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Dynamics of Berry-phase polarization in time-dependent electric fields
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~Received 1 August 2003; published 20 February 2004!

We consider the flow of polarization currentJ5dP/dt produced by a homogeneous electric fieldE(t) or by
rapidly varying some other parameter in the Hamiltonian of a solid. For an initially insulating system and a
collisionless time evolution, the dynamic polarizationP(t) is given by a nonadiabatic version of the King-
Smith–Vanderbilt geometric-phase formula. This leads to a computationally convenient form for the Schro¨-
dinger equation where the electric field is described by a linear scalar potential handled on a discrete mesh in
reciprocal space. Stationary solutions in sufficiently weak static fields are local minima of the energy functional
of Nunes and Gonze. Such solutions only exist below a critical field that depends inversely on the density of
k points. For higher fields they become long-lived resonances, which can be accessed dynamically by gradually
increasingE. As an illustration the dielectric function in the presence of a dc bias field is computed for a
tight-binding model from the polarization response to a step-function discontinuity inE(t), displaying the
Franz-Keldysh effect.
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I. INTRODUCTION

A very successful theoretical and computational fram
work was developed by King-Smith and Vanderbilt1 for deal-
ing within periodic boundary conditions with the macr
scopic dielectric polarization of an insulator. The cent
result of the theory of bulk polarization~TBP! is an expres-
sion for the electronic contributionP which takes the form of
a Berry’s phase2 of the valence-band Bloch wave function
transported across the Brillouin zone~BZ!. Alternatively, it
can be recast in real space as the vector sum of the cente
charge of the valence-band Wannier functions. Practical
scriptions were devised for computing both the Berr
phase1 and the Wannier functions,3 which have become stan
dard features of first-principles electronic structure codes

The measurable quantity accessed by the TBP is
changeDP in macroscopic polarization induced by changi
some parameterl in the electronic HamiltonianĤ(t)
5Ĥ@l(t)#. The following assumptions were explicitly mad
in the original derivation.1 ~i! Adiabaticity: the change in
l(t) is slow enough such that the electrons remain in
instantaneous ground state ofĤ(t), apart from small devia-
tions proportional todl/dt described by first-order adiabat
perturbation theory;~ii ! the ground state ofĤ(t) remains
insulating at all times, separated from excited states by fi
energy gaps; and~iii ! Ĥ(t) is lattice periodic. The first two
assumptions are related in that the size of the energy gap
the scale for deviations from adiabaticity.

A spatially homogeneous electric field necessarily viola
either~i! or ~iii !: if the field is introduced via a vector poten
tial A(t)52c* tE(t8)dt8, Ĥ(t) remains lattice periodic bu
changes nonadiabatically, even for a static field; if instea
scalar-potential termeE(t)• r̂ is used,Ĥ(t) is no longer lat-
tice periodic. Nevertheless, the TBP has been success
applied to situations where electric fields are present,4–10 but
a rigorous justification for doing so is still lacking.

In this paper we reexamine the TBP and find that it can
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generalized as follows. Assumption~i! can be dropped alto
gether. Assumption~ii ! is only invoked att50; the ensuing
nonadiabatic dynamics may admix considerable amount
excited states into the occupied subspace. Finally assump
~iii ! can be relaxed to allow for a linear scalar potential to
present in addition to the periodic crystal potential.

These generalizations extend the scope of the TBP
nonadiabatic polarization currents induced by time

dependent electric fields, or by other rapid changes inĤ(t)
~e.g., the initial nonthermal ionic motion that accompan
photoexcitation of the electrons by an intense laser pulse11!.
The dynamical equations for the electrons that come ou
this generalized TBP are derived and applied in the con
of a tight-binding model. These equations are semiclass
~the electrons are treated quantum mechanically, wherea
electric field is treated classically! and nonperturbative~elec-
tric fields of finite magnitude are allowed!.

We begin by considering in Sec. II some general prop
ties of the coherent dynamics of Bloch electrons that
initially in an insulating state. They are used in Sec. III
discuss the macroscopic currentJ(t), which is expressed a
the rate of change of a dynamic polarizationP(t) given by
nonadiabatic versions of the King-Smith–Vanderbilt expr
sions. In Sec. IV we derive from this generalized TBP
numerically convenient form for the time-dependent Sch¨-
dinger equation~TDSE! in the scalar-potential gauge, dis
cretized on a mesh ofk points. Stable stationary solutions i
static fields are discussed in Sec. V. They exist only belo
critical field Ec which decreases with increasingk-point den-
sity, and are local minima of the energy functional of Nun
and Gonze.7–9 A prescription is given for computing them
using an iterative diagonalization scheme. In Sec. VI
show numerically on a tight-binding model how the regim
above the critical field can be accessed dynamically,
gradually increasing the electric field beyond the critic
value. We also compute the dielectric function of the sa
model in the presence of a static bias field, displaying
Franz-Keldysh effect.
©2004 The American Physical Society06-1
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SOUZA, ÍÑIGUEZ, AND VANDERBILT PHYSICAL REVIEW B 69, 085106 ~2004!
II. GENERAL PROPERTIES OF THE DYNAMICS

A. Lattice periodicity

Here we expound in more detail an argument, sketche
Ref. 8, that makes use of the one-particle density matrix
handle the presence of electric fields in a well-control
fashion.12 We say that the one-particle density matr
n(r ,r 8)5^r un̂ur 8& is lattice periodic if

n~r ,r 8!5n~r1R,r 81R!, ~1!

whereR is a lattice vector. In particular, this implies perio
icity of the charge density. Suppose that Eq.~1! is true att
50 @e.g., the electrons are in the ground state of the cry
HamiltonianĤ0(t50)]. At that time a homogeneous electr
field is turned on, which may subsequently have an a
trarily strong and rapid variation;Ĥ0(t) may also undergo
arbitrarily rapid variations~but must remain periodic!. The
full Hamiltonian in the scalar-potential gauge is

Ĥ~ t !5Ĥ0~ t !1ĤE~ t !, ~2!

whereĤE(t)5eE(t)• r̂ describes the electric field in the d
pole approximation and2e is the electron charge.

Let us show that in the absence of scattering the lat
periodicity of n(r ,r 8) is preserved at all later times. It su
fices to establish thatṅ(r ,r 8)5ṅ(r1R,r 81R). The density
matrix evolves according toi\dn̂/dt5@Ĥ,n̂#, or, in the po-
sition representation,

i\ ṅ~r ,r 8!5E @H~r ,x!n~x,r 8!2n~r ,x!H~x,r 8!#dx.

~3!

~When left unspecified, the domain of integration over s
tial coordinates is understood to be the entire space.! For
clarity we consider the effect ofĤ0 and ĤE separately. The
Ĥ0 term yields

i\ ṅ~r1R,r 81R!5E @H0~r1R,x!n~x,r 81R!

2n~r1R,x!H0~x,r 81R!#dx. ~4!

Making the change of variablesx85x2R and invoking the
lattice periodicity of Ĥ0 and n̂, we find ṅ(r1R,r 81R)
5ṅ(r ,r 8). Using r (r ,r 8)5^r u r̂ ur 8&5r d(r2r 8) the contri-
bution fromĤE is seen to have the same property:

i\ṅ~r1R,r 81R!5eE•~r1R! n~r1R,r 81R!

2eE•~r 81R!n~r1R,r 81R!

5eE•~r2r 8!n~r ,r 8!5 i\ ṅ~r ,r 8!.

~5!

Hencen(r ,r 8) remains lattice periodic under the action
the full Hamiltonian~2!. This was to be expected, since
the vector-potential gauge the Hamiltonian is periodic.13 The
purpose of this exercise was to show explicitly how this
08510
in
o
d

al

i-

e

-

-

sult comes about in the scalar-potential gauge, where
nonperiodicity ofĤ has been a source of some confusi
regarding this issue.

B. Wannier representability

The previous result on the conservation of lattice perio
icity is valid for both metals and insulators. In what follow
we shall specialize to the case where the system is initiall
an insulating state, in which case a stronger statement ca
made regarding the nature of the states att.0.

We will assume the absence of spin degeneracy throu
out, so that states are singly occupied. In terms of the vale
Bloch eigenstates ofĤ0(t50), the initial density matrix is

n~r ,r 8;t50!5VB
21(

n51

M E dk ckn~r !ckn* ~r 8!, ~6!

where the integral is over the BZ of volumeVB5(2p)3/v,
andM is the number of filled bands.@Clearly, such a density
matrix is lattice periodic. Its idempotency can be check
using Eq.~A1!.# We shall prove that, as the density matr
evolves in time according to

i\ ṅ~r ,r 8;t !5^r u@Ĥ01ĤE,n̂#ur 8&, ~7!

it can still be expressed in the same form,

n~r ,r 8;t !5VB
21(

n51

M E dk fkn~r ,t !fkn* ~r 8,t !. ~8!

Although at t.0 the occupied statesfkn(r ,t) may depart
significantly from the valence states ofĤ0(t), they remain
orthonormal andBloch-like: fkn(r ,t)5eik•rvkn(r ,t), with
vkn(r1R,t)5vkn(r ,t).

The cell-periodic statesvkn(r ,t) are the central objects in
our formalism. For discussion purposes only, let us exp
them in the set of eigenstatesukm(r ,t)5e2 ik•rckm(r ,t) of
the cell-periodic HamiltonianĤk

0(t)5e2 ik• r̂Ĥ0(t)eik• r̂:

uvkn~ t !&5 (
m51

`

ck,nm~ t !uukm~ t !&. ~9!

Individual eigenstates will in general have fractional occup
tions 0<nkm5(n51

M uck,nmu2<1 at t.0, but the total popu-
lation nk5(m51

` nkm is the same for everyk and equals the
number of filled bands att50. This is intuitively clear, since
a spatially homogeneous electric field causes vertical tra
tions ink space which amount to a redistribution of the ele
tron population among states with equalk; the same is true
for the transitions induced by varying the lattice period
Ĥ0(t).

We will justify Eq. ~8! by deriving a dynamics for the
uvkn& that ensures that Eq.~8! provides a solution to Eq.~7!.
Since there is a gauge freedom

uvkn&→ (
m51

M

Uk,mnuvkm& ~10!
6-2
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(Uk is ak-dependent unitaryM3M matrix! in the definition
of the uvkn&,

3 the evolution equation for them is not uniqu
We require only that theuvkn& should yield the correct dy
namics for the gauge-invariant density matrix, Eq.~7!, and
we will look for the simplest solution that achieves this go

By hypothesis, at timet ṅ(r ,r 8) takes the form

ṅ~r ,r 8!5VB
21(

n51

M E dk eik•(r2r8)@ v̇kn~r !vkn* ~r 8!

1vkn~r !v̇kn* ~r 8!#. ~11!

As in the preceding section, we consider the contributio
from Ĥ0 andĤE in Eq. ~7! separately. The former is capture
by i\uv̇kn&5Ĥk

0uvkn&. To deal withĤE we resort to manipu-
lations familiar from the crystal-momentum representatio14

~CMR! ~but with the crucial difference that in the CMR thos
manipulations are applied to theuukn&, not to theuvkn&). We
first observe that

^r u@ r̂ ,n̂#ur 8&5~r2r 8!n~r ,r 8!

5VB
21(

n51

M E dk vkn~r !vkn* ~r 8!

3~2 i ]k!eik•(r2r8). ~12!

Integrating by parts and noting that in aperiodic gauge
(fk1G,n5fkn) the boundary term vanishes, we obtain

^r u@ĤE,n̂#ur 8&

5VB
21(

n51

M E dkeik•(r2r8)ieE•$@]kvkn~r !#vkn* ~r 8!

1vkn~r !@]kvkn* ~r 8!#%. ~13!

Comparing with Eqs.~7! and ~11! we arrive at i\uv̇kn&
5 ieE•]kuvkn&. The effect ofĤE thus takes the form of ak
derivative, and the combined effect ofĤ0 and ĤE is

i\uv̇kn&5~Ĥk
01 ieE•]k!uvkn&. ~14!

This is our version of the TDSE for Bloch electrons in t
scalar-potential gauge, constructed in order that Eq.~8! will
satisfy Eq.~7!. The time-independent version was introduc
as anansatzin Ref. 7.15 The equivalence of Eq.~14! to other
forms in the literature is established in Appendix A.

If at time t the M statesuvkn& at everyk are lattice peri-
odic and orthonormal, the dynamics dictated by Eq.~14!

preserves those properties, i.e.,v̇kn(r1R)5 v̇kn(r ) and
d^vknuvkm&/dt50. This can be seen as follows. Startin
from

i\ v̇kn~r1R!5E Hk
0~r1R,x!vkn~x!dx

1 ieE•]kvkn~r1R!, ~15!
08510
.
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making the change of variablesx85x2R, and invoking the
assumed lattice periodicity of bothĤ0 andvkn(r ), the right-
hand side becomesi\ v̇kn(r ). As for orthonormality, Eq.~14!
yields16

d

dt
^vknuvkm&5

e

\
E•]k^vknuvkm&. ~16!

Since by hypothesis

^vknuvkm&[E
v
vkn* ~r !vkm~r !dr5dn,m , ~17!

where the integral is over a unit cell, the right-hand side
Eq. ~16! vanishes. This completes the proof of Eq.~8!.

Two assumptions were made in the above derivation. T
first is that the statesuvkn& vary smoothly withk, so thatk
derivatives exist; we will come back to this point in Se
III B. The second is that the dynamics is scattering-free. N
that Eq.~16! is closely related to the collisionless Boltzman
equation; incoherent scattering would destroy the consta
of the total populationnk by inducing transitions betwee
different k points.

Having established that the occupied manifold is span
by M Bloch-like states at eachk, we now transform them
into Wannier-like stateŝ r uWRn(t)&5Wn(r2R,t) in the
usual way:

uWRn~ t !&5VB
21 (

m51

M E dke2 ik•RUk,mn~ t !ufkm~ t !&,

~18!

where a periodic gauge is assumed and we have insert
unitary rotation~10! among the occupied states. The assum
tion that by a judicious choice of the matricesUk(t) the
Bloch-like states can be made to vary smoothly withk is
equivalent to the assumption that the Wannier-like states
be chosen to be well localized.3

The density matrix~8! can now be recast as

n~r ,r 8;t !5 (
n51

M

(
R

WRn~r ,t !WRn* ~r 8,t !. ~19!

We will term Wannier representable~WR! a state whose
density matrix is of this form. An insulating ground state
WR, while a metallic state is not. We have established t
under the Hamiltonian~2! and in the absence of scatterin
an initially insulating system remains WR, or ‘‘insulating
like,’’ even if at some later time the ground state ofĤ0(t)
becomes metallic.17 Unlike a true insulating ground state, o
a stationary field-polarized state,8 a dynamic WR state will in
general break time-reversal symmetry and carry a ma
scopic current. This is the subject of the following section
6-3
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III. DYNAMIC POLARIZATION AND CURRENT

A. Derivation

Our aim in this section is to show that a WR state carr
a current that can be expressed as the rate of change
polarization per unit volume,

J~ t !5
dP~ t !

dt
, ~20!

whereP(t) is given in a periodic gauge by

Pa~ t !52
ie

~2p!3 (
n51

M E dk^vkn~ t !u]ka
vkn~ t !& ~21!

(a is a Cartesian direction! or, equivalently, by

P~ t !52
e

v (
n51

M E r uWn~r ,t !u2dr . ~22!

Equations~21! and ~22! are identical to the King-Smith–
Vanderbilt expressions appropriate for the adiabatic reg
andE50,1 except that in Eq.~21! the valence-band eigen
statesuukn& have been replaced by the instantaneous s
tions of the TDSE~14!, and theWn(r ,t) in Eq. ~22! are the
Wannier states corresponding tovkn(r ,t). Equation~21! can
be interpreted as a nonadiabatic geometric phase.18

As in the adiabatic case,P(t) is invariant under the trans
formation ~10! only up to a ‘‘quantum of polarization’’
(e/v)R. Naturally, this gauge indeterminacy does not aff
the measurableJ(t). The total change in bulk polarization i
a time interval@0,T# is also well defined as the integrate
current:DP5*0

TJ(t)dt. It can be determined, apart from a
integer multiple of the quantum, by evaluatingP(t) at the
end points:DP5P(T)2P(0). In practice the remaining in
determinacy can be removed in the manner described in
1, by evaluatingP(t) with sufficient frequency during tha
interval.

To establish Eqs.~20! and~21!, we first evaluatedP/dt by
taking the time derivative of Eq.~21! and obtain, after an
integration by parts,

dPa

dt
52

ie

~2p!3 (
n51

M E dk@^v̇knu]ka
vkn&2c.c.#. ~23!

Inserting the TDSE, Eq.~14!, we note that the contribution
arising from the second term therein, which explicitly i
volvesE, may be written as

J̃a5
e2

~2p!3\
(
n51

M

(
b

EbE dkVab
(n)~k!, ~24!

where

Vab
(n)~k!5 i @^]ka

vknu]kb
vkn&2^]kb

vknu]ka
vkn&#. ~25!

This takes the form of a~nonadiabatic! Berry curvature.19

Using Stokes’ theorem, its volume integral can be turned i
a surface integral around the edges of the BZ of the Be
connectionAk,nn , where
08510
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Ak,mn
a 5 i ^vkmu]ka

vkn&. ~26!

Such an integral vanishes in a periodic gauge, so thatJ̃a
50. The remaining contribution, arising from the insertio
of the first term of Eq.~14! into Eq. ~23!, then gives

dPa

dt
5

e

~2p!3\
(
n51

M E dk@^vknuĤk
0u]ka

vkn&1c.c.#.

~27!

On the other hand, the current is

Ja52
e

v
Trc~ n̂v̂a!. ~28!

Here Trc denotes the trace per unit cell,

Trc~Ô!5
1

NE O~r ,r !dr , ~29!

whereN is the~formally infinite! number of real-space cell
in the system. The velocity operator is defined as

v̂a5
1

i\
@ r̂ a ,Ĥ#. ~30!

Inserting the Hamiltonian~2! and using@ r̂ a ,ĤE#50,

v̂a5
1

i\
@ r̂ a ,Ĥ0#. ~31!

In the position representation we find, combining Eqs.~8!,
~28!, and ~31!, invoking the lattice periodicity of the inte
grand to replace (1/N)*dr by *vdr , and inserting the iden-
tity 1̂5*dr 8ur 8&^r 8u,

Ja52
e

~2p!3\
(
n51

M E dkE
v
drE dr 8vkn* ~r 8!vkn~r !

3H0~r 8,r !]ka
e2 ik•(r82r ). ~32!

Integrating by parts inka ~the boundary term vanishes in
periodic gauge!, and using

Hk
0~r 8,r !5e2 ik•(r82r )H0~r 8,r !, ~33!

Ja reduces to exactly the same expression appearing on
right-hand side of Eq.~27!. This completes the proof of Eqs
~20! and~21! for WR states evolving under the Hamiltonia
~2!.

We note in passing that the integral on the right-hand s
of Eq. ~27! can be recast as

E dk@]ka
^vknuĤk

0uvkn&2^vknu~]kaĤk
0!uvkn&#. ~34!

The first term vanishes in a periodic gauge, leading to
more familiar-looking form

Ja52
e

~2p!3 (
n51

M E dk^vknuv̂a~k!uvkn&, ~35!
6-4
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wherev̂a(k)5(1/\)(]ka
Ĥk

0).14

The above derivations~and indeed all the results in thi
paper! remain valid for nonlocal pseudopotentials such
those used inab initio calculations, since the definition of th
velocity as the commutator~30! remains valid for such
pseudopotentials.

B. Discussion

It is remarkable that a knowledge of the wave functions
t50 and t5T is sufficient to infer, to within a factor of
(e/v)R, the net amount of current that flowed through t
bulk in the intervening time. This is a direct consequence
representability by localized Wannier functions, that is,
the insulating-like character of the many-electron syste
For such systems the integral in Eq.~22! can be evaluated
and it becomes possible to track the time evolution of
electronic center of mass, i.e., ofP. Indeed, the center o
mass can be meaningfully defined within periodic bound
conditions only for many-electron states that are localiz
in the manner of insulating states.20,21 Under these condi-
tions, the history of the coherent current flow is contain
~modulo the quantum of polarization! in the initial and final
wave functions, related by the time evolution opera
exp@2(i/\)*0

TĤ(t)dt#.
This result was previously established for adiabatic cha

flow,1 under the assumption that the ground state is separ
from excited states by finite energy gaps everywhere in
BZ. In nonadiabatic situations the occupied manifold a
quires a significant excited-state admixture, so that it
comes impossible to identify an energy gap. Instead, un
lying the derivation in Sec. III A is a weaker assumptio
namely, that the many-electron state has a localized na
as reflected by the ability to construct, via Eq.~18!, Wannier
functions having a finite localization length.21,22 ~Numerical
calculations of the localization length will be presented
Sec. VI.! For instance, when takingk derivatives, we as-
sumed a ‘‘differentiable gauge’’ foruvkn&. This is only pos-
sible if the character of the electronic manifold chang
slowly with k, which is precisely what is measured by th
localization length.3 These observations are in line wit
Kohn’s viewpoint that the defining feature of the insulati
state is wave-function localization, not the existence of
energy gap.20

IV. DYNAMICAL EQUATIONS

Having found the Berry-phase formula~21! for the dy-
namic polarization in the presence of a fieldE(t), let us now
use it to obtain computationally tractable dynamical eq
tions under the Hamiltonian~2!. The starting point is the
observation that the dipole termĤE contributes2vP(t)
•E(t) to the energy per unit cell. An energy functional val
for periodic boundary conditions is then obtained by expre
ing P(t) via the TBP formulas. This program was previous
carried out for insulators in static fields,4,7–9where stationary
states were computed by minimizing that energy functio
after applying a regularization procedure~truncation of the
Wannier functions in real space or discretization ofk space!.
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Our strategy for the time-dependent problem is to impo
stationarity on the corresponding action functional. Follo
ing Refs. 7 and 8, we adopt here ak-space formulation,
which is particularly well suited for numerical work. Speci
emphasis will be put on the discrete-k case since this is the
relevant one for numerical implementations.

A. Continuum-k case

In the continuum-k limit the TDSE may be formally ob-
tained from a Lagrangian densityL(k) such that the La-
grangian per unit cell isL5VB

21*dk L(k). For WR states
under the Hamiltonian~2! we have

L~k!5 i\ (
n51

M

^vknuv̇kn&2E~k!, ~36!

where

E~k!5 (
n51

M

^vknuĤk
01 ieE•]kuvkn&. ~37!

Using Eq.~21! and defining the zero-field energy function

E05VB
21(

n51

M E dk^vknuĤk
0uvkn&, ~38!

one finds the total-energy functional

E5VB
21E dkE~k!5E02vP•E. ~39!

The Euler-Lagrange equation23

d

dt

dL
^d v̇knu

1
d

dk

dL
^d]kvknu

2
dL

^dvknu
50 ~40!

then leads to the dynamical equation~14!.
As already mentioned, the choice of dynamical equat

for uvkn& is not unique. An alternative to Eq.~14! is

i\uv̇kn&5~Ĥk
01 ieE• ]̃k!uvkn&. ~41!

The bare derivative]k has been replaced by

]̃k5]k1 i (
m,n51

M

Ak,mnuvkm&^vknu, ~42!

whereAk,mn is given by Eq.~26!. The operator]̃k is a multi-
band version of the covariant derivative24 and is discussed
further in Appendix B. Although the field-coupling term i
Eq. ~41! is no longer a scalar-potential term in the str
sense, we will continue to view it as such in a generaliz
sense.

Equation~41! preserves the orthonormality of theuvkn&
and generates the correct dynamics for the density ma
@These properties rely on (Ak

a)†5Ak
a , which follows from

]ka
^vknuvkm&50.25# The latter is most easily seen from th

dynamics of the projector
6-5
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P̂k5 (
n51

M

uvkn&^vknu, ~43!

which completely specifies the occupied subspace atk while
being insensitive to unitary rotations inside that subspa
After some algebra, it can be shown that while the individ
uvkn& behave differently under Eqs.~14! and ~41!, P̂k stays
the same.

An advantage of introducing Eq.~41! in place of Eq.~14!
is that, upon the discretization ofk space, the former leads t
an evolution equation at pointk that is gauge covariant~in
the sense of transforming in the obvious way under unit
rotations among occupied states atk and being invariant un-
der such rotations at neighboring pointsk8), as will become
clear in the following section.

B. Discrete-k case

This is the relevant case for numerical work. The L
grangian for a uniform mesh ofN points in the BZ is

L5
i\

N (
n51

M

(
k

^vknuv̇kn&2E, ~44!

whereE is the energy in an electric field,

E5E02vE•P, ~45!

with

E05
1

N (
n51

M

(
k

^vknuĤk
0uvkn& ~46!

and a discretized expression forP to be given shortly. Ap-
plying the Lagrangian equations of motion23

d

dt

dL

^d v̇knu
2

dL

^dvknu
50 ~47!

yields

i\
d

dt
uvkn&5Ĥk

0uvkn&2NvE•
dP

^dvknu
. ~48!

Writing

P5
1

2p (
i 51

3

ai~P•bi !, ~49!

whereai andbi are the direct and reciprocal lattice vecto
respectively, and defining

vP•bi52eḠ i , ~50!

the last term in Eq.~48! becomes

1
Ne

2p (
i 51

3

~E•ai !
dḠ i

^dvknu
. ~51!

According to Ref. 1,Ḡ i is the string-averaged discretize
geometric phase along thebi direction,
08510
e.
l

y

-

,

Ḡ i52
1

Ni
' (

l 51

Ni
'

Im ln )
j 50

Ni
i
21

detS~k j
( i ) ,k j 11

( i ) !. ~52!

Here Smn(k,k8)5^vkmuvk8n& is the M3M overlap matrix,
N1

' is the number of strings alongb1, each containingN1
i

pointsk j
(1)5k'

(1)1 j Dk1 , k'
(1) is a point on the (b2 ,b3) plane

labeled byl, andDk15b1 /N1
i . Equations~50! and~52! pro-

vide the discretization of the nonadiabatic Berry-phase po
ization, Eq.~21!. @A discrete-k formula for the macroscopic
currentJ(t) is given in Appendix D.# As in the continuum
case, a periodic gauge is assumed.

A compact expression fordḠ i /^dvknu is derived in
Appendix C 2 using the following notation. Letkis
5k1sDk i , where s561. The overlap matrix become
Skis,mn5^vkmuvkis,n&. Next we define

uṽkis,n&5 (
m51

M

~Skis
21 !mnuvkis,m&, ~53!

which is a ‘‘dual’’ of uvkn& in the space of theuv& ’s at the
neighboring pointkis, since

^vknuṽkis,m&5dn,m . ~54!

uṽkis,n& are gauge covariant in the sense that~i! they are
invariant under unitary rotations amonguvkis,n& at any
neighboring pointkis and ~ii ! they transform under unitary
rotations amonguvkn& in the same manner asuvkn& them-
selves, i.e.,

uṽkis,n&→ (
m51

M

Uk,mnuṽkis,m&. ~55!

Then it is shown in Appendix C2 that

dḠ i

^dvknu
5

i

2Ni
' (

s561
suṽkis,n&. ~56!

Combining Eqs.~48!, ~51!, and~56!, and defining

uwkn&5
ie

4p (
i 51

3

Ni
i~E•ai ! (

s561
suṽkis,n&, ~57!

the dynamical equation becomes

i\
d

dt
uvkn&5Ĥk

0uvkn&1uwkn&. ~58!

Equation~58! is a discretized version of Eq.~41!, i.e.,

uwkn&. ieE• ]̃kuvkn&. ~59!

This is connected with the fact that the duals provide a na
ral framework for writing a finite-difference representatio
of ]̃kuvkn&.

10 In our notation,
6-6
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Dk i• ]̃kuvkn&.
1

2 (
s561

suṽkis,n&. ~60!

Both dynamical equations~14! and ~41! lead to
d^vknuvkm&/dt50 for WR manifolds, so that the time evo
lution of the individual statesuvkn& is unitary. This property
is preserved in the discretized form~58!, since ^vknuwkm&
50. In order to take advantage of certain unitary integrat
algorithms, it is useful to recast the termuwkn& on the right-
hand side as a Hermitian operator acting onuvkn&. For that
purpose let us define

P̂kis5 (
n51

M

uṽkis,n&^vknu, ~61!

which converts an occupied state atk into its dual atkis and
is invariant under gauge transformations~i.e., under indepen-
dent unitary rotations among occupied states at bothk and
kis). It follows that the operator

ŵk~E!5
ie

4p (
i 51

3

Ni
i~E•ai !(

s
s P̂kis ~62!

turnsuvkn& into uwkn&, which is the property we seek. Lastl
for the purpose of acting onuvkn& the non-hermitian wˆ

k can
be replaced by wˆ

k1ŵk
† since P̂kP̂kis5 P̂k , so that Q̂kŵk

5ŵk ~where Q̂k512 P̂k) and therefore wˆ
k
†uvkn&50. We

have thus achieved our goal: Eq.~58! now takes the canoni
cal form of a TDSE,

i\
d

dt
uvkn&5T̂kuvkn&, ~63!

with a Hermitian operator on the right-hand side:

T̂k~E!5Ĥk
01ŵk~E!1ŵk

†~E!. ~64!

We remarked previously that in the continuum-k limit Eq.
~58! reduces to Eq.~41!. The corresponding analysis for Eq
~63! and ~64! is left to Appendix B.

The operator wˆ k appearing in Eq.~64! is defined via Eqs.
~53!, ~61!, and~62!. It should be emphasized that it depen
explicitly on the occupied states atk andkis. In particular,
even whenĤk

0 andE are time independent, if the occupie

manifolds atk and kis are changing over time, so isT̂k .
However, T̂k remains invariant under unitary rotations atk
points k and kis. Hence the resulting dynamics of the o
cupied manifold@Eq. ~66! below# has the essential propert
of being insensitive to the gauge arbitrariness that is alw
present in numerical simulations.

Note that when the Lagrangian procedure was applie
Sec. IV A to the continuum-k problem, we arrived at Eq
~14!, which contains]kuvkn&. When the same was done aft
discretization, the resulting dynamical equation contained
stead ]̃kuvkn&. The reason is that the gradient of the d
cretized Berry’s phase, Eq.~56!, is by construction orthogo
nal to the occupied subspace atk, whereas the correspondin
continuum-k term used in Sec. IV A was not. Had we o
08510
n

s

in

-
-

thogonalized that term, we would have obtainedQ̂k]kuvkn&
instead of]kuvkn&, which is equivalent to]̃kuvkn& ~see Ap-
pendix B!.

C. Numerical time integration

In the applications of Sec. VI we use the algorithm26

uvkn~ t1Dt !&5
12 i\~Dt/2!T̂k~ t !

11 i\~Dt/2!T̂k~ t !
uvkn~ t !& ~65!

to perform the time integration. Note that in order to use t
algorithm it was necessary to invoke the form~63! of the
TDSE. The Hermiticity ofT̂k guarantees that the time evo
lution is strictly unitary for any value ofDt. Since the sys-
tem under study in Sec. VI is a tight-binding model with on
three basis orbitals, the matrix inversion is very inexpens
The same algorithm has been successfully used to perf
self-consistent time-dependent density-functional calcu
tions of the optical properties of atomic clusters using loc
ized orbitals as a basis set.45 For calculations with large basi
sets ~e.g., plane waves! more efficient algorithms are
available.27,28

Owing to the Hermiticity ofT̂k , the projector~43! obeys

dP̂k

dt
5

1

i\
@ T̂k ,P̂k#. ~66!

Hence, a variation of the above approach would be to rep
T̂k by

T̂k5Q̂kT̂k1T̂kQ̂k , ~67!

which is also Hermitian. Because@ T̂k ,P̂k#5@ T̂k ,P̂k#, this
choice does not change the dynamics of the occupied
spaceP̂k , but it does change the dynamics of the individu
statesuvkn&. In fact, T̂k generates aparallel transportevolu-
tion characterized bŷvknuv̇kn&50, thus discarding the ‘‘ir-
relevant’’ part of the dynamics associated with phase fac
and unitary rotations inside the occupied subspace. We h
found empirically, however, that the use ofT̂k in Eq. ~65!
appears to result in a less stable numerical time evolut
and we have therefore chosen to retain the originalT̂k dy-
namics in our practical implementation.

D. Discussion

It may seem surprising that a linear potential can be
commodated in a theoretical description of a periodic b
system. A commonly held viewpoint is that a linear potent
can be implemented within periodic boundary conditio
only for the case of a finite system~molecule or cluster! in a
supercell, in which case it becomes possible to introduc
sawtooth potential as long as its discontinuity is located i
region of negligible electron density. To the contrary, Eq
~14!, ~41!, and ~63! demonstrate that it is perfectly permis
sible to insist on the usual periodic boundary conditions
the wave functions while allowing for nonperiodicity of th
6-7
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potential. This can be done because the potential takes
special form of a sum of spatially periodic and linear con
butions, relevant to a crystal in a homogeneous electric fi
As shown in Sec. II A, the action of the nonperiodic Ham
tonian, Eq.~2!, then preserves the lattice periodicity of th
density matrix, which can therefore be represented by p
odic wave functions.

Incidentally, we note that a sawtooth operator of sorts
‘‘hiding’’ behind the TBP formulas. The Berry-phase pola
ization has been recast as the expectation value of a prop
defined center-of-mass position operator of the ma
electron periodic system.21 That operator, introduced b
Kohn,20 is a sawtooth, not in real space but in the config
ration space of the many-body wave function. It can only
constructed for wave functions having a certain disconn
edness~localization! property in configuration space chara
teristic of the insulating state. This observation is clos
related to the discussion in Sec. III B.

Finally, we mention that an alternative approach for int
ducing a linear potential into a periodic solid is via the CM
formalism.14 This approach is summarized in Appendix A
where the connection with our formalism is established. T
CMR dynamical equations appear to be less convenient
computational work. However, the advantages of the pre
formulation came at the expense of generality, since
equations are restricted to the scattering-free dynamic
initially insulating systems.

V. STABLE STATIONARY SOLUTIONS

A. Formulation

Let us try to find, for a constantEÞ0, solutions to Eq.
~63! for which the occupied manifold remains unchang
over time. A natural guess is the manifold spanned byM

eigenstates ofT̂k at eachk,

T̂kuvkn&5Ekn~E!uvkn&. ~68!

SinceT̂k depends on the occupied states at the neighborik
points, Eq.~68! must be solved self-consistently among
k. If a solution exists, the correspondingT̂k andP̂k commute
and, according to Eq.~66!, dP̂k /dt50, i.e., the solution is
stationary.

We are now ready to make contact with Refs. 8 and
where the energy functionalE of Nunes and Gonze,7 Eq.
~45!, was minimized at fixedE. A stationary point ofE has
zero gradient:uGkn&5dE/^dvknu50, where the functiona
derivative is taken in such a way that the gradient is ortho
nal to the occupied space. In Appendix C2 it is shown th

uGkn&5~1/N!Q̂kT̂kuvkn&, ~69!

so that solutions of Eq.~68! obeyuGkn&50. Thus, stationary
solutions of the dynamical equation are stationary points
E.

A Hessian stability analysis30 shows that a necessary co
dition for a stationary point ofE to be a minimum is that the
M lowest-lying eigenstates ofT̂k are chosen. Since doing s
at E50 yields the ground state, at finiteE that procedure
08510
he
-
d.

ri-

s

rly
-

-
e
t-

y

-

e
or
nt
r

of

l

,

-

f

yields a state that is adiabatically connected to it by slow
ramping up the field, keeping the system in a minimum ofE.
Such ‘‘polarized manifolds’’ have been discussed previou
in a perturbative framework,29,31,32treatingk as a continuous
variable. In that limit the electric-field perturbation becom
singular. That is, even an arbitrary small field induces a c
rent via Zener tunneling to higher bands, and the polari
manifolds are not stationary, but rather, are long-lived re
nances. In other words, an infinite crystal in the presence
a static electric-field does not have a ground state. Thi
reflected inE losing its minima as soon asE departs from
zero.

Instead, for a discrete mesh ofk points, arguments can b
given7,8 suggesting thatE loses its minima only when the
field exceeds a critical valueEc(N) that decreases as th
numberN of k points increases; this is supported by nume
cal calculations.8,9 It follows from the preceding discussio
that the minima ofE belowEc(N) are stable stationary solu
tions of the dynamical equation. Conversely, aboveEc(N)
there are no such solutions.

These two regimes—below and above the critical field
will be explored numerically in Sec. VI C via time
dependent calculations. If one stays belowEc(N), the sta-
tionary solutions can be computed using time-independ
methods, such as the diagonalization algorithm descri
next or the minimization methods of Refs. 8 and 9.

B. Diagonalization algorithm

We have in Eq.~68! the basis for an algebraic method
computing stationary states at finiteE on a uniformk-point
mesh, foruEu,Ec(N): loop over thek points; for each one
select theM eigenstates ofT̂k with the lowest eigenvalues
iterate until the procedure converges at allk and the occu-
pied subspace stabilizes~this will only happen belowEc).
Even in a tight-binding model without charge se
consistency, the set of Eqs.~68! has to be solved self
consistently throughout the BZ, since the operatorsT̂k
couple neighboringk points via their dependence on th
uvkn&. One may choose to updateT̂k either inside or outside
the loop overk; the latter option renders the algorithm pa
allelizable overk points.

We have tested this scheme on the tight-binding mode
Sec. VI, and confirm that it produces the same state a
direct steepest-descent or conjugate-gradients minimiza
of the functionalE.8 This algorithm may be especially suite
for implementation in certain total-energy codes that
based on iteratively diagonalizing the Kohn-Sham Ham
tonian expanded in a small basis set of local orbitals.33

C. Discussion

Equation~68! is a discretization of the time-independe
version of Eq.~41!:

~Ĥk
01 ieE• ]̃k!uvkn&5Ekn~E!uvkn&. ~70!

An analysis of the eigenvalues of this equation will serve
a guide for discussing those of Eq.~68!. ~For the present
6-8
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DYNAMICS OF BERRY-PHASE POLARIZATION IN . . . PHYSICAL REVIEW B69, 085106 ~2004!
purposes we will assume that the continuum form~70! has
solutions forEÞ0.! As a result of the properties of the co
variant derivative~Appendix B! Ekn(E) are invariant under
diagonal gauge transformationsUk,mn5eiukmdm,n . Upon
multiplying on the left by^vknu the second term on the left
hand-side of Eq.~70! vanishes. Integrating overk and sum-
ming overn, we then find

VB
21(

n51

M E dkEkn~E!5E0~E!>E0~E50!, ~71!

whereE0(E) is the zero-field energy functional~38! evalu-
ated at the field-polarized stationary state, and the inequ
follows from the variational principle. The same properti
hold for the eigenvalues of the discretized form~68!, which
can be obtained by diagonalizingĤk

0 inside the occupied
manifold. We have here the interesting situation that a m
mum of thetotal energyE can be obtained by solving th
eigenvalue equations~68! whose eigenvalues, summed ov
n andk give instead thezero-fieldcontributionE0. This can
be traced back to Eq.~B2!, which expresses the ‘‘parallel
transport-like’’ nature of the covariant derivative.

The above is to be compared with the time-independ
version of Eq.~14!,

~Ĥk
01 ieE•]k!uvkn8 &5Ekn8 ~E!uvkn8 &. ~72!

Under a diagonal transformationuvkn8 &→eiukmuvkn8 & its eigen-
values change asEkn8 (E)→Ekn8 (E)2eE•]kukn . The analog
of Eq. ~71! is

VB
21(

n51

M E dkEkn8 ~E!5E0~E!2vE•P~E!. ~73!

The quantity on the right-hand side is now the total energyE,
which is invariant only moduloeE•R.

Although the individual eigenstates of Eq.~70! are in gen-
eral different from those of Eq.~72!, the self-consistent so
lutions for allk andn span the same space in both cases,
they differ only by a gauge transformation. It is then a mat
of convenience to choose which of the two equations
solve in practice. Our particular approach is to discretize
~70! in a gauge-covariant manner and then solve the resu
equation~68!.

VI. NUMERICAL RESULTS

A. Tight-binding model

We have applied our scheme to the one-dimensional ti
binding model of Ref. 4, a three-band Hamiltonian with thr
atoms per unit cell of lengtha51 and one orbital per atom

Ĥ0@a#5(
j

$e j~a!ĉ j
†ĉ j1t@ ĉ j

†ĉ j 111H.c.#%, ~74!

with the site energy given bye3m1 l(a)5D cos(a2bl). Here
m is the cell index,l 5$21,0,1% is the site index, andb l
52p l /3. Before the Berry-phase polarization can
computed34 ~or an electric field applied to the system4,35!, the
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position operator must be specified. Although this may
done without introducing additional parameters,36 we adopt
the simple prescription of Ref. 4:x̂5( j xj ĉ j

†ĉ j , with xj

5 j /3. In the results reported below we have sete5\51,
t51, andD521, and only the lowest band is filled~with
single occupancy!. Figure 1 shows the band structure at ze
field for a50.

B. Sliding charge-density wave

The Hamiltonian of Eq.~74! is a simple model of a com
mensurate charge-density wave which slides by one pe
as the parametera evolves adiabatically through 2p. It is
easiest to see this by noting that in the space of parame
Dx5D cosa andDy5D sina, cycling a by 2p corresponds
to tracing a circle about the origin in theDx-Dy plane. The
system is insulating~i.e., a gap remains open! at all points in
this plane except for a singular point at the origin where
system is metallic. Thus, this cyclic adiabatic change inĤ0

takes the system along an insulating path that encircles
singular point, so that a quantized particle transportDP
5*0

TJ(t)dt of a unit charge is obtained.37

Away from the adiabatic regime, deviations from exa
quantization are expected. This can be understood from
fact that under nonadiabatic conditions the state at timt
depends on the history at timest8,t. In particular, the final
state may be different from the initial one even thou
Ĥ0(T)5Ĥ0(0), in which caseP(T)2P(0)Þ1. By contrast,
an adiabatically evolving system has no memory, being co
pletely determined by the instantaneousĤ0(t) anddĤ0/dt.

To illustrate this point, we increaseda from 0 to 2p
during a time interval tP@0,T# according to a(t)
52p sin2(pt/2T), and held it constant afterwards. The sy
tem was prepared att50 in its ground state, and the wav
functions evolved in time according to Eq.~65!, using Dt
50.005~the same time step was used in all other simulatio
in this work!. At each time step we computed the dynam
polarization using Eq.~52!.

The resultingP(t) for T580 and 200k points is shown in
Fig. 2, where we also display the exact adiabatic (T→`)
limit Pstatic@a(t)# obtained by diagonalizingĤk

0@a(t)# on the

FIG. 1. Energy dispersion of the tight-binding model for th
choice of parameterst51, D521, anda50.
6-9
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SOUZA, ÍÑIGUEZ, AND VANDERBILT PHYSICAL REVIEW B 69, 085106 ~2004!
same mesh ofk points.38 ~To check that our calculations ar
converged with respect to the number ofk points, the inset of
Fig. 2 compares the results for 100 and 200k points.! The
dynamic polarizationP(t) obtained by solving the TDSE
follows closely, but not exactly, the adiabatic curve. In p
ticular, at the timet580 when the Hamiltonian stops chan
ing, the polarization differs slightly from unity~see inset in
Fig. 2!, indicating that the system is not in the ground sta
The oscillations that follow arise from quantum interferen
~beats! between valence and conduction states, as a resu
having excited electrons across the gap during@0,T#. Their
period, of 5.5 time units, corresponds to the fundamental
in Fig. 1, Egap51.137. This is consistent with thek-space
distribution of the ~small! electron-hole pair amplitude
present in the system after timeT: for a sliding period ofT
580, the distribution is mostly concentrated aroundk50,
and it is essentially the lowest conduction band that g
populated. As the adiabatic limit is approached by increas
T, the amplitude of the remnant oscillations of the polariz
tion decreases. This is illustrated in the upper panel of Fig
where we compareT580 with T5120.

Besides the macroscopic polarizationP(t), another quan-
tity of interest is the electronic localization lengthj(t) that
characterizes the root-mean-square quantum fluctuation
the macroscopic polarization.21 It is given by j25V I /M ,
whereV I is a gauge-invariant quantity which in one dime
sion is equal to the spread of the maximally localized W
nier functions~18!.3 We have computedV I using Eq.~34!
from Ref. 3, and in the lower panel of Fig. 3 we plotj(t)
againsta(t)/2p. In the adiabatic limit the resulting curv
consists of three identical oscillations, reflecting the ex
tence of three equivalent atoms in the unit cell. As nonad
baticity increases,j tends to increase as well. Neverthele
the electrons remain localized, i.e., insulatinglike, in t
sense discussed in Sec. III B.39

The above results are representative of the regime w
deviations from adiabaticity are small. If we increase t

FIG. 2. ~Color online! Time evolution of the polarization as
result of changing the sliding parametera from 0 to 2p over the
time interval@0,80#, using 200k points. The solid line shows the
actual dynamic polarization, while the dashed line shows
ground-state polarization of the instantaneous Hamiltonian. In
Detail of the remnant oscillations of the polarization after t
Hamiltonian stops changing, att580. For comparison, the result
using 100k points are also shown.
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degree of nonadiabaticity by choosing a smallerT ~e.g., T
540), we begin to notice a linear increase of the polarizat
at later times. This new behavior can be traced to the e
tation of electron and hole wave packets centered at somk0
and propagating at different group velocities. LetDEk0

be

the interband separation, andDvg be the difference of group
velocities of the two lowest bands, atk0. Then, in addition to
the quantum beats of period 2p\/DEk0

caused by the inter-

band dynamics, we observe a linear-in-t term in P(t) with
slope proportional toDvg , reflecting the change in dipole
moment as the electron-hole pair separates.@More precisely,
the preceding statements apply only in the limit of a den
k-point mesh; for any finite mesh spacingDk, the linear
behavior is replaced by an oscillatory one with an amplitu
scaling as 1/Dk and period 2p/(DvgDk). Thus, an espe-
cially fine k-point mesh should be used if these effects are
be investigated.#

C. Gradual turn-on of an electric field

In the previous example the electric field was held at ze
and the dynamics was produced by varying the parametea

in Ĥ0. Let us now study the polarization response of t
system when an electric fieldE(t) is switched on linearly
over a time interval@0,T# and is held fixed afterwards. W
have seta50, so that the ground state is centrosymmet
with zero spontaneous polarization.

We begin by considering a situation where the final va
of the field,Emax, is smaller than thek-mesh-dependent criti
cal field Ec(N) above which the energy functional~45! has
no minima. This allows us to compare the dynamic polari
tion P(t) with the static polarizationPstatic@E(t)# of the sta-
tionary state in the presence of the same field, which we
by minimizing the energy.8 In Fig. 4 we display the results
for Emax50.025 and two different switching timesT540 and
T580. The simulation was done using 200k points, to
which corresponds a critical fieldEc(N5200);0.037. ~The

e
t:

FIG. 3. ~Color online! Upper panel: Same as Fig. 2, but no
using two different time intervals,@0,80# and@0,120#, for changing
the sliding parametera. Lower panel: electron localization lengt
j(t) vs the instantaneous value ofa, during the time intervals@0,T#
over whicha is changing.
6-10
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inset shows the agreement between the results obtained
100 and 200k points.! Clearly, P(t) tracks quite closely the
adiabatic curvePstatic@E(t)#, the more so asT increases. This
illustrates the point, emphasized in Ref. 4, that the state
tained by minimizing a field-dependent energy function
should be thought of as the one which is generated from
zero-field state by adiabatically turning onE.

Let us now explore the regime aboveEc(N), where
energy-minimization schemes fail. ForEmax.Ec(N) the exact
adiabatic limit of the process of ramping up the field is u
attainable. Nevertheless, ifEmax is small compared to the
field scale at whichintrinsic breakdown occurs~i.e., at which
the Zener tunneling rate becomes of the order of interb
frequencies, which is a bulk property40!, a quasistationary
state should be reachable by turning on the field at a rate
is slow compared to the usual electronic processes, but
compared to the characteristic tunneling time at the ma
mum field encountered. After the rampup is completed,
at times still short compared to the tunneling rate, this s
should provide the appropriate extrapolation to fields ab
Ec(N) of the truly stationary state that exists belowEc(N).

To illustrate this situation, we repeated the calculat
with 200k points depicted in Fig. 4, but increasing the ma
mum field from 0.025 to 0.05, somewhat larger th
Ec(200);0.037. The resulting curve forP(t) is very similar
to that in Fig. 4, without any sign of runaway behavior. As
more striking example, we show in Fig. 5 the outcome
calculations with the same final field ofEmax50.05, but with
even denser sets of 400 and 800k points. For the latterEc
;0.01, considerably smaller thanEmax, and still there is no
sign of instability. ~Note also that theP(t) curve in Fig.
5—whose vertical scale differs from that in Fig. 4 by th
same factor of 2 that exists between the respective value
Emax—looks almost identical to that in Fig. 4.! These results
confirm that, as long as we are solving atime-dependen
Schrödinger equation for a given history of switching on th
field, there is no such thing as aDk-dependent critical field;
the thermodynamic limit of an infinitely densek-point mesh
is perfectly well defined. The only breakdown behavior th

FIG. 4. ~Color online! Time evolution of the polarization as
result of increasing the electric field from 0 toEmax50.025 over two
time intervals,@0,40# and@0,80#, using 200k points. The solid line
shows the actual dynamic polarization, while the dashed line sh
the static polarization for the instantaneous value of the field. In
Comparison of the dynamic polarization for 100 and 200k points.
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may be observed in short time scales is the physical one
occurs when the applied field is large enough such that
Zener tunneling rate becomes significant.41,40The concept of
a Dk-dependent critical field applies only to the attempt
obtain solutions in the presence of a static electric field fr
an energy variational principle. By going back to the origin
dynamical problem of slowly ramping up the field, we c
cumvent the difficulties that ultimately resulted from tryin
to treat as a~stable! stationary state what is really a long
lived resonance.

D. Dielectric function in a static field

There is great interest in modulating the optical propert
of crystals and superlattices by applying static electric fiel
An example of such an electro-optical effect is the fie
induced modification of the dielectric function. This
known as the Franz-Keldysh effect, or electroabsorpti
Although it has been extensively studied in bu
semiconductors,42 quantum wells,43 and superlattices,44 we
are not aware of any first-principles investigations. T
present method may provide a route to such calculations

We compute the dielectric function in the presence o
static fieldE0 as follows. The system is prepared att50 in
the stationary state polarized by a fieldE01DE, with uDEu
!uE0u. By using a field of magnitude below the critical field
we are able to find that state by minimizing the energy. F
t.0 we let the system evolve in time in the presence of
target fieldE0. Let Pstatic@E0# be static polarization of the
system under the fieldE0. The polarization response to th
step-function discontinuity in E(t)5E01DE u(2t) is
DP(t)5P(t)2Pstatic@E0#. To obtain the frequency-
dependent response we need the Fourier transform ofDP(t)
for t.0 only:

DP~v!5E
0

1`

DP~ t !e( iv2d)tdt, ~75!

where a damping factord has been introduced as an appro
mate way to account for level broadening.45 To linear order
in DE the susceptibility is

s
t:

FIG. 5. ~Color online! Same as Fig. 4, but now usingEmax

50.05 and 800k points. SinceEmax is larger than the critical field
for this number of k points (Ec;0.01), no adiabatic curve
Pstatic@E(t)# is shown. Inset: Comparison of the dynamic polariz
tion for 400 and 800k points.
6-11
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SOUZA, ÍÑIGUEZ, AND VANDERBILT PHYSICAL REVIEW B 69, 085106 ~2004!
Rex [E0]~v!5
dPstatic@E#

dE U
E5E0

2
v

DE Im DP~v!, ~76!

Im x [E0]~v!5
v

DE ReDP~v!. ~77!

With this real-time approach the need to perform a su
mation over conduction-band states is circumvented. Pr
ous real-time, scalar-potential approaches45,46were restricted
to finite systems, since it was unclear how to evaluate
dynamic macroscopic polarization of an extended system
real-time, vector-potential scheme valid for bulk systems w
proposed in Ref. 47.

We validate our method by comparing in Fig. 6 th
ground-state susceptibility with the analytic Kubo formu
~sum-over-states! result, using in both cases the same bro
eningd andk-point mesh. Also shown in Fig. 6 is the su
ceptibility in the presence of aE050.05 bias field, displaying
the Franz-Keldysh effect: an absorption tail below the g
caused by photon-assisted tunneling and oscillations ab
the gap.42 The Franz-Keldysh oscillations become mo
widely spaced with increasingE0. This is illustrated in the
inset of Fig. 6, where we compare them forE050.05 and
E050.03.

VII. SUMMARY

The work of King-Smith and Vanderbilt demonstrated th
the bulk electronic polarization, defined in terms of the c
rent flowing during theadiabaticevolution of an insulating
system in avanishing macroscopic electric field, could be
related to a Berry’s phase defined over the manifold of
cupied Bloch states.1 We have generalized this result by co

FIG. 6. ~Color online! Susceptibilityx [E0] (v) in the presence of
a static fieldE0, for a50 and 100k points, using a level broadenin
d50.04. Dotted lines: Kubo formula result forE050; solid lines:
results using our method, for bothE050 andE050.05. The latter
displays the Franz-Keldysh effect. The inset compares the Fr
Keldysh oscillations for two different bias fields,E050.05 andE0

50.03.
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sidering the time evolution of an initially insulating electro
system under the very general Hamiltonian~2!, where the
lattice-periodic partĤ0(t) and the homogeneous electr
field E(t) may have an arbitrarily strong and rapid variatio
in time. In the absence of scattering, we have proved that
integrated currentDP5*J(t)dt is still given by the King-
Smith–Vanderbilt formula, but written in terms of the insta
taneous Bloch-like solutions of the time-dependent Sch¨-
dinger equation. The coherent dynamic polarizationP(t) was
interpreted as a nonadiabatic geometric phase.18 These gen-
eralizations of the theory allowed us to justify recent dev
opments in which the energy functional of Nunes a
Gonze7 has been used as the basis for direct dens
functional theory calculations of insulators in a static hom
geneous electric field.8,9 The limitation of those methods to
fields of magnitude smaller than aDk-dependent critical
field that vanishes in the thermodynamic limit has been
moved: we have shown numerically that quasistation
states in finite fields exist for arbitrarily densek-point
meshes, and can be obtained by solving the time-depen
Shrödinger equation for a slowly increasing field. Th
present method also provides a convenient framework for
computation of coherent time-dependent excitations in in
lators. As an example, the dielectric function was calcula
for a tight-binding model by considering the response to
step-function discontinuity inE(t), illustrating effects such
as photon-assisted tunneling and Franz-Keldysh oscillatio
A full ab initio implementation within the framework o
time-dependent density-functional theory should be possi
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APPENDIX A: CRYSTAL-MOMENTUM
REPRESENTATION

The introduction of linear scalar potentials in crystals
usually discussed in the language of the crystal-momen
representation~CMR!.14 Instead, we have used the Berr
phase theory of polarization, and the purpose of this app
dix is to show how to switch from one to the other. The CM
uses as a basis the eigenstatesuckm& of Ĥ0 with eigenvalues
Ekm . In accordance with Eq.~17! we assume thatuckm(r )u2
integrates to one over the unit cell volumev. That
implies48,49

^ckmuck8 l&[E ckm* ~r !ck8 l~r !dr5VBd~k2k8!dml .

~A1!

The CMR expansion of the identity operator is

1̂5VB
21 (

m51

` E dkuckm&^ckmu, ~A2!

so that a general one-electron stateuf& is expanded as

z-
6-12
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DYNAMICS OF BERRY-PHASE POLARIZATION IN . . . PHYSICAL REVIEW B69, 085106 ~2004!
uf&51̂uf&5 (
m51

` E dk8 f k8muck8m&, ~A3!

where f k8m5VB
21^ck8muf&. For the occupied Bloch-like

statesufkn& in a WR manifold, the CMR wave function
f k8m(k,n) takes the form

f k8m~k,n!5ck8,nmd~k82k! ~A4!

with (m51
` uck,nmu251, which leads to Eq.~9!.

1. Current and the CMR velocity operator

The velocity operator~31! is diagonal ink and is conve-
niently split into a sum of two operators, one diagonal a
the other off-diagonal in the band index:14

v̂5 v̂d1 v̂od. ~A5!

The matrix elements ofv̂d are

^ckmuv̂duck8 l&5VBd~k2k8!dmlvkm
d , ~A6!

where

vkm
d 5

1

\
]kEkm . ~A7!

The matrix elements ofv̂od are

^ckmuv̂oduck8 l&5VBd~k2k8!vk,ml
od , ~A8!

where

vk,ml
od 5

i

\
Xk,ml@Ekm2Ekl # ~A9!

and we have defined the Hermitian matrix

Xk,ml
a 5 i ^ukmu]ka

ukl&, ~A10!

which is analogous to Eq.~26! for the uvkn&.
The current, Eq.~28!, is split into intraband and interban

parts,

J~ t !5Jintra~ t !1Jinter~ t !. ~A11!

Writing the density matrix as

^ckmun̂uck8 l&5VBd~k2k8!nk,ml , ~A12!

where

nk,ml5 (
n51

M

ck,nm@ck,nl#* , ~A13!

we find

Jintra52
e

v
Trc~ n̂v̂d!5

2e

~2p!3 (
m51

` E dknk,mmvkm
d

~A14!

and
08510
d

Jinter52
e

v
Trc~ n̂v̂od!5

2e

~2p!3 (
m,l 51

` E dknk,mlvk,lm
od .

~A15!

In the above we used the CMR form of Eq.~29!,

Trc~Ô!5VB
21 (

m51

` E dk
1

N
^ckmuÔuckm&, ~A16!

whereN should be taken to signifyVBd(0).49

Plugging Eq.~9! into Eq. ~27! yields, after some manipu
lations, Eqs.~A11!, ~A14!, and ~A15!, confirming that the
Berry-phase polarization correctly accounts for both int
band and interband contributions. It is instructive to consi
some particular cases. The adiabatic currentJ5(dP/dl)l̇
discussed in Refs. 1 and 37 is purely interband. If the per
bation is a sinusoidal electric field, the linear response
again a purely interband current, while the nonlinear
sponse has also an intraband component.50,51

2. Polarization and the CMR position operator

Along the same lines, one can show that the Berry-ph
expression forP is consistent with the CMR position opera
tor, which takes the form14

^ckmu r̂ uck8 l&52 iVB]k8d~k82k!dmn1VBd~k82k!Xk,ml .
~A17!

Combined with Eqs.~A12! and ~A16! this yields

P52
e

v
Trc~ n̂r̂ !5

2e

~2p!3 (
m,l 51

` E dknk,mlXk,lm ,

~A18!

which is the same result one gets from inserting the CM
expansion~9! into the nonadiabatic Berry-phase formu
~21!. The linear character ofr̂ is reflected in the above equa
tion being defined only up to a quantum of polarization.

3. CMR dynamical equations

In the case whereĤ0 ~and hence the CMR basis! is con-
stant in time, plugging Eq.~9! into the TDSE~14! yields the
CMR form of the Schro¨dinger equation,32,52

i\ ċkm5~Ekm1 ieE•Dk!ckm , ~A19!

where we have simplifiedck,nm to ckm and defined

Dkckm5]kckm2 i(
l 51

`

Xklckl , ~A20!

which is reminiscent of the covariant derivative, Eq.~42!
~but note the difference in the sign of the last term!. It is
customary to write Eq.~A19! as

i\ ċkm5~Ekm
(1)1 ieE•]k!ckm1eE•(

lÞm

`

cklXk,ml ,

~A21!
6-13
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SOUZA, ÍÑIGUEZ, AND VANDERBILT PHYSICAL REVIEW B 69, 085106 ~2004!
where

Ekm
(1)5Ekm1eE•Xk,mm ~A22!

is a shifted energy eigenvalue.Ekm
(1) is identical to Eq.~37!

except thatuvkm& has been replaced by the zero-field eige
stateuukm&. Upon averaging overk the last term on the right
hand side becomes the first-order shift in total energ
2vP0•E, whereP0 is the spontaneous Berry-phase polariz
tion.

In general the above TDSE has no stationary solutio
Approximate solutions—the Wannier-Stark states—res
from restricting the wave-packet dynamics to a single ba
~the semiclassical approximation!. That is achieved by drop
ping the sum on the right-hand side of Eq.~A21!, which is
responsible for interband tunneling.41,52

Finally, combining Eqs.~A13! and ~A19! produces the
dynamical equation for the CMR density matrix:

i\ṅk,nm5~Ekn2Ekm!nk,nm1 ieE•]knk,nm

2eE•(
l 51

`

,~nk,nlXk,lm2Xk,nlnk,lm!. ~A23!

A closely related form has been used to study the nonlin
optical susceptibilities of semiconductors.51,53

APPENDIX B: COVARIANT DERIVATIVE
AND RELATED OPERATORS

In Sec. IV A we introduced a modified TDSE that co
tains the multiband covariant derivative]̃k , Eq. ~42!, that
was instrumental for making contact with the discrete-k dy-
namical equations of Sec. IV B. Here we summarize
properties of the covariant derivative and other closely
lated operators.

The covariant derivative]̃kuvkn& of an occupied state
transforms in the same way as that state under a gauge t
formation, Eq.~10!:

]̃kuvkn&→ (
m51

M

Uk,mn]̃kuvkm&. ~B1!

Moreover, it is orthogonal to the occupied subspace atk,

^vkmu ]̃kvkn&50. ~B2!

Recalling that parallel transport is characterized

^vknu]kvkn&50, for m5n this relation shows that]̃k acting
in an arbitrary gauge gives the same result as]k acting in the
parallel-transport gauge that shares the same states atk. In
the discretized form~60! the property~B1! is a consequence
of Eq. ~55!, and the property~B2! is a consequence of Eq
~54!. Like i ]k , i ]̃k is Hermitian. By this we mean that it
matrix representation in an orthonormal basis~e.g., uvkn&,
n51, . . . ,M complemented by a set of unoccupied sta
uck j&) is Hermitian. This is closely related to the hermitici
of the matrixAk

a defined in Eq.~26!. Finally, note that

i ]̃kuvkn&5 iQ̂k]kuvkn&5 iQ̂k]kP̂kuvkn&, ~B3!
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i.e., the action ofi ]̃k on an occupied state is identical to th
of iQ̂k]k and iQ̂k]kP̂k . They differ in how they act on the
unoccupied states. Unlikei ]̃k , the other two are not Hermit
ian: for instance, (iQ̂k]kP̂k)

†uvkn&50. It follows from these
considerations that Eq.~41! can be recast as

i\uv̇kn&5@Ĥk
01eE•~ iQ̂k]kP̂k1H.c.!#uvkn&. ~B4!

This is the form of the TDSE to which Eqs.~63! and ~64!
reduce in the continuum-k limit, since

ŵk. ieE•Q̂k]kP̂k ~B5!

@compare with Eq.~59!#.

APPENDIX C: GRADIENT OF THE ENERGY
FUNCTIONAL

The purpose of this appendix is to obtain expressions
the derivatives of the two terms in the energy functional
Eq. ~45! with respect to the occupied Bloch-like states in t
discrete-k case. The results have been used in Secs. IV B
V A for the discussion of the time-dependent evolution eq
tions and the stationary solutions, respectively.

1. Band-structure contribution

To find the gradientdE/^dvknu of the energy functional
~45!, let us isolate the terms that depend on^vknu. Using Eq.
~43! the zero-field part~46! can be expressed asE0

5(1/N)(k tr@ P̂kĤk
0#, so that

dE0

^dvknu
5

1

N

d tr@ P̂kĤk
0#

^dvknu
. ~C1!

In order to allow for arbitrary variations of^vknu, even those
for which ^vknu do not remain orthonormal, we write

P̂k5 (
m,n51

M

~Sk
21!mnuvkm&^vknu, ~C2!

whereSk,mn5^vkmuvkn&. Dropping the subscriptk,

d tr@ P̂Ĥ0#5tr@~d P̂!Ĥ0#

5(
m,n

~S 21!mn@^vnuĤ0udvm&1^dvnuĤ0uvm&#

1(
m,n

^vnuĤ0uvm&d~S 21!mn . ~C3!

Using d(S 21)52S 22dS and dSmn5^vmudvn&
1^dvmuvn&, and evaluating atS51, we arrive at

d tr@ P̂kĤk
0#

^dvknu
5Q̂kĤk

0uvkn&. ~C4!

Thus the consequence of expressingP̂k as Eq.~C2! instead
of Eq. ~43! is to render the gradient orthogonal to the occ
pied manifold atk. @When we derived the dynamical equ
6-14
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DYNAMICS OF BERRY-PHASE POLARIZATION IN . . . PHYSICAL REVIEW B69, 085106 ~2004!
tion ~58! using Eq.~47!, the gradient ofE0 was not orthogo-
nalized, which is why the dynamics did not follow parall
transport~see Sec. IV C!#.

2. Polarization contribution

To find the gradient of the field-coupling term2vE•P we
needdḠ i /^dvknu. Let us start by recasting Eq.~52! as

Ḡ i5
1

Ni
' (

l 51

Ni
'

(
j 50

Ni
i
21

f~k j
( i ) ,k j

( i )1Dk i !, ~C5!

where we have defined the phase

f~k,k8!52Im ln detS~k,k8!. ~C6!

Using f(k8,k)52f(k,k8), this becomes

Ḡ i5
1

Ni
' (

s561
sf~k,kis!1•••, ~C7!

where only the terms depending on^vknu were written ex-
plicitly. Hence

dḠ i

^dvknu
5

1

Ni
' (

s561
s

d

^dvknu
f~k,kis!. ~C8!

The phasef(k,k8) can be expressed as

f~k,k8!52Im tr ln S~k,k8!

5
i

2
tr ln S~k,k8!2

i

2
tr ln S~k8,k!. ~C9!

For an arbitrary nonsingular matrixA we have

dtr ln A5tr ln~A1dA!2tr ln~A!

5tr ln@~A1dA!A21#

5tr ln@11~dA!A21#

5tr@A21dA#1O~dA2!, ~C10!

so that

d tr ln S~k,k8!

^dvknu
5trFS21~k,k8!

dS~k,k8!

^dvknu G
5 (

m51

M

Smn
21~k,k8!uvk8m&5uṽk8n&. ~C11!

*Present address: NIST Center for Neutron Research and De
ment of Materials Science and Engineering of the University
Maryland.
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terms and using Eq.~57!, we obtain Eq.~69! for the gradient
of the full energy functionalE.

APPENDIX D: DISCRETIZED FORMULA
FOR THE CURRENT

Just as the macroscopic polarizationP is evaluated in
practice via a finite-difference formula on a mesh ofk points,
the same can be done for the macroscopic currenJ
5dP/dt. The invariance of Eq.~27! under the replacemen
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binding model that Eq.~D1! yields, for smallDt, the same
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SOUZA, ÍÑIGUEZ, AND VANDERBILT PHYSICAL REVIEW B 69, 085106 ~2004!
12See also M. Lazzeri and F. Mauri, Phys. Rev. Lett.90, 036401
~2003!.

13J.B. Krieger and G.J. Iafrate, Phys. Rev. B33, 5494~1986!; G.J.
Iafrate, J.P. Reynolds, J. He, and J.B. Krieger, Int. J. High Sp
Electron. Syst.9, 223 ~1998!.

14E.I. Blount, in Solid State Physics, Advances in Research a
Applications, edited by F. Seitz and D. Turnbull~Academic,
New York, 1962!, Vol. 13, p. 305, and references cited therei

15An incorrect interpretation was given in Ref. 7 to the termieE
•]kuvkn&. It does not come from the ‘‘periodic part’’ of the po
sition operator, but rather from the full position operator, as c
be seen from the present derivation.

16After removing the ‘‘band’’ indices Eq.~16! becomes the well-
known equation for thek-space dynamics of an electronic wav
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