage). The energies are referred to that of the N2

molecule located parallel to the surface and midway between the two slabs, which is the simulated

asymptotic region.

Once the 6578 point energy grid is obtained, the PES is built by interpolating the ab-initio

data. The Corrugation Reducing Procedure6 is used to obtain an auxiliary, smooth, and easy
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to interpolate function F(X ,Y,Z), which is spline interpolated along the ZCM and r coordinates

and 2D Fourier interpolated within the XCMYCM plane and the angular internal coordinates. The

interpolated value of F(X0,Y 0,Z0) can easily be converted back to an interpolated system energy

E(X0,Y 0,Z0). Note that the 2D Fourier expansion is here chosen over a 2D Periodic Spline in

order to profit from the fact that it analytically respects the surface hexagonal symmetry. The

accuracy of the constructed 6D PES has been checked by comparing its output to a set of ab-initio

off-grid values. The errors are found to be of just a few tens of meV.

Derivative continuity checks at the boundary between the 3D

and the 6D PES

Eley-Rideal (ER) recombination of gas-N, N(g), and adsorbed-N on Ag(111) at saturation cover-

age, N(a), has been simulated making use of two PESs calculated ab-initio. In each MD trajectory,

the N(g) projectile departs from an initial height zi=6 Å over the Ag(111) topmost layer and (xi,yi)

coordinates generated by a conventional Monte Carlo (MC) sampling. Its incidence direction is

defined by a fixed polar angle Θi=60◦, measured with respect to the surface normal, and a ran-

dom azimuthal angle Φi generated by MC sampling, too. The hyperthermal kinetic energies have

been analysed in the present work are Ei=0.3, 1.0, 2.0, 4.0, 7.0 eV, plus an effusive beam of N(g)

gas atoms that matches the experimental atomic beam energy distribution, with average energy

〈Ei〉=4.3 eV and f whm=5.4 eV.7,8 For each energy, Ntra j=8× 105 trajectories are simulated that

will be used to extract statistical averages. Classical molecular dynamics are performed by inte-

grating the equations of motion with a time interval h≤ 10−2 fs.

As explained in the manuscript, the simulation space is divided in two parts:

(i) Previously to the collision, at distances R > Rs from the N(a) species, the N(g) dynamics are

dictated by the 3D PES on the (1×1) N-covered Ag(111) surface, V 3D, which is described

in detail in Ref.9 At this stage of the MD, surface atoms are kept fixed at their adorption

sites.
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(ii) When the projectile approaches the surface and the distance between the N(g) atom and a

N(a) atom on the surface is R < Rs, the latter atom is allowed to move, and the interac-

tion between these two atoms evolves under a 6D PES, V 6D, namely that of a N2 molecule

interacting with a clean Ag(111) surface. At this stage, recombination can take place.

Since the the influence of neighbouring adsorbates is neglected at stage (ii) of the MD, we must

dismiss from the analysis channels other than N2 formation by an ER process with fast interac-

tion with the surface. For the effusive atomic beam, we find average reaction times smaller than

0.4 ps. Other channels, such as adsorption or trapping, may prelude molecule recombination by

hot atoms or Langmuir-Hinshelwood mechanisms at longer reaction times after interaction with

several adsorbates.

The methodology above will constitute a reliable model for the ER reaction as long as N(g)

experiences a small discontinuity when crossing the boundary between the two PESs at R = Rs.

After a first stage evolving under V 3D, N(g) arrives at the boundary with position xs and velocity

ẋs. These are the initial conditions for the second part of the simulation with V 6D. The amount

of energy not conserved because of switching to another PES, δE(Rs), can be estimated from the

discontinuity in the force experienced by N(g) at the boundary using:

δE(Rs)≈ hẋs ·
[

∇V 3D(xs)−∇V 6D(xs)

]
+O(h2) (1)

Fig. Figure 1 shows the distributions of |δE| for the studied trajectories, calculated for the largest

used time step, h = 0.01 fs, and several values of Ei and Rs. In all the cases |δE| is of the order

of a few meV, much smaller than the incident energies. Distributions are broader for larger Ei

and for smaller Rs. The choice made in the present work, Rs = 2.2 Å, ensures that the energy

discontinuities will be . 2% of the Ei value with very few exceptions. Typically, the trajectories

with large |δE| are those that enter the R < Rs region at small z values, i.e. they experience a

stronger interaction with neighbouring N(a) in region (i) that is abruptly switched off when they

enter region (ii).
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Figure 1: Energy discontinuity distributions at the boundary between the 6D and 3D PES regions
for Ei values studied in the present work. Each panel accounts for two locations Rs of the boundary.
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