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Over the past two decades, following the early developments on maximally localized Wannier
functions, an ecosystem of electronic-structure simulation techniques and software packages
leveraging the Wannier representation has flourished. This environment includes codes to obtain
Wannier functions and interfaces with first-principles simulation software, as well as an increasing
number of related postprocessing packages. Wannier functions can be obtained for isolated or
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extended systems (both crystalline and disordered) and can be used to understand chemical bonding;
to characterize electric polarization, magnetization, and topology; and as an optimal basis set,
providing accurate interpolations in reciprocal space or large-scale Hamiltonians in real space. This
review summarizes the current landscape of techniques, materials properties, and simulation codes
based on Wannier functions that have been made accessible to the research community and that are
now well integrated into what is referred to as a Wannier-function software ecosystem. To begin, the
theory and practicalities of Wannier functions, starting with their broad domains of applicability to
advanced minimization methods using alternative approaches beyond maximal localization, are
introduced. The concept of a Wannier ecosystem and its interactions and interoperability with many
quantum simulations engines and postprocessing packages are then defined. The review focuses on
some of the key properties and capabilities that are empowered by such an ecosystem (from band
interpolations and large-scale simulations to electronic transport, Berryology, topology, electron-
phonon couplings, dynamical mean-field theory, embedding, and Koopmans functionals) and
concludes with the current status of interoperability and automation. The review aims at highlighting
the basic theory and concepts behind codes while providing mentions of more in-depth references.
It also elucidates the relationships and connections between codes and, where relevant, the different
motivations and objectives behind their development strategies. Finally, an outlook on future
developments is provided and comments are made on the goals of biodiversity and sustainability for
the entire software ecosystem.
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I. INTRODUCTION

Wannier functions (WFs) (Wannier, 1937), and, in particu-
lar, maximally localized Wannier functions (MLWFs)
(Marzari and Vanderbilt, 1997), provide an accurate, compact,
and localized representation of the electronic-structure
problem and have become widely used in computational
condensed-matter physics and materials science (Marzari
et al., 2012).
Thanks to developments in theory, algorithms, and imple-

mentations over the past few decades, as summarized in
Sec. II, it has now become possible to widely apply the
concept of MLWFs to single-particle theories, particularly to
Kohn-Sham (KS) density-functional theory (DFT) simula-
tions, to obtain localized orbitals from Bloch states, which can
themselves be represented with localized or extended basis
sets such as plane waves. On the one hand, these develop-
ments have benefited from profound connections between
WFs and physical quantities such as electric polarization,
orbital magnetization, and topological invariants (Vanderbilt
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and King-Smith, 1993; Thonhauser et al., 2005; Xiao, Shi,
and Niu, 2005; Soluyanov and Vanderbilt, 2011b; Vanderbilt,
2018). On the other hand, the ability to obtain MLWFs from
DFT simulations can enable the calculation of physical
quantities with high accuracy but at a fraction of the computa-
tional cost thanks to their role as accurate interpolators (Souza,
Marzari, and Vanderbilt, 2001; Lee, Nardelli, and Marzari,
2005; Yates et al., 2007). Finally, although they are not
discussed here, localized representations have long been
pioneered by the quantum chemistry community to interpret
coordination and bonding (Edmiston and Ruedenberg, 1963),
and MLWFs extend to periodic systems the concept of Foster-
Boys localized orbitals (Boys, 1966) thanks to algorithmic
breakthroughs in calculating the position operator in solids
(Blount, 1962; Zak, 1989; Nenciu, 1991; Resta, 1992; King-
Smith and Vanderbilt, 1993).
Wannier functions are typically localized or even exponen-

tially localized (Brouder et al., 2007; Panati, 2007; Panati and
Pisante, 2013) and, due to the nearsightedness of interacting
electrons (Des Cloizeaux, 1964a, 1964b; Kohn, 1996), local
electronic properties depend only on the nearby environment
(Bianco and Resta, 2011, 2013; Marrazzo and Resta, 2016,
2019). As a consequence, the resulting Hamiltonian matrix
expressed in a localized basis set [such as MLWFs (Calzolari
et al., 2004; Lee, Nardelli, and Marzari, 2005)] becomes
sparse; i.e., it displays negligible matrix elements—or hop-
pings, in the language of a tight-binding (TB) formalism—if
the distance between the corresponding localized basis func-
tions exceeds a given threshold. In this sense MLWFs
constitute an optimal choice, as they decay exponentially in
real space (Panati and Pisante, 2013) and minimize a locali-
zation functional by design (Marzari and Vanderbilt, 1997;
Marzari et al., 2012). The resulting MLWFs can be used as a
basis set to build, LEGO-like, the electronic structure of large-
scale nanostructures (Lee, Nardelli, and Marzari, 2005) [that,
thanks to the sparsity of the resulting Hamiltonian matrix, can
be solved with linear-scaling methods (Mauri, Galli, and Car,
1993; Ordejón et al., 1993; Nunes and Vanderbilt, 1994)],
or as highly accurate interpolators of electronic properties,
operators, and quantities defined as integrals over the
Brillouin zone (BZ) of periodic systems (Souza, Marzari,
and Vanderbilt, 2001; Yates et al., 2007). Interpolation on
dense grids becomes essential when fine features need to be
resolved, as when integrals are restricted to lower-dimensional
manifolds (such as the Fermi surface, in the case of transport
properties of metals).
MLWFs are now routinely used in many research areas

of condensed-matter physics and materials science. In
Sec. II we summarize past and current challenges, discus-
sing how we reached the current state. The flourishing of
this field is not only due to theoretical advances but also
strongly driven by the concerted development of accessible
and efficient software. Indeed, thanks to the availability of
robust software packages (often open source, thus encour-
aging further contributions) and to the user support pro-
vided by developers, researchers can now not only easily
compute MLWFs but also use them as core ingredients for
advanced simulations. As more codes appear, they adopt
the de facto standardization of input and output formats,
resulting in a set of interacting and interoperating codes

that we refer to here as the Wannier-function software
ecosystem.
This review does not aim to provide an extensive discussion

of the theory of MLWFs, for which we refer the interested
reader to Marzari et al. (2012), although we do provide a
general introduction to the field in Sec. I.A. Instead, the goal is
to discuss the nature of the ecosystem and the capabilities
of existing codes, focusing in Sec. III on a selection of
physical phenomena or quantities that can be efficiently
predicted thanks to WFs, and on how WFs are used as an
ingredient to extend the accuracy of beyond-DFT simulations.
Nevertheless, we do mention a few notable developments of
the past decade whenever they are useful for contextualizing
the theoretical and software developments. Our aim is to help
newcomers and existing practitioners alike navigate the
ecosystem: which properties can be computed by which
codes, when and why the use of WFs is beneficial, which
quantities are exchanged between codes, and how interoper-
ability is being addressed.
To facilitate the discussion of the codes, in this review we

group them into three major categories:Wannier engines, i.e.,
codes to obtain WFs; interface codes between the first-
principles engines (for example, DFT or GW codes) and
the Wannier engines; and Wannier-enabled codes, which
range from relatively simple postprocessing tools to more
advanced codes that use WFs as one of the ingredients to
accelerate accurate simulations. A fourth category of codes
that we discuss in Sec. III.J encompasses automation work-
flows. Indeed, until recently the generation of WFs typically
required human intuition by experienced researchers to
provide initial trial orbitals. This barrier has largely been
removed through recent algorithmic and automation efforts
(see Sec. II.D), thereby enabling the use of WFs both by new
users and for high-throughput materials discovery and char-
acterization. In the latter case managing thousands (or more)
simulations poses new challenges that require not only the use
of robust workflow engines but also the implementation of
WF-specific workflows to effectively interconnect multiple
codes within the ecosystem. We conclude in Sec. IV with
some perspectives on the field related to the sustainability of
the entire effort, current challenges that still need to be
addressed, and possible future developments.

A. Ab initio electronic structure and Wannier functions

Electronic-structure simulations aim to determine the
behavior of electrons in materials and molecules, as governed
by the Schrödinger or Dirac equations. Electrons feel
Coulomb interactions among themselves and with the nuclei,
in addition to couplings with external fields (for example,
electrical, magnetic, or electromagnetic) or perturbations
(such as strain and phonons). The core electrons of heavy
chemical elements can reach relativistic speeds, thus requiring
the Schrödinger equation to be corrected with terms obtained
from an expansion of the Dirac equation in powers of 1=c2,
where c is the speed of light. The most relevant relativistic
correction is spin-orbit coupling, which is responsible for
several important phenomena related to magnetism and to
geometrical and topological properties of the electronic
manifold; see Secs. III.E and III.F.
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An exact solution of the Schrödinger equation (either a bare
solution or one with relativistic corrections) would give access
to essentially all properties of materials. This problem was
already clear in 1929 when Paul Dirac declared, “The under-
lying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus
completely known, and the difficulty is only that the exact
application of these laws leads to equations much too
complicated to be soluble” (Dirac, 1929).
For more than 50 years, ab initio or first-principles methods

have been developed to approximately solve the Schrödinger
equation in realistic settings (Giustino, 2014; Martin, 2020),
with more accurate strategies and theories being developed.
In parallel the exponential growth of computational power
(Moore’s law) has allowed these new theoretical instruments
to be deployed through numerical simulations that constantly
seek to not only improve accuracy but also target more
complex and realistic systems. Numerical solutions quickly
became sufficiently accurate to be predictive for a number
of properties in relevant systems: the era of first-principles
materials modeling had begun (Yin and Cohen, 1980;
Marzari, Ferretti, and Wolverton, 2021).
An iconic example is given by DFT, which has made it

possible to determine the electronic structure of complex
materials with reasonable accuracy at low cost. In DFT the
total energy of the electrons is expressed as a functional of
the electronic charge density (Giustino, 2014; Martin, 2020).
The theory is supported by two pillars, the Hohenberg-Kohn
theorems, which not only state a one-to-one correspondence
between the ground-state many-body wave function and the
ground-state charge density but also formulate a variational
total-energy functional: the solution of the Schrödinger
equation can be recast as a minimization problem for the
charge density, a much simpler object (a real function of r)
than the many-body wave function we started from (a complex
function of 3Ne variables, whereNe is the number of electrons
in the system).
In KS DFT the interacting many-body problem is mapped

onto a noninteracting problem sharing the same ground-state
charge density but in the presence of a suitable local external
potential; the latter is generally unknown. This ansatz enables
the kinetic energy contribution to be calculated accurately
through the second derivatives of the KS orbitals; this quantity
is difficult to calculate directly from the charge density alone.
The success of DFT has been possible thanks also to the
discovery and development of simple functionals that approxi-
mate the exact, but unknown, total-energy functional. Hence,
the KS-DFT approach to solving the many-body Schrödinger
equation translates into solving a set of noninteracting one-
particle Schrödinger equations in the presence of an external
potential that depends, self-consistently, upon the charge
density only. Although the importance of DFTwas recognized
through the 1998 Nobel Prize in Chemistry awarded to Walter
Kohn (for DFT) and John Pople (for computational methods
in quantum chemistry), its impact on the physics community
has been, if possible, even greater: the top ten most highly
cited articles published by the American Physical Society deal
with DFTand its related applications (Talirz, Ghiringhelli, and
Smit, 2021).

The electronic structure of materials and molecular systems
is at the same time both similar and different. To some extent
extended bulk materials can be seen as large molecules and
one could focus on the local electronic structure in real space,
which is periodically repeated in the case of crystalline
materials such as metals, semiconductors, and oxides. This
viewpoint is supported by the mathematical structure of the
Schrödinger equation and its solutions, as observed by Kohn
(1996): the electronic structure is fundamentally a local
property, “nearsighted” to what happens farther away in real
space. The effect of chemical bonding and the presence of the
lattice can be seen as perturbations to the case of isolated
atoms, with their well-defined s, p, d, and f orbitals. This
perspective is powerful and foundational for linear-scaling
methods, which target the simulation of large systems and
leverage a description based on localized orbitals. Yet,
materials are not just large molecules, and “more is different”
(Anderson, 1972). Extended systems are practically infinite
and can thus be described using periodic boundary conditions
(PBCs). As discussed in more formal terms in Sec. II, the
electronic structure of a material under PBCs is more naturally
described in terms of Bloch orbitals, which are not localized in
real space. Indeed, a different perspective often drives the
discussion of the electronic structure of periodic crystals: the
behavior in reciprocal (i.e., Fourier-transformed) space. A
textbook example is semiconductor physics, which is in
general much better understood (and taught) by studying
solutions of the Schrödinger equation in such reciprocal space.
This approach, which is somewhat orthogonal to the large-
molecule perspective, is indeed also powerful at both a
conceptual and a practical level. As a side note, many
electronic-structure codes for materials actually adopt a
completely delocalized basis (for example, plane waves) to
describe the periodic part of the Bloch orbitals (Pickett, 1989;
Martin, 2004, 2020).
How can we reconcile these two (almost opposite) per-

spectives? One can use the fundamental “gauge freedom” of
quantum mechanics: First, any quantum state is defined
modulo a phase factor. Second, if one considers a set of
single-particle states separated in energy from other states,
then any trace operation on this manifold is invariant with
respect to any unitary transformation among the orbitals; we
call this a generalized gauge freedom. However—and this is
the crucial aspect—the localization properties of that set of
states strongly depend on their gauge.
WFs provide a rigorous and insightful way to reconcile the

real-space and localized perspective with the reciprocal-space
(Fourier) and delocalized one. As clarified in Sec II, MLWFs,
in particular, exploit the generalized gauge freedom to trans-
form delocalized orbitals into localized ones (and vice versa)
by constructing the proper unitary matrices.

II. WANNIER-FUNCTION FUNDAMENTALS

The electronic structure of periodic crystals is most com-
monly described in terms of Bloch waves ψnkðrÞ ¼
unkðrÞeik·R, where k is the crystal momentum and n is the
band index. This is the case in textbooks on solid-state theory,
but also for the many software packages that solve the KS
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equations for crystalline solids. A few years after Felix
Bloch developed the theory of electron waves in periodic
crystals (Bloch, 1929), Gregory Wannier introduced an alter-
native representation in terms of an orthonormal set of
localized functions (Wannier, 1937), the Wannier functions.
Given an isolated Bloch band n, the WF wnRðrÞ ¼ hrjRni ¼
wn0ðr −RÞ associated with the unit cell labeled as lattice
vector R is defined as (Wannier, 1937)

jRni ¼ Vcell

ð2πÞ3
Z
BZ

dke−ik·Rjψnki; ð1Þ

where Vcell is the unit-cell volume.
Since their inception, WFs have been employed as a

conceptual tool to tackle problems in solid-state physics;
see Kivelson (1982). However, in the first 60 years following
Wannier’s paper, there were few actual calculations of WFs
for real materials; see Callaway and James Hughes (1967),
Satpathy and Pawlowska (1988), and Sporkmann and Bross
(1994). The main obstacle was the fact that WFs are strongly
nonunique, as they are sensitive to the generalized gauge
freedom discussed earlier, for example, to k-dependent phase
changes jψnki → e−iβnk jψnki, with βnk ∈R (gauge transfor-
mations), of the Bloch eigenstates. In addition, the energy
bands of real materials typically become degenerate at points,
lines, or even entire planes in the BZ. The presence of
degeneracies leads to poor localization properties of the
WFs obtained from Eq. (1) because no matter how the phase
factors e−iβnk are chosen, the Bloch eigenfunctions are non-
differentiable functions of k at the degeneracy points.

A. Maximally localized Wannier functions

In the following we discuss the widely used Wannierization
methods introduced by Marzari and Vanderbilt (1997) and
Souza, Marzari, and Vanderbilt (2001); see Sec. II.D for an
overview of more recent and advanced minimization methods.

1. Isolated composite groups of bands

Consider a group of J Bloch bands of orthonormal jψnki
Bloch states that may be connected among themselves by
degeneracies but are isolated from all lower or higher bands,
such as the six valence bands in Fig. 3. Given such a
composite group, the most general expression for the asso-
ciated WFs is (Marzari and Vanderbilt, 1997)

jRji ¼ Vcell

ð2πÞ3
Z
BZ

dke−ik·RjψW
jki; ð2aÞ

jψW
jki ¼

XJ
n¼1

jψnkiUk;nj; ð2bÞ

where Uk are J × J unitary matrices that describe the
generalized (multiband) gauge freedom within the Bloch
manifold at each k. The superscript W denotes a Wannier
gauge, as opposed to a Hamiltonian gauge (later denoted by
H), where the Hamiltonian matrix is diagonal. Note that,
unlike in Eq. (1), in Eq. (2) there is not a one-to-one

correspondence between the band index n and the intracell
Wannier index j.
Marzari and Vanderbilt (1997) introduced the concept of

MLWFs, in which the Uk matrices are chosen so as to
minimize the total quadratic spread of the WFs,

Ω ¼
XJ
j¼1

½h0jjr2j0ji − jh0jjrj0jij2�: ð3Þ

As discussed in Sec. II.C.1, the spread (also known as
localization) functional Ω and its gradient with respect to
an infinitesimal gauge transformation can be expressed in
reciprocal space; furthermore, the BZ integration in Eq. (2) is
replaced by a discrete sum ð1=NÞPk, where N is the number
of k points in the finite grid used in the numerical simulations
and the optimal Uk matrices are found by iteratively mini-
mizing the functional Ω; see Marzari and Vanderbilt (1997)
for the mathematical details.
From general Fourier-transform considerations (Duffin,

1953), the good real-space localization properties of the
MLWFs on the left-hand side of Eq. (2) mean that the
Bloch-like states jψW

jki appearing on the right-hand side are
smooth functions of k for the optimal choice ofUk matrices in
Eq. (2b) (or for any other choice leading to well-localized
WFs).
The details of the Marzari-Vanderbilt (MV) methodology

were given by Marzari and Vanderbilt (1997) and Marzari
et al. (2012); in the case of single k-point sampling (large
unit cells), it is equivalent to the Foster-Boys scheme used
in quantum chemistry to construct localized molecular
orbitals (Boys, 1966). It should be noted that other localization
criteria can be used for the purpose of obtaining localized
orbitals, such as the Edmiston-Ruedenberg (Edmiston and
Ruedenberg, 1963) and Pipek-Mizey approaches (Pipek and
Mezey, 1989), which are based on maximizing the Coulomb
self-repulsion of the orbitals and the sum of the squares of the
Mulliken charges (Mulliken, 1955) associated with the orbi-
tals, respectively. While these approaches are more challeng-
ing to adapt to a periodic, multi-k-point formulation, there has
been recent work to obtain WFs for periodic systems using
the Pipek-Mizey localization criterion (Jónsson et al., 2017;
Clement, Wang, and Valeev, 2021). Nevertheless, the MV
approach of minimizing the quadratic spread is still the most
widely used approach for periodic systems.
To provide an illustrative example of the Wannierization

procedure, we now discuss the simple example of a slightly
dimerized polyynelike carbon chain, i.e., a chain of carbon
atoms with two atoms per unit cell and alternating distances d1
and d2. Figure 1 displays the results of actual DFT calcu-
lations, where carbon-carbon distances are d1 ¼ 1.245 Å and
d2 ¼ 1.345 Å, and the lattice parameter is thus a ¼ 2.6 Å.We
compute the electronic band structure of this linear chain with
the Quantum ESPRESSO code (Giannozzi et al., 2009,
2017), which uses pseudopotentials with a plane-wave basis
set, where the bands originating from the 1s orbitals of carbon
are not explicitly computed. If these 1s core orbitals were
computed explicitly, they would form almost-flat bands (since
the orbitals are highly localized) at lower energy. At the center
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FIG. 1. Band-by-bandWannierization of the two lowest bands of a dimerized carbon chain. (a) Graphical representation of the 4-times-
longer supercell where all quantities are plotted in (c)–(h). Given our sampling of the BZ with four k points, both the Bloch states and the
WFs have the supercell periodicity. The eight carbon atoms are represented as dark (red) spheres, and the primitive cell of length a is
marked as the orange (gray) segment. As marked in (a), one axis is the real-space x axis of the carbon chain, while the other two are used
to plot the real and imaginary components (green and red, respectively) of complex wave functions ψðx; 0; 0Þ along x (the profiles are
highlighted in blue in subsequent panels). Multiplying ψ by a phase factor eiϕ corresponds to a rotation by an angle ϕ, as indicated by the
circular arrow. (b) 3D isosurfaces of the resulting MLWFs for each of the two bands (band n ¼ 1 leads to WF1 and n ¼ 2 leads to WF2).
(c) The Bloch orbitals ψnk as calculated by the ab initio (DFT) code at the k points k1 ¼ Γ ¼ ð0; 0; 0Þ, k2 ¼ ðπ=2a; 0; 0Þ,
k3 ¼ X ¼ ðπ=a; 0; 0Þ, and k4 ¼ ð3π=2a; 0; 0Þ, which are indicated by the blue dots and vertical orange lines in the center, together with
the full DFT band structure. (d) The sum of these Bloch orbitals, as in the original Wannier definition of Eq. (1), delivers WFs that are not
well localized (labeled “WF” in the panel). (e) The construction of a MLWF associated with the second lowest band (n ¼ 2). For an
isolated band in one dimension, the procedure amounts to a complex phase rotation at each k point; the optimal values of these complex
phases for this specific example are indicated. (f) The sum of these rotated Bloch states results in the MLWFWF2, which is also shown in
(b). (g),(h) Same as (e) and (f), but for the lowest band (n ¼ 1).

Antimo Marrazzo et al.: Wannier-function software ecosystem for materials …

Rev. Mod. Phys., Vol. 96, No. 4, October–December 2024 045008-6



of Fig. 1(c), we show the two lowest bands considered in the
DFT calculation. A projected density of states calculation (not
shown in the figure) shows that these two lowest bands
originate from a combination of 2s and 2px orbitals centered
on the two atoms in the unit cell. In addition to being separated
from all other bands, these two bands are also separated from
each other by a small gap at X (the two bands would instead be
degenerate at X for a nondimerized chain, i.e., when d1 ¼ d2).
Therefore, they are isolated, and each of them can be
Wannierized separately.
In Fig. 1(c) we also plot the wave functions ψnk as provided

by the ab initio engine, computed on a regular 4 × 1 × 1 grid
in the BZ composed of the four points k1 ¼ Γ ¼ ð0; 0; 0Þ,
k2 ¼ ðπ=2a; 0; 0Þ, k3 ¼ X ¼ ðπ=a; 0; 0Þ, and k4 ¼
ð3π=2a; 0; 0Þ. The legend to interpret these plots is provided
in Fig. 1(a). In particular, we represent the real (green) and
imaginary (red) components of complex wave functions (ψnk,
ψW
nk, etc.) along the x axis passing through the carbon chain,

i.e., ψnkðx; 0; 0Þ. Given the 4 × 1 × 1 sampling of the BZ,
both the wave functions and the resulting WFs are periodic in
a real-space 4 × 1 × 1 supercell, i.e., the same one shown in
Fig. 1. Note that, while in most cases the ψnk are eigenstates
of the Hamiltonian, this might not be true for all codes. In
general, the phases of each state ψnk are random (for example,
they often come from independent diagonalizations at each
k point). In addition, if we consider multiple bands with
degeneracies, then the degenerate states would also be
randomly mixed among each other. (This would happen at
the k point X for a nondimerized chain, as discussed earlier.)
As a consequence, the simple sum of the ψnk according
to Eq. (1) does not provide a well-localized function, as shown
in Fig. 1(d).
However, each ψnk at every k point can be rotated by

the optimized Uk matrices obtained from a Wannierization
procedure. In this case, since J ¼ 1, theUk at each k point is a
1 × 1 matrix, i.e., simply a complex phase Uk ¼ eiϕk that can
be visualized as a rotation in the plot; this is marked with the
circular blue arrow in Fig. 1(a). In this simple one-dimensional
case (i.e., for a single band), the Wannierization is essentially
trivial, as discussed by Marzari and Vanderbilt (1997). One
simply has to require that the same-band overlaps between
adjacent k points be equal to eiϕn=4, where ϕn is the Berry
phase of the entire band n and the factor 1=4 accounts for the
fact that there are four k points; see Eq. (69) in Sec. III.F for a
discussion of Berry phases. This condition is realized by
making the appropriate phase rotations eiϕk at every k point
that counterbalance the random phases coming from the
ab initio code, thus delivering maximal smoothness in
reciprocal space, corresponding to the so-called twisted
parallel-transport gauge (Vanderbilt, 2018). The rotated states
ψW
nk are shown in Figs. 1(e) and 1(g) for the second lowest

(n ¼ 2) and lowest bands (n ¼ 1), respectively. When these
ψW
nk are summed as prescribed by Eq. (2), localization

emerges and we obtain the final MLWFs WF1 and WF2,
shown in Figs. 1(f) and 1(h), respectively, and in Fig. 1(b) as
3D isosurfaces. Note that a final global phase rotation might
be required to ensure real-valued MLWFs. Intuitively, WF1
can be interpreted as predominantly originating from a linear

combination of s orbitals on the C atoms, while WF2 can be
interpreted as predominantly originating from a linear combi-
nation of px orbitals on the C atoms (with opposite signs
so that the positive part of the px orbitals centered on two
neighboring C atoms sums constructively in the middle of the
C–C bond).
We can also treat the two bottom energy bands as a

composite group. In this case Uk are 2 × 2 unitary matrices
whose action on the Bloch wave functions

ðψW
1 ψ

W
2 Þ ¼ ðψ1ψ2Þ

�
U11 U12

U21 U22

�
ð4Þ

is schematically represented in Fig. 2(a). We note that, in such
a simple case with only two bands, the action of a unitary
matrix could generally be interpreted as a sequence of
complex phase rotations of the two initial states, a rotation
that mixes the two states, and a final additional complex phase
rotation between the two final states. In this case each pair
of ψnk at every k point can be mixed by the optimized Uk
matrices obtained from a Wannierization procedure. The
rotated states ψW

nk are shown in Fig. 2(e) [we repeat in
Figs. 2(c) and 2(d) the same band structure and ψnk wave
functions as in Figs. 1(c) and 1(d)]. When these ψW

nk are
summed as prescribed by Eq. (2), we obtain the final MLWFs
jRji (j ¼ 1 and 2) shown in Fig. 2(f), and localization is now
apparent (Fig. 2 shows the MLWFs for R ¼ 0). As before, a
final global phase rotation might be required to ensure real-
valued MLWFs. Finally, we note that, since we now give more
freedom to the states to mix, the resulting MLWFs are more
localized than those in Fig. 1(b). In addition, the two WFs
of Fig. 1 (separate Wannierization) can be obtained as a
linear combination of the eight WFs of Fig. 2 (combined
Wannierization), i.e., WF1 and WF2 translated by R−1 ¼
ð−a; 0; 0Þ, R0¼ð0;0;0Þ,R1 ¼ ða; 0; 0Þ, and R2 ¼ ð2a; 0; 0Þ.
The opposite is also true: WF1 and WF2 of Fig. 2 are a linear
combination of the eight WFs of Fig. 1 translated byR−1,R0,
R1, and R2.

2. Entangled bands

The previously described MVapproach provides a means to
construct well-localized WFs from isolated groups of bands,
such as the valence bands of insulators. However, it is often
useful to obtain WFs from nonisolated (or “entangled”)
groups of bands. Typical examples include the low-lying
conduction bands or the valence plus conduction bands of
insulators (see Fig. 3), and the bands crossing the Fermi level
in metals.
A possible strategy to deal with such cases is to first identify

an appropriate J-dimensional Bloch manifold at each k point
from a larger set of J k Bloch eigenstates jψmki, for example,
the ones within some energy window. Formally, this band-
disentanglement step can be expressed as

jψ̃nki ¼
XJ k

m¼1

jψmkiṼk;mn; ð5Þ
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where Ṽk are J k × J matrices satisfying Ṽ†
kṼk ¼ 1J×J.

Souza, Marzari, and Vanderbilt (2001) introduced a practical
scheme to extract an optimally smooth Bloch-like subspace
P̂ ¼ P

J
n¼1jũnkihũnkj across the BZ, from which a set of

MLWFs could then be obtained using the MV prescription.
The resulting “disentangled WFs” are given by Eq. (2), with
the ab initio Bloch eigenstates jψnki therein replaced by the
disentangled Bloch-like states jψ̃nki, that is,

jRji ¼ 1

N

X
k

e−ik·RjψW
jki; ð6aÞ

jψW
jki ¼

XJ k

n¼1

jψnkiVk;nj; ð6bÞ

where the J k × J matrices Vk ¼ ṼkUk encode the net
result of the disentanglement (subspace-selection) and

FIG. 2. Same as Fig. 1 but now treating the two lowest bands as a composite group. (a) Graphical representation of the generalized
gauge transformationUk in Eq. (4) that mixes the Bloch states from the two bands. As the result of this mixing, it is no longer possible to
associate each MLWF obtained from Eq. (1) with a specific band. By taking advantage of the generalized gauge freedom, the two
composite MLWFs in the R ¼ 0 cell, shown in (b) and (f), are better localized than their single-band counterparts in Fig. 1. Note that
WF1 andWF2 are not identical (i.e., they are not related by a rigid translation), even though they are both bond centered and look similar.
This is because the chain is dimerized, and thus the respective bond lengths are different.
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maximal-localization (gauge-selection) steps. As in the case of
Eq. (2), the states jψW

jki in Eq. (6) are smooth functions of k
whenever the associated WFs are well localized.
The disentanglement step can be carried out in such a way

that the ab initio eigenstates are described exactly within a
“frozen” or “inner” energy window that is contained by the
“outer” energy window mentioned earlier (Souza, Marzari,
and Vanderbilt, 2001). This is useful when studying trans-
port properties, for which one wants to obtain a faithful
description of the states within some small energy range
around the Fermi level. Note that, because of these energy
windows, the required input from the first-principles cal-
culation includes the energy eigenvalues εnk in addition to
the overlap matrices Eq. (12). For illustrative purposes in
Fig. 4 we display the Ṽk matrices as calculated for the
carbon chain discussed earlier. We also stress that, in this
simple illustrative example, we can exactly disentangle all
six bands from the rest, but this is not true in general; see the
conduction bands in Fig. 3.
Over the years many alternative approaches and algo-

rithms have been developed—from partially occupied
Wannier functions (Thygesen, Hansen, and Jacobsen,
2005; Fontana et al., 2021) to quasiatomic orbitals (Qian
et al., 2008) to the selected columns of the density matrix
(SCDM) (Damle, Lin, and Ying, 2015; Damle, Lin, and
Ying, 2017) to projectability disentanglement and manifold
remixing (Qiao, Pizzi, and Marzari, 2023a; Qiao, Pizzi, and
Marzari, 2023b). These and other approaches are discussed
in Sec. II.D.

3. The projection method

The MV and Souza-Marzari-Vanderbilt (SMV) approaches
leverage iterative minimization. Hence, a good starting guess
for the unitary matrices Uk and Ṽk is crucial to avoid being
trapped in local minima of the spread functional. A popular
approach is the projection method, where a set of J localized
“trial functions” gnðrÞ are chosen by guessing the orbital
character and location of the target WFs. These functions are
typically Gaussians, atomiclike orbitals with angular character
such as s, p, and d or hybrid orbitals such as sp3. The first step
is to project the Bloch manifold onto these trial orbitals,

jϕnki ¼
XJ k

m¼1

jψmkihψmkjgni: ð7Þ

Then Löwdin orthonormalization is performed by inverting
the overlap matrix Sk;mn ¼ hϕmkjϕnki ¼ ðA†AÞk;mn,

jψ̃nki ¼
XJ k

m¼1

jψmkiðAkS
−1=2
k Þmn; ð8Þ

where Ak;mn ¼ hψmkjgni is called the projection matrix. The

matrix AkS
−1=2
k is unitary and can be computed through the

singular value decomposition of A ¼ ZDW,

AkS−1=2 ¼ Z1W; ð9Þ

where the diagonal matrix D is replaced by the identity 1.

FIG. 3. MLWFs and band structure of the 2D material HfSe2. Center panel: comparison between the DFT band structure (black lines)
and the Wannier-interpolated band structure from valence MLWFs only (VB; red dashed lines) and from low-lying conduction MLWFs
only (CB; green dotted lines) are shown. Note that the Wannier-interpolated bands from both valence and conduction (VBþ CB)
MLWFs are not shown, since they are visually indistinguishable from the combination of the VB and CB MLWFs. Left panels: real-
space shapes of 11 valence and conduction MLWFs, obtained starting with Hf d and Se p initial guess orbitals, followed by
disentanglement (see Sec. II.A.2) from high-energy conduction states. Specifically, three of them resemble dxy;xz;yz orbitals, one
resembles a dz2 orbital, one resembles a dx2−y2 orbital, and the remaining six resemble p orbitals. Some small hybridization with orbitals
from nearby atoms is visible. Right panels: real-space shapes of six valence MLWFs (lower panel) and five conduction MLWFs (upper
panel). The valence MLWFs span an isolated group of bands (see Sec. II.A.1) and are composed of six hybridized bonding orbitals,
where the Hf d and Se p orbitals overlap constructively. The conduction MLWFs are instead five hybridized antibonding orbitals, where
Hf d and Se p orbitals overlap destructively, forming nodal planes close to bond centers. The notation ×n below each shape denotes the
multiplicity of the corresponding MLWF, i.e., n MLWFs having similar shapes but different spatial orientation.
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The choice of trial orbitals is less critical for composite
bands than for entangled bands, and for simple compounds
even a set of Gaussians randomly centered in the cell might
work. We emphasize that if the manifold of composite bands
coincides with the valence bands of an insulator or semi-
conductor, then the MLWFs will reflect the local chemistry.
For instance, in covalent materials MLWFs are typically bond
centered as in Si or GaAs (Marzari and Vanderbilt, 1997), with
some notable exceptions such as MoS2 (Gibertini, Pizzi, and
Marzari, 2014) where one WF is centered in the middle of the
hexagonal cell due to the hybridization of several orbitals. On
the contrary, the SMV disentanglement hinges on a careful
choice of trial functions that defines the orbital character of the
bands to be extracted. While disentangling the valence and
conduction manifold often yields atom-centered WFs, this is
not true in general: MLWFs for the low-lying bands of copper

result in five Cu d-like WFs and two additional WFs centered
at the tetrahedral-interstitial sites (Souza, Marzari, and
Vanderbilt, 2001). Different aspects of the projection method
are discussed in Secs. II.C and II.D.

B. Major applications of Wannier functions

1. Interpolation

An efficient interpolation in reciprocal space of k-dependent
quantities, arguably the most common application of WFs,
enables the calculation of electronic-structure properties that
can be simple (for example, the band structure) or complex
(for example, electron-phonon coupling). A large part of this
review is devoted to the fundamentals of WF interpolation
(Sec. III.C) and their applications, including ballistic transport
(Sec. III.D), Berry-phase-related properties (Sec. III.E), and

FIG. 4. Illustration of the disentanglement procedure for the same linear carbon chain as in Figs. 1 and 2. (a) Graphical representation
of the Ṽk;mn matrices in Eq. (5) at k points k ¼ k1, k2, k3, and k4. The color scale represents the absolute values of the matrix elements
from black (zero) to white (maximum absolute value). The index m (from 1 to 16) labels the bands, and the index n (from 1 to 6) labels
the disentangled Bloch states jψ̃nki. (b) Band structure of the carbon chain. Dotted gray points denote the DFT bands, whereas solid
lines indicate the disentangled (Wannier-interpolated) bands. The frozen energy window is shown with a red (light gray) background,
while the energy range with the dark gray background is outside the disentanglement window. The relevant band indices at k1, k2, k3,
and k4 are indicated. The six disentangled bands are shown: the bottom two are the same bands as in Figs. 1 and 2, while the top four are
doubly degenerate. To construct the topmost four bands, the disentanglement procedure correctly picks up the optimally connected DFT
bands as a function of k: bands 11 and 12 at k1, bands 6 and 7 at k2 and k4, and bands 5 and 6 at k3. Notably, in this example the four
topmost bands can be exactly disentangled from all other DFT bands such that the disentangled bands coincide at every k with the
corresponding DFT bands. We note, however, that this is not possible in general for an arbitrary band structure; compare these bands to
the conduction bands in Fig. 3. (c) Resulting MLWFs on a 4 × 1 × 1 supercell [the primitive unit cell is indicated by the orange (gray)
segment]. Since in this example the disentanglement matrices Ṽ are block diagonal (as well as the U matrices from the Wannierization
procedure, which are not shown), the two bondinglike MLWFs originate only from the bottom two bands and do not mix with the four
py and pz MLWFs from the other four bands.
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electron-phonon interactions (Sec. III.G). As discussed in
Sec. III.C, the reason for such a widespread set of applications
(not all of which are covered in this review) is that WFs can be
easily applied to any generic operator that is local in reciprocal
space, i.e., any lattice-periodic operator. More generally we
note that even some nonlocal operators in reciprocal space
(such as those containing the position operator, which is not
lattice periodic and transforms into k derivatives) can also be
interpolated; see the discussion of “Berryology” in Sec. III.E.
Equally important is that WFs allow the correct band con-
nectivity to be reproduced: in particular, avoided crossings are
not mistaken for actual crossings. This distinguishes Wannier
interpolation from other methods based on direct Fourier
interpolation of the energy eigenvalues. In other words, WFs
allow one to exploit the fundamental locality [“nearsighted-
ness,” according to Kohn (Des Cloizeaux, 1964a, 1964b; Kohn,
1996)] of the electronic structure and the related exponential
localization of WFs to construct a potentially exact representa-
tion of an operator in real space such that any interpolation back
to reciprocal space is exact as well. The procedure is also
systematic, as WFs are guaranteed to exist and the convergence
is exponential with the linear sampling density (Brouder et al.,
2007; Panati, 2007; Panati and Pisante, 2013). Naturally,
prefactors and coefficients will depend on electronic-structure
properties such as the band gap and on the specific operator
under consideration.

2. Geometry and topology

WFs have several profound connections with quantum-
geometrical and topological aspects of the electronic structure
(Vanderbilt, 2018); some of these are discussed in Secs. III.E
and III.F. In the following we refer to topological properties as
a subset of geometrical properties that are quantized and hence
represented by integer topological invariants robust to certain
classes of perturbations. A prime example of a geometrical—
and in some circumstances also topological—quantity is the
electric polarization of periodic solids, which can be calcu-
lated in reciprocal space as a Berry phase (Vanderbilt, 2018);
see Sec. III.E. Electric polarization can also be equivalently
computed by summing over WFs centers in real space
(Marzari and Vanderbilt, 1997; Marzari et al., 2012;
Vanderbilt, 2018), which provides a more intuitive formu-
lation of the modern theory of polarization (Resta, 1992, 1994;
King-Smith and Vanderbilt, 1993; Vanderbilt, 2018) and
restores some justification to the classical Clausius-Mossotti
viewpoint (Mossotti, 1850; Clausius, 1879). While electronic-
structure geometry in reciprocal space speaks the language of
differential geometry (curvatures, parallel transport, smooth-
ness of manifolds, etc.), WFs allow the same quantities to be
expressed in terms of the matrix elements of the Hamiltonian
and position operator r̂. The reciprocal-space smoothness,
which is measured by the quantum-geometric tensor (Provost
and Vallee, 1980), can be equivalently analyzed in real space
by measuring the degree of WF localization.
To some extent the connection between WFs and topo-

logical invariants is even stronger, as the former provide not
only powerful approaches to calculate invariants for real
materials (see Sec. III.F for a discussion) but also a funda-
mental understanding of topological phases. In fact,

topological insulators are essentially systems that cannot be
connected adiabatically to atomic insulators; hence, it is
impossible to truly represent their ground state with WFs
(Thonhauser and Vanderbilt, 2006; Vanderbilt, 2018). In
reciprocal space nontrivial topological invariants translate
into unavoidable obstructions to choosing a smooth gauge
over the BZ (Bernevig and Hughes, 2013; Vanderbilt, 2018).
The fundamental connection between nontrivial topology
of electronic bands and the corresponding absence of a
Wannier representation has been generalized and made
systematic in the context of elementary band representation
(Zak, 1982; Michel and Zak, 1999), which has led to the so-
called topological quantum chemistry (Bradlyn et al., 2017;
Vergniory et al., 2017; Cano et al., 2018) [see also related
efforts on symmetry-based indicators provided by Kruthoff
et al. (2017), Po, Vishwanath, and Watanabe (2017), Khalaf
et al. (2018), and Song et al. (2018)] and has allowed
materials databases to be screened and nontrivial materials
of various classes to be identified (Tang et al., 2019; Vergniory
et al., 2019; Zhang et al., 2019; Wieder et al., 2022).

3. Advanced electronic-structure methods

DFT simulations of periodic solids can be conveniently
(but definitely not necessarily) performed by adopting a
plane-wave basis set in conjunction with smooth pseudo-
potentials that reproduce the interaction between valence
electrons and nuclei plus core electrons (Martin, 2020). The
resulting KS eigenstates are also not particularly localized
functions, and DFT is invariant under unitary rotations of the
occupied electronic states. However, several electronic-
structure methods, aiming at improving or complementing
the capabilities of DFT, fundamentally require to be for-
mulated in terms of localized orbitals; see Sec. III.H. In
addition, several of these beyond-DFT methods are not
deployed directly on the crystal structure but instead operate
more as corrections to starting DFT calculations. In addi-
tion, beyond-DFT methods can be rather computationally
intensive, and it is common practice to apply them only on a
subset of bands extracted from the entire manifold. In this
context WFs provide a robust way to bridge DFT with
advanced electronic-structure methods by allowing one to
systematically construct orthogonal localized states that
represent the manifold of interest. WFs are first constructed
on the KS-DFT solution and then fed into beyond-DFT
methods; a technical overview of how this is carried out in
practice is the subject of Sec. III.H.

C. Wannier functions for the practitioner

1. The spread functional in reciprocal space

The Blount identities (Blount, 1962) provide the matrix
elements of the position operator between WFs and prefigure
the link between macroscopic properties and integrals (Berry
phases) of Berry connections (King-Smith and Vanderbilt,
1993),

hRijrj0ji ¼ i
Vcell

ð2πÞ3
Z

dk eik·Rhuikj∇kjujki ð10Þ
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and

hRijr2j0ji ¼ −
Vcell

ð2πÞ3
Z

dk eik·Rhuikj∇2
kjujki: ð11Þ

It is through these identities that one can recast the spread
functional Ω using reciprocal-space expressions, where the
gradients and higher derivatives are obtained from finite
differences. The building blocks for these finite-difference
expressions are the overlap matrices

Mðk;bÞ
ij ¼ huikjujkþbi ð12Þ

between cell-periodic Bloch eigenstates junki at neighboring
points on a regular grid in the BZ (the b vectors connect one k
point to its neighbors on a regular discrete grid). In the limit of
dense meshes the b vectors tend to zero and the gradient in k
is recovered. This finite-difference construction remains valid
even in the case of Γ-only sampling (such as for molecular
systems treated with PBCs or when considering large super-
cells), where the neighboring k points are given by the
primitive reciprocal lattice vectors G, with the Bloch orbitals
differing only by phase factors expðiG · rÞ. We note that the
gradient in k of a function fðkÞ can be written as

∇fðkÞ ¼
X
b

wbb½fðkþ bÞ − fðkÞ� þOðb2Þ ð13Þ

using stars (“shells”) of neighboring k points where each shell
has a weight wb; see Marzari and Vanderbilt (1997) and
Mostofi et al. (2008) for detailed descriptions. For a linear
function fðkÞ ¼ f0 þ g · k, one can verify that the exact
result ∇αfðkÞ ¼ gα is recovered. In the simple case of cubic
Bravais lattices, the first shell of reciprocal-space nearest
neighbors (6, 8, or 12 for Bravais lattices in direct space that
are simple cubic, fcc, or bcc) is sufficient. The general case
where several shells need to be chosen automatically was
detailed by Mostofi et al. (2008). While the procedure is
automated, for unusual cases such as elongated cells, it might
be convenient to manually find the most symmetric choice
of shells (Posternak et al., 2002). With this definition the
diagonal matrix elements of the position operator can be
evaluated via finite differences as

h0ijrj0ii ¼ −
1

N

X
k;b

wbb Im lnMðk;bÞ
ii ; ð14Þ

where N is the number of k points on the reciprocal-space grid.
More complex expressions for the second derivatives and for
the entire spread functional can be obtained (Berghold et al.,
2000), all of which are equal to the leading order in b. The
choices made by Marzari and Vanderbilt (1997) were driven by
the need to provide the same value for the localization func-
tional under a transformation that shifts jRii via a lattice vector.
We also note that when using such a finite-difference formal-
ism, the spread functional converges slowly (polynomially)
with reciprocal-space sampling, and hence care must be taken
when comparing its actual values in the case of calculations
performed with different discrete samplings.

The finite-difference scheme is particularly convenient for
constructing MLWFs in a code-agnostic form, as the only
input needed from the original first-principles calculation is

encoded in the overlap matrices Mðk;bÞ
ij . Thus, once Mðk;bÞ

ij

have been calculated, no further interaction is necessary with
the electronic-structure code that calculated the ground-state
wave functions, making the entire Wannierization procedure
a code-independent postprocessing step; see Ferretti et al.
(2007) for an examination of the extension to ultrasoft
pseudopotentials and to the projector-augmented wave
method, and Posternak et al. (2002), Freimuth et al. (2008),
and Kune et al. (2010) for discussions of the full-potential
linearized augmented plane-wave method. In regard to the
disentanglement procedure, note that because of energy
windows the needed input from the first-principles calculation
includes the energy eigenvalues εnk in addition to the overlap
matrices (12).

2. Accuracy and convergence

While the main focus of this review is on the powerful
applications of WFs, their successful use relies on the
Wannierization process being done correctly. In the following
we comment on fundamental tests and established procedures
to assess and improve the quality of WFs.
Two major convergence parameters control the quality (and

the cost) of the Wannierization procedure: the spread mini-
mization and the k-point grid used to obtain the initial
Hamiltonian eigenstates (for example, the cell-periodic part
of Bloch states if one is working with PBCs). The spread
minimization is generally performed with an iterative steepest-
descent or conjugate-gradient algorithm until results do not
change within a certain tolerance. While the iterative algo-
rithm is generally robust, the minimization can become
trapped in local minima. As introduced in Sec. II.A.3, the
strategy to avoid that is to select a good starting point: if the
initial spread is sufficiently close to the absolute minimum,
it is more likely to reach it by following the local gradient.
Hence, particular care needs to be paid to select good
projection functions to obtain the initial unitary matrix of
Eq. (6b), which are then iteratively optimized. In the absence
of chemical intuition, a common strategy is to calculate a
projected density of states on the pseudoatomic orbitals and
identify the orbital character in the energy region of interest:
the atomic orbitals that project more on the relevant bands
can be used as the initial projection. Note that MLWFs are
often not atom centered and atomic orbitals are not always
good starting projections, as in the case of the valence bands
of monolayer MoS2 (Gibertini, Pizzi, and Marzari, 2014).
In Secs. II.D and III.J, we cover advanced methods to
automate the selection of the starting point for the mini-
mization procedure.
The spread functional measures the degree of localization in

real space and, to some extent, the efficiency of the inter-
polation. More localized WFs decay faster in real space;
hence, they require a smaller Born–von Kármán (BvK)
supercell to include all nonvanishing matrix elements of the
Hamiltonian and the other operators, which in turn allows one
to adopt coarser k-point grids in the starting electronic-
structure simulation that is performed in reciprocal space.
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Indeed, the accuracy of band interpolation can be considered
a proxy for the quality of the underlying WFs in regard to
more than just k-point convergence: especially in the case of
entangled bands (see Sec. II.A.2), poor interpolation might
signal problems in the disentanglement procedure. In
addition, we emphasize that in general the Wannierization
procedure is not forced to preserve symmetries (unless
dedicated methods designed to do so are employed; see
Sec. II.D). Hence, the spurious splitting of symmetry-
protected degeneracies in the interpolated band structure
might signal convergence problems related to the minimi-
zation, to the k-point convergence, or to the choice of
projection functions. This holds true not only for crystalline
symmetries but also for time-reversal symmetry, which is
particularly relevant in noncollinear simulations of non-
magnetic materials in the presence of spin-orbit coupling
(for example, topological insulators).
Another indicator of the quality of WFs is the ratio between

their imaginary (Im) and real (Re) parts: for isolated bands
(and not considering spin-orbit coupling), MLWFs at the
global minimum should be real functions (Marzari and
Vanderbilt, 1997). Note that the calculation of the Im or
Re part, and anything related to WFs themselves and their
visualization, requires one to have access to the full Bloch
orbitals, not just the overlap matrices. We emphasize that
different quantities derived from WFs (such as the WF spread
and centers as well as the unitary matrices Ṽk and Uk)
generally converge with different speeds, depending on the
specific formulation adopted (Stengel and Spaldin, 2006).
Finally, we remark that many of the complications related to

producing WFs for periodic solids are related to construction
of a smooth gauge across the BZ. Hence, supercell
Wannierizations with Γ-only sampling are typically more
straightforward and less prone to be trapped in local minima.
The challenge there is more on algorithmic efficiency due to
the large size of the systems involved; a number of Γ-only
dedicated methods have been developed (Silvestrelli, 1999;
Gygi, Fattebert, and Schwegler, 2003; Stubbs, Watson, and
Lu, 2021).

D. Advanced minimization methods and beyond maximally
localized Wannier functions

As discussed in Sec. II, there is in principle large freedom in
choosing the recipe to obtain well-localized WFs. One can
replace the MV spread functional with not only other cost
functions but also different minimization procedures, and their
starting points can be chosen, hence affecting the resulting
WFs and their localization properties. Over the years a number
of methods have been developed to address all of the different
aspects of the Wannierization procedure. We emphasize that,
for many of these methods, the initial guess already provides
well-localized WFs, so an iterative minimization can in
principle be avoided. The unitary matrices Uk of these
“projection-only”WFs are set directly by the initial projection
functions; see Sec. II.A.3. While this choice cannot guarantee
optimal localization properties, it has the advantage of
enforcing some degree of symmetry induced by the choice
of atomic orbitals used as projection functions. However, in all
of these cases it is possible—and in some cases even

recommended—to minimize the MV spread or some other
functional as a final step.
The prime decision deals with the functional that is to be

minimized in order to determine the unitary matrices of
Eq. (6). The most popular choice is the MVMLWF procedure
(Marzari and Vanderbilt, 1997) for composite bands (see
Sec. II.A.1) and the SMV disentanglement scheme for
entangled bands (Souza, Marzari, and Vanderbilt, 2001);
see Sec. II.A.2. The minimization of the spread functional
leads to well-localized WFs, hence reducing the size of the
BvK supercell needed to represent operators (such as the
Hamiltonian) in a WF basis. While MLWFs and disentangle-
ment represent the most convenient choice in most applica-
tions, substantial work has been done to augment the MLWF
scheme or develop alternatives that satisfy the needs of
specific applications.
The MLWF iterative algorithm leads to localized WFs in

real space but is not guaranteed to yield orbitals that preserve
desirable crystal symmetries. This is only partially relieved
using symmetric initial projections, as typically obtained
with a proper selection of atomiclike orbitals. Symmetry-
preserving WFs are appealing for providing the correct orbital
or site symmetries for many-body approaches like dynamical
mean-field theory (DMFT). Hence, it is not surprising
that several non-MLWF procedures directly or indirectly
include crystal symmetries in the functional to minimize.
In the symmetry-adapted Wannier-function (SAWF) method
(Sakuma, 2013), symmetric WFs are obtained through
additional constraints on the unitary matrices Uk, which
are based on symmetry operations of the site-symmetry group.
The SAWF method is fully compatible with the maximal-
localization procedure and the SMV disentanglement [and has
also recently been extended to the case where a frozen window
is used (Koretsune, 2023)], although the additional constraints
imply a possibly larger total spread, even if some individual
WFs can actually be more localized than in the MLWF
procedure. Currently, the implementation of the SAWF
method in the Wannier90 code (see Sec. III.A for more
about software) is interfaced with the Quantum ESPRESSO
distribution and, once the site positions and the orbital
symmetries of the SAWFs are chosen (through the initial
projection functions), the site-symmetry group can be auto-
matically computed by the interface code. If needed, the site-
symmetry group can also be manually specified by the user to
construct SAWFs with target symmetries.
While the SAWF method provides a rigorous way to

include symmetries in the maximal-localization procedure,
it requires some prior knowledge of the electronic structure of
the material under study. An alternative and simpler approach
is to construct selectively localized Wannier functions
(SLWFs), in which the MLWF procedure is applied to only
a subset of the entire WFs considered (Wang et al., 2014). In
addition, some WF centers can be constrained (SLWFþ C) to
specific positions by adding a quadratic penalty term to the
spread functional. While the SLWFþ C approach does not
enforce symmetries, it has been observed that the resulting
WFs typically exhibit the site symmetries corresponding to the
constrained centers (Wang et al., 2014). The SLWFþ C
approach can be used in the case of entangled bands, where
the SMV disentanglement step is performed as usual, while
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the selective localization and constrained centers are applied
only to the final Wannierization step. A more in-depth review
of the SAWF and SLWFþ C methods, including their
implementation and usage in Wannier90, was given by
Pizzi et al. (2020). Dedicated tools for symmetry analysis
and symmetrization of the real-space WF Hamiltonian are
available (Zhi et al., 2022).
The localization and possibly the symmetry can crucially

depend on the number of WFs considered in a given energy
range. The so-called partly occupied Wannier functions
(POWFs) (Thygesen, Hansen, and Jacobsen, 2005) formalize
this observation by including the relevant unoccupied states
which lead to the minimal spread functional, essentially
implementing a bonding-antibonding closing procedure.
POWFs can have a high degree of symmetry, while the
bonding-antibonding criterion has been shown to correspond
to the condition of maximal average localization (Thygesen,
Hansen, and Jacobsen, 2005). Notably, in the POWF scheme
the total spread functional Ω ¼ ΩI þ Ω̃ is minimized at once.
This is at variance with the SMV scheme, where first the
gauge-invariant part ΩI is minimized through the disentan-
glement step—and only after the gauge-dependent part Ω̃ is
minimized through the usual MV scheme. The iterative
minimization of the total spread Ω was further developed
by Damle, Levitt, and Lin (2019). They reformulated the
Wannierization, which is a constrained nonlinear optimization
problem, as unconstrained optimization on matrix manifolds,
where the SMV disentanglement procedure can be interpreted
as a splitting method that represents an approximate solution.
We stress that even if minimization of the full spread

functional Ω guarantees the highest degree of overall locali-
zation, several of the methods discussed here can actually
produce WFs such that a subset of them might individually be
more localized than their maximally localized counterparts.
Along those lines, Fontana et al. (2021) developed spread-
balanced WFs in which they added a penalty term to the
spread functional that was proportional to the variance of the
spread distribution among all WFs of the system. This scheme
could be less prone to produce solutions with one or several
poorly localized WFs, at the price of an increased total spread
for the entire set. The addition of terms to the spread
functional can also be used to preserve some degree of
locality in energy, as in the case of mixed Wannier-Bloch
functions (Giustino and Pasquarello, 2006) and dually local-
ized Wannier functions (Mahler et al., 2022). These
approaches are based on a generalized spread functional
(Gygi, Fattebert, and Schwegler, 2003) designed to carry
both spatial localization (Wannier character) and limited
spectral broadening (Bloch character) by minimizing a func-
tional that contains not only a spatial variance (as with
MLWFs) but also an energy variance.
Once a choice for the functional to be minimized is made

(the total spread as in the MLWF scheme, or any other choice),
there is still a lot of flexibility on the choice of algorithm to
perform the minimization. One first needs to define a starting
guess for the unitary matrices Uk, which is customarily
obtained by specifying a set of localized projection functions
through the projection method introduced in Sec. II.A.3.
While for composite bands a set of randomly centered

spherically symmetric Gaussian orbitals might work, in
general more sophisticated choices are required. Typically,
atomic orbitals are used as projection functions, such as s, p,
and d orbitals, as well as hybrid orbitals (such as sp3), which
are often centered either on atoms or along bond directions. As
discussed in Sec. II.C.2, the choice of the right atomic orbitals
is typically based on chemical intuition and can be partly
informed by inspecting the projected density of states in the
energy region of interest. Nevertheless, the choice of the right
projection orbitals—i.e., those providing a good starting point
for a successful minimization of the target functional—can
often be a nontrivial task, especially in the context of
automated high-throughput materials screening and, more
generally, when one wants to study a novel material never
before investigated (especially in the case of unfamiliar orbital
composition). Hence, in the past decade substantial effort has
been targeted at developing automated algorithms that remove
the need for users to define appropriate initial projections. A
first approach in this direction is the optimized projection
function (OPF) method for composite bands (Mustafa et al.,
2015). In the OPF approach a larger set of functions that
overspan the space of MLWFs is built and used as a starting
point. While in plane-wave codes the OPF approach (Mustafa
et al., 2015) still needs the user to provide a list of initial
projections, for instance, atomiclike local orbitals (LOs),
ab initio codes operating with localized (or mixed plane-
wave–localized) basis sets can leverage the built-in localized
orbitals. For instance, the full-potential linearized augmented-
plane-wave (LAPW) method can be extended by adding the
so-called LOs, which are atomiclike and highly localized and
can be employed in the construction of WFs. Tillack, Gulans,
and Draxl (2020) combined the SMV disentanglement with
the OPF method (Mustafa et al., 2015) to construct initial
guesses for MLWFs from a set of LOs in an automated way.
Finally, another set of parameters that require tuning in the
standard SMV disentanglement scheme are the inner and outer
energy windows. Gresch et al. (2018) targeted the removal of
the need for manual input by focusing on the automated
optimization of both windows.
On the algorithmic side, in the quest for fully automating

the generation of localized WFs, various general and practical
approaches have been proposed that target the construction of
well-localized WFs using algorithms that are often noniter-
ative. This not only makes them more automatable but also
provides a good starting point for a final Wannierization, if
required: the SCDM approach (Damle, Lin, and Ying, 2015,
2017; Damle and Lin, 2018), the continuous Bloch gauges
(Cancès et al., 2017; Gontier, Levitt, and Siraj-dine, 2019),
and the projectability disentanglement and manifold remixing
approaches (Qiao, Pizzi, and Marzari, 2023a, 2023b).
SCDM is based on QR factorization with column pivoting

(QRCP) of the reduced single-particle density matrix. The
approach either can be used to produce well-localized WFs
without performing an iterative minimization or can be
considered a linear-algebra method to identify a good starting
point for a MLWF procedure. The SCDM method is imple-
mented (Vitale et al., 2020) in the interface code to Quantum
ESPRESSO, with an algorithm for the QRCP that works on a
smaller matrix instead of the full density matrix (Damle, Lin,
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and Ying, 2015, 2017; Damle and Lin, 2018). For a set of
composite bands, SCDM is parameter-free. A comprehensive
study on 81 insulators (Vitale et al., 2020) showed how the
MLWF procedure applied to SCDM initial projections
(SCDMþMLWF) improves the interpolation accuracy and
localization of the resulting WFs, although SCDM-only WFs
already perform well, both in terms of accuracy of band-
structure interpolation and in terms of localization. In the case
of entangled bands, SCDM requires one to specify an energy-
window function, its center and width, and the number of
WFs to consider. Vitale et al. (2020) introduced a recipe to
automatically select those parameters (see Sec. III.J) that was
tested on 200 bulk materials. Unlike in the case of isolated
groups of bands, for entangled bands the SCDMþMLWF
method greatly improved the localization of the WFs with
respect to SCDM-only WFs. Notably, however, the reduced
spread induced by the MV procedure might result in lower
band-interpolation accuracy. Although the SCDM projections
could be used together with the SMV disentanglement
scheme, this more complex procedure does not provide a
systematic gain in accuracy such that a SCDM-only or
SCDMþMLWF approach (with MV minimization for Ω̃)
would be recommended (Vitale et al., 2020). In addition, we
note that SCDM requires real-space wave functions as input,
and therefore has a higher computational and memory cost
with respect to other methods discussed later in this section,
which are implemented in reciprocal space.
Another noniterative approach for composite bands is based

on ensuring a continuous Bloch gauge over the entire BZ
(Cancès et al., 2017; Gontier, Levitt, and Siraj-dine, 2019),
resulting in good localization properties of the WFs and not
requiring any chemical intuition for their construction. The
main idea is that one can construct a sequence of gauge
matrices that not only are continuous across the BZ but also
satisfy its periodicity at the BZ edges. This is achieved by first
adopting parallel transport for the gauge matrix, starting with a
chosen k point (usually the Γ point) and propagating along a
line (such as the kx line). This enables the periodicity to be
fixed at the two end points of the line while preserving the
continuity. Then, for each k point on the line, parallel transport
is applied to each of the gauge matrices along an orthogonal
direction (for example, in the ky direction), and all gauge
matrices are fixed again at the end points to ensure periodicity
of the 2D plane. Finally, for each k point on the 2D plane, one
can apply a similar procedure to construct gauge matrices
along the third direction, therefore obtaining a global con-
tinuous gauge across the full BZ. Often the resulting gauge is
continuous but not smooth enough: a subsequent conventional
MV iterative minimization can improve the localization and
reach the MLWF gauge. Such an algorithm is able to construct
MLWFs for difficult cases such as Z2 topological insulators
(Gontier, Levitt, and Siraj-dine, 2019).
Finally, a robust approach has emerged in the form of

projectability disentanglement (Qiao, Pizzi, and Marzari,
2023b), where the inner and outer energy windows are
replaced by projectability thresholds. For each state junki a
projectability (Agapito et al., 2013; Vitale et al., 2020) onto
localized atomic orbitals (typically, those coming from the
pseudopotentials) is calculated. Then states that have high

projectability are retained identically (exactly as done for
states inside the inner frozen window in the SMV method),
states that have low projectability are discarded altogether
since they do not provide useful contributions to MLWFs,
and states that span the intermediate projectability values
are treated with the standard SMV disentanglement. This
approach leads to atomiclike projectability-disentangled
Wannier functions (PDWFs) spanning both occupied and
unoccupied states corresponding to Bloch sums of bond-
ing-antibonding combinations of atomic orbitals.
These PDWFs can in turn be remixed into linear combi-

nations that aim to describe target submanifolds, for example,
the valence states only, the conduction states only, or certain
groups of bands that are separated in energy from the rest. This
may be beneficial for finding optimal target states for beyond-
DFT methods; see Sec. III.H.
This remixing is particularly valuable for Koopmans func-

tionals (see Sec. III.H.2), which require separate sets of
MLWFs for the valence and conduction manifolds, or for
transport calculations. For this purpose the manifold-remixed
Wannier functions (MRWFs) (Qiao, Pizzi, and Marzari,
2023a) are obtained by starting with the PDWFs spanning
the entire manifold (valence plus conduction), which is then
split by rotating the gauge matrices into a block-diagonal
structure across all the k points while simultaneously main-
taining the gauge smoothness for each block. This is achieved
through a combination of automated Wannierization of the
entire manifold, diagonalization of the Wannier Hamiltonian,
parallel transport, and maximal localization. The automated
Wannierization of the entire manifold can be obtained using
the PDWF method; the Hamiltonian diagonalization splits
the manifold into desired submanifolds (for example, two for
valence and conduction, respectively); the parallel transport
fixes the gauge randomness to construct two sets of localized
WFs; and the final maximal localization smoothens the
gauge, leading to subsets of MLWFs for the respective
submanifolds. Qiao, Pizzi, and Marzari (2023a) demon-
strated that, when combined with PDWFs, the MRWF
method can be fully automated and can also be extended
to other types of band manifolds gapped in energy, such as
the single top valence band of MoS2 or the 3d and t2g=eg
submanifolds of SrVO3. For high-throughput results of
PDWF and MRWF, see Sec. III.J.

III. THE WANNIER ECOSYSTEM:
THEORY AND SOFTWARE PACKAGES

A. Development of widely available Wannier engines

The MV and SMV methods described by Marzari and
Vanderbilt (1997) and Souza, Marzari, and Vanderbilt (2001)
were originally implemented in Fortran 77. The code
would compute the overlaps in Eq. (12) and the projection of
the periodic part of the Bloch orbitals onto trial localized states
by reading the former evaluated on a regular k-point grid using
a DFT code—originally by an early version of CASTEP
(Marzari, Vanderbilt, and Payne, 1997; Clark et al., 2005). To
provide a more general model, driven by the need to interface
with a DFT code based on the LAPW method (Posternak
et al., 2002), the choice was made to keep the calculation of all
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the scalar products involving Bloch orbitals needed by the
Wannier code within the electronic-structure code of choice,
typically as a postprocessing step. Well-defined protocols
were established to exchange this information writing (read-
ing) files to (from) disk and the format of those files was fully
documented. The resulting Wannier77 code was released
under a GNU General Public License (GPL) version 2 in
March 2004.
In 2005 Arash A. Mostofi and Jonathan R. Yates, then

working in the groups of Nicola Marzari and Ivo Souza,
respectively, rewrote the routines using modern modular
Fortran, relying on their experience of software develop-
ment gained from working on the ONETEP (Prentice et al.,
2020) and CASTEP (Clark et al., 2005) DFT programs. The
resulting program Wannier90 (Mostofi et al., 2008) was
released under a GPL license in April 2006. Following the
early layout in the Wannier77 code, Wannier90 was
designed to be easily interfaced to any electronic-structure
code, irrespective of its underlying basis set. The first release
of Wannier90 came with extensive documentation, tutori-
als, and two validation tests. Development used Concurrent
Versions System (CVS) as a version control system. Giovanni
Pizzi joined the development effort in 2012, and a new
parallel postprocessing code (postw90) was developed
and released in Wannier90 version 2 in October 2013
(Mostofi et al., 2014).
While the development of Wannier90 as an open-source

interoperable code was innovative in 2006, by 2016 it was
clear that the development tools being used did not make use
of what was then considered best practice. For example,
having only a few developers with access to the main
repository presented a barrier to adding new functionality
to the program. A decision was made to move to a community
development model, and the Wannier90 repository was
migrated to GitHub with the adoption of a “fork and pull
request” approach. This new model was launched with a
community developer workshop held in San Sebastián, Spain,
in September of 2016. This event is recognizable in Fig. 5,
which shows the number of commits to the code repository
over time, with a large number of commits contributed during
(or immediately after) the 2016 event. Moreover, once the

code made its transition to a community development model,
the rate of commits significantly increased, as did the number
of individual contributors (more than 35 different people had
contributed code, tests, or documentation via commits by
November 2024). Essential to this change was the develop-
ment of an extensive suite of tests that run automatically to
validate each pull request. In 2019 Wannier90 version 3 was
released, including all community contributions to the code
(Pizzi et al., 2020).
In addition to Wannier90 there are a few electronic-

structure software packages that currently implement internal
functionality for computing WFs in periodic systems. These
include GPAW (Enkovaara et al., 2010), Qbox (Gygi, 2008),
CP2K (Kühne et al., 2020), exciting (Tillack, Gulans, and
Draxl, 2020), OpenMX (Weng, Ozaki, and Terakura, 2009),
RESPACK (Nakamura et al., 2021), and CRYSTAL (Zicovich-
Wilson, Dovesi, and Saunders, 2001). However, in this review
we use the term Wannier engines to describe software pack-
ages that both generate WFs and are designed to be used
interoperably with other software packages: for example, with
the electronic-structure codes for solving the electronic ground
state, used as input to a Wannier engine, and with postprocess-
ing codes that use the WFs from a Wannier engine to calculate
advanced electronic properties. Wannier90 is an example of a
Wannier engine, but it is not the only readily available one—
another notable example is the Atomic Simulation
Environment (ASE) (Larsen et al., 2017), which also
implements routines based on the minimization of the quadratic
spread of the WFs but uses a different approach (Thygesen,
Hansen, and Jacobsen, 2005; Fontana et al., 2021) from the
previously described one; see also Sec. II.D. In addition, the
new Wannier.jl package (Qiao, Pizzi, and Marzari, 2023d)
implements several Wannierization algorithms using manifold
optimization techniques and brings the methodology of WFs to
the Julia community (Bezanson et al., 2017). In this review
we focus on those codes that interface to the Wannier90
code. Nevertheless, we note that the other Wannier engines
have often adopted the same file formats first defined by
Wannier77 and Wannier90 (see the discussion in
Sec. III.B), thus being fully compatible with the ecosystem.

B. The concept of a Wannier-function software ecosystem

To discuss the modular approach that has catalyzed the
formation of a Wannier-function software ecosystem, we start
with a general overview of modularization strategies in
software programs. We also mention some related efforts
on code modularization, discussing the aspects that apply to
the Wannier ecosystem. Complex software can adopt a variety
of architectural design approaches, often differing substan-
tially in the level of modularity (or the lack thereof) of their
components. Historically, most computer programs started
as monolithic applications: self-contained and independent
codes made of tightly coupled functions. This is a natural
choice when writing new software from scratch, and it reduces
the installation burden for users, who do not need to deal with
the management of many dependencies. Over time, however,
features and postprocessing tools tend to get added, making
the code base large and complex. This results in serious
challenges for development and maintenance, which become

FIG. 5. Total number of commits over time for the Wannier90
repository (CVS until August 2016, then transferred to Git and
hosted on GitHub). Note the significant increase during
and immediately after the community developer workshop in
September 2016.
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critical when the code needs to be adapted and optimized for
newer hardware architectures. Furthermore, this leads to
reimplementations of common routines in each code, which
could instead be written and optimized only once and then
used as a library. The library approach is already common in
the electronic-structure community for linear-algebra and
diagonalization routines, where the code calls functions via
standard interfaces defined by the BLAS (Blackford et al.,
2002) and LAPACK libraries (Anderson et al., 1999), and the
executables are linked to performance-optimized versions
on high-performance computing clusters. While a similar
approach is often used for other low-level routines, such as
fast-Fourier-transform (FFT) computation (Frigo and
Johnson, 2005) or to support file formats such as NetCDF
(Rew and Davis, 1990) or HDF5 (HDF Group, 2023), it was
until recently far less common for higher-level materials-
science-oriented routines.
To address the challenges of monolithic codes, many

electronic-structure codes are being redesigned or rewritten
using a more modular approach, where core modules
are—when possible—generalized and separated into a library
of reusable routines, then called by higher-level functions to
execute complex tasks. Some of these codes have evolved into
distributions, i.e., a set of relatively independent but inter-
operable executables reusing common core routines.
However, even with this approach, the different modules
can often operate only within the distribution, and the
development of all modules needs to constantly be in sync.
Ultimate interoperability is obtained when code (such as

core routines or full functionality) is reused by different
independent software distributions that are maintained by
nonoverlapping developer groups. A crucial challenge to
enable such a level of interoperability is to design a clear
application programming interface (API) defining which data
need to be transferred between codes, and in which format.
This requires discussions and coordination, which can be
catalyzed via targeted coordination efforts.
We stress that most of the challenges related to code

modularization and interoperability are not specific to materials
simulations and have been discussed since the early days of
scientific computing (Roberts, 1969). In the field of electronic
structure, an example of note is the CECAM Electronic
Structure Library project (CECAM ESL Collaboration, 2023).
At an even higher level, one can address code interoperability
by defining common interfaces (for example, input-output
schemes) for workflows computing a quantity of interest,
independent of the underlying simulation code, such as the
common workflow interface of Huber et al. (2021) to perform
crystal-structure relaxation and to compute equations of state.
The workflow only requires as input, in a common format, the
crystal structure and a few basic input parameters, and is then
interfaced with 11 different DFT codes to run the actual
simulations. Such universal interfaces make workflows acces-
sible to a broader audience and codes fully interoperable,
allowing researchers to switch between them without the need
to learn from scratch the details of each one. In addition, they
can be seamlessly applied to perform cross-code verification
studies (Bosoni et al., 2024).
When codes have to exchange data, the interfaces between

them can be actual code APIs (for example, in C or

Fortran), where the library is directly compiled and linked
with the main code, but also simply files in a well-documented
format, written by the first application and read by the second
one; see the discussion of this approach in Sec. III.I. The
actual choice depends on the interdependency between
the algorithmic steps and on performance considerations.
The use of files is typically favored when the corresponding
simulation workflows imply a sequential execution of codes
rather than interconnected loops between them, when the
exchanged data are small (up to a few gigabytes) and the
individual steps are computationally demanding, such that
I=O overhead is only a small fraction of the total execution
time. [In a few advanced cases, other interfaces such as
network sockets have been used to keep the applications
decoupled while still reducing the I=O overhead for simu-
lations that are not too computationally demanding (Kapil
et al., 2019).] In addition, when intermediate results are
written to files, the steps do not need to be combined in the
same run but can instead be executed at different times (for
example, days later) or by different researchers.
In this context WFs represent a noteworthy and elegant

method to decouple the ab initio simulation of the electronic
structure from the calculation of the physical properties. This
is possible thanks to two core aspects of WFs. First, WFs
are independent of the basis set used in the first-principles
electronic-structure code: the MLWF algorithm requires the
sole knowledge of a handful of vectors and matrices, such as
the overlap matrices on a coarse grid of k points. Wave
functions, which are typically stored in large files, are not
required during Wannierization and are used optionally in
only a few postprocessing steps, such as when representing
the WFs on a real-space grid. Second, many physical
quantities can be obtained efficiently once a WF basis is
constructed, with the knowledge of relevant operators repre-
sented as small matrices directly in the Wannier basis, such as
the Hamiltonian or the position operator. Indeed, while
extended basis sets such as plane waves are particularly
convenient for obtaining charge densities and wave functions
of periodic systems, reciprocal-space integrals can be more
efficiently calculated using a Fourier-interpolated basis set
originating from a compact maximally localized representa-
tion in real space. From a computer-science perspective, these
two aspects of the Wannierization process make it an effective
data-compression encoding that avoids the need to transfer
large wave functions between the ab initio codes and the
property calculators while retaining an equivalent level of
accuracy.
Thanks to the first aspect, i.e., basis-set independence, the

Wannier code (Marzari and Vanderbilt, 1997) evolved from
being a stand-alone code focused on the minimization
procedure to one with a well-defined format for the input
data (overlap and projection matrices), which also defined and
documented the corresponding files (such as the overlap
matrices in .mmn format and the projection matrices in
.amn format). The calculation of the latter was delegated
to specific interfaces implemented within the corresponding
first-principles packages (Posternak et al., 2002). This design
persisted in the Wannier90 code (Mostofi et al., 2008; Pizzi
et al., 2020), and as a result the Wannier90 engine can now
be interfaced with virtually any electronic-structure code,
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as discussed in Sec. III.A, with interfaces currently available for
many widespread codes, including ABINIT (Gonze et al.,
2020), BigDFT (Ratcliff et al., 2020), Elk (Elk Collaboration,
2023), FLEUR (Wortmann et al., 2023), GPAW (Enkovaara
et al., 2010), Octopus (Tancogne-Dejean et al., 2020),
OpenMX (Ozaki and Kino, 2005), PySCF (Sun et al., 2018,
2020), Quantum ESPRESSO (Giannozzi et al., 2009, 2017),
SIESTA (Soler et al., 2002), VASP (Kresse and Joubert, 1999),
and WIEN2k (Blaha et al., 2020).
Because of the second aspect, i.e., the possibility of

efficiently obtaining many physical quantities in the
Wannier basis, Wannier90 started to include a large number
of efficient postprocessing utilities for materials properties,
ranging from simple band-structure interpolation to more
complex properties such as the ordinary and anomalous
Hall conductivities, Seebeck coefficients, orbital magnetiza-
tion, and many more (Pizzi et al., 2020). However, in the past
decade the community has spontaneously moved toward a
decentralized software ecosystem (as opposed to a centralized,
albeit modular, Wannier distribution), where different pack-
ages interact through APIs and a common data format. The
decentralized model was again facilitated by a clear and
documented interface to generate data as input for the next
steps (for example, the _tb.dat file containing the full TB
model: WF centers, on-site energies, and hopping energies).
The community has been rapidly growing, and several
independent packages exploiting MLWFs now exist, targeting
diverse properties such as TB models (see Sec. III.C), ballistic
transport (see Sec. III.D), Berry-phase-related properties (see
Sec. III.E), topological invariants (see Sec. III.F), electron-
phonon coupling (see Sec. III.G), beyond-DFT methods (see
Sec. III.H), high-throughput calculations (see Sec. III.J), etc.

This review describes such a community of symbiotic
packages, forming a research and software ecosystem built
upon the concept of MLWFs. We illustrate this schemati-
cally in Fig. 6. To make the codes of the ecosystem as
easy to find as possible, we also started in 2024 the online
Wannier Software Ecosystem Registry.1 This registry lists
software packages that form the ecosystem, and as of
November 2024 it already included 53 entries. The reposi-
tory provides key information including a short description,
a domain tag (such as ab initio engines, tight binding, and
Berryology and topology), and links to the code home page,
documentation, and source code (if available). The registry
is dynamic: developers and users can add new entries or
modify existing ones by submitting a pull request through
the corresponding GitHub repository,2 which also includes
detailed instructions for contribution.

C. Wannier-interpolation and tight-binding models

A common application of WFs is to evaluate various
k-space quantities and BZ integrals by Wannier interpolation.
This name has come to refer to a type of Slater-Koster
interpolation where the required on-site and hopping integrals
are explicitly calculated in the WF basis (Souza, Marzari, and
Vanderbilt, 2001; Calzolari et al., 2004; Lee, Nardelli, and

FIG. 6. Overall schematics of how different codes in the ecosystem interact that also serves as a type of table of contents for this review,
where sections describing the relevant blocks are indicated here. At the top the ab initio engines (first row) generate the data that are
transferred to a Wannier engine (second row) that might also implement the advanced methods discussed in Sec. II.D. Once WFs are
obtained, they are typically used to generate a TB model and perform interpolation of the Hamiltonian and other operators (third row).
Such interpolated quantities are used for a number of different applications; the ones that are discussed in more detail in this review are
set in the green blocks (fourth row). As schematically indicated by the outer dotted rectangle, all the codes forming the Wannier
ecosystem may be automated with workflow tools, which also coordinate data transfer between them.

1The Wannier Software Ecosystem Registry is available at https://
wannier-developers.github.io/wannier-ecosystem-registry/.

2The GitHub repository of the Wannier Software Ecosystem
Registry is available at https://github.com/wannier-developers/
wannier-ecosystem-registry.
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Marzari, 2005; Yates et al., 2007), as opposed to being treated
as fitting parameters as in empirical TB theory. Here we
review the basic procedure as it applies to energy bands and
other simple quantities, leaving more sophisticated applica-
tions to later sections. Before proceeding, we mention that the
Wannier-interpolation scheme has been adapted to work with
nonorthogonal localized orbitals instead of (orthogonal) WFs
(Buongiorno Nardelli et al., 2018; Lee, Lee et al., 2018;
Wang, Zhao et al., 2019; Jin, Zheng, and He, 2021).

1. Band interpolation

To interpolate the band structure, one needs the matrix
elements of the KS Hamiltonian in the WF basis,

HW
ij ðRÞ ¼ h0ijĤjRji; ð15Þ

where Hiið0Þ are on-site energies and the remaining matrix
elements are hoppings. One way to evaluate these matrix
elements is to start with Eq. (6a) for the WFs in terms of the
KS Bloch eigenstates on the ab initio k grid. Inserting Eq. (6a)
into Eq. (15) gives

HW
ij ðRÞ ¼ 1

N

X
k

e−ik·R
XJ k

n¼1

V�
k;niεnkVk;nj: ð16Þ

This procedure is particularly convenient in the framework of
the MV and SMV Wannierization schemes, which are for-
mulated as postprocessing steps after a conventional ab initio
calculation is carried out on a uniform fkg grid. Equation (16)
involves only the Vk matrices generated by the Wannier
engine starting with the ab initio overlap matrices and the
energy eigenvalues themselves; see Sec. II.A. An alternative
to Eq. (16) is to express the WFs in a real-space basis, for
example, localized orbitals or a grid, and then evaluate
Eq. (15) directly on that basis.
In view of the localized character of the WFs, jHW

ij ðRÞj
is expected to become negligibly small when the distance
jRþ τj − τij between the centers of the two WFs becomes
sufficiently large (here τj ¼ h0jjr̂j0ji). However, owing to the
finite size N of the ab initio grid, the WFs obtained from
Eq. (6a) are actually periodic over a real-space supercell of
volume NVcell. Accordingly, the matrix elements given by
Eq. (16) are also supercell periodic, HW

ij ðRþ TÞ ¼ HW
ij ðRÞ,

for any supercell lattice vector T. To minimize spurious effects
associated with this artificial periodicity, one should truncate
the hopping matrix by setting HW

ij ðRÞ ¼ 0 whenever the
vector Rþ Tþ τj lies outside the Wigner-Seitz (WS) super-
cell centered at the origin. Provided that this supercell is
sufficiently large to ensure negligible overlap between a WF
and its periodic images, the truncation error will be insignifi-
cant. This means that in practice one can achieve well-
converged numerical results with a relatively coarse ab initio
grid. Note, however, that the matrix elements do not decay
exactly to zero for finite-size WS supercells. Therefore, when
multiple R vectors lie on the boundary of the WS supercell
and are connected by a supercell vector T, it is better to
consider all of the equivalent vectors with appropriate weights,
rather than picking only one of them, which would introduce

spurious symmetry breaking in the Hamiltonian. The details
of this approach and its implementation in Wannier90 were
discussed by Pizzi et al. (2020).
Once the on-site energies and hoppings have been tabu-

lated, the Hamiltonian matrix is interpolated onto an arbitrary
BZ point k0 by performing an inverse Fourier transform,

HW
k0;ij ¼

XWS

R

1

NR;ij

XNR;ij

l¼1

eik
0·ðRþTl

R;ijÞHW
ij ðRÞ: ð17Þ

The summation runs over the lattice vectors R (which lie in
the WS supercell centered at the origin, as discussed), with
NR > 1 whenever Rþ Tl

R;ij þ τj falls on the boundary of
the WS supercell centered at τi. To improve the quality of
the interpolation, for each combination of i, j, and R, the
supercell lattice vector T appearing in Eq. (17) is chosen as the
one that minimizes jRþ Tþ τj − τij (Pizzi et al., 2020).
Finally, the interpolated energy eigenvalues are obtained by
diagonalizing the aforementioned matrix,

½U†
k0HW

k0Uk0 �mn ¼ δmnε
H
nk0 ; ð18Þ

so that the column vectors of the unitary matrix Uk0 are
eigenvectors of HW

k0 .
Since the interpolation steps (17) and (18) only involve

Fourier transforming and diagonalizing J × J matrices that are
typically small, the overall procedure tends to be much less
expensive than a direct DFT calculation at every interpolation
point, especially when a dense interpolation grid fk0g is
needed. The efficient evaluation of the Hamiltonian matrix
and band derivatives (as later discussed) enables BZ inte-
gration methods beyond the standard equispaced scheme to
be explored. These are of particular use when fine features in
k space need to be resolved using adaptive integration
methods (Assmann et al., 2016; Kaye et al., 2023; Van
Muñoz et al., 2024).
This interpolation scheme has been shown to accurately

reproduce—within the frozen energy window—the energy
eigenvalues obtained via a direct DFT calculation. We show in
Fig. 7 details of the interpolated band structure of ferromag-
netic bcc Fe along the H–Γ line (Yates et al., 2007). The
vertical gray lines indicate points on the fkg mesh used for
constructing the WFs. For comparison we plot as plus
symbols the ab initio dispersion around a weak spin-orbit-
induced avoided crossing between two bands of opposite spin.
It is apparent that the Wannier-interpolation procedure suc-
ceeds in resolving details on a scale much smaller than the
spacing between those points. In particular, the correct band
connectivity is obtained, so avoided crossings, no matter how
weak, are not mistaken for actual crossings. This character-
istic, which distinguishes Wannier interpolation from methods
based on direct Fourier interpolation of the energy eigenvalues
(Madsen and Singh, 2006; Madsen, Carrete, and Verstraete,
2018), makes it a powerful tool for studying topological
properties (see Sec. III.F) and for evaluating BZ integrals
involving quantities that change rapidly over small regions of
k space, such as the Berry curvature (see Sec. III.E) and
electron-phonon matrix elements (see Sec. III.G).
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Wannier interpolation works for the same reason that
empirical TB does: the short range of the real-space
Hamiltonian matrix (16) ensures that its Fourier transform (17)
is a smooth function in reciprocal space. This can also be seen
by writing the left-hand side of Eq. (17) as

HW
k0;ij ¼ hψW

ik0 jĤjψW
jk0 i; ð19Þ

where

jψW
jk0 i ¼

X
R

eik
0·RjRji ð20Þ

interpolates the smooth Bloch functions defined on the
ab initio grid by Eq. (6b). We can also write the left-hand
side of Eq. (18) as

HH
k0;mn ¼ hψH

mk0 jĤjψH
nk0 i; ð21Þ

where

jψH
nk0 i ¼

XJ
j¼1

jψW
jk0 iUk0;jn ð22Þ

describes a unitary transformation from the Wannier gauge W
to the Hamiltonian gauge H. Inside the frozen energy window,
the states jψH

nk0 i interpolate—up to arbitrary phase factors—
the ab initio eigenstates jψnki.
In summary, performing Fourier interpolation in the W

gauge followed by a unitary transformation to the H gauge
allows one to interpolate quantities—band energies, Bloch
eigenstates, and matrix elements thereof (discussed later)—
that can vary rapidly in k space, and even become nonanalytic
at degeneracies. This strategy retains the accuracy of a
full-blown ab initio calculation while benefiting from the
efficiency of Slater-Koster interpolation.

2. Band derivatives and Boltzmann transport

The previously outlined interpolation procedure can be
adapted to evaluate band velocities, inverse effective-mass
tensors, and higher k derivatives of the energy eigenvalues
(Yates et al., 2007). As in the empirical TB method (Graf and
Vogl, 1995), this is achieved without relying on finite-
difference methods, which become problematic near band
crossings and weak avoided crossings, where the band order-
ing can change from one grid point to the next.
Band derivatives are needed to evaluate transport coeffi-

cients such as the electrical conductivity σ, the Seebeck
coefficient S, and the electronic contribution to the thermal
conductivity K. Within the semiclassical Boltzmann transport
equation (BTE) framework, one defines a scattering time τnk
for an electron on band n at wave vector k (the contributions
from electron-phonon scattering to τnk can be efficiently
computed by exploiting Wannier functions; see Sec. III.G).
Then the expressions for the transport tensors are given by
(Ziman, 1972):

σabðμ; TÞ ¼ e2
Z þ∞

−∞
dE

�
−
∂fðE; μ; TÞ

∂E

�
ΣabðEÞ; ð23Þ

½σS�abðμ; TÞ ¼
e
T

Z þ∞

−∞
dE

�
−
∂fðE; μ; TÞ

∂E

�
ðE − μÞΣabðEÞ;

ð24Þ

Kabðμ; TÞ ¼
1

T

Z þ∞

−∞
dE

�
−
∂fðE; μ; TÞ

∂E

�
ðE − μÞ2ΣabðEÞ;

ð25Þ

where μ is the chemical potential, T is the temperature, a
and b are Cartesian indices, σS denotes the matrix product of
the two tensors, ∂f=∂E is the derivative of the Fermi-Dirac
distribution function with respect to the energy, and ΣabðEÞ
is the transport distribution function. The last item is
defined by

ΣabðEÞ ¼
1

Vcell

X
nk

vankv
b
nkτnkδðE − EnkÞ; ð26Þ

where the summation is over all bands n and over the entire
BZ, εnk is the energy for band n at k, and vank is the a
component of the band velocity at ðn;kÞ.
Obtaining converged quantities for Eqs. (23)–(25) therefore

requires one to compute the band derivatives vnk while
sampling the BZ over dense k-point grids (Schulz, Allen,
and Trivedi, 1992; Uehara and Tse, 2000; Madsen and Singh,
2006) since the term ∂f=∂E is nonzero only in a narrow
energy region (with a typical size kBT, where kB is the
Boltzmann constant) around the chemical potential μ. Wannier
interpolation allows this task to be carried out efficiently and
accurately even when avoided crossings occur close to
the Fermi level. Band derivatives at a given k point are
obtained with an analytical expression without having to
resort to finite-difference methods (Yates et al., 2007).
Moreover, computation on dense k-point grids is highly

FIG. 7. Wannier-interpolated bands of bcc Fe along the H–Γ
line. The bands are color coded according to the spin expectation
value hψnkjŜzjψnki: red for spin-up and blue for spin-down. The
energies are given in eV, and the Fermi level is at 0 eV. The
vertical gray lines indicate k points on the ab initio mesh used for
constructing the WFs.
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efficient, as previously discussed for band interpolation. This
WF-based Boltzmann transport methodology is implemented
in Wannier90 and used to compute transport tensors in its
BoltzWann module (Pizzi et al., 2014), as well as in other
codes (see the electron-phonon discussion in Sec. III.G), and
is also used for postprocessing calculations in many-body
theory (see Sec. III.H.1).
Furthermore, many transport coefficients [such as linear

and nonlinear anomalous Hall conductivities (AHCs) (Yao
et al., 2004; Sodemann and Fu, 2015), anomalous Nernst
thermoelectric conductivity (Xiao et al., 2006), magnetoresist-
ance (Gao, Yang, and Niu, 2017), and magnetochiral
anisotropy (Yokouchi et al., 2023)] depend on the Berry
curvature and other quantum-geometric quantities (Xiao,
Chang, and Niu, 2010; Vanderbilt, 2018; Gao, 2019). As
they involve k derivatives of the Bloch states themselves, these
quantities cannot be obtained from the energy dispersions.
Moreover, those quantities tend to become strongly enhanced
when weak avoided crossings occur near the Fermi level;
when that happens, dense k-point grids must be employed to
converge the calculation (Yao et al., 2004). Compared to band
interpolation, the interpolation of Berry-type quantities is
more involved because it requires setting up matrix elements
of the position operator r̂, which is nonlocal in reciprocal
space, i.e., not lattice periodic (Blount, 1962). We defer a
discussion of that case to Sec. III.E, and we now describe how
to interpolate the matrix elements of a generic lattice-periodic
operator X̂.

3. Interpolation of a generic lattice-periodic operator

Replacing Ĥ → X̂ in Eq. (15) and using Eq. (6) yield

XW
ij ðRÞ ¼ 1

N

X
k

e−ik·R
XJ k

m;n¼1

V�
k;mihψmkjX̂jψnkiVk;nj; ð27Þ

which reduces to Eq. (16) for X̂ ¼ Ĥ. The considerations
made earlier regarding the spatial decay and truncation of
theHWðRÞmatrix apply equally well to XWðRÞ. The Fourier-
transform step is also analogous to Eq. (17),

XW
k0;ij ¼

X
R

eik
0·RXW

ij ðRÞ ¼ hψW
ik0 jX̂jψW

jk0 i; ð28Þ

and the final step is to apply to XW
k0 the same unitary

transformation that was used in Eq. (18) to diagonalize
HW

k0 . Using Eq. (22), we find that

XH
k0;mn ¼ ðU†

k0XW
k0Uk0 Þmn ¼ hψH

mk0 jX̂jψH
nk0 i: ð29Þ

In particular, diagonal elements of XH
k0 give the expectation

values of X̂ in the interpolated states. With X̂ ¼ Ŝ one obtains
their spin polarization, which is how the color coding in Fig. 7
was generated.
Note that in addition to the overlap matrices and energy

eigenvalues, interpolating a generic operator X̂ ≠ Ĥ requires
its matrix elements hψmkjX̂jψnki to be set up on the ab initio

grid. This should be done via the same interface code that
computes the overlap matrices.

4. Wannier-function perturbation theory

Several important materials properties can be calculated as
the linear response of the system to an external perturbation V̂.
A common example is the calculation of phonon dispersions
and electron-phonon coupling through density-functional
perturbation theory (DFPT) (Baroni et al., 2001); the latter
case is discussed in Sec. III.G.
We follow Lihm and Park (2021) and write the Hamiltonian

eigenstates of the perturbed system in terms of those of the
unperturbed system plus the wave function perturbation,

jψnki ¼ jψnkið0Þ þ λjψnkið1Þ þOðλ2Þ; ð30Þ

where the wave function perturbation can be calculated with a
sum over empty states,

jψnkið1Þ ¼
X0

n0k0
jψn0k0 ið0Þ hψn0k0 jV̂jψnkið0Þ

ϵnk − ϵn0k0
: ð31Þ

The primed sum indicates that terms for which the denom-
inator vanishes are excluded.
Alternatively, the wave function perturbation can be calcu-

lated without summing over high-energy states by solving the
Sternheimer equation (Baroni et al., 2001). Lihm and Park
(2021) showed that this perturbation theory can be formulated
in the Wannier representation, where the WFs of the perturbed
system can be written as

jRji ¼ jRjið0Þ þ λjRjið1Þ þOðλ2Þ: ð32Þ

The expression for jRjið1Þ, which was reported by Lihm and
Park (2021), consists of two terms: the first can be calculated
with the Sternheimer equation to obtain the states jψnkið1Þ,
while the second contains matrix elements of V̂ and the
projector over the WFs of the unperturbed system. Note that
both terms require energies and matrix elements only within
the Wannier outer window introduced in Sec. II.A.2. Thus, the
Wannier-function perturbation can be calculated without
making explicit use of the states outside that energy window.
For a monochromatic static perturbation with wave vector

q, the first-order wave function perturbation can be interpo-
lated as (Lihm and Park, 2021)

jψH
nk0;qið1Þ ¼

1ffiffiffiffi
N

p
X
j;R

eik
0·RjRqjið1ÞUk0;jn

þ
X0
NW

m¼1

jψH
mk0þqið0Þ

g̃Hmnk0;q

ϵð0Þnk0 − ϵð0Þmk0þq

; ð33Þ

where the WF perturbations are expanded as a sum of
monochromatic perturbations

jRjið1Þ ¼
X
q

jRqjið1Þ; ð34Þ
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while the superscript H marks the Hamiltonian gauge of
the unperturbed (0) and perturbed (1) system, Uk0 is the
unitary matrix that diagonalizes the unperturbed Hamiltonian
according to Eq. (18), and g̃Hmnk;q is obtained by performing
the Fourier transform of g̃ijR;q and then rotating it to the
Hamiltonian gauge using Uk0 . The quantity g̃ijR;q is related
to the perturbation and is made of two terms
(g̃ijR;q ¼ gijR;q þ δgijR;q). The first term accounts for the
matrix elements of V̂ between WFs of the unperturbed states

gijR;q ¼ h0ið0ÞjV̂qjRjð0Þi; ð35Þ

while the second term is a correction stemming from the
change of the WFs

δgijR;q ¼ h0ið0ÞjĤð0ÞjRqjð1Þi þ h0−qið1ÞjĤð0ÞjRjð0Þi: ð36Þ

The correction term δgijR;q is not required for the scattering
matrix elements, but it is relevant for the perturbed wave
functions. A key aspect is that Wannier-function perturbations
are localized in real space, so the perturbed Hamiltonian and
its eigenstates can be efficiently interpolated by considering
coarse k-point grids. This permits the efficient interpolation
of various matrix elements involving the wave function
perturbation, as in the case of electron-phonon self-energies
and Kubo formulas. Wannier-function perturbation theory
(WFPT) has been applied to describe temperature-dependent
electronic band structures and indirect optical absorption, shift
spin currents, and spin Hall conductivities (Lihm and Park,
2021). WFPT was recently made available in the EPW code
version 5.8 (Lee et al., 2023).

5. Porting Wannier Hamiltonians to TB codes

In TB theory two phase conventions are commonly used to
perform the Fourier transforms from real to reciprocal space
(Vanderbilt, 2018): the one adopted in Eqs. (17), (20) and (28)
(original convention), and the alternative one (modified
convention), where the phase factors in those equations are
modified as

eik
0·R → eik

0·ðRþτj−τiÞ: ð37Þ

Although the interpolated eigenvalues εHnk0 and matrix
elements XH

k0;mn come out the same with both conventions
(as they should), the modified convention is more natural for
the purpose of evaluating quantities, such as Berry connec-
tions and curvatures, that are sensitive to the real-space
embedding of the TB model via the position matrix elements
h0ijr̂jRji; see Sec. III.E. This has to do with the fact that, with
the original convention, TB eigenvectors (the column vectors
of Uk0 ) behave like full Bloch eigenstates jψnk0 i, whereas with
the modified convention they behave like their cell-periodic
parts junk0 i (Vanderbilt, 2018). It is in terms of the latter that
Berry-type quantities are most naturally expressed.
The modified phase convention is the one adopted in the

TB codes PythTB (PythTB Collaboration, 2023) and
TBmodels (TBmodels Collaboration, 2023); both are able
to import the Wannier Hamiltonian HW

ij ðRÞ, along with the

Wannier centers fτjg, from the seedname_tb.dat file
written with Wannier90. PythTBwas originally written for
pedagogical purposes as part of a course on Berry phases in
electronic-structure theory that was later turned into a text-
book (Vanderbilt, 2018). It is feature rich but is not optimized
for speed, as it was designed with TB toy models in mind
[however, a high-performance implementation is available
(Numba-PythTB Collaboration, 2023)]. Instead, TBmodels
has fewer postprocessing functionalities, but it delivers critical
speedup and improved scaling. Notable among the Wannier-
TB codes is WannierTools (Wu et al., 2018), which
implements sparse Hamiltonians for large systems, band
unfolding, and several other features related to Berry-type
quantities; see Sec. III.E.

6. Wannier interpolation beyond density-functional theory

As discussed, one of the most powerful and effective
applications of WFs is the interpolation of band structures
and other electronic-structure properties. While this is already
useful in the context of DFT calculations, it becomes even
more compelling for beyond-DFT methods, such as hybrid
functionals (Becke, 1988, 2014; Lee, Yang, and Parr, 1988;
Perdew, Ernzerhof, and Burke, 1996; Heyd, Scuseria, and
Ernzerhof, 2003; Kümmel and Kronik, 2008; Martin, 2020),
many-body perturbation theory (MBPT) such as G0W0

(Golze, Dvorak, and Rinke, 2019), and nondiagrammatic
approaches such as the Koopmans-compliant functionals
(Dabo et al., 2010; Borghi et al., 2014; Colonna et al.,
2018, 2019, 2022; Elliott et al., 2019; Zhou and Bernardi,
2019; De Gennaro et al., 2022; Linscott et al., 2023; Marrazzo
and Colonna, 2024). In fact, in DFT the potential can always be
recalculated with the sole knowledge of the ground-state
electronic charge density; therefore, the corresponding KS
Hamiltonian can be directly calculated at any arbitrary k point.
Instead, for most beyond-DFT methods, this is no longer the
case, and band-structure calculations on a high-symmetry path
cannot be performed as a series of independent diagonaliza-
tions. For hybrid functionals and GW, the eigenvalues at a
given k point require the knowledge of the wave functions and
eigenenergies on all reciprocal-space points kþ q, where the q
points are defined on a uniform grid that has to be converged. In
other words, reasonably dense sampling on high-symmetry
paths can be obtained only with some form of interpolation.
While electronic-structure codes typically offer general-

purpose interpolation methods, often based on Fourier series
(Koelling and Wood, 1986; Pickett, Krakauer, and Allen,
1988), WFs provide two concrete advantages. First, they are a
physically motivated basis set, which exhibits exponential
convergence and is guaranteed to deliver the exact result
for a sufficiently dense k-point grid, so the accuracy can be
systematically increased simply by considering denser grids.
If MLWFs are chosen, the efficiency is maximal and coarse
grids are often sufficient to faithfully reproduce the entire band
structure. Second, once a WF basis is constructed, it not only
yields interpolated eigenvalues (such as the band structure) but
also enables the Hamiltonian and many other operators to be
described in a compact real-space representation. Once the
relevant operators in a WF basis are available, one gets access
to the full spectrum of theories and software packages that are
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part of theWannier ecosystem, which is capable of much more
complex tasks than simply band interpolation. Notably, once a
Wannierization is performed with hybrid functionals or at the
G0W0 level, all other Wannier-interpolated quantities can be
obtained at the same level of theory with no extra effort or
cost. Finally, thanks to recent work in advanced minimization
techniques (see Sec. II.D) and automation (see Sec. III.J), the
Wannier interpolation does not require much more human
intervention than other standard methods such as smooth
Fourier interpolation. In the following we outline the moti-
vation and the corresponding procedure to deploy Wannier
interpolation for two of the most popular excited-state
approaches: hybrid functionals and many-body perturbation
theory at the G0W0 level.

a. Hybrid functionals

A popular approach to improve the accuracy of ab initio
band structures is to combine explicit density-dependent
functionals with Hartree-Fock terms, which leads to orbital-
dependent functionals called hybrids (Becke, 1988, 2014;
Lee, Yang, and Parr, 1988; Perdew, Ernzerhof, and Burke,
1996; Heyd, Scuseria, and Ernzerhof, 2003; Kümmel and
Kronik, 2008; Martin, 2020). The procedure to obtain WFs is
similar to that in vanilla DFT, except that non-self-consistent
field (NSCF) calculations cannot be performed, as the
potential is not a functional of the total density only but
requires the knowledge of single-particle orbitals. Hence, only
self-consistent field (SCF) calculations are performed with
hybrid functionals, including some higher-energy empty
states (if there are any) that might be needed to obtain
Wannier functions through disentanglement (Souza, Marzari,
and Vanderbilt, 2001). This is different with respect to DFT,
where a SCF calculation is typically performed on the
occupied states only (plus some lower-lying conduction bands
in the case of metals) and a NSCF calculation is performed
including higher-energy empty states, possibly on a different
k-point grid. In addition, ground-state calculations are typi-
cally performed on the irreducible Brillouin zone (IBZ)
by exploiting crystalline symmetries, while Wannier90
requires a uniform grid on the full Brillouin zone (FBZ).
As performing the self-consistent calculation on the FBZ is
certainly possible but rather inefficient, the typical procedure
involves unfolding the ground-state orbitals and band struc-
ture from the IBZ to the FBZ. This is done as a postprocessing
step performed after the self-consistent calculation and before
producing the overlap matrices and the other input required to
obtain WFs. For example, in the Quantum ESPRESSO
distribution (Giannozzi et al., 2009, 2017), this is done
through the open_grid.x code. Notably, WFs can be used
to speed up the core hybrid-functional calculations, as they
allow one to reduce the number of exchange integrals to be
computed (Weinan, García-Cervera, and Lu, 2007; García-
Cervera et al., 2009; Wu, Selloni, and Car, 2009; DiStasio
et al., 2014; Mountjoy, Todd, and Mosey, 2017; Carnimeo,
Baroni, and Giannozzi, 2019).

b. G0W0

Most of what has been discussed for hybrid functionals also
holds for MBPT calculations in the G0W0 approximation,

with two important remarks. First, G0W0 is a one-shot
approach in the quasiparticle (QP) approximation that is
typically performed on top of a DFT calculation. Thus, the
orbitals remain at the KS level and only the energy
eigenvalues are corrected, hence neglecting off-diagonal
elements of the self-energy in the KS basis. Second, as only
the energies are changed at the G0W0 level, the KS states
might swap their band indices and no longer be ordered in
energy. A typical case where this might manifest is topo-
logical insulator candidates (and systems with band inver-
sions in general) such as monolayer TiNI (Marrazzo et al.,
2019), which is topological in DFT and trivial at the G0W0

level. The practicalities of obtaining G0W0 WFs and related
quantities depend on whether the DFT and MBPT calcu-
lations are performed with the same distribution [for
example, VASP (Kaltak, 2015)] or with two separate codes
[as with Quantum ESPRESSO (Giannozzi et al., 2009,
2017) and Yambo (Sangalli et al., 2019)]. In general, G0W0

QP corrections ΔϵQPi ¼ ϵG0W0

i − ϵDFTi need to be computed
on a uniform grid in the FBZ, which can be made efficient
by unfolding from the IBZ to the FBZ (in Yambo, this
operation is carried out by the postprocessing utility ypp).
While orbitals remain at the DFT-KS level, Wannier90
requires the states to be ordered with ascending energy and,
in addition, some input matrices (for example, the uHu)
need to be updated with QP corrections. If this is not
performed by the ab initio engine, it can be taken care by the
Wannier90 utility gw2wannier90.py if the DFT
eigenvalues and QP corrections are provided in the standard
format seedname.eig. After this step the Wannierization
can proceed as usual, and it is available in both Wannier90
(Pizzi et al., 2020) and WanT (Ferretti et al., 2012). Note
that in G0W0 QP corrections need to be computed on a
subset of the k-point grid required to calculate the self-
energy. This can be exploited to speed up the calculation,
especially for 2D materials, as discussed by Sangalli et al.
(2019), because Wannierization typically requires relatively
coarse k-point grids. Finally, we address beyond-G0W0

development of interest from a WF perspective. While
Aguilera et al. (2013) showed that off-diagonal components
of the self-energy—which are not included in standard
perturbative approaches—are relevant in the case of band
inversions (such as for topological insulators), Hamann and
Vanderbilt (2009) found that differences between MLWFs
obtained with the local-density approximation (LDA) and
the quasiparticle self-consistent GW (QSGW) approxima-
tion are generally minimal.

c. Bethe-Salpeter equation

To address neutral excitations, as opposed to the charged
excitations of GW, one needs to describe the bound state of an
excited electron with the hole that has been created. This is
accomplished either using time-dependent density-functional
theory or Green’s function methods (Onida, Reining, and
Rubio, 2002). In the latter case the Bethe-Salpeter equation
(BSE) is solved on top of theGW solutions. Within the Tamm-
Dancoff approximation (Dancoff, 1950; Hirata and Head-
Gordon, 1999; Onida, Reining, and Rubio, 2002), the BSE
can be recast into an effective two-particle eigenvalue problem
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(Rohlfing and Louie, 2000; Onida, Reining, and Rubio,
2002), which in the electron-hole (e-h) basis reads

X
v0c0

½Dvc;v0c0 þ 2Kx
vc;v0c0 − Kd

vc;v0c0 �Aλ
v0c0 ¼ EλAλ

vc; ð38Þ

where the v, v0 and c, c0 indices run over valence and
conduction states, Eλ are the neutral excitation energies
(the poles of the density-density response function), and
Aλ
vc are the coefficients of the excitonic wave functions that

are related to oscillator strengths in the e-h basis. The effective
two-particle Hamiltonian is made by (i) a diagonal term
Dvc;v0c0 ¼ ðεQPc − εQPv Þδvv0δcc0 representing the “bare” e-h
transitions (i.e., without accounting for the electron-hole
interaction) from the QP theory, (ii) an exchangelike term

Kx
vc;v0c0 ¼

Z
drdr0 ϕ�

cðrÞϕvðrÞjr − r0j−1ϕ�
v0 ðr0Þϕc0 ðr0Þ; ð39Þ

and (iii) a direct screened Coulomb term

Kd
vc;v0c0 ¼

Z
drdr0 ϕ�

cðrÞϕc0 ðrÞWðr; r0Þϕ�
v0 ðr0Þϕvðr0Þ ð40Þ

responsible for an effective attractive interaction between the
electron and the hole. In Eqs. (39) and (40) fϕig and fεQPi g are
the QP wave functions and QP energies, respectively. The
solution of Eq. (38) in the e-h basis would require the explicit
computation of a significant number of empty states, which
becomes in turn a critical convergence parameter. This can be
avoided (Giustino, Cohen, and Louie, 2010; Rocca, Lu, and
Galli, 2010; Umari et al., 2011; Marsili et al., 2017) resorting
to well established techniques from DFPT (Baroni et al.,
2001) by introducing (i) the projector over the conduction
manifold Q̂ ¼ 1 − P̂ ¼ 1 −

P
vjϕvihϕvj and (ii) a set of

auxiliary functions ξvðrÞ ¼
P

cAcvϕcðrÞ, usually called a
batch representation (Walker et al., 2006; Rocca et al.,
2008). These are Nv (where Nv is the number of occupied
states) auxiliary functions that live in the unperturbed
empty-states manifold and provide an equivalent but more
compact representation of the excitonic wave function
Θðr; r0Þ ¼ P

vcAcvϕ
�
vðrÞϕcðr0Þ ¼

P
vϕ

�
vðrÞξvðr0Þ. In this rep-

resentation the effective two-particle Hamiltonian is com-
pletely specified by its action on the components of the batch
(Rocca, Lu, and Galli, 2010),

X
v0
Dvv0 jξv0 i ¼

X
v0
ðĤQP − εv01Þδvv0 jξv0 i; ð41Þ

X
v0
Kx

vv0 jξv0 i¼
X
v0

Q̂

�Z
1

jr−r0jϕ
�
v0 ðr0Þξv0 ðr0Þdr0

�
jϕvi; ð42Þ

X
v0
Kd

vv0 jξv0 i ¼
X
v0

Q̂

�Z
Wðr; r0Þϕ�

v0 ðr0Þϕv0 ðr0Þdr0
�
jξv0 i:

ð43Þ

The advantage of this formulation is that there is no explicit
reference to the empty states (hidden inside the projector Q̂

and the batch representation), and only the Nv auxiliary
functions fjξvig need to be determined by solving the BSE
in the batch representation.
A further computational speedup [and an improvement on

the overall scaling (Marsili et al., 2017)] can be achieved by
moving from the KS orbitals to MLWFs and by exploiting
their localization to greatly reduce the number of operations
needed to evaluate the action of the BSE Hamiltonian on a trial
state jξvi. This is particularly relevant for the direct term
[Eq. (43)], which represents the real bottleneck of the
calculations. In the Wannier representation this becomes

X
v0
Kd

vv0 jξ̃v0 i ¼ Q̂

�X
v0

Z
Wðr; r0Þω�

v0 ðr0Þωv0 ðr0Þdr0
�
jξ̃v0 i;

ð44Þ

where fωvðrÞg are the MLWFs and ξ̃vðrÞ is the batch
component in the Wannier representation [simply obtained
by rotating the original ξvðrÞ with the unitary matrix rotation
that transforms the manifold from the canonical to the MLWF
representation]. Exploiting locality, one can define a threshold
for which a given pair of MLWFs overlap. By excluding
nonoverlapping pairs of MLWFs from the summation in
Eq. (44), it becomes possible to lower the scaling of the
evaluation of the action of the direct term on trial states from
OðN4Þ to OðN3Þ (Marsili et al., 2017), an approach that has
been established and applied in the community (Umari et al.,
2011; Marsili et al., 2017; Elliott et al., 2019). Tight-binding
and phenomenological models based on localized represen-
tation have also recently appeared (Peng et al., 2019; Dias,
Silveira, and Qu, 2023; Uría-Álvarez et al., 2024).
The concept of MLWF can actually be extended to multi-

particle Bloch states and has recently been applied to excitons,
which are two-particle correlated e-h excitations, and where
maximal localization can be defined with respect to an average
e-h coordinate in real space (Haber et al., 2023). The benefits
of these maximally localized exciton Wannier functions
(MLXWFs) for excitons are essentially the same as those
of MLWFs for electrons, including provision of a compact
basis for ab initio exciton TB models and interpolation of key
quantities such as the excitonic bands, the exciton-phonon
matrix elements, and Berry curvatures for the exciton wave
function. They also provide physical insights on the nature of
excitons (Haber et al., 2023).

D. Ballistic transport and nanostructures

MLWFs can be used to build the electronic structure of
large nanostructures (Lee, Nardelli, and Marzari, 2005; Lihm
and Park, 2019) and to determine their ballistic transport when
connected to semi-infinite leads (Calzolari et al., 2004; Lee,
Nardelli, and Marzari, 2005). In the latter case the formalism
of Green’s functions is used to embed a conductor into the
surrounding environment. In all cases the building blocks are
Hamiltonian matrix elements between the localized MLWFs
that are used to construct, LEGO-like, either the desired non-
self-consistent Hamiltonian of a much larger nanostructure or
the self-energies embedding the conductor of interest into
semi-infinite leads. Any solid or surface can be viewed as an
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infinite (or semi-infinite, in the case of surfaces) stack of
“principal layers” interacting only with neighboring layers
(Lee and Joannopoulos, 1981a, 1981b). In this way the
infinite-dimensional real-space Hamiltonian can be divided
into finite-size Hamiltonian matrices. For a bulk system (i.e.,
infinite and periodic) the only independent components are
H00 and H01, where the former represents the interaction
between MLWFs located in the same principal layer and the
latter stands for the interaction between orbitals in one
principal layer and the next.
As discussed by Buongiorno Nardelli (1999), one can

consider a system composed of a conductor C connected to
two semi-infinite leads R and L (C, R, and L are themselves
composed of a finite or infinite number of principal layers). The
conductance through C is related to the scattering properties of
C itself via the Landauer formula (Landauer, 1970),

GðEÞ ¼ 2e2

h
T ðEÞ; ð45Þ

where T is the transmission function and G is the conductance.
The transmission function represents the probability that an
electron injected at one end of the conductor will transmit to the
other end. This transmission function can be expressed in terms
of the Green’s functions of the conductors and of its coupling to
the leads as (Lee and Joannopoulos, 1981a, 1981b)

T ¼ TrðΓLGr
CΓRGa

CÞ; ð46Þ

where Gfr;ag
C are the retarded and advanced Green’s functions

of the conductor, respectively, and ΓfL;Rg are functions that
describe the coupling of the conductor to the two leads. To
compute the Green’s function of the conductor, one starts with
the equation for the Green’s function of the entire system,

ðϵ −HÞG ¼ 1; ð47Þ

where ϵ ¼ Eþ iη, with η arbitrarily small, and 1 is the identity
matrix. The matrix representation of G in a WF basis can be
partitioned as

0
B@

GL GLC GLCR

GCL GC GCR

GLRC GRC GR

1
CA

¼

0
BB@

ðϵ −HLÞ HLC 0

H†
LC ðϵ −HCÞ HCR

0 H†
CR ðϵ −HRÞ

1
CCA

−1

: ð48Þ

We can then write the conductor Green’s function as

GCðEÞ ¼ ðϵ −HC − ΣL − ΣRÞ−1; ð49Þ

where the effect of the semi-infinite leads on the conductor is
described by the self-energies ΣL;R, and the coupling functions
ΓfL;Rg are obtained from the self-energies as

ΓfL;Rg ¼ i½Σr
fL;Rg − Σa

fL;Rg�; ð50Þ

In Eq. (50) the advanced self-energy is the Hermitian conjugate
of the retarded one, and we solve for the latter. Given that the
semi-infinite leads are also made of principal layers, one can
construct the self-energies as (Buongiorno Nardelli, 1999)

ΣL ¼ H†
LC½ϵ −HL

00 − ðHL
01Þ†T̄L�−1HLC;

ΣR ¼ HCRðϵ −HR
00 −HR

01TRÞ−1H†
CR;

ð51Þ

where H00 describes the intralayer interactions and H01

represents the interlayer couplings. The transfer matrices
T̄L;R and TL;R, defined such thatG10 ¼ TG00 andG00 ¼ T̄G10,
are calculated following the iterative procedure by Sancho,
Lopez Sancho, and Rubio (1984). The only inputs are the
matrix elements of the Hamiltonian Hmn in a localized
representation. The accuracy of the results depends on having
principal layers that do not couple beyond next neighbors, i.e.,
having a well-localized basis. The knowledge of the conductor
Green’s function GC also gives direct information on the

FIG. 8. Left panel: comparison of the band structure for a
ð5; 5Þ single-wall carbon nanotube. It is calculated in the
20-atom primitive cell with a self-consistent Hamiltonian
using five k points along the one-dimensional Brillouin zone
(k ¼ nπ=L; n ¼ 0; 1;…; 4) and then diagonalized non-self-
consistently everywhere (red dots) or calculated in a supercell
5 times longer. In the latter case the Brillouin zone is 5 times
shorter, 5 times more bands are displayed, and the Hamiltonian
is consistently obtained using Γ sampling only. While a
pseudogap of more than 2 eV is present at Γ, non-self-
consistent diagonalization everywhere (solid thin lines) faith-
fully captures the metallic character of the nanotube. Folding
the original bands (red dots) into the smaller Brillouin zone
of the supercell also shows perfect agreement between the
calculations. These results highlight how disentanglement in
the supercell recovers from the empty states at Γ what is needed
to capture the character of filled and empty states away from Γ.
The center and right panels reinforce this point, showing the
ballistic conductance and density of states obtained from the
Green’s functions calculated using the supercell Wannier
functions. Notably, the Van Hove singularities and conductance
steps are captured with great accuracy even when the bands
edges are at arbitrary points, which highlights the role of
MLWFs as effective interpolators and building blocks for the
non-self-consistent electronic structure of large-scale nano-
structures; see also Lee, Nardelli, and Marzari (2005).
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electronic spectrum via the spectral density of the electronic
states: NCðEÞ ¼ −ð1=πÞIm½TrGCðEÞ�.
As an example, we take a ð5; 5Þ single-wall carbon nano-

tube described with a supercell containing 100 carbon atoms
(5 times the primitive cell); the disentanglement and
Wannierization procedure results in 150 sp2 orbitals and
100 pz orbitals. This supercell size is large enough to allow for
Γ-sampling only in the BZ, and to have negligible overlap
with the MLWFs belonging to the next but one supercell. We
show in Fig. 8 the results for the band structure, quantum
conductance, and density of states as adapted from Lee,
Nardelli, and Marzari (2005). The metallic nanotube, not-
withstanding its ∼2 eV pseudogap at Γ, shows a band
structure in perfect agreement with that obtained from a fine
sampling of the BZ and perfect agreement between the steps
in conductance and the peaks in the Van Hove singularities,
with the maxima and the minima of the band dispersions at
arbitrary points in the BZ. While these methodologies based
on WFs have been implemented either as an extension of
Wannier90 (Shelley et al., 2011) or as a stand-alone in the
WF-based WanT code (Ferretti et al., 2012), analogous
techniques have been developed for other types of localized
orbitals and implemented in simulation codes such as
TranSIESTA Atomistix ToolKit (Brandbyge et al.,
2002), SMEAGOL (Rocha et al., 2006), OpenMX (Ozaki,
Nishio, and Kino, 2010), NEMO5 (Fonseca et al., 2013; Wang
et al., 2017, 2021; Sarangapani, Charles, and Kubis, 2022),
nextnano (Birner et al., 2007), NanoTCAD ViDES (Fiori
and Iannaccone, 2007; Bruzzone et al., 2014), and Kwant
(Groth et al., 2014), some of which also provide an interface
with the Wannier ecosystem. In addition, we emphasize that
different kinds of WFs can be adopted as bases for ab initio
quantum transport calculations, such as the POWFs
(Thygesen, Hansen, and Jacobsen, 2005; Fontana et al., 2021)
discussed in Sec. II.D, which have been used at both the DFT
(Thygesen and Jacobsen, 2005) andGW levels (Thygesen and
Rubio, 2008).

E. Berryology

1. Motivation

Berry phases and related quantities are central to the
description of the electronic properties of crystals (Xiao,
Chang, and Niu, 2010; Vanderbilt, 2018). Here are some
representative examples.3

(1) The electronic contribution to the electric polarization
of an insulator is given by

Pel ¼ −e
Xocc
n

Z
BZ

dk
ð2πÞ3 Ak;nn; ð52Þ

where −e is the electron charge andAk;nn are diagonal
elements of the Berry connection matrix,

Ak;mn ¼ ihumkj∇kunki: ð53Þ

(2) The off-diagonal elements of Ak describe electric-
dipole transition moments, allowing the interband
optical conductivity to be expressed as

σabðωÞ¼
ie2

ℏ

X
m;n

Z
BZ

dk
ð2πÞ3 ðfmk−fnkÞ

×
εmk−εnk

εmk−εnk−ℏðωþ i0þÞA
a
k;nmA

b
k;mn; ð54Þ

where fnk is the Fermi-Dirac occupation factor.
(3) The Berry curvature is defined as the curl of the Berry

connection

Ωnk ¼ ∇k ×Ak;nn ¼ −Imh∇kunkj × j∇kunki; ð55Þ

and its integral over the occupied states gives the
intrinsic AHC

σyx ¼
e2

ℏ

Z
BZ

dk
ð2πÞ3

X
n

fnkΩz
nk: ð56Þ

(4) The ground-state orbital magnetization reads

Morb ¼
Z
BZ

dk
ð2πÞ3

X
n

fnk

�
morb

nk þ e
ℏ
ðεF − εnkÞΩnk

�
;

ð57Þ

with εF the Fermi energy and

morb
nk ¼ e

2ℏ
Imh∇kunkj × ðĤk − εnkÞj∇kunki ð58Þ

the intrinsic orbital moment of a Bloch state.
(5) To first order in the applied fields E and B, the

semiclassical equations of motion for a wave packet in
a Bloch band read

ṙ ¼ 1

ℏ
∇kε̃nk − k̇ ×Ωnk; ð59aÞ

k̇ ¼ −
e
ℏ
E −

e
ℏ
ṙ ×B; ð59bÞ

where

ε̃nk ¼ εnk − ðmspin
nk þmorb

nk Þ ·B ð60Þ

is the Zeeman-shifted band energy.
The motivation to apply Wannier interpolation to Berry-

type quantities came from pioneering ab initio calculations
of the AHC in the ferromagnets SrRuO3 (Fang et al., 2003)
and bcc Fe (Yao et al., 2004), which revealed the integrand
of Eq. (56) to be strongly peaked near avoided crossings
between occupied and empty bands, resulting in the need to
sample the BZ over millions of k points to reach convergence.
An efficient Wannier-interpolation scheme for evaluating the
AHC was developed by Wang et al. (2006). The methodology
has since been applied to many other properties.

3All formulas are given for spinor bands so that each band carries
one electron per k point.
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Wannier interpolation of Berry-type quantities was intro-
duced in version 2 of Wannier90 as part of its postprocess-
ing code postw90 (Mostofi et al., 2014), with the ability to
compute AHC (Wang et al., 2006), interband optical con-
ductivity (Yates et al., 2007), and orbital magnetization
(Lopez et al., 2012). The list of available properties has since
grown considerably, and more recently the WannierBerri
code package (Tsirkin, 2021) introduced several methodo-
logical improvements, including “pruned FFT” (a combina-
tion of fast and slow Fourier transforms) (Markel, 1971;
Sorensen and Burrus, 1993) and the use of symmetries and
the tetrahedron method for BZ integrals. Other codes also
compute Berry-type quantities in different contexts, such as
dynamics-w90 for time-dependent dynamics (dynamics-
w90 Collaboration, 2023). We note that some codes, including
WannierTools (Wu et al., 2018) and linres (Železný,
2023), implement some functionalities, but with additional
approximations; see the forthcoming discussion of Eq. (66).
Consult the documentation of the codes for an up-to-date
description of their capabilities.
In the following we outline the basic interpolation strategy

for Berry-type quantities, using the off-diagonal Berry con-
nection as an example (the diagonal Berry connection that
enters the Berry phase requires a separate treatment; see
Sec. III.F). For discussion purposes we adopt the modified
phase convention for Bloch sums indicated in Eq. (37).

2. Wannier interpolation of the interband Berry connection

We now evaluate off-diagonal elements of the Berry
connection matrix in the Hamiltonian gauge. Inserting
Eq. (22), the relation between interpolated Bloch states in
the Hamiltonian and Wannier gauges, into Eq. (53), we obtain

AH
k0 ¼ iU†

k0∇k0Uk0 þ U†
k0AW

k0Uk0 : ð61Þ

Note the extra (first) term compared to the gauge-
transformation rule [Eq. (29)] for a lattice-periodicmatrix object.
Recalling fromEq. (18) that the columns ofUk0 are eigenvectors
of HW

k0 , the off-diagonal matrix elements of that term can be
evaluated from nondegenerate perturbation theory as

ðU†
k0∇k0Uk0 Þmn ¼

½U†
k0 ð∇k0HW

k0 ÞUk0 �mn

εHnk0 − εHmk0
: ð62Þ

All quantities on the right-hand side of Eq. (62) can be
obtained from Eqs. (17) and (18) starting with h0ijĤjRji and
τj ¼ h0jjr̂j0ji [the latter appears in the modified phase factors
in Eq. (37)]. For the second term in Eq. (61), we also need

AW
k0;ij ¼

X
R

eik
0·ðRþτj−τiÞdijðRÞ; ð63Þ

which follows from inserting the Bloch sum [Eq. (20)] with the
modified phase factors into Eq. (53). In Eq. (63) dijðRÞ
are the off-diagonal matrix elements of r̂ in the Wannier basis,
that is,

h0ijr̂jRji ¼ δR;0δijτj þ dijðRÞ: ð64Þ

The matrix elements h0ijĤjRji are evaluated using
Eq. (16), and the corresponding procedure for h0ijr̂jRji is
as follows. To begin, we can use Eq. (6a) to write h0ijr̂jRji as
ð1=NÞPke

−ik·RAW
k;ij. Since the Bloch functions are smooth

in the Wannier gauge, AW
k;ij can be evaluated on the ab initio

grid by discretizing the k derivative appearing in Eq. (53).
Adopting the finite-difference scheme described by Marzari
and Vanderbilt (1997) and Mostofi et al. (2008), we obtain

h0ijr̂jRji¼ i
N

X
k

e−ik·R
X
b

wbb
X
m;n

V�
k;miM

ðk;bÞ
mn Vkþb;nj; ð65Þ

where b are vectors connecting neighboring grid points,
wb are appropriately chosen weights, Mðk;bÞ are the overlap
matrices defined by Eq. (12), and Vk are the Wannierization
matrices in Eq. (6b). Since the overlap matrices were
computed in preparation of the WF construction procedure
and the Wannierization matrices were obtained at the end of
that procedure, both are readily available.
Once h0ijĤjRji and h0ijr̂jRji have been tabulated,

the interband Berry connection can be evaluated using
Eqs. (61)–(63), with the matrices Uk0 therein (along with
the interpolated energy eigenvalues) given by Eq. (18).
Finally, the Berry connection and energy eigenvalues are
inserted into Eq. (54) to obtain the interband optical conduc-
tivity (Yates et al., 2007).
Equation (65) entails a numerical error of the order of

ðΔkÞ2, where Δk is the ab initio mesh spacing (Marzari and
Vanderbilt, 1997; Mostofi et al., 2008). The direct real-space
mesh integration method mentioned after Eq. (16) should be
free of such errors, but it is not as practical in the context of
k-space Wannierization schemes. It is therefore desirable to
develop improved discretized k-space formulas for h0ijr̂jRji
and the related matrix elements. A higher-order generalization
of the discretization scheme of Marzari and Vanderbilt (1997)
and Mostofi et al. (2008) was recently introduced (Cistaro
et al., 2023), and further improvements are currently under
way (Ghim, 2022; Lihm, 2022).
In empirical tight binding, it is customary to approximate

the position matrix elements by dropping the second term in
Eq. (64) (Foreman, 2002; Vanderbilt, 2018),

h0ijr̂jRji ≈ δR;0δijτj: ð66Þ

In Eq. (66) and when the modified phase convention [Eq. (37)]
is used, the matrix AW

k0 in Eq. (63) vanishes. Equation (61) for
AH

k0 then reduces to its first term, which can be interpreted as
the “internal” Berry connection of the tight-binding eigen-
vectors. This is how tight-binding codes such as PythTB
evaluate Berry phases and curvatures (Yusufaly, Vanderbilt,
and Coh, 2023), which is natural in the context of toy-model
calculations.
The aforementioned approximation is more difficult to

justify when one uses ab initio WFs given that the discarded
dijðRÞ matrix elements are readily available, as mentioned;
even so, that approximation is made by some codes, including
WannierTools (Wu et al., 2018) and linres (Železný,
2023). The role of intra-atomic dijðRÞ matrix elements in
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tight-binding calculations of the linear dielectric function was
studied by Pedersen, Pedersen, and Kriestensen (2001).
Ibañez-Azpiroz, Juan, and Souza (2022) extended that analy-
sis to interatomic matrix elements and nonlinear optical
responses using Wannier interpolation. The importance of
the dijðRÞ off-diagonal elements for gauge invariance has also
been discussed in the context of time-dependent dynamics
(Schüler et al., 2021).

3. Other Berry-type quantities

The interpolation of the Berry curvature Ωk proceeds along
similar lines, allowing the computation of AHC from Eq. (56)
(Wang et al., 2006), and the procedure can be extended to spin
Hall conductivity (SHC) (Qiao et al., 2018; Ryoo, Park, and
Souza, 2019) and nonlinear responses. For example, nonlinear
optical responses and AHCs involve k derivatives of Ak and
Ωk, respectively (Aversa and Sipe, 1995; Sodemann and Fu,
2015). In the same way as band derivatives (see Sec. III.C.2),
both are conveniently evaluated by Wannier interpolation
(Wang, Liu et al., 2017; Ibañez-Azpiroz, Tsirkin, and Souza,
2018; Liu, Tsirkin, and Souza, 2023). To interpolate Ak, Ωk,
and their k derivatives, one needs only h0ijĤjRji and
h0ijr̂jRji, but other quantities require additional matrix
elements.4 For example, the orbital moment in Eq. (58)
requires h0ijĤðr̂−RÞjRji and h0ijr̂aĤðr̂ − RÞbjRji (Lopez
et al., 2012). While the former can be evaluated on the
ab initio grid using the same ingredients entering Eqs. (16)
and (65) for h0ijĤjRji and h0ijr̂jRji, the latter also requires
humkþb1

jĤkjunkþb2
i, which must be calculated separately

(Lopez et al., 2012). As in the case of Eq. (61) for Ak0,
the resulting interpolation formula contains an internal term
analogous to Eq. (58) itself but expressed in terms of the TB
eigenvectors and Hamiltonian. That term can be evaluated

from h0ijĤjRji and τj alone, but it leaves out important
atomiclike contributions that are encoded in the other matrix
elements needed for a full calculation (Lopez et al., 2012;
Nikolaev and Solovyev, 2014).
The ab initio matrix elements needed for various interpo-

lation tasks are listed in Table I. The files *.eig and *.mmn
are already required for constructing the WFs, and therefore
they are provided by the interface code of every ab initio code
that is compatible with Wannier90. The file *.spn is
provided by the interface of both Quantum ESPRESSO and
VASP. As for the other matrix elements listed in Table I, at
present they are implemented only in pw2wannier90.x,
the interface of Quantum ESPRESSO.
As a work-around for obtaining these quantities from the

output of other ab initio engines, one can resort to a sum-over-
states procedure. For example, the uHu matrix elements may
be expressed as

humkþb1
jĤkjunkþb2

i ≈
Xlmax

l

humkþb1
julkiεlkhulkjunkþb2

i ð67Þ

in terms of the energy eigenvalues and overlap matrices,
and the relevant matrices for spin Hall conductivity can be
similarly obtained (Qiao et al., 2018). Since the summation is
done before Wannierization, the number of states lmax
included in the non-self-consistent ab initio calculation can
be systematically increased until the desired level of con-
vergence is reached.
The aforementioned procedure is implemented for uHu,

uIu, sHu, and sIu in the utility5 mmn2uHu provided with
the WannierBerri code package (Tsirkin, 2021). Besides
its use as a work-around, it can serve as a benchmark for
testing future implementations of those matrix elements in
various interface codes between ab initio and Wannier
engines.

TABLE I. Ab initio matrix elements that are used explicitly in setting up the WF matrix elements needed to perform common interpolation
tasks. SHC stands for spin Hall conductivity, an asterisk denotes the seedname specified in the input file of Wannier90, QE represents
Quantum ESPRESSO,Ak is the Berry connection or electric-dipole matrix [Eq. (53)],Ωk is the Berry curvature [Eq. (55)],morb

k is the intrinsic
orbital magnetic dipole [Eq. (58)], and qabk is the intrinsic electric quadrupole [for the matrix definitions of morb

k and qabk , see Pozo Ocaña and
Souza (2023)]. The optical conductivity [Eq. (54)] in the electric-dipole approximation involves εnk and Ak, the AHC [Eq. (56)] involves εnk
and Ωk, and the orbital magnetization [Eq. (57)] involves εnk, Ωk, and morb

k . Spatially dispersive responses such as natural optical activity
depend on εnk, Ak, morb

k , mspin
k , and qabk (Pozo Ocaña and Souza, 2023). The mmn and eig matrix elements are needed for constructing the

(disentangled) WFs, and hence they are used implicitly when interpolating any physical quantity.

Matrix element Wannier90 file Needed for Implemented in
Computed via
mmn2uHu from

humkjĤkjunki ¼ εnkδmn *.eig Transport, optics, morb
k All

humkjσ̂junki *.spn mspin
k

QE, VASP
humkjunkþbi *.mmn Ak, Ωk, morb

k , qabk , SHC All
humkþb1

jĤkjunkþb2
i *.uHu morb

k QE *.eig, *.mmn
humkþb1

junkþb2
i *.uIu qabk QE *.mmn

humkjσ̂Ĥkjunkþbi *.sHu SHC in Ryoo, Park,
and Souza (2019)

QE *.eig, *.mmn, *.spn
humkjσjunkþbi *.sIu QE *.mmn, *.spn

4By explicitly plugging the Bloch sum of Eq. (20) into the rhs of
Eq. (55), one may think that a matrix element h0ijr̂ar̂bjRji is needed.
However, this term is symmetric under the exchange of a and b;
therefore, it does not contribute to the cross product, as shown by
Wang et al. (2007).

5The implementation is described in the WannierBerri docu-
mentation, which is available at https://docs.wannier-berri.org/en/
master/docs/mmn2uHu.html.
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F. Topological invariants and related properties

The topological aspects of band theory have been inten-
sively studied over the past two decades (Hasan and Kane,
2010; Vanderbilt, 2018), and ab initio calculations have
been central to that effort (Wang and Zhang, 2017). They are
used to indentify topological materials candidates, to deter-
mine topological invariants, and to calculate surface bands
that can be compared with angle-resolved photoemission
measurements.
WFs feature prominently in topological band theory. For

example, quantum anomalous Hall insulators (also known as
Chern insulators) (Haldane, 1988) can be defined as 2D
systems where it is not possible6 to construct a set of
exponentially localized WFs (Thonhauser and Vanderbilt,
2006; Brouder et al., 2007; Vanderbilt, 2018); this is known
as a topological obstruction. More generally, symmetry-
protected topological insulators can typically be defined as
insulators for which it is not possible to construct a set of WFs
spanning the valence bands without breaking the protecting
symmetry in the choice of gauge (Soluyanov and Vanderbilt,
2011a; Bradlyn et al., 2017). Prominent examples include 2D
quantum spin Hall insulators (Kane and Mele, 2005a, 2005b;
Bernevig and Zhang, 2006) and 3D Z2 topological insulators
(Fu, Kane, and Mele, 2007), where the protecting symmetry is
time reversal, and topological crystalline insulators, which are
instead protected by crystalline symmetries (Fu, 2011).
A second example is the “Wannier spectrum” defined by

the centers of hybrid (also known as hermaphrodite) orbitals
(Sgiarovello, Peressi, and Resta, 2001) that are Wannier-like
along ẑ and Bloch-like along x̂ and ŷ; see Fig. 9. The surface
energy spectrum εnðkx; kyÞ can be continuously deformed
into the bulk Wannier spectrum znðkx; kyÞ obtained by
Wannierizing along the surface normal (Fidkowski, Jackson,
and Klich, 2011; Neupert and Schindler, 2018), allowing the
topological flow of the surface energy bands to be inferred
from that of the bulk Wannier bands (Taherinejad, Garrity, and
Vanderbilt, 2014). In some cases the topological indices can
be deduced from the Wannier band structure (Gresch et al.,
2017; Varnava, Souza, and Vanderbilt, 2020).
WFs also play a more practical role in the study of

topological materials, as several of the electronic-structure
packages that are commonly used to characterize them rely
on a Wannier-TB representation [despite the aforementioned
obstruction (Soluyanov and Vanderbilt, 2011a; Bradlyn et al.,
2017), topological insulators still afford a Wannier represen-
tation provided that the WFs span a few low-lying conduction
states along with the valence bands].
In particular, both PythTB (PythTB Collaboration, 2023)

and WannierTools (Wu et al., 2018) work with orthogonal
TB models and have the option of importing TB Hamiltonians
generated by a Wannier engine using either the �_hr.dat or
the �_tb.dat file format (as mentioned, the latter also
includes the matrix elements of the position operator in the

Wannier basis and the coordinates of the lattice vectors). The key
point is that the Wannierized Hamiltonian preserves the topo-
logical features of the original first-principles electronic struc-
ture. The identification and characterization of those features can
therefore be carried out entirely in the Wannier representation,
which is often more convenient and/or more efficient than
proceeding directly from the ab initio Bloch states.
The simplest example of a topological band-structure feature

is an isolated touching between a pair of bands, known as a
Weyl point (Armitage, Mele, and Vishwanath, 2018;
Vanderbilt, 2018). Weyl points are fundamentally different
from weak avoided crossings, but most band-interpolation
schemes are unable to tell them apart; Wannier interpolation
correctly distinguishes between the two. The distinction is
rooted in the fact that a Weyl node acts as a monopole source or
sink of Berry curvature in k space, allowing it to be associated
with a topological invariant known as the chiral charge.
The chiral charge χ [typically �1, but sometimes �2 or �3

(Fang et al., 2012; Tsirkin, Souza, and Vanderbilt, 2017)] can
be determined in two different ways: (i) from the quantized
Berry-curvature flux through a small surface S enclosing the
Weyl point (Gosálbez-Martínez, Souza, and Vanderbilt, 2015;
Vanderbilt, 2018),

Z
S
Ωnk · n̂ ¼ −2πχ; ð68Þ

where n̂ is a unit vector in the direction of ∇kεnk, and (ii) by
evaluating the Berry phase

ϕnðCÞ ¼
I
C
Annk · dk ð69Þ

FIG. 9. Sketch of some possible evolutions of hybrid polariza-
tion P2ðk1Þ, i.e., the sum of hybrid Wannier charge centers, across
the BZ. The Chern numbers C correspond to different winding
numbers. See Gresch et al. (2017) for further discussion.

6Recent work (Gunawardana, Turner, and Barnett, 2024) sug-
gested that it might be possible to construct optimally localized WFs
even in the presence of nonvanishing Chern numbers, at least for the
simple case of one isolated band.
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around contours C at a fixed latitude on an enclosing spherical
surface, and then tracking its evolution from zero at the south
pole to 2πχ at the north pole (Gresch et al., 2017).
The latter procedure is implemented in both Z2Pack

(Z2Pack Collaboration, 2023) and WannierTools. All that
is required is the TB Hamiltonian h0ijĤjRji, from which one
obtains the eigenvectors on a discrete mesh fkjg of points
along each contour. The Berry phase is then evaluated by
finite differences from the overlaps between TB eigenvectors
on consecutive points along C as follows (Vanderbilt, 2018):

ϕint
n ðCÞ ¼ −Im lnΠj⟪unkj

kunkjþ1
⟫; ð70Þ

where kunkj
⟫ denotes a column vector of the matrix Ukj

defined by Eq. (18). Equation (70) corresponds, in the
language of Sec. III.E, to the internal part of the Berry phase
[Eq. (69)], which also contains an external part

ϕext
n ðCÞ ¼

X
j

⟪unkj
kAW

k kunkj
⟫ · Δk; ð71Þ

where Δk ¼ ðkjþ1 − kj−1Þ=2 (Wang et al., 2007). The two
parts arise from discretizing the integral along C of the two
terms in Eq. (61) for the interpolated Berry connection. The
internal term depends only on h0ijĤjRji, while the external
one also requires h0ijr̂jRji. The 2π indeterminacy in the
Berry phase comes from the former, while the latter is single
valued and hence does not contribute to the quantized change
in the Berry phase from the south to the north pole of a
spherical surface. This is why χ can be determined from the
TB Hamiltonian alone.
Weyl crossings can occur at arbitrary points in the BZ,

which makes it difficult to spot them in the band structure. By
allowing energy eigenvalues and band velocities to be quickly
evaluated at arbitrary k points, Wannier interpolation provides
a practical solution to this problem (Gosálbez-Martínez,
Souza, and Vanderbilt, 2015): to locate the degeneracies
between bands n and nþ 1, to define a gap function
εnþ1k − εnk, and to search for its minima using a minimization
approach such as the conjugate-gradient method starting from
a sufficiently dense grid of k points. After discarding local
minima where the gap function is above some numerical
threshold, one is left with candidate degeneracies that can be
further characterized. They include not only point nodes such
as Weyl and Dirac nodes (Armitage, Mele, and Vishwanath,
2018) but also nodal lines (Fang et al., 2016; Yang et al.,
2018). This procedure is implemented in WannierTools.
Topological materials feature characteristic boundary modes

that reflect the bulk topology (Hasan and Kane, 2010;
Vanderbilt, 2018). In the case of Weyl semimetals, those modes
take the form of “Fermi arcs” connecting the projections of
bulk Weyl nodes of opposite chirality onto the BZ surface
(Armitage, Mele, and Vishwanath, 2018; Vanderbilt, 2018).
PythTB and WannierTools allow a bulk TB model to be
terminated along specified directions, thereby creating ribbons
or slabs whose boundary modes can then be inspected by
plotting the energy bands. WannierTools also provides the
option of obtaining a surface spectral function from the Green’s
function calculated for a semi-infinite system. In general, these

methods yield boundaries that are the result of a truncation of
the Wannier Hamiltonian, where the on-site energies and
hoppings between surface (edge) atoms are left unchanged
from their bulk value. More broadly, these methods com-
pletely neglect any relaxation, charge redistribution, or
reconstruction of the surface (edge). Hence, these are crude
and unrealistic approximations, and the corresponding cal-
culations do not provide a first-principles description of the
boundary electronic structure, even if they derive from a bulk
Wannier Hamiltonian that was calculated with first-princi-
ples methods. Nevertheless, they provide valuable insights
for the prediction of purely topological properties, particu-
larly the existence of topologically protected surface (edge)
states such as chiral or helical edge states, surface Dirac
cones, and Fermi arcs. While these calculations can support
the existence of these boundary states, their precise band
dispersion requires the boundary electronic structure to be
treated more explicitly, typically through supercell slab
(ribbon) simulations with structural optimization.
As mentioned, another useful tool for diagnosing topological

behavior is a hybrid representation of the electronic structure
in terms of orbitals that are localized in one spatial direction
only, remaining extended in the others (Sgiarovello, Peressi,
and Resta, 2001). To define these hybrid Wannier functions
(HWFs) for lattices of arbitrary symmetry, it is convenient
to work in reduced coordinates. Consider a 2D crystal, let
k ¼ k1b1 þ k2b2, and let r̂ ¼ x̂1a1 þ x̂2a2. Choosing b2 as
the localization direction, the HWFs are defined as

jhk1lni ¼
1

N2

X
k2

e−i2πk2ljψnki; ð72Þ

where N2 is the number of distinct values of k2 in the BZ and l
labels cells along a2. The topological indices can be determined
from the winding of the HWF centers

x2;k1ln ¼ hhk1lnjx̂2jhk1lni. ð73Þ
Figure 9 shows possible ways in which the hybrid polarization
P2ðk1Þ ¼ −ðeja2j=AcellÞ

P
nx2;k10n (where Acell is the area of

the unit cell) can wind across the BZ. For bulk materials the
analysis is carried out on high-symmetry BZ planes.
A different physical perspective on HWF centers is pro-

vided by the Wilson loop, which is calculated over a closed
curve C in k space, is discretized in L points as

WðCÞ ¼
YL−1
i¼0

Pocc
ki

; ð74Þ

and is a J × J matrix (Yu et al., 2011) obtained from the
product of ground-state projectors Pocc

ki
. The Wilson-loop

approach was first developed for time-reversal-symmetric
systems and later generalized to other topological phases
(Alexandradinata, Dai, and Bernevig, 2014; Alexandradinata
et al., 2014; Taherinejad, Garrity, and Vanderbilt, 2014;
Alexandradinata and Bernevig, 2016).
The two approaches are essentially equivalent (Gresch et al.,

2017): the logarithm of the eigenvalues of the Wilson loop at a
given k point corresponds to a gauge-invariant set of HWF
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centers, which coincide with those obtained from maximal
localization (Soluyanov and Vanderbilt, 2011b). Indeed, while
the original implementation based on HWFs enforced parallel
transport by performing singular value decomposition on each
overlap matrix along the line in k space, in the Wilson-loop
formalism the full gauge-invariant loopW is diagonalized. The
second approach has been found to converge slightly faster and
allows the expectation value of the Wilson-loop eigenstates
over symmetry operators to be studied (Gresch et al., 2017;
Z2Pack Collaboration, 2023).
This hybrid Wannier (or “Wilson-loop”) scheme is imple-

mented in Z2Pack; a detailed description of the methodology
was given by Gresch et al. (2017). In Z2Pack the hybrid
Wannier centers [Eq. (73)] are obtained from a parallel-
transport construction, starting with the overlap matrices
[Eq. (12)] (Taherinejad, Garrity, and Vanderbilt, 2014).
The same procedure is implemented in PythTB and
WannierTools for Wannier and TB Hamiltonians. The
required overlaps are then taken between TB eigenstates, as in
Eq. (70) (Z2Pack can also operate in this mode). Z2Pack
(Gresch et al., 2017) works with both Wannier and TB
Hamiltonians and acts directly with first-principles engines
such as Quantum ESPRESSO and VASP.
In closing, we bear in mind the different design philoso-

phies of the three packages surveyed in this section. As
mentioned in Sec. III.C, PythTB (PythTB Collaboration,
2023) was designed with TB “toy models” in mind and was
to be used as a pedagogical tool. It enables several geometric
and topological quantities to be computed (Berry phases and
curvatures, Chern numbers, and hybrid Wannier centers) and
allows one to generate ribbons and slabs to expose their
boundary modes. Although PythTB can also import large
Wannier models (which can be truncated internally), the code
is not optimized for speed; however, a high-performance
Numba (Lam, Pitrou, and Seibert, 2015) implementation of
PythTB better suited for that purpose is available (Numba-
PythTB Collaboration, 2023). WannierTools (Wu et al.,
2018), conversely, is designed primarily to work with large
Wannier models and is parallelized using the message passing
interface (MPI). Its distinctive features include searching for
band degeneracies and plotting surface spectral functions.
Finally, Z2Pack is focused on the HWF scheme. It is not
primarily a “post-Wannier” code, since it can circumvent the
need to use a Wannier engine by directly reading the ab initio
overlap matrices, which can help streamline high-throughput
calculations (Marrazzo et al., 2019; Grassano et al., 2023).
While topological invariants are generally introduced for

crystalline periodic systems in PBCs, there are a few scenarios
that require either the use of open boundary conditions or the
adoption of large supercells with Γ-only sampling. In both
cases, standard approaches are of no avail. Relevant examples
include the study of Anderson (Groth et al., 2009; Jiang et al.,
2009; Li et al., 2009) and amorphous topological insulators
(Corbae et al., 2023), heterogeneous systems such as trivial
and topological junctions (Bianco and Resta, 2011), molecular
dynamics simulations, and any other use case that does not fit
a small primitive cell with BZ sampling. Among many other
approaches [see Corbae et al. (2023) for a dedicated over-
view], single-point sampling (Ceresoli and Resta, 2007;
Favata and Marrazzo, 2023) and local markers (Bianco and

Resta, 2011; Baù and Marrazzo, 2024a, 2024b) have been
introduced to study topology for noncrystalline systems.
Thanks to the use of WFs as a basis set, these techniques

can be seamlessly implemented in the same framework for
both TB models [like the Haldane (Haldane, 1988) and Kane-
Mele models (Kane and Mele, 2005a, 2005b)] and ab initio
TB models, where the latter are obtained by constructing WFs
on top of any electronic-structure calculation including DFT,
GW, and DMFT (as discussed in Sec. III.C). This strategy has
been adopted with the StraWBerryPy code (Favata and
Marrazzo, 2023; StraWBerryPy Collaboration, 2023; Baù
and Marrazzo, 2024a, 2024b), where model or ab initio
TB Hamiltonians are read and manipulated either through
PythTB or TBmodels. StraWBerryPy can then be used
to calculate a few single-point and local topological invariants
such as the Chern number and the Z2 invariant, as well as
other quantum-geometrical quantities of the electronic struc-
ture that are relevant for topological materials.

G. Electron-phonon interactions

1. Methodology

In the past decade we have witnessed a community-wide
effort to develop advanced computational approaches and
simulation tools for atomistic modeling of function-defining
properties of materials. A primary focus of this ongoing
research has been the accurate description of electron-phonon
(e-ph) interactions from first principles (Giustino, 2017), as
they determine many materials properties of technological
interest, such as electrical and thermal transport (Li, 2015;
Gunst et al., 2016; Lee, Zhou et al., 2018; Macheda and Bonini,
2018; Poncé, Margine, and Giustino, 2018; Brunin et al.,
2020a, 2020b; Chaves et al., 2020; Cheng, Zhang, and Liu,
2020; Park et al., 2020; Poncé et al., 2020, 2021; Protik and
Broido, 2020; Protik and Kozinsky, 2020; Maliyov, Park, and
Bernardi, 2021; Zhou, Park, Timrov et al., 2021; Macheda,
Barone, and Mauri, 2022; Poncé, Royo, Gibertini et al., 2023),
phonon-assisted light absorption (Noffsinger et al., 2012;
Zhang et al., 2022; Bushick and Kioupakis, 2023), phonon-
mediated superconductivity (Calandra, Profeta, and Mauri,
2010; Margine and Giustino, 2013; Errea et al., 2020;
Lafuente-Bartolome, Gurtubay, and Eiguren, 2020a; Lilia
et al., 2022; Lucrezi et al., 2024; Mori et al., 2024;
Tomassetti et al., 2024), polaron formation (Sio et al., 2019;
Zhou and Bernardi, 2019; Lee et al., 2021; Falletta and
Pasquarello, 2022; Lafuente-Bartolome et al., 2022; Sio and
Giustino, 2023), and excitonic effects (Chen, Sangalli, and
Bernardi, 2020; Antonius and Louie, 2022; Paleari and Marini,
2022; Haber et al., 2023; Dai et al., 2024a, 2024b). This list of
references is not exhaustive and is intended to serve only as a
starting point for the respective topics.
A comprehensive review of the theory of e-ph interactions

in solids from the point of view of ab initio calculations
was given by Giustino (2017). An important contribution to
the e-ph problem was recently made by Stefanucci, Leeuwen,
and Perfetto (2023), who developed an ab initio many-body
quantum theory of electrons and phonons in and out of
equilibrium.
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There is a well established formalism for computing the e-ph
matrix elements from first principles using DFPT (Baroni,
Giannozzi, and Testa, 1987; Savrasov, 1992; Gonze, 1997;
Baroni et al., 2001). Furthermore, a linear-response approach
employing the GW method, named GW perturbation theory
(GWPT), was recently proposed to improve the accuracy of the
DFPT e-ph matrix elements (Li et al., 2019; Li et al., 2024).
However, all of the aforementioned materials properties are
difficult to evaluate with the desired accuracy using DFPT or
GWPT calculations directly due to the prohibitive computa-
tional cost. For one to achieve numerical convergence, the e-ph
matrix elements need to be computed on ultradense electron (k)
and phonon (q) BZ grids with 106–107 points.
Specialized numerical techniques based on Fourier interpo-

lation of the perturbed potential (Eiguren and Ambrosch-Draxl,
2008; Gonze et al., 2020), linear interpolation (Li, 2015),
Wannier interpolation (Giustino, Cohen, and Louie, 2007;
Giustino et al., 2007; Calandra, Profeta, and Mauri, 2010;
Agapito and Bernardi, 2018) or atomic orbital interpolation
(Gunst et al., 2016; Agapito and Bernardi, 2018) of the e-ph
matrix elements, and a Fermi-surface harmonics representation
of the e-ph matrix elements (Allen, 1976; Eiguren and
Gurtubay, 2014; Lafuente-Bartolome, Gurtubay, and Eiguren,
2020b) have been developed to address this convergence
problem. In particular, the interpolation of the e-ph matrix
elements using MLWFs (Marzari et al., 2012) introduced by
Giustino, Cohen, and Louie (2007) has proven to be successful
for enabling highly accurate and efficient calculations of e-ph
interactions, and the approach has been implemented within a
number of codes (Noffsinger et al., 2010; Poncé et al., 2016;
Zhou, Park, Lu et al., 2021; Cepellotti et al., 2022; Lee et al.,
2023; Marini et al., 2024). WFs have also been used in the
context of downfolding methods to calculate the Coulomb
interaction via the constrained random phase approximation
(cRPA) (Aryasetiawan et al., 2004) and the e-ph interaction via
constrained DFPT (Giovannetti et al., 2014; Nomura et al.,
2015; Berges et al., 2023), respectively.
We note that an alternative to the computation of the e-ph

interaction with DFPT is offered by the finite displacement
scheme in real space (Gunst et al., 2016; Chaput, Togo, and
Tanaka, 2019; Engel et al., 2020, 2022). While this approach
requires large supercells to reach convergence and is adiabatic
in nature (Poncé et al., 2015; Chaput, Togo, and Tanaka, 2019;
Engel et al., 2020, 2022), it has the advantage of being
universally applicable to any functional, including hybrid or
meta–generalized gradient approximation (meta-GGA) func-
tionals, as well as more complicated exchange-correlation
potentials, where higher-order derivatives of the functional are
not readily available.
Here we focus on the DFPT approach and outline the

interpolation procedure to compute the e-ph matrix elements
on ultradense meshes using WFs. One first determines the
e-ph matrix elements in the Bloch representation using the
electronic states computed with DFTon the irreducible wedge
of a coarse k-point grid and the deformation potentials
computed with DFPT on a coarse q-point grid. The e-ph
matrix element is defined as

gmnνðk;qÞ ¼ hψmkþqjΔqνVKSjψnki; ð75Þ

where ψnk and ψmkþq are the KS wave functions of the
initial and final Bloch states (with k the electron wave vector
and n the band index), and ΔqνVKS is the derivative of the
self-consistent potential associated with a phonon with
momentum q and branch index ν. The last quantity can
be obtained as

ΔqνVKS ¼
X
καp

�
ℏ

2Mκωqν

�
1=2

eiq·Rp
∂VKS

∂τκαp
eκα;qν; ð76Þ

whereRp is the lattice vector identifying the unit cell p, τκαp
is the position of atom κ in unit cell p in the Cartesian
direction α, Mκ is the mass of atom κ, ωqν is the phonon
frequency, and eκα;qν is the eigendisplacement vector cor-
responding to atom κ in the Cartesian direction α for a
collective phonon mode qν.
Then one finds the e-ph matrix elements in the Wannier

representation,

gijκαðRe;RpÞ ¼
�
0ei

���� ∂V
KS

∂τκαp

����Rej

	
; ð77Þ

where Re and Rp are the Bravais lattice vectors associated
with the electron and phononWS supercells, and jReji are the
MLWFs with index j centered in the cell at Re. This is done
by transforming the e-ph matrix elements from the coarse BZ
ðk;qÞ grids into the corresponding real-space supercells
ðRe;RpÞ as

gijκαðRe;RpÞ ¼
1

NeNp

X
k;q

e−iðk·Reþq·RpÞ
X
mnν

�
ℏ

2Mκωqν

�
1=2

× V†
kþq;imgmnνðk;qÞVk;nje�κα;qν: ð78Þ

In Eq. (78) Ne and Np are the number of unit cells in the
periodic BvK supercells corresponding to the number of k and
q points on the coarse electron and phonon grids, respectively,
and Vk is the Wannierization matrix introduced in Eq. (6).
That matrix is provided by the Wannier engine, while eκα;qν
and ωqν are obtained by diagonalizing the dynamical matrix at
wave vector q. In the same spirit as the interpolation of the
Hamiltonian discussed in Sec. III.C.1, a WS construction
can be used for the interpolation of the electron-phonon
matrix elements (Poncé et al., 2021). In this case, the
construction is based on three quantities (two Wannier centers
and one atomic position).
Finally, when one performs the inverse Fourier transform

of Eq. (78), the e-ph matrix elements on fine ðk0;q0Þ BZ grids
are given by

gmnνðk0;q0Þ ¼
X
ep

eiðk0·Reþq0·RpÞ
X
ijκα

�
ℏ

2Mκωq0ν

�

× U†
k0þq0;migijκαðRe;RpÞUk0;jneκα;q0ν: ð79Þ

In this step it is assumed that the e-ph matrix elements
outside of the WS supercells defined by the initial coarse
grids can be neglected. Prior to computing Eq. (79), one
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must find the transformation matrices Uk0;nj given by
Eq. (18) and the phonon eigenvectors eκα;q0ν and eigenfre-
quencies ωq0ν for the new set of points ðk0;q0Þ, as described
by Giustino, Cohen, and Louie (2007).
The accuracy of the Wannier-Fourier interpolation approach

depends on the spatial localization of the gijκαðRe;RpÞ matrix
elements. Equation (77) can be seen as a hopping integral
between two localized WFs, one at 0e and one at Re, due to a
perturbation caused by the displacement of the atom at τκp. If
the e-ph interactions are short-range in real space, the quantity
gijκαðRe;RpÞ decays rapidly with jRej and jRpj, and it is
sufficient to compute the matrix elements on only a small set of
ðRe;RpÞ lattice vectors to fully capture the coupling between
electrons and phonons. As discussed by Giustino, Cohen, and
Louie (2007) and Giustino (2017), the spatial decay is bound
by the limiting cases gijκαðRe; 0pÞ and gijκαð0e;RpÞ. In the
first case the matrix element decays in the variable Re at least
as fast as the MLWFs. In the second case the matrix element
decays with the variable Rp at the same rate as the screened
Coulomb potential generated by the atomic displacements.
Thus, the localization of gijκαðRe;RpÞ strongly depends on the
dielectric properties of the system. In metals and nonpolar
semiconductors and insulators, the screening properties are
dictated by Friedel oscillations jRpj−4 (Fetter and Walecka,
2003) and quadrupole behavior jRpj−3 (Pick, Cohen, and
Martin, 1970), respectively. In polar materials (i.e., materials
exhibiting nonzero Born effective charges), the dominant
contribution to the potential is the dipole Fröhlich term
(Vogl, 1976), which is long-range and decays as jRpj−2.
Therefore, in the case of semiconductors and insulators, the
long-range electrostatic fields arising from the nonanalytic
behavior of the Coulomb potential in the long-wavelength limit
(q → 0) and the e-ph matrix elements cannot be directly
interpolated from a coarse to a fine grid using the Wannier-
based interpolation approach.
To address this problem, one separates the e-ph matrix

elements into short- (S) and long- (L) range contributions as
follows:

gmnνðk;qÞ ¼ gSmnνðk;qÞ þ gL;Dmnνðk; qÞ þ gL;Qmnνðk;qÞ; ð80Þ

where the terms on the right-hand side are the short-range,
dipole, and quadrupole components. This strategy allows the
short-range component to be treated using the previously
described Wannier-Fourier interpolation approach once the
long-range components have been subtracted from the total
matrix elements gmnνðk; qÞ. A data-driven compression tech-
nique based on a singular value decomposition of the short-
range e-ph matrix elements in the Wannier basis was recently
developed and was shown to significantly accelerate e-ph
calculations while preserving quantitative accuracy (Luo
et al., 2024).
Sjakste et al. (2015) and Verdi and Giustino (2015) derived

the analytic expression for the dipole e-ph matrix, which
takes the form

gL;Dmnνðk;qÞ ¼ i
4π

Vcell

e2

4πϵ0

X
κ

�
ℏ

2Mκωqν

�
1=2

×
X
G≠−q

e−iðqþGÞ·τκ ðqþGÞ · Z�
κ · eκ;qν

ðqþGÞ · ϵ∞ · ðqþGÞ
×
X
i

VkþqþG;miV
†
k;in: ð81Þ

This term is of the order of 1=q and diverges as q approaches
the zone center. In Eq. (81) ϵ0 is the vacuum permittivity, ϵ∞ is
the high-frequency dielectric tensor of the material, G is a
reciprocal lattice vector, and Z�

κ is the Born effective charge
tensor of the atom κ. The unitary matrix Vk is the
Wannierization matrix introduced in Eq. (6) and comes
from the overlap integral between the KS wave functions
hψmkþqjeiq·rjψnki ¼

P
iVkþq;miV

†
k;in in the qþG → 0 limit.

The quadrupole contribution is of the order of jqj0, and the
corresponding gL;Qmnνðk;qÞ expression was derived by Brunin
et al. (2020a, 2020b), Jhalani et al. (2020), Park et al. (2020),
and Poncé, Royo, Stengel et al. (2023). In the maximally
localized Wannier gauge, gL;Qmnνðk;qÞ can be written as

gL;Qmnνðk; qÞ ¼ 4π

Vcell

e2

4πϵ0

X
κα

�
ℏ

2Mκωqν

�
1=2 X

G≠−q

e−iðqþGÞ·τκeκα;qν
ðqþGÞ · ϵ∞ · ðqþGÞ

×
X
βγ

�
1

2
Qκ;αβγðqβ þ GβÞðqγ þ GγÞ

X
i

VkþqþG;miV
†
k;in

− Z�
κ;αβðqβ þ GβÞ

X
ij

VkþqþG;miðqγ þ GγÞ


AW;γ
k;ij þ huWikjVHxc;Eγ juWjki

�
V†
k;jn

�
; ð82Þ

where Qκ is the dynamical quadrupole tensor that can be
computed using DFPT (Royo and Stengel, 2019),
VHxc;Eγ ðrÞ is the self-consistent potential induced by a
uniform electric field Eγ along the Cartesian direction γ
(Brunin et al., 2020a; Poncé, Royo, Stengel et al., 2023),
AW

k;ij is the Berry connection introduced in Eq. (63), and
uWjk is the smooth cell-periodic part of the Bloch wave

function in the Wannier gauge (juWjki ¼
P

nVk;jnjunki)
(Poncé, Royo, Stengel et al., 2023).
Equations (81) and (82) are for the long-range dipole and

quadrupole components of the e-ph matrix elements in 3D
bulk crystals. Over the past few years, several formalisms have
been proposed to treat the long-range contributions in 2D
materials (Sohier, Calandra, and Mauri, 2016; Deng et al.,
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2021; Sio and Giustino, 2022; Zhang and Liu, 2022; Poncé,
Royo, Gibertini et al., 2023; Poncé, Royo, Stengel et al.,
2023; Sio and Giustino, 2023). For example, a unified
description of polar e-ph interactions that allows a smooth
transition from three to two dimensions was developed by Sio
and Giustino (2022). Their formalism reduces to the 3D
approach of Sjakste et al. (2015) and Verdi and Giustino
(2015), and to the 2D approach of Sohier, Calandra, and Mauri
(2016) and Deng et al. (2021). Another strategy was followed
by Zhang and Liu (2022), Poncé, Royo, Gibertini et al.
(2023), and Poncé, Royo, Stengel et al. (2023), who built on
the general formalism for treating long-range electrostatic
interactions in 2D crystals developed by Royo and Stengel
(2021). Poncé, Royo, Gibertini et al. (2023) and Poncé, Royo,
Stengel et al. (2023) showed that the long-range e-ph matrix
elements have a spurious dependence on the Wannier gauge
that can be eliminated by including the contribution associated
with the Berry connection in Eq. (82). Therefore, to restore the
gauge covariance in the long-wavelength limit, any beyond-
Fröhlich Wannier approach should incorporate this term.
The contribution from VHxc;E term, however, was found to
represent less that 0.1% of the total quadrupole correction
(Brunin et al., 2020a; Poncé, Royo, Stengel et al., 2023).

2. Codes

EPW (Noffsinger et al., 2010; Poncé et al., 2016; EPW
Collaboration, 2023; Lee et al., 2023), the first open-source
code for the study of e-ph interaction using MLWFs, was
publicly released in 2010 and has been distributed within the
Quantum ESPRESSO suite since 2016 (Giannozzi et al.,
2017; Quantum ESPRESSO Collaboration, 2023). Several
Wannier-based open-source codes exist today to compute
physical properties related to e-ph interactions such as
PERTURBO (Zhou, Park, Lu et al., 2021; PERTURBO
Collaboration, 2023), Phoebe (Cepellotti et al., 2022;

Phoebe Collaboration, 2023), elphbolt (Protik et al.,
2022; Elphbolt Collaboration, 2023), and EPIq (EPIq
Collaboration, 2023; Marini et al., 2024). At present EPW,
PERTURBO, Phoebe, and EPIq are all interfaced with
Quantum ESPRESSO (Giannozzi et al., 2017) to generate
the relevant first-principles input data and use Wannier90
(Pizzi et al., 2020) in stand-alone or library mode to
compute the required quantities in the Wannier representation.
elphbolt, however, relies on EPW to generate the required
Wannier space information. All codes follow a largely similar
workflow to compute e-ph matrix elements on fine grids, as
now outlined and as summarized in Fig. 10.

(1) The initial step is to perform DFT calculations with
Quantum ESPRESSO on a full uniform coarse
electronic k grid centered at Γ to obtain the band
energies and Bloch wave functions. In addition, DFPT
calculations with Quantum ESPRESSO are carried
out on an irreducible coarse q grid to obtain the
dynamical matrices and the derivatives of the self-
consistent potential with respect to the phonon per-
turbations. When choosing the electron and phonon
grids in Eq. (75), it is necessary that the q-point grid
for phonons is commensurate with and smaller than
(or equal to) the k-point grid for electrons in order for
the wave functions ψmkþq to be mapped onto ψmk00þG,
where k00 is on the coarse k grid and G is a reciprocal
lattice vector. Phoebe and EPIq require that the e-ph
matrix elements on the coarse electron and phonon
grids are also computed with Quantum ESPRESSO
since these quantities are later passed to the two codes.
EPW and PERTURBO, however, compute the e-ph
matrix elements on the coarse k and q grids internally
by reading the files generated from the DFTand DFPT
calculations.

(2) Then one must perform a precise Wannierization of the
system using Wannier90 in stand-alone mode with

FIG. 10. Workflow to compute e-ph interactions on ultrafine grids using WFs. The user performs DFT and DFPT calculations on
coarse k- and q-point grids with Quantum ESPRESSO. Then the user computes the e-ph matrix elements on the coarse grids and
transforms them in a localized Wannier basis using the rotation matrices obtained with Wannier90. Note that Phoebe and EPIq read
the e-ph matrix elements on coarse grids computed with Quantum ESPRESSO, while EPW and PERTURBO compute them internally.
Finally, EPW, PERTURBO, Phoebe, and EPIq interpolate the band structure, phonon dispersion, and e-ph matrix elements on ultrafine
k0- and q0-point grids and perform calculations of various materials properties.
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PERTURBO, Phoebe, and EPIq or in library mode
with EPW. This step produces the MLWFs and the
Wannierization matrices Vk that transform the DFT
Bloch wave functions into MLWFs.

(3) The next step is to compute the e-ph matrix elements
on the coarse k and q grids in the Bloch representation
and transform them, along with the electronic
Hamiltonian and the dynamical matrix, from the Bloch
to the Wannier representation. As noted in point 2,
Phoebe and EPIq use the e-ph matrix elements on
the coarse electron and phonon grids computed
directly with Quantum ESPRESSO.

(4) The final step is to perform an inverse Fourier trans-
form of the electronic Hamiltonian, dynamical matrix,
and e-ph matrix elements from the Wannier to the
Bloch representation. At this stage, the electronic
eigenvalues, phonon frequencies, and e-ph matrix
elements can be efficiently computed on ultradense
k0 and q0 grids and can be further used to carry out
calculations of various materials properties.

To extend the Wannier-based interpolation scheme to sys-
tems with long-range e-ph contributions, the strategy is as
follows. First, the total matrix elements gmnνðk; qÞ are calcu-
lated on the coarse k and q grids. Second, the long-range
contributions gL;Dmnνðk;qÞ and gL;Qmnνðk; qÞ are evaluated on the
same coarse grids using Eqs. (81) and (82) and subtracted from
gmnνðk;qÞ, with the short-range component gSmnνðk;qÞ left out.
Third, the short-range e-ph matrix elements are interpolated to
ultradense k0 and q0 grids using the standard approach based on
MLWFs. Fourth, the long-range contributions are computed
using Eqs. (81) and (82) on the fine k0 and q0 grids and added
back to the short-range component to recover the total
gmnνðk0;q0Þ matrix elements. In this last step the rotation
matrix Vk given by Eq. (6) is replaced by the transformation
matrix U†

k0 given by Eq. (18) in Eqs. (81) and (82).
Awide range of properties can currently be computed with

EPW, PERTURBO, Phoebe, elphbolt, and EPIq. A full
list of the capabilities for the released version of each code can
be found on its website. In particular, EPW computes charge
carrier mobility under electric and magnetic fields using the
BTE, phonon-mediated superconductivity using the aniso-
tropic Migdal-Eliashberg formalism, phonon-assisted direct
and indirect optical absorption using quasidegenerate pertur-
bation theory, small and large polarons without supercells,
and zero-point renormalization and temperature dependence
of band structures using WFPT (EPW Collaboration,
2023; Lee et al., 2023). EPW also comes with the ZG
toolkit for calculations of band-structure renormalization,
temperature-dependent optical spectra, temperature-
dependent anharmonic phonon dispersions, and anharmonic
e-ph couplings via the special displacement method
(Zacharias and Giustino, 2016, 2020; Zacharias et al., 2023a,
2023b). PERTURBO calculates phonon-limited transport
properties using the BTE, ultrafast carrier dynamics, magneto-
transport, and high-field electron transport (Zhou, Park, Lu
et al., 2021; PERTURBO Collaboration, 2023). PERTURBO is
interfaced with the TDEP package (TDEP Collaboration,
2023) that computes temperature-dependent anharmonic pho-
nons. Phoebe provides various tools to predict electron and

phonon transport properties at different levels of theory and
accuracy, including full scattering matrix BTE solutions such
as the relaxons method and models based on the Wigner
distribution (Cepellotti et al., 2022; Phoebe Collaboration,
2023). elphbolt solves the coupled electron and phonon
BTEs, and the effect of the mutual e-ph drag on the electrical
and thermal transport coefficients (Protik et al., 2022;
Elphbolt Collaboration, 2023). EPIq computes phonon-
mediated superconducting properties based on the Migdal-
Eliashberg formalism, adiabatic and nonadiabatic phonon
frequencies, double-resonant Raman intensities, and excited
carrier lifetimes (EPIq Collaboration, 2023; Marini et al.,
2024). EPIq is interfaced with the stochastic self-consistent
harmonic approximation (SSCHA) (Errea, Calandra, and
Mauri, 2013, 2014; Monacelli et al., 2021; SSCHA
Collaboration, 2023) in order to calculate e-ph interactions
in the presence of strong quantum anharmonicity.

H. Beyond-DFT schemes with localized orbitals

While in most cases DFT is the method of choice for
electronic ground-state calculations, certain excited-state prop-
erties, and even the ground-state properties of certain materials,
may require a “beyond-DFT” treatment for accurate first-
principles predictions. Two examples are finite-temperature
and spectroscopic properties, as observed in direct and inverse
photoemission experiments, which cannot be addressed
adequately within conventional DFT. Similarly, the complex
physics arising from strong local Coulomb interactions in
partially filled orbitals is beyond the scope of a single-particle
picture, which can manifest itself in an inaccurate description of
the material. In such cases more advanced methods are needed.
One class of approaches is based on diagrammatic many-body
perturbation theory: examples include the GW approximation
or DMFT; see Sec. III.H.1. Since such methods are often
computationally costly and complex, it may be necessary to
extract accurate low-energy effective Hamiltonians that are
treated using these methods in a postprocessing step. An
efficient alternative is to retain the functional character of
DFTand apply physically motivated corrections, as in hybrid or
Koopmans-compliant functionals; see Sec. III.H.2. In this case
the theory is no longer based on a pure functional of the density,
but the orbitals themselves or their orbital densities become the
key variables. Common to both approaches is the importance of
improving the description of local, orbital-dependent physics.
This is where WFs come in, providing a useful basis for such
applications and supporting the physical understanding with
chemical intuition.

1. Dynamical mean-field theory and embedding

Strongly correlated electron systems host a wide variety of
physical phenomena, ranging from Mott physics to high-
temperature superconductivity to exotic ordered phases
(Tokura, Kawasaki, and Nagaosa, 2017). Fundamental to these
phenomena is the competition of itinerant versus localized
character of electrons, which requires computational methods
beyond the single-particle picture. While the representation of
electronic states in reciprocal space can be beneficial, the theory
of strong local correlations is most naturally formulated in a
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real-space basis. A key aspect of many beyond-DFT schemes
is therefore the combination of itinerant Bloch states with
localized molecular orbitals, which can be elegantly formalized
with WFs (Lechermann et al., 2006).
Beyond-DFT schemes are typically computationally

demanding and require a compromise in terms of the number
of orbitals that can be treated. Starting with an ab initio
description of a large number of bands, it is common practice
to select a subset of correlated orbitals, such as those
describing electronic states in the vicinity of the Fermi level,
using projector functions. The result is a so-called downfolded
model, which contains only the relevant degrees of freedom
(Kotliar et al., 2006). It divides the total system into a
subspace of localized orbitals, for which a higher-level
method is used, and the remaining KS states, for which the
single-particle description within DFT accurately reflects
the physics. The embedding ansatz is further justified by
the observation that correlated physics phenomena typically
occur on energy scales of meV to a few eV (Chen et al., 2022).
For the remainder of this section we focus on DMFT as the
higher-level method to solve the downfolded many-body
problem, but the concepts can be similarly applied to its
extensions (as briefly discussed later) and conceptual other
approaches; see Zgid and Gull (2017), Eskridge, Krakauer,
and Zhang (2019), Muechler et al. (2022), and Sheng
et al. (2022).
While the multiband Hubbard model studied with DMFT is

directly related to TB models, a rigorous formalism based
on energy functionals allows the combined approach with
ab initio methods, as in DFTþ DMFT (Kotliar et al., 2006).
The development of DFTþ DMFT methods and software for
strongly correlated materials has seen a large surge in the past
few decades (Held, 2007; Pavarini et al., 2011; Paul and Birol,
2019). Routine calculations allow one to compute single-
particle spectra (Pavarini et al., 2004; Anisimov et al., 2005;
Nekrasov et al., 2006), optical conductivity (Haule et al.,
2005; Wissgott et al., 2012), transport (Oudovenko et al.,
2006; Zingl et al., 2019) and thermoelectric properties (Arita
et al., 2008; Wissgott et al., 2010; Tomczak, Haule, and
Kotliar, 2012), electronic Raman scattering (Blesio et al.,
2024), and two-particle correlation functions (susceptibilities)
(Boehnke et al., 2011; Kuneš, 2011; Park, Haule, and Kotliar,
2011). Recent advances include interactions with core holes as
in x-ray absorption and photoemission spectroscopy, as well
as resonant inelastic x-ray scattering (Haverkort, Zwierzycki,
and Andersen, 2012; Hariki, Uozumi, and Kuneš, 2017; Lüder
et al., 2017; Hariki, Winder, and Kuneš, 2018). Furthermore,
routines for lattice optimization (Leonov, Anisimov, and
Vollhardt, 2014; Haule and Pascut, 2016; Plekhanov,
Bonini, and Weber, 2021) and for computing phonon spectra
(Koçer et al., 2020) have been formalized. This list of
references is by no means exhaustive but is intended to serve
as a starting point for the respective topics.
In beyond-DFT methods it is convenient to describe the

total system of interacting electrons in a periodic solid in terms
of the momentum- and frequency-dependent retarded single-
particle Green’s function

Ĝðk;ωÞ ¼ ½ðωþ μÞ1 − ĤðkÞ − Σ̂ðk;ωÞ þ iη�−1; ð83Þ

where μ is the chemical potential and ĤðkÞ represents the
noninteracting Hamiltonian. The frequency- and momentum-
dependent electron self-energy is given by Σ̂ðk;ωÞ, and η is
an infinitesimal positive parameter to ensure physical correct-
ness. For clarity we have omitted the double-counting
correction here; see Karolak et al. (2010) for an overview.
Starting with a DFT-derived downfolded Hamiltonian, the
challenge is to compute the corresponding self-energy cor-
rection that accounts for dynamical interaction effects. Various
approaches can be formalized, but for the purpose of this
review we outline the workflow of single-site DMFT (Georges
et al., 1996). In DMFT the self-energy becomes a site-local
quantity for a given atomic site R within the unit cell when it
is expressed in a localized orbital basis. This approximation is
conceptually similar to the DFTþ U formalism (Anisimov,
Aryasetiawan, and Lichtenstein, 1997), but in DMFT the full
frequency dependence of the interaction is taken into account.
Following this approach, in the DMFT self-consistency cycle,
the local lattice self-energy ΣRðωÞ is approximated by that of
an auxiliary quantum impurity problem. The most computa-
tionally challenging step of the DMFT loop is typically to find
the solution to the impurity problem, which allows a user
to infer the impurity self-energy via the Dyson equation.
The self-energy is embedded in the Hilbert space of the
effective Hamiltonian as

Σmnðk;ωÞ ¼
X
R;ij

PR�
mi ðkÞΣR

ij ðωÞPR
jnðkÞ: ð84Þ

Approximating the lattice self-energy in Eq. (83) by the
upfolded impurity self-energy becomes exact for infinite
connectivity of the lattice (Metzner and Vollhardt, 1989;
Georges and Kotliar, 1992). The projector functions PR

jnðkÞ
in Eq. (84) encode the basis transformation from band to
orbital basis, i.e., from jψnki, with the band index n and the
wave vector k, to jψW

Rjk
i, with the orbital index j at site R

(i.e., j is an intrasite index here),

PR
jnðkÞ ¼ hψW

Rjk
jψnki: ð85Þ

The local Green’s function is then computed as Gloc;R
ij ðωÞ ¼

1
N

P
k;mn P

R
imðkÞGmnðk;ωÞPR�

nj ðkÞ, where N is the total num-
ber of k points of the grid. To determine a suitable localized
basis set, some DFTþ DMFT codes use projections on
atomic orbitals, whereas others rely on Wannier90 directly
for a simple and user-friendly interface. While the two
approaches are conceptually similar [for a more detailed
overview, see Chen et al. (2022)], the choice of projectors
may affect the results and therefore needs to be carefully
analyzed (Karp, Hampel, and Millis, 2021). Note that Eq. (85)
assumes that the DFTþ DMFT calculation is performed in
the band basis in a charge self-consistent mode [i.e., PðkÞ
corresponds to Vk in Eq. (6b)]. However, for one-shot
calculations the equations simplify (Beck et al., 2022).
Wannier interpolation can be used in the DMFT self-
consistent loop for an isolated set of bands or at the TB
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level, which is crucial for accurately resolving low-energy
physics (Kaye et al., 2023).
Multiple schemes go beyond standard DMFT, but the

previous discussion carries over directly to these extensions.
Examples include cluster-DMFT approaches (in either real or
reciprocal space) (Kotliar et al., 2006) and diagrammatic
extensions of the self-energy (Rohringer et al., 2018), as well
as nonequilibrium DMFT (Aoki et al., 2014). To improve on
some of the shortcomings of the DFTþ DMFT method, a
better starting point than DFT may be GW. The combination
of GW with DMFT provides a route to including nonlocal
effects beyond DFT as well as to formalizing the double-
counting correction term (Biermann, 2014).

a. DFTþ DMFT codes

Based on what was just discussed, we know that a fully
integrated DFTþ DMFT software suite requires three main
components: (1) a DFT implementation (ab initio engine) and
a routine to construct the localized basis set (for example, a
Wannier engine), (2) a Green’s function formalism to imple-
ment the DMFT equations, and (3) an impurity solver. At
present there are several open-source implementations that
meet these requirements to a varying degree. On the side of
more monolithic, publicly available beyond-DFT codes, there
are implementations in, for example, CASTEP (Plekhanov
et al., 2018), ABINIT (Romero et al., 2020), RSPt
(Grechnev et al., 2007; Di Marco et al., 2009; Thunström
et al., 2009), AMULET (AMULET Collaboration, 2023), and
eDMFT (Haule, Yee, and Kim, 2010), which include an
implementation of DFT and a downfolding routine, as well
as choices of internal and externally linked impurity solvers.
ComDMFT (Choi et al., 2019), however, interfaces directly
with Wannier90 for the downfolding procedure. All codes
support charge self-consistency.
An alternative philosophy is a more modular library

approach that focuses on providing the framework for perform-
ing DMFT calculations based on input from a DFT calculation.
For this purpose most codes directly rely on Wannier90 to
benefit from a generic, robust, and flexible interface indepen-
dent of the flavor of DFT. Examples include w2dynamics
(Wallerberger et al., 2019) and DCore (Shinaoka et al., 2021),
as well as EDIpack (Amaricci et al., 2022), DMFTwDFT
(Singh et al., 2021), and TRIQS (Parcollet et al., 2015;
Aichhorn et al., 2016; Merkel et al., 2022), with only the last
two packages currently supporting charge self-consistency
(Schüler et al., 2018; James et al., 2021; Singh et al., 2021;
Beck et al., 2022). All packages contain a number of internal
and external impurity solvers. A list of all currently available
impurity solvers is beyond the scope of this review but can be
found on the respective websites.

b. Interaction-parameters codes

As in the DFTþ U formalism, the local interaction
parameters that enter the Hubbard model in DFTþ DMFT
calculations must be chosen appropriately. Starting with
a local basis set, the Coulomb integrals can be evaluated,
ideally taking into account screening processes and the
symmetries of the system to simplify the parametrization of
the interaction Hamiltonian (Chen et al., 2022). The most

widely used approach is the cRPA (Aryasetiawan et al., 2004).
Currently, the method is implemented in ABINIT (Amadon,
Applencourt, and Bruneval, 2014), SPEX (Friedrich, Blügel,
and Schindlmayr, 2010), VASP (Kaltak, 2015), and RESPACK
(Nakamura et al., 2021). The last three offer the possibility of
using WFs, which are constructed either using an internal
Wannier engine or via an interface to Wannier90 (wan2-
respack (Kurita et al., 2023) in the case of RESPACK).
The usage of WFs in the cRPA method has several benefits,
such as a simplified interpretation of the resulting interactions
in terms of orbitals, a more compact representation, and the
possibility of utilizing Wannier interpolation on the Coulomb
kernel; see Rösner et al. (2015). The cRPA method calculates
the Coulomb interaction as a frequency-dependent response
function that can be treated in extended DMFT (Werner and
Casula, 2016), and that can also be combined with the
frequency-dependent e-ph interaction (Nomura et al.,
2015). Alternatively, the interaction parameters are treated
as free parameters that must be adjusted to match experimental
observables.

c. Postprocessing

Once the solution to the DFTþ DMFT scheme is found
(charge) self-consistently (see Fig. 11), converged DMFT
quantities such as the self-energy, the local Green’s function,
and the hybridization function allow several physical
observables to be computed in postprocessing applications.
Depending on the frequency domain in which the impurity
solver operates, it may be necessary to use analytic continu-
ation to obtain the self-energy in the real frequency domain
(Gubernatis et al., 1991; Wang et al., 2009). Such programs
are often included in the respective software packages. Since
the postprocessing step is performed only once after con-
vergence, and therefore does not significantly contribute to
the overall computational cost, Wannier interpolation (see
Sec. III.C) is particularly beneficial at this stage. A standard
observable is the lattice or impurity spectral function, which is
directly related to photoemission and absorption spectra. Most
software packages provide tools for users to compute
such quantities routinely. Transport tensors based on

FIG. 11. Typical workflow of the embedding formalism. To
begin, the user performs an ab initio calculation from which a
downfolded model is derived in the basis of localized orbitals.
The downfolded model is solved using an appropriate many-body
method such as DMFT (depicted). Physical observables can be
computed in a postprocessing step. For full self-consistency the
cycle is iterated until convergence.
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Kubo’s linear-response theory (Kubo, 1957), such as optical
and thermal conductivities as well as Hall and Seebeck
coefficients, can be computed using various software pack-
ages, including eDMFT (Haule, Yee, and Kim, 2010), TRIQS/
DFTTools (Aichhorn et al., 2016), woptic (Assmann
et al., 2016), and AutoBZ.jl (Van Muñoz, Beck, and
Kaye, 2024). Another option is LinReTraCe (Pickem,
Maggio, and Tomczak, 2023), which relies on a semi-
analytical approach that is valid when a linear expansion
of the self-energy is adequate. Tools to evaluate core-level
spectroscopies within different levels of approximations are
available, for example, in Quanty (Haverkort, 2016) and
EDRIXS (Wang, Fabbris et al., 2019).

2. Koopmans functionals

Koopmans-compliant (KC) functionals (Dabo et al., 2010;
Borghi et al., 2014; Colonna et al., 2018, 2019, 2022; Elliott
et al., 2019; Zhou and Bernardi, 2019; De Gennaro et al.,
2022; Linscott et al., 2023; Marrazzo and Colonna, 2024) are
orbital-dependent functionals capable of delivering accurate
spectral properties for molecular and extended systems at low
computational cost. Note that the KC approach maintains a
simple functional formulation while being more accurate than
G0W0 and comparable to quasiparticle self-consistent GW
with vertex correction (Nguyen et al., 2018; Colonna et al.,
2019, 2022; Marrazzo and Colonna, 2024), at a cost that is
broadly comparable to standard DFT. The simplicity and
accuracy of the KC framework rests on three fundamental
concepts: linearization, screening, and localization. First, a
generalized linearization condition is imposed on each
charged excitation: the energy of any orbital must be inde-
pendent of the occupation of the orbital itself. This implies
that the KC total-energy functional is piecewise linear
with respect to fractional occupations and essentially imple-
ments a generalized definition of the self-interaction-free
orbital. Second, electronic screening and orbital relaxation
(due to the electron addition-removal process) are taken into
account with orbital-dependent screening coefficients, which
can be calculated via finite-difference (Nguyen et al., 2018)
and linear-response approaches (Colonna et al., 2018, 2022).
Finally, the Koopmans compliance condition is imposed on
those variational orbitals—i.e., those minimizing the KC
energy functional—which are localized. For periodic systems
these variational orbitals resemble MLWFs (Colonna et al.,
2018, 2019, 2022; Nguyen et al., 2018).
Using WFs as a proxy for variational orbitals has allowed

for the development of a Wannier interpolation and unfolding
scheme to calculate the band structure from a supercell
Koopmans-functional calculation (De Gennaro et al., 2022).
In addition, WFs have fostered the development of a
Koopmans formulation that operates fully under PBCs and
is based on explicit BZ sampling and DFPT (Colonna et al.,
2022; Linscott et al., 2023). This Koopmans-Wannier imple-
mentation, which goes under the name of KCW, is available in
the Quantum ESPRESSO distribution. It delivers improved
scaling with system size and makes band-structure calcula-
tions with Koopmans functionals straightforward (Colonna
et al., 2022; Linscott et al., 2023; Marrazzo and Colonna,
2024). KC functionals resonate with other efforts aimed at

calculating excitation energies where WFs and localized
orbitals are often a key ingredient (Anisimov and
Kozhevnikov, 2005; Anisimov et al., 2007; Kraisler and
Kronik, 2013; Skone, Govoni, and Galli, 2014; Li et al.,
2015, 2018; Ma and Wang, 2016; Wing et al., 2021).

I. Interoperability between codes in the ecosystem

1. Library mode for the Wannier engines

When combining two or more codes, various approaches
are possible. While the most common approach has been to
compile the Wannier engine into a different executable than
the ab initio code, with data being transferred via files with
standardized formats, an alternative approach is to expose the
Wannier routines via a library interface, as schematically
depicted in Fig. 12. In this second approach a single
executable is created, and the main ab initio code is respon-
sible for calling the appropriate routines from the Wannier-
engine library.
Making sure that the library interface both is easily usable

and covers all possible use cases, however, is a nontrivial task.
In the specific case of Wannier90, for instance, its first
release contained a simple interface to allow it to be called a
library from another Fortran program, with the necessary
data being passed by the calling program rather than by file.
Over time, however, it became apparent that this original library
interface did not provide the full functionality needed by an
ecosystem of codes, presenting three main issues. First, the
interface was not fully compatible with parallel calling codes,
because there was no means to distribute the data and make use
of Wannier90’s internal parallelism. Second, the use of
global module variables meant that Wannier90 was not
thread safe; i.e., a calling program could not call more than
one instance of Wannier90. Third, there is an issue con-
cerning error handling. Upon detecting an error Wannier90

FIG. 12. Different approaches for interaction of the ab initio
codes with the library routines. Left panel: the ab initio codes and
the Wannier engine are compiled independently in two different
executables. Data exchange happens via files with standardized
formats; see also the discussions in Secs. III.B and III.I.2. Right
panel: the Wannier engine provides a library mode. The ab initio
code is linked at compile time to the Wannier library, and a single
executable is created. The ab initio routines directly call the
routines from the Wannier engine via library calls.
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would abort, causing the calling program to crash. The desired
behavior would instead be to return an error code, allowing the
calling program to decide how to handle it (for instance, exiting
gracefully or retrying with different parameters). Work to
address all three of these issues has been carried out by a
team at the Scientific Computing Department of STFC at
Daresbury Laboratory, England, in collaboration with Arash A.
Mostofi, Jonathan R. Yates, and Giovanni Pizzi. A development
version is available in the Wannier90 GitHub repository and
will be merged into a future Wannier90 release.

2. File I=O generation and parsing

In the first of the previously mentioned approaches, inter-
mediate files (as listed in Table I) are used to decouple the first-
principles calculations from the Wannierization step. As dis-
cussed, the formats defined by Wannier90 became the
de facto standards for the codes in the Wannier-function
software ecosystem. For instance, many TB codes can read
the so-called _tb.dat or _hr.dat files (as mentioned, these
contain on-site energies, hopping terms, etc.) to further process
the Wannier Hamiltonian. In the past few years, many software
packages have thus started to implement their own parsers
for these I=O files, often focusing only on a specific subset of
the file formats relevant for their own use case. However,
this leads to a duplication of efforts, keeping in mind that
maintaining robust and feature-complete parsers is a nontrivial
task. As many of these codes use Python as the programming
language of choice, such as TBmodels (TBmodels
Collaboration, 2023), PythTB (PythTB Collaboration, 2023),
WannierBerri (Tsirkin, 2021), and AiiDA (Pizzi et al.,
2016; Huber et al., 2020; Uhrin et al., 2021), a community
effort has been initiated by Jamal I. Mustafa and others to
implement a centralized reference set of parsers for the
Wannier90 input-output files7 in Python. The goal of this
project is not only to provide a parser library for developers but
also to provide a package directly for users, allowing them to
easily load and manipulate the Wannier90 input-output files
for their own use case. In addition, we note that part of the
Wannier90 code base already outputs Python scripts for
postprocessing; one example is the berry module, which
outputs scripts using the Matplotlib library (Hunter, 2007)
to plot the Berry curvature. However, these scripts are hard
coded into the Wannier90 codebase as a series of Fortran
write statements that output Python code, which makes
them difficult to update and maintain. The aforementioned
Python library will also facilitate future efforts on moving
these postprocessing functions into a dedicated Python pack-
age, in the hope of smoothening the development experience, as
well as allowing users to easily postprocess and visualize the
calculation results.
The choice to support and push developments in the

Python language is driven mostly by its current prevalence
and adoption in the field. Indeed, for the goal of interoper-
ability, the choice of programming language is not crucial,
while it is essential to have well-defined APIs or file formats.
Nevertheless, providing reference implementations avoids

duplication efforts in writing file writers and parsers, while
aiming to obtain a robust library that can be easily reused
and maintained and where bugs can be quickly resolved. To
efficiently address this goal, it is useful to select a popular
language such as Python; this can also facilitate external
contributions. Nevertheless, we stress that the concept of a
common parsing library is not limited to the Python
language but rather can be applied to other emerging lan-
guages. For example, the Julia package WannierIO.jl
(Qiao, Pizzi, and Marzari, 2023c) provides functions to
read and write Wannier90 file formats and is used by the
Wannier.jl (Qiao, Pizzi, and Marzari, 2023d) and
DFTK.jl packages (Herbst, Levitt, and Cancés, 2023) as
their I=O backend.

J. Automation, workflows, and high throughput

The diversity of the software ecosystem demonstrates the
effectiveness of WFs. However, all methods depend on a
robust Wannierization procedure. In the past this was not a
straightforward process, since it involves a series of DFT
calculations and construction of WFs, and more importantly it
also strongly depends on various input parameters (number of
WFs, initial projections for MLWFs, energy windows, k-point
sampling, etc.). Their selection has often required experience
and chemical intuition and has often been a major challenge
not only for beginners but also for experienced researchers.
Fully automated Wannierizations would make the procedure
straightforward and, as a consequence, would allow any
researcher to easily use all capabilities of the entire ecosystem
while also enabling high-throughput studies for accelerated
materials discovery. To this end it became urgent and
necessary to perform algorithmic developments on the
Wannierization itself, and to implement robust workflows
combining multiple software packages in the ecosystem.
On the algorithmic side Wannierization should provide
well-localized WFs without user input (for initial projections
or energy windows, for instance). On the workflow side one
wants to orchestrate all of the steps, from the initial DFT
calculations to the Wannier-engine executions to the post-
processing steps, while dynamically parsing the outputs
and generating new inputs. Moreover, the workflow engine
should provide a set of well-tested convergence parameters,
and it should be able to handle common errors and to
automatically restart failed calculations. In addition, an
automated Wannierization workflow should ideally be modu-
lar and composable to allow better integration with the entire
ecosystem. For instance, this has been exploited in the context
of automated GW calculations with Wannier-interpolated
band structures (Bonacci et al., 2023).
Recent development of novel algorithms have largely

solved the Wannierization challenge, starting with the
SCDM algorithms (Damle, Lin, and Ying, 2015, 2017;
Damle and Lin, 2018), which generate initial projections
by decomposing the density matrix, to the PDWF (Qiao, Pizzi,
and Marzari, 2023b), which uses projectability thresholds on
atomic orbitals, rather than energy windows, to select which
states to drop, keep frozen, or throw in the disentanglement
algorithm. Together with the MRWF (Qiao, Pizzi, and
Marzari, 2023a), which uses parallel transport (Gontier,

7These files are hosted at https://github.com/wannier-developers/
wannier90io-python/.
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Levitt, and Siraj-dine, 2019) to automatically construct
MLWFs for valence or conduction bands, these approaches
remove what had previously been a critical stumbling block.
On the workflow-engine side, several software packages are

able to automate the electronic-structure calculations, such as
pymatgen (Ong et al., 2013), FireWorks (Jain et al.,
2015), AFLOWπ (Supka et al., 2017), mkite (Schwalbe-
Koda, 2023), ASE (Larsen et al., 2017), ASR (Gjerding et al.,
2021), and AiiDA (Pizzi et al., 2016; Huber et al., 2020;
Uhrin et al., 2021). Some of them, such as ASE and AiiDA,
also provide functionalities or workflows to compute WFs.
Equipped with automated Wannierization algorithms and
robust workflow engines, one can now create workflows
for automated Wannierizations. For instance, Gresch et al.
(2018) implemented AiiDA workflows and gathered
Wannier-TB models for a group of III-V semiconductor
materials. Vitale et al. (2020) used the SCDM algorithm
together with AiiDAworkflows, carefully tested convergence
parameters, and benchmarked Wannier-interpolation accuracy
on a set of 200 structures for entangled bands and a set of 81
structures for isolated bands. Sakai et al. (2020) Wannierized
1419 ferromagnetic materials with spin-orbit coupling
and computed anomalous Hall and Nernst conductivities
to identify high-performance transverse-thermoelectric-
conversion materials. Garrity and Choudhary (2021) created
a database of Wannier Hamiltonians for 1771 materials.
Fontana et al. (2021) implemented workflows in ASE and
Wannierized 30 inorganic monolayer materials using an
automated protocol. Finally, Qiao, Pizzi, and Marzari (2023b)
used the PDWF to automate the Wannierization, obtaining
over 1.3 × 106 MLWFs for more than 20 000 3D inorganics
from the Materials Cloud MC3D database (Talirz et al., 2020).
They also separately Wannierized these back into the valence
and conduction bands of 77 insulators using manifold remix-
ing (Qiao, Pizzi, and Marzari, 2023a). These high-throughput
studies not only can expedite materials discoveries but also
can help identify challenging cases for the Wannierization
algorithm and promote further development of robust and
automated Wannierization approaches.

IV. CONCLUSIONS AND PERSPECTIVES

The Wannier-function software ecosystem represents a
positive model for interoperability and decentralized code
development in electronic-structure simulations; a similar
spirit is found in CECAM’s Electronic Structure Library
(Oliveira et al., 2020). This was made possible both by the
nature of the scientific problem and physical quantities
involved and by the design choices originally made in
Wannier77 and Wannier90, planned early on as
Wannierization engines decoupled from the ab initio codes
used to compute the electronic structure. The availability
of a well-documented, well-maintained, and modular open-
source Wannier engine has pushed researchers to extend
Wannier90’s functionalities or, when deemed more prac-
tical or efficient, to develop novel packages targeting specific
materials properties. The growing availability of postprocess-
ing features ignited a positive loop that further attracted
developers from different electronic-structure domains to
work and use WFs, thereby strengthening interest in

WF-related methods and resulting in the current ecosystem
of interoperable software. The ecosystem has been reinforced
by the organization of coding weeks and developer work-
shops, which have proven to be crucial in keeping the
community engaged and synced, avoiding a duplication of
efforts, and collaborating on code maintenance.
While we could not cover here all the existing applications

and codes leveraging WFs—notably, we did not discuss their
use in the calculation of magnetic interaction parameters
(Nomoto, Koretsune, and Arita, 2020; Yoon et al., 2020;
He et al., 2021; Ponet, 2023)—we have outlined some of the
most popular applications and summarized how they can be
implemented in software packages and workflows to calculate
advanced materials properties.
Looking forward, we expect the ongoing efforts in the

redesigned Wannier90’s library mode to be instrumental
in smoothly integrating automated Wannierization proce-
dures within ab initio and postprocessing codes, with the
benefit of reduced file I=O and code maintenance. As
Wannierization becomes increasingly automated, we expect
researchers to focus on calculations of complex properties,
either through high-level programming of simulation work-
flows or through the development and extension of post-
processing packages. As a result, even more materials
properties will become computationally accessible thanks
to WFs and available to the community through the release
of dedicated functionalities in either existing or new pack-
ages of the ecosystem.
Finally, we comment on two crucial features of an ecosys-

tem, be it biological or software: biodiversity and resilience.
A certain level of biodiversity within a software ecosystem,
i.e., the existence of multiple software packages with partially
overlapping functionalities, can increase its robustness. First,
it enables cross verification of different implementations,
in the process increasing the reliability of the results and
facilitating a rapid identification of bugs. Second, it can
ensure that the ecosystem capabilities are not lost if a
package goes unmaintained or disappears. This aspect is
connected to resilience, i.e., the capability of the ecosystem
to deliver functionalities—such as the calculation of materials
properties—under the loss of some of its components. This is
an especially relevant issue in a scientific community where
developers might not be able to guarantee long-term support for
their code. We highlight the fact that a software ecosystem
might display the same dynamics that can be seen in biological
settings, including competition and extinction. While a certain
level of competition can result in code improvements regarding
feature coverage, efficiency, and robustness, we caution that
extreme competition might undermine biodiversity. It is thus
important to sustain the work of individual developers who
contribute to the progress and maintenance of an active,
heterogeneous, and efficient ecosystem, thus encouraging
measures to ensure proper scientific recognition. More broadly,
the challenge will be to support software development work,
which is crucial for the long-term maintenance and integration
of heterogeneous software packages. We believe that a diverse,
resilient, and open Wannier-function software ecosystem is a
major asset for the electronic-structure community in its quest
to understand, discover, and design materials.
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Poncé, S., E. R. Margine, C. Verdi, and F. Giustino, 2016, “EPW:
Electron-phonon coupling, transport and superconducting proper-
ties using maximally localized Wannier functions,” Comput. Phys.
Commun. 209, 116.
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