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We consider the flow of polarization currei dP/dt produced by a homogeneous electric fi€ld) or by
rapidly varying some other parameter in the Hamiltonian of a solid. For an initially insulating system and a
collisionless time evolution, the dynamic polarizatiB(t) is given by a nonadiabatic version of the King-
Smith—Vanderbilt geometric-phase formula. This leads to a computationally convenient form for the Schro
dinger equation where the electric field is described by a linear scalar potential handled on a discrete mesh in
reciprocal space. Stationary solutions in sufficiently weak static fields are local minima of the energy functional
of Nunes and Gonze. Such solutions only exist below a critical field that depends inversely on the density of
k points. For higher fields they become long-lived resonances, which can be accessed dynamically by gradually
increasing€. As an illustration the dielectric function in the presence of a dc bias field is computed for a
tight-binding model from the polarization response to a step-function discontinuig(tin displaying the
Franz-Keldysh effect.

DOI: 10.1103/PhysRevB.69.085106 PACS nunider71.15.Qe, 78.20.Bh

[. INTRODUCTION generalized as follows. Assumptidi) can be dropped alto-
gether. Assumptioffii) is only invoked att=0; the ensuing

A very successful theoretical and computational framenonadiabatic dynamics may admix considerable amounts of
work was developed by King-Smith and Vanderitir deal-  excited states into the occupied subspace. Finally assumption
ing within periodic boundary conditions with the macro- (iii) can be relaxed to allow for a linear scalar potential to be
scopic dielectric polarization of an insulator. The centralpresent in addition to the periodic crystal potential.
result of the theory of bulk polarizatiofTBP) is an expres- These generalizations extend the scope of the TBP to
sion for the electronic contributio” which takes the form of nonadiabatic polarization currents induced by time-

a Berry,s phaS%Of the valence-band Bloch wave functions dependent electric fields, or by other rapid Change@ Gn)
transported across the Brillouin zoBZ). Alternatively, it (e g., the initial nonthermal ionic motion that accompanies
can be recast in real Space as the vector sum of the CentersmOtoexcitation of the electrons by an intense laser E):blse
charge of the valence-band Wannier functions. Practical prefhe dynamical equations for the electrons that come out of
scriptions were devised for computing both the Berry'sthis generalized TBP are derived and applied in the context
phase and the Wannier functionswhich have become stan- of 5 tight-binding model. These equations are semiclassical
dard features of first-principles electronic structure codes. (the electrons are treated quantum mechanically, whereas the
The measurable quantity accessed by the TBP is thglectric field is treated classicallgnd nonperturbativéelec-
changeAP in macroscopic polarization induced by changingtric fields of finite magnitude are allowgd
some parametei in the electronic HamiltonianH (t) We begin by considering in Sec. Il some general proper-

=I:I[)\(t)]. The following assumptions were explicitly made ties of the coherent dynamics of Bloch electrons that are
in the original derivatior!. (i) Adiabaticity: the change in initially in an insulating state. They are used in Sec. Ill to
A(t) is slow enough such that the electrons remain in theliscuss the macroscopic currelt), which is expressed as

instantaneous ground state fa{t), apart from small devia- the rate of change of a dynamic polarizatiB(t) given by
tions proportional taix/dt described by first-order adiabatic honadiabatic versions of the King-Smith—Vanderbilt expres-

perturbation theoryfii) the ground state ofi(t) remains sions. In Sec. IV we derive from this generalized TBP a

insulating at all times, separated from excited states b finitgpmerically cpnvenient .form for the time-dependent Sehro
9 b y dinger equationTDSE) in the scalar-potential gauge, dis-

cretized on a mesh & points. Stable stationary solutions in
futic fields are discussed in Sec. V. They exist only below a

i o . critical field & which decreases with increasikgpoint den-
A spatially homogeneous electric field necessarily wolate&bity, and are local minima of the energy functional of Nunes

either(i) or (iii ): if the fieIdAis introduced via a vector poten- 4 5on78-9 A prescription is given for computing them

tial A(t)=—c['E(t")dt’, H(t) remains lattice periodic but ysing an iterative diagonalization scheme. In Sec. VI we
changes nonadiabatically, even for a static field; if instead @how numerically on a tight-binding model how the regime
scalar-potential terne&(t) - r is used,A(t) is no longer lat- above the critical field can be accessed dynamically, by
tice periodic. Nevertheless, the TBP has been successfullyradually increasing the electric field beyond the critical
applied to situations where electric fields are pre$etitbut  value. We also compute the dielectric function of the same
a rigorous justification for doing so is still lacking. model in the presence of a static bias field, displaying the

In this paper we reexamine the TBP and find that it can bd-ranz-Keldysh effect.

the scale for deviations from adiabaticity.
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[l. GENERAL PROPERTIES OF THE DYNAMICS sult comes about in the scalar-potential gauge, where the

A. Lattice periodicity nonperiodicity ofH has been a source of some confusion

. . regarding this issue.
Here we expound in more detail an argument, sketched in

Ref. 8, that makes use of the one-particle density matrix to
handle the presence of electric fields in a well-controlled
fashion'?> We say that the one-particle density matrix The previous result on the conservation of lattice period-

B. Wannier representability

n(r,r’)={r|n|r') is lattice periodic if icity is valid for both metals and insulators. In what follows
we shall specialize to the case where the system is initially in
n(r,r')y=n(r+R,r' +R), (1) aninsulating state, in which case a stronger statement can be

made regarding the nature of the statets>a0.
We will assume the absence of spin degeneracy through-
ut, so that states are singly occupied. In terms of the valence

loch eigenstates dfi°(t=0), the initial density matrix is

whereR is a lattice vector. In particular, this implies period-
icity of the charge density. Suppose that Et). is true att
=0 [e.g., the electrons are in the ground state of the cryst
Hamiltonianﬂo(t=0)]. At that time a homogeneous electric
field is turned on, which may subsequently have an arbi- M
trarily strong and rapid variatiorf1°(t) may also undergo n(r,r’;t=0)=0g">, f dk in(N a(r'),  (6)
arbitrarily rapid variationgbut must remain periodic The n=1
full Hamiltonian in the scalar-potential gauge is where the integral is over the BZ of volunigs=(27)%/v,
- ~0 ~ g andM is the number of filled band§Clearly, such a density
H()=H"(t)+H=(1), (20 matrix is lattice periodic. Its idempotency can be checked
NErn - . e . using Eq.(A1).] We shall prove that, as the density matrix
whereH (t).—e&f(t) -r desc_rlbes the electric field in the di evolves in time according to
pole approximation and-e is the electron charge.

Let us show that in the absence of scattering the lattice
periodicity of n(r,r’) is preserved at all later times. It suf-

fices to establish that(r,r')=n(r+R,r' +R). The density it can still be expressed in the same form,

matrix evolves according tbidn/dt=[H,n], or, in the po-
sition representation,

i n(r,r’;t)=(r|[H°+HEn]r"), (7)

M
n(r,r’;t)zﬂglzl fdk¢kn(r:t)¢:n(r,at)- ®

in ”(”’):J' [H(rx)n(x,r")=n(r,x)H(xr’)Jdx. Although att>0 the occupied stateg,,(r,t) may depart
3 significantly from the valence states B°(t), they remain

. _ k- .
(When left unspecified, the domain of integration over Spa_orthonormal andBloch-like  yn(r,t) =€ vyn(r,t), with

tial coordinates is understood to be the entire spager Vin(r + R D) =vin(r, 1).

: . - - The cell-periodic states,,(r,t) are the central objects in
0 £ kn\!>
clarity we consider the effect dii” andH™ separately. The our formalism. For discussion purposes only, let us expand

H° term yields them in the set of eigenstateg(r,t)=e "y (r,t) of
_ the cell-periodic Hamiltoniamd2(t)=e~"* TAO(t)e’
i n(r+R,r’+R)=f [Ho(r+R,x)n(x,r' +R)

—n(r—|—R,X)HO(X,r’+R)]dX- (4) |Ukn(t)>:mE:1 Ck,nm(t)|ukm(t)>- 9

Ma_king thE_’ chgnge of variabIAes=x—_R and invoking the  |ngividual eigenstates will in general have fractional occupa-
lattice periodicity of H® and n, we find n(r+R,r'+R)  tions O<Ngm=2M 1|k nm?><1 att>0, but the total popu-

=n(r,r'). Using r(r,r’)z(r|F|r’>=r S(r—r') the contri- lation n,==_ Ny, is the same for everk and equals the
bution fromH¢ is seen to have the same property: number of filled bands at=0. This is intuitively clear, since
a spatially homogeneous electric field causes vertical transi-
iZn(r+R,r'+R)=e&€ (r+R)n(r+R,r' +R) tions ink space which amount to a redistribution of the elec-
tron population among states with eqlkalthe same is true
—eE- (r'+R)n(r+R,r'+R) for the transitions induced by varying the lattice periodic
HO(t).

=e&-(r=r)n(r,r)=ian(r.r’). We will justify Eq. (8) by deriving a dynamics for the

(5)  |vn) that ensures that E¢8) provides a solution to Eq7).

Hencen(r,r’) remains lattice periodic under the action of Since there is a gauge freedom

the full Hamiltonian(2). This was to be expected, since in M
the vector—pot_entlal gauge the Hamllton|an.|s. pendﬁﬁfhg |0n)— E Ui mrl 0km) (10)
purpose of this exercise was to show explicitly how this re- m=1
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(Uy is ak-dependent unitaril X M matrix) in the definition ~ making the change of variables=x—R, and invoking the
of the |vkn>,3 the evolution equation for them is not unique. assumed lattice periodicity of both® andv,,(r), the right-

We require only that thév,) should yield the correct dy- hand side becomeé#v,(r). As for orthonormality, Eq(14)
namics for the gauge-invariant density matrix, Ef), and  yjg|gg!®

we will look for the simplest solution that achieves this goal.
By hypothesis, at timé n(r,r’) takes the form

d e
M &<Ukn|vkm>:%8'0k<vkn|vkm>- (16)
nrr)=0g'> fdk8‘k'“"’>[i}kn<r>v¢n(r’>
n=1
_ Since by hypothesis
+upn(Nvin(r’)]. 11

As in the preceding section, we consider the contributions
from H® andH¥ in Eq. (7) separately. The former is captured
by i7|v ) =HP|vkn). To deal withH € we resort to manipu-

lations familiar from the crystal-momentum representafion where the integral is over a unit cell, the right-hand side of
(CMR) (but with the crucial difference that in the CMR those Eq. (16) vanishes. This completes the proof of E§).

<Ukn|vkm>EJUtn(r)vkm(r)dr:5n,ma (17)

manipulations are applied to the,,), not to the|v,,)). We Two assumptions were made in the above derivation. The
first observe that first is that the statep,,) vary smoothly withk, so thatk
derivatives exist; we will come back to this point in Sec.
(r|lr,n]ley=(r=r")n(r,r") Il B. The second is that the dynamics is scattering-free. Note

that Eq.(16) is closely related to the collisionless Boltzmann

_Q_1§ dk * equation; incoherent scattering would destroy the constancy
TB & Vkn(")Vkn(r") of the total populatiom, by inducing transitions between
differentk points.
X (—ig ek =, (12 Having established that the occupied manifold is spanned

. . . o by M Bloch-like states at eack, we now transform them
Integrating by parts and noting that in geriodic gauge into Wannier-like states(r|Wgq(t))=W,(r—R,t) in the
(bx+6,n= dkn) the boundary term vanishes, we obtain usual way:

(rltA&n]lr)

M

v W)= 05", [ dke™ Uy (0] 1),
—05"3, [ ke O ieg {[a0ian k() =

= (19

* !

T Ukn(DLwien(r) ]} (13 where a periodic gauge is assumed and we have inserted a
unitary rotation(10) among the occupied states. The assump-
tion that by a judicious choice of the matricés(t) the
Bloch-like states can be made to vary smoothly wkths

Comparing with Egs.(7) and (11) we arrive atiﬁ|i;kn>
=ie&- d|vkn). The effect ofA thus takes the form of &

derivative, and the combined effect B’ andH® is equivalent to the assumption that the Wannier-like states can
_ A be chosen to be well localized.
ifi|vgn)=(HY+ie&€- d)|vkn). (14 The density matriX8) can now be recast as

This is our version of the TDSE for Bloch electrons in the
scalar-potential gauge, constructed in order that(Bowill M
satisfy Eq.(7). The time-independent version was introduced N(rr =2 2 Wa(r,HWia(r',1). (19
as anansatzn Ref. 71° The equivalence of Eq14) to other iR
forms in the literature is established in Appendix A.
If at time t the M states|v,,,) at everyk are lattice peri- We will term Wannier representabléWR) a state whose
odic and orthonormal, the dynamics dictated by Eg) density matrix is of this form. An insulating ground state is
preserves those properties, i.ézkn(r+R)=izkn(r) and WR, while a metallic state is not. We have established that

d(vin|vim)/dt=0. This can be seen as follows. Starting under the Hamiltoniari2) and in the absence of scattering,
from an initially insulating system remains WR, or “insulating-

like,” even if at some later time the ground state Rb?(t)

. becomes metalli¢’ Unlike a true insulating ground state, or
i vyn(r+R)= f HR(r + R, X)v n(X)dx a stationary field-polarized state, dynamic WR state will in
general break time-reversal symmetry and carry a macro-
+ie&- dhun(r+R), (15)  scopic current. This is the subject of the following section.
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ll. DYNAMIC POLARIZATION AND CURRENT AL mn= 10kl Ik Vkn) - (26)

A. Derivation ~
S o ~ Such an integral vanishes in a periodic gauge, so dhat
Our aim in this section is to show that a WR state carries- g, The remaining contribution, arising from the insertion
a current that can be expressed as the rate of change of @ the first term of Eq(14) into Eq. (23), then gives
polarization per unit volume,

dP e M A
dP(t) — = Jdk HOlg +c.cl.
a="g, (20) at  2m ngl [(vknlHil 9k Vn) J
(27)
whereP(t) is given in a periodic gauge b
®)isg P gauge by On the other hand, the current is
. M
ie
- e ..
Pa(t) = (277)3 nzl f dk<Ukn(t)|‘9kaUkn(t)> (21 J,=— ;Trc(nva). (28)
(e is a Cartesian directioror, equivalently, by Here T denotes the trace per unit cell,
M
e “ 1
P(t)=—— > r|w(r,t)|2dr. (22) Trc((’))zﬁf O(r,r)dr, (29)
n=1

Equations(21) and (22) are identical to the King-Smith— WwhereN is the (formally infinite) number of real-space cells
Vanderbilt expressions appropriate for the adiabatic regimé the system. The velocity operator is defined as
and £=0, except that in Eq(21) the valence-band eigen-
states|uy,) have been replaced by the instantaneous solu- - :i[F Al (30)
tions of the TDSE14), and theW,(r,t) in Eq. (22) are the ‘iR
Wannier states correspondingug,(r,t). Equation(21) can
be interpreted as a nonadiabatic geometric phhse.

As in the adiabatic cas®(t) is invariant under the trans- 1L
formation (10) only up to a “quantum of polarization” Ua:?[ra,HO]. (31
(e/v)R. Naturally, this gauge indeterminacy does not affect :
the measurablé(t). The total change in bulk polarization in In the position representation we find, combining E@,
a time interval[0,T] is also well defined as the integrated (28), and (31), invoking the lattice periodicity of the inte-
current:AszgJ(t)dt. It can be determined, apart from an grand to replace (N)/dr by [,dr, and inserting the iden-
integer multiple of the quantum, by evaluatiRft) at the ity i=fdr’|r’)<r’|,
end points: AP=P(T)—P(0). In practice the remaining in-
determinacy can be removed in the manner described in Ref. e .
1, by evaluatingP(t) with sufficient frequency during that Jo=- 2m)h n§=:1 J’ dkf drf dr'vin(r )vgn(r)
interval. ’

Inserting the Hamiltoniari2) and using’r,,H€]=0,

M

1_'0 establ_ish Eqs(_20) gnd(21), we first evaluafte:lP/dt by XHO(r',1)d, e ik(r' =) (32)
taking the time derivative of Eq21) and obtain, after an «
integration by parts, Integrating by parts irk,, (the boundary term vanishes in a
M periodic gaugg and using
dP, ie 2 .
dt __(277)3 n=lJ’dk[<vkn|&kavkn>_c-c-]- (23) HO(r )= 1% (" =DHO(p ), (33)

Inserting the TDSE, Eq(14), we note that the contribution Ja réduces to exactly the same expression appearing on the
arising from the second term therein, which explicitly in- "ight-hand side of Eq27). This completes the proof of Egs.

volves €, may be written as g)O) and(21) for WR states evolving under the Hamiltonian
3 e? . We note in passing that the integral on the right-hand side
“:(2 )3 2 2 ‘Sﬁf dkQE(k), (24)  of Eq.(27) can be recast as
T n=1 "8
e fdk[aka<vk“|Hg|vkn>_<Ukn|(akaﬂg)|vkn>]. (34)

(M (k) =i _
Qanﬁ(k)_'[<‘7kavkn|‘7kgvk“> <‘?kgvkﬂ|‘9kavkn>]' (29 The first term vanishes in a periodic gauge, leading to the

This takes the form of &nonadiabatig Berry curvaturé?® more familiar-looking form

Using Stokes’ theorem, its volume integral can be turned into M
a surface integral around the edges of the BZ of the Berry J=—_° > f dk(vkn|V o (K) [V in). (35)
connectionA, ,, where “ (2m)Bimr “
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Whereaa(k):(1/ﬁ)(¢9ka|:|(|2)-14 Our strategy for the time-dependent problem is to impose

The above derivationgand indeed all the results in this stationarity on the corresponding action functional. Follow-
ing Refs. 7 and 8, we adopt hereksspace formulation,

papej remain valid for nonlocal pseudopotentials such as hich | ticular] Il suited f ical K Special
those used imb initio calculations, since the definition of the which IS particuiarly Well suited for numerical work. specia

velocity as the commutatof30) remains valid for such errpha5|s W'”fbe put on tTe dlfcrekeeas_e since this is the
pseudopotentials. relevant one for numerical implementations.

B. Discussion A. Continuum-k case

It is remarkable that a knowledge of the wave functions at " the continuurk limit the TDSE may be formally ob-
t=0 andt=T is sufficient to infer, to within a factor of t@ined from a Lagrangian densi@(k) such that the La-

. . . _ _1
(elv)R, the net amount of current that flowed through thedrangian per unit cell it =Qg"fdk L(k). For WR states
bulk in the intervening time. This is a direct consequence otinder the Hamiltoniait2) we have

representability by localized Wannier functions, that is, of M
the insulating-like character of the many-electron system. . .
For such systems the integral in E§2) can be evaluated, E(k)_'ﬁzl (vialokn) —E(k), (36

and it becomes possible to track the time evolution of the
electronic center of mass, i.e., 8 Indeed, the center of Where

mass can be meaningfully defined within periodic boundary M
conditions only for many-electron states that are localized . ~Q
in the manner of insulating stat#¥?* Under these condi- E(")—n; (VialHictie€-avim). (37)

tions, the history of the coherent current flow is contained - _ _

(modulo the quantum of polarizatipin the initial and final ~ Using Eq.(21) and defining the zero-field energy functional

wave functions, related by the time evolution operator M

exd — (i) [gH(t)dt]. EO— -t dk(v. 100 38
This result was previously established for adiabatic charge B ngl (Wil o). 38

flow,! under the assumption that the ground state is separated . i

from excited states by finite energy gaps everywhere in th@N€ finds the total-energy functional

BZ. In nonadiabatic situations the occupied manifold ac-

quires a signif_icant e.xcite.d—state admixture, so that it be- E:Qélj’ dkE(k)=E°—vP-E. (39

comes impossible to identify an energy gap. Instead, under-

lying the derivation in Sec. lll A is a weaker as'sumption,-rhe Euler-Lagrange equatioh

namely, that the many-electron state has a localized nature,

as reflected by the ability to construct, via Ef8), Wannier d oC d SC SC

functions having a finite localization length?? (Numerical - 4 — =

calculations of the localization length will be presented in dt (60| dk (89 0n| (vl

Sec. VI) For instance, when taking derivatives, we as-

sumed a “differentiable gauge” foju,,). This is only pos-

sible if the character of the electronic manifold change%r

slowly with k, wh[igh is precisely what is measured by the

localization length. These observations are in line with N0 e

Kohn's viewpoint that the defining feature of the insulating ifi|on) = (Hi €€ d)[vin)- (42)

Ztna:reg;sgv;g\ée—function localization, not the existence of anrpqe pare derivative, has been replaced by

0 (40)

then leads to the dynamical equatici).
As already mentioned, the choice of dynamical equation
|vn) is Not unique. An alternative to EqL4) is

M
IV. DYNAMICAL EQUATIONS =t X Al vkm{Vkal, (42
mn=1

Having found the Berry-phase formul21) for the dy- _
namic polarization in the presence of a fi€(t), let us now  whereA, ., is given by Eq.(26). The operatop, is a multi-
use it to obtain computationally tractable dynamical equaband version of the covariant derivatffeand is discussed
tions under the Hamiltoniaii2). The starting point is the further in Appendix B. Although the field-coupling term in
observation that the dipole terfi€ contributes—vP(t) ~ EG. (41) is no longer a scalar-potential term in the strict
- £(1) to the energy per unit cell. An energy functional valid S€Nse, we will continue to view it as such in a generalized
for periodic boundary conditions is then obtained by express*€"sS€. _
ing P(t) via the TBP formulas. This program was previously ~Eduation(41) preserves the orthonormality of they,)
carried out for insulators in static field<; "where stationary ~ @nd generates the correct dynamics for the density matrix.
states were computed by minimizing that energy functional These properties rely orA)"=Ag, which follows from
after applying a regularization procedufteuncation of the  k (Vknlvkm)=0.7] The latter is most easily seen from the
Wannier functions in real space or discretizatiorkajpace. dynamics of the projector
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L

N N1

M
Pi= 2 [okn){(vkal, (43 Ii=- Nil 2, Imin ,Ho dets(k{” k{),). (52
|
which completely specifies the occupied subspadealhile ) )
being insensitive to unitary rotations inside that subspace/iere Smn(kak'):<vkm|vk[n> is the M XM overlap matrix,
After some algebra, it can be shown that while the individuaN1 i thle nuTber of strlnlgs alonly,, each containing}
lvkn) behave differently under Eq$l4) and (41), P, stays pointsk{V=k{!+jAk,, kM is a point on thelf,,bs) plane
the same. labeled byl, andAk,; =h,; /N} . Equationg50) and(52) pro-
An advantage of introducing E¢41) in place of Eq(14)  Vide the discretization of the nonadiabatic Berry-phase polar-

is that, upon the discretization &fspace, the former leads to ization, Eq.(21). [A discretek formula for the macroscopic
an evolution equation at poir that is gauge covariaritn ~ currentJ(t) is given in Appendix D] As in the continuum
the sense of transforming in the obvious way under unitangase, a periodic gauge is assumed.

rotations among occupied stateskaind being invariant un- A compact expression fowl';/{Svy,| is derived in
der such rotations at neighboring poikt9, as will become Appendix C2 using the following notation. Lekio
clear in the following section. =k+oAk;, wherec==*=1. The overlap matrix becomes

Skio.mn=(Vkml|Vkio.n)- Next we define
B. Discretek case

M
This is the relevant case for numerical work. The La- ~ _ -1
Do) = - ), 53
grangian for a uniform mesh & points in the BZ is Vi) mE:l (Sao)malVidrm) ®3

M . . .
i : which is a “dual” of |v,,) in the space of thév)'s at the
L=N ngl ; (vkn|vkn) —E, (44 neighboring poinkic, since
whereE is the energy in an electric field, (il Vkio,m) = Fnm- (54)
E=E°-vE&-P, (45)

|§kigyn> are gauge covariant in the sense thatthey are
with invariant under unitary rotations amon@y;, ) at any
neighboring poinki o and (ii) they transform under unitary

M
1 . rotations amonduv,,) in the same manner ds,,) them-
EO:N ngl ; (Vkal Hilokn) (46 selves, i.e., ) "
and a discretized expression fBrto be given shortly. Ap- ~ M ~
plying the Lagrangian equations of motfdn Vi) — > Uk mnl Vkic.m)- (55)
m=1
d i_ izo (47)  Then itis shown in Appendix C2 that
dt {6V nl (80
ields or' i ~
y <5vkln| = oL (r:2+1 | Vkign)- (56)
d - oP : -
i _— = 0 — .
i gt lvin) = Hidvin) =No & 727 48 combining Eqs(48), (51), and(56), and defining
Writing .3
ie ~
L3 W)= 7 2 Ni(Ea) 3 ooion) (57
P=--2 a(P-b), (49 .
27 i1

the dynamical equation becomes
wherea, andb; are the direct and reciprocal lattice vectors,

respectively, and defining d ~0
_ 'ha|vkn>:Hk|Ukn>+|Wkn>- (58
UP'bi:_eFi, (50)
the last term in Eq(48) becomes Equation(598) is a discretized version of E¢41), i.e.,
3 _
Ne ol (W) =i€E- i vin) (59)
4+ — E a)——. 51 kn klUkn/ -
o 2 (&) (5

This is connected with the fact that the duals provide a natu-

According to Ref. 1fi is the string-averaged discretized ral framework for writing a finite-difference representation
geometric phase along the direction, of dy|vkn)-*° In our notation,
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Aki'3k|vkn>2% E U|5kio,n>- (60) t[hogonalized that term, vye Wogld have~obtair(9gr9k|vkn)
o=%1 instead ofd,|v\,), which is equivalent to),|v,,) (see Ap-
pendix B.
Both dynamical equations(14) and (41) lead to
d(vyn|vkm)/dt=0 for WR manifolds, so that the time evo-
lution of the individual statetv,,,) is unitary. This property o )
is preserved in the discretized for(88), since (v yn|Wim) In the applications of Sec. VI we use the algoriffim
=0. In order to take advantage of certain unitary integration
algorithms, it is useful to recast the tetm,,) on the right-
hand side as a Hermitian operator acting|og,). For that
purpose let us define

C. Numerical time integration

1—ik(At2) T (1)
1+iﬁ(At/2)'T’k(t)|Ukn(t)> 69

|Ukn(t+At)>:

to perform the time integration. Note that in order to use this
R Mo algorithm it was necessary to invoke the fol@B) of the
Pyio= nzl [Vkio) Ukl (6D  TDSE. The Hermiticity ofT, guarantees that the time evo-
lution is strictly unitary for any value oAAt. Since the sys-
which converts an occupied statekanto its dual akio and  tem under study in Sec. VI is a tight-binding model with only
is invariant under gauge transformatidis., under indepen-  three basis orbitals, the matrix inversion is very inexpensive.
dent unitary rotations among occupied states at lbotmnd  The same algorithm has been successfully used to perform
kio). It follows that the operator self-consistent time-dependent density-functional calcula-
tions of the optical properties of atomic clusters using local-

. 3
~ e A ized orbitals as a basis $BtFor calculations with large basis
- lce.a ) g
Wi(€) 4 ;1 Ni(& a.)g TPiia 62 sets (e.g., plane wavgs more efficient algorithms are
available?”?®

turns|vy,,) into |w,,,), which is the property we seek. Lastly,

) > Owing to the Hermiticity ofT,, the projector43) obeys
for the purpose of acting ofv,) the non-hermitian wcan

be replaced by w+w, since P Py,=Py, so thatQ,w, dP, 1 . .
=W, (where Qu=1—P,) and therefore Wovy,)=0. We Tt il P (66)
have thus achieved our goal: E§8) now takes the canoni- .
cal form of a TDSE, I:Ience, a variation of the above approach would be to replace
Ty by
. d - o
1 G0 = Thlvin), (63 T=QFe+ T, (67)
with a Hermitian operator on the right-hand side: which is also Hermitian. Becaudély,P]=[Tk.Py], this

choice does not change the dynamics of the occupied sub-

spaceP, , but it does change the dynamics of the individual

We remarked previously that in the continulmiimit Eq.  Stateguy,). In fact, 7 generates parallel transportevolu-

(58) reduces to Eqi41). The corresponding analysis for Egs. tion characterized by |vk,)=0, thus discarding the “ir-

(63) and (64) is left to Appendix B. relevant” part of the dynamics associated with phase factors
The operator wappearing in Eq(64) is defined via Egs. and unitary rotations inside the occupied subspace. We have

(53), (61), and(62). It should be emphasized that it dependsfound empirically, however, that the use fh’f in Eqg. (65

explicitly on the occupied states ktandkio. In particular, appears to result in a less stable numerical time evolution,

even wheri:IE and £ are time independent, if the occupied and we have therefore chosen to retain the origihatly-

Ti(E)=HR+ W (E) +Wi(E). (64)

manifolds atk andkio are changing over time, so .  hamics in our practical implementation.
However, T, remains invariant under unitary rotations kat _ _
pointsk andkio. Hence the resulting dynamics of the oc- D. Discussion

cupied manifold Eq. (66) below] has the essential property ¢ may seem surprising that a linear potential can be ac-
of being insensitive to the gauge arbitrariness that is alwaygommodated in a theoretical description of a periodic bulk
present in numerical simulations. ~system. A commonly held viewpoint is that a linear potential
Note that when the Lagrangian procedure was applied ian pe implemented within periodic boundary conditions
Sec. IV A to the continuunk- problem, we arrived at Eq. only for the case of a finite systefmolecule or clusterin a
(14), which containsjy|v,). When the same was done after supercell, in which case it becomes possible to introduce a
discretization, the resulting dynamical equation contained insawtooth potential as long as its discontinuity is located in a
steadd,|vy,). The reason is that the gradient of the dis-region of negligible electron density. To the contrary, Egs.
cretized Berry’s phase, E¢56), is by construction orthogo- (14), (41), and (63) demonstrate that it is perfectly permis-
nal to the occupied subspacekatwhereas the corresponding sible to insist on the usual periodic boundary conditions on
continuumk term used in Sec. IV A was not. Had we or- the wave functions while allowing for nonperiodicity of the
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potential. This can be done because the potential takes thgelds a state that is adiabatically connected to it by slowly
special form of a sum of spatially periodic and linear contri-ramping up the field, keeping the system in a minimun&of
butions, relevant to a crystal in a homogeneous electric fieldSuch “polarized manifolds” have been discussed previously
As shown in Sec. Il A, the action of the nonperiodic Hamil- in a perturbative framework**treatingk as a continuous
tonian, Eq.(2), then preserves the lattice periodicity of the variable. In that limit the electric-field perturbation becomes
density matrix, which can therefore be represented by perisingular. That is, even an arbitrary small field induces a cur-
odic wave functions. rent via Zener tunneling to higher bands, and the polarized

Incidentally, we note that a sawtooth operator of sorts isnanifolds are not stationary, but rather, are long-lived reso-
“hiding” behind the TBP formulas. The Berry-phase polar- nances. In other words, an infinite crystal in the presence of
ization has been recast as the expectation value of a properdy static electric-field does not have a ground state. This is
defined center-of-mass position operator of the manyreflected inE losing its minima as soon a& departs from
electron periodic systeft. That operator, introduced by zero.
Kohn?° is a sawtooth, not in real space but in the configu- Instead, for a discrete mesh kopoints, arguments can be
ration space of the many-body wave function. It can only begiven’® suggesting thaE loses its minima only when the
constructed for wave functions having a certain disconnectfield exceeds a critical valu€,(N) that decreases as the
ednesglocalizatior) property in configuration space charac- numberN of k points increases; this is supported by numeri-
teristic of the insulating state. This observation is closelycal calculation$:® It follows from the preceding discussion
related to the discussion in Sec. Il B. that the minima oE below £,(N) are stable stationary solu-

Finally, we mention that an alternative approach for intro-tions of the dynamical equation. Conversely, abadyEN)
ducing a linear potential into a periodic solid is via the CMR there are no such solutions.
formalism!* This approach is summarized in Appendix A,  These two regimes—below and above the critical field—
where the connection with our formalism is established. Thewill be explored numerically in Sec. VIC via time-
CMR dynamical equations appear to be less convenient falependent calculations. If one stays bel6yN), the sta-
computational work. However, the advantages of the presenionary solutions can be computed using time-independent
formulation came at the expense of generality, since oumethods, such as the diagonalization algorithm described
equations are restricted to the scattering-free dynamics afext or the minimization methods of Refs. 8 and 9.
initially insulating systems.

B. Diagonalization algorithm

V. STABLE STATIONARY SOLUTIONS . . .
We have in Eq(68) the basis for an algebraic method of

A. Formulation computing stationary states at finig2on a uniformk-point
Let us try to find, for a constar€+0, solutions to Eq. Mesh, for|€]<&:(N): loop over thek points; for each one
(63) for which the occupied manifold remains unchangedselect theM eigenstates oTk with the lowest eigenvalues;
over time. A natural guess is the manifold spannedMy iterate until the procedure converges atlaland the occu-

eigenstates of, at eachk, pied subspace stabilizeghis will only happen belowt,).
Even in a tight-binding model without charge self-
Tl vkn) =Ein(E)|vin)- (68)  consistency, the set of Eq$68) has to be solved self-

consistently throughout the BZ, since the operatd’r,@
SinceT, depends on the occupied states at the neighbdring couple neighboringk points via their dependence on the
points, Eq.(68) must be solved self- con5|stently among all |vkn). One may choose to updafe either inside or outside

k. If a solution exists, the correspondiiig andP\, commute the loop overk; the latter option renders the algorithm par-
and, according to Eq66), dP,/dt=0, i.e., the solution is allelizable overk points.
stationary. We have tested this scheme on the tight-binding model of
We are now ready to make contact with Refs. 8 and 9Sec. VI, and confirm that it produces the same state as a
where the energy functiondt of Nunes and Gonze[Eq. direct steepest-descent or conjugate-gradients minimization
(45), was minimized at fixe&. A stationary point of has  of the functionalE.® This algorithm may be especially suited
zero gradient|Gy,) = SE/{dv\,| =0, where the functional for implementation in certain total-energy codes that are
derivative is taken in such a way that the gradient is orthogobased on iteratively diagonalizing the Kohn-Sham Hamil-
nal to the occupied space. In Appendix C2 it is shown that tonian expanded in a small basis set of local orbftals.

|Gin) = (LN) QT vin) (69) C. Discussion
so that solutions of E¢68) obey|Gy,)=0. Thus, stationary Equation(68) is a discretization of the time-independent
solutions of the dynamical equation are stationary points ofersion of Eq.(41):
E.
A Hessian stability analysi$shows that a necessary con- (F2+ie€- 7)) vkn) = Exn(E)|vin)- (70)

dition for a stationary point oE to be a minimum is that the

M lowest-lying eigenstates df, are chosen. Since doing so An analysis of the eigenvalues of this equation will serve as
at £=0 yields the ground state, at fini that procedure a guide for discussing those of E(8). (For the present

085106-8



DYNAMICS OF BERRY-PHASE POLARIZATION IN . .. PHYSICAL REVIEW B9, 085106 (2004

purposes we will assume that the continuum fqiff) has
solutions for€+0.) As a result of the properties of the co- 2/’\
variant derivative(Appendix B E,,(€) are invariant under
diagonal gauge transformationd, ,,=e€'%ms;, . Upon 1+ -
multiplying on the left by(v,,| the second term on the left-

e ]
hand-side of Eq(70) vanishes. Integrating ovér and sum- %0 0\/—
ming overn, we then find 8 | ]

M
0213, [ dkE(8)-EA=EE-0), 7D L]

whereE°(€) is the zero-field energy functionéB8) evalu- - 0 T
ated at the field-polarized stationary state, and the inequality k

follows from the variational principle. The same properties
hold for the eigenvalues of the discretized fo(@®), which
can be obtained by diagonalizil”fgﬁ inside the occupied

manifold. We have here the interesting situation that a mini-___. . e :
mum of thetotal energyE can be obtained by solving the position operator must be specified. Although this may be

eigenvalue equation®8) whose eigenvalues, summed overdone _W'thOUt |ntr0(.:|uf:|ng addltlonaAI paran"nAeTtAé“rsNe.adopt
n andk give instead theero-fieldcontributionE®. This can  the simple prescription of Ref. 4x=2x;cjc;, with

FIG. 1. Energy dispersion of the tight-binding model for the
choice of parametens=1, A=—1, anda=0.

be traced back to EqB2), which expresses the “parallel- =1/3. In the results reported below we have eeti=1,
transport-like” nature of the covariant derivative. t=1, andA=—1, and only the lowest band is fille@vith
The above is to be compared with the time-independengingle occupandy Figure 1 shows the band structure at zero
version of Eq.(14), field for a=0.
S0, AR = '
(Hi+ie€: 90 [vkn) = Exn(E)[vkn)- (72 B. Sliding charge-density wave
Under a diagonal transformatidny,,)— €' %m[v,) its eigen- The Hamiltonian of Eq(74) is a simple model of a com-
values change a,(€) —Ey,(E) —e€- dyby,. The analog mensurate charge-density wave which slides by one period
of Eq. (71) is as the parameter evolves adiabatically through2 It is

easiest to see this by noting that in the space of parameters

Ay=A cosa andA,= A sine, cycling a by 27 corresponds

to tracing a circle about the origin in the,-A, plane. The

system is insulatingi.e., a gap remains opgat all points in

The quantity on the right-hand side is now the total enégy this plane except for a singular point at the origin where the

which is mvanarﬂ qn.ly mod'ulaes- R. . system is metallic. Thus, this cyclic adiabatic changéifh
Although the individual eigenstates of HJO) are in gen-  (ayes the system along an insulating path that encircles this

eral different from those of Eq72), the self-consistent so- singular point, so that a quantized particle transpbR

lutions for allk andn span the same space in both cases, i'e":f-(l)-\](t)dt of a unit charge is obtained.

they differ only by a gauge transformation. Itis then a matter “syay from the adiabatic regime, deviations from exact

of convenience to choos_e which of the wo equations toquantization are expected. This can be understood from the

solve in practice. Our particular approach is to discretize Eqg, ot hat under nonadiabatic conditions the state at time

(70) in a gauge-covariant manner and then solve the resultingependS on the history at time's<t. In particular, the final

equation(68). state may be different from the initial one even though
HO(T)=H°(0), inwhich caseP(T) — P(0)# 1. By contrast,

an adiabatically evolving system has no memory, being com-
A. Tight-binding model pletely determined by the instantanedti(t) anddH%dt.

We have applied our scheme to the one-dimensional tight- 10 illustrate this point, we increased from 0 to 2m

binding model of Ref. 4, a three-band Hamiltonian with threed“ring_nza time interval te[0,T] according to af(t)
atoms per unit cell of length=1 and one orbital per atom, — 27 SIN(@/2T), and held it constant afterwards. The sys-
tem was prepared &t=0 in its ground state, and the wave

. A A functions evolved in time according to E(5), using At
Hlal=2 {e(a)c/c;+t[C/ciia+H.Cll, (749 =0.005(the same time step was used in all other simulations
! in this work. At each time step we computed the dynamic
with the site energy given bysm. () =A cos@—p,). Here  Polarization using Eq(52). o .
m is the cell index,|={—1,0,1} is the site index, ang, The resultingP(t) for T=80 and 20Kk points is shown in
=2ml/3. Before the Berry-phase polarization can beFig. 2, where we also display the exact adiabafie+{(>)
computed* (or an electric field applied to the systéf), the  limit Pgqd a(t)] obtained by diagonalizinglY[ «(t)] on the

M
lenzl dkE, (E)=E%&)—vE-P(E). (73

VI. NUMERICAL RESULTS
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FIG. 2. (Color online Time evolution of the polarization as a
. - 2 0.4 0.6

result of changing the sliding parameterfrom O to 27 over the ot)/2m
time interval[ 0,80], using 200k points. The solid line shows the
actual dynamic polarization, while the dashed line shows the FIG. 3. (Color onling Upper panel: Same as Fig. 2, but now
ground-state polarization of the instantaneous Hamiltonian. Insetising two different time interval$0,80] and[0,120Q], for changing
Detail of the remnant oscillations of the polarization after thethe sliding parametest. Lower panel: electron localization length
Hamiltonian stops changing, &&80. For comparison, the results £(t) vs the instantaneous value @f during the time intervalg0,T]
using 100k points are also shown. over whichea is changing.

same mesh ok points® (To check that our calculations are degree of nonadiabaticity by choosing a smallee.g., T
converged with respect to the numberkgfoints, the inset of =40), we begin to notice a linear increase of the polarization
Fig. 2 compares the results for 100 and 20points) The  at later times. This new behavior can be traced to the exci-
dynamic polarizationP(t) obtained by solving the TDSE tation of electron and hole wave packets centered at $gme
follows closely, but not exactly, the adiabatic curve. In par-and propagating at different group velocities. L, be
ticular, at the time =80 when the Hamiltonian stops chang- the interband separation, and , be the difference of group
ing, the polarization differs slightly from unitisee inset in  velocities of the two lowest bands, lag. Then, in addition to
Fig. 2), indicating that the system is not in the ground statethe quantum beats of periocer/AEko caused by the inter-
The oscillations that follow arise from quantum interferencepang dynamics, we observe a lineartiterm in P(t) with
(beats between valence and conduction states, as a result @fppe proportional ta\vg, reflecting the change in dipole
having excited electrons across the gap dufi@d]. Their  moment as the electron-hole pair separdtetare precisely,
period, of 5.5 time units, corresponds to the fundamental gaghe preceding statements apply only in the limit of a dense
in Fig. 1, Ega;=1.137. This is consistent with thespace  .point mesh; for any finite mesh spacingk, the linear
distribution of the (smal) electron-hole pair amplitude pehavior is replaced by an oscillatory one with an amplitude
present in the system after tinfe for a sliding period ofT scaling as Uk and period 2r/(AvgAk). Thus, an espe-

=80, the distribution is mostly concentrated aroud0,  cjally fine k-point mesh should be used if these effects are to
and it is essentially the lowest conduction band that getge investigated.

populated. As the adiabatic limit is approached by increasing
T, the amplitude of the remnant oscillations of the polariza-
tion decreases. This is illustrated in the upper panel of Fig. 3,
where we compar@ =80 with T= 120. In the previous example the electric field was held at zero,
Besides the macroscopic polarizatiB(t), another quan- and the dynamics was produced by varying the parameter
tity of interest is the electronic localization lengélt) that in H°. Let us now study the polarization response of the
characterizes the root-mean-square quantum fluctuations ef/stem when an electric fielél(t) is switched on linearly
the macroscopic polarizatidi. It is given by £2=0Q,/M, over a time interva[0,T] and is held fixed afterwards. We
where(}, is a gauge-invariant quantity which in one dimen- have sete=0, so that the ground state is centrosymmetric,
sion is equal to the spread of the maximally localized Wan-with zero spontaneous polarization.
nier functions(18).®> We have computed), using Eq.(34) We begin by considering a situation where the final value
from Ref. 3, and in the lower panel of Fig. 3 we plét) of the field, &,y is smaller than th&mesh-dependent criti-
againsta/(t)/27. In the adiabatic limit the resulting curve cal field £&.(N) above which the energy function&d5) has
consists of three identical oscillations, reflecting the exisno minima. This allows us to compare the dynamic polariza-
tence of three equivalent atoms in the unit cell. As nonadiation P(t) with the static polarizatioPgd £(t)] of the sta-
baticity increases¢ tends to increase as well. Nevertheless,tionary state in the presence of the same field, which we find
the electrons remain localized, i.e., insulatinglike, in theby minimizing the energ§.In Fig. 4 we display the results
sense discussed in Sec. IIFB. for £max=0.025 and two different switching timds=40 and
The above results are representative of the regime wherE=80. The simulation was done using 2@0points, to
deviations from adiabaticity are small. If we increase thewhich corresponds a critical fielf,(N=200)~0.037.(The

C. Gradual turn-on of an electric field
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FIG. 4. (Color online Time evolution of the polarization as a FIG. 5. (Color online Same as Fig. 4, but now using,,
result of increasing the electric field from 0 &p,,=0.025 overtwo  =0.05 and 80 points. Sincef,,,y is larger than the critical field
time intervals[0,40] and[0,80], using 200k points. The solid line  for this number of k points (¢.~0.01), no adiabatic curve
shows the actual dynamic polarization, while the dashed line showP{ £(t)] is shown. Inset: Comparison of the dynamic polariza-
the static polarization for the instantaneous value of the field. Insettion for 400 and 80k points.

Comparison of the dynamic polarization for 100 and XQfbints. ] ) ) )
may be observed in short time scales is the physical one that

inset shows the agreement between the results obtained usingcurs when the applied field is large enough such that the

100 and 20 points) Clearly, P(t) tracks quite closely the Zener tunneling rate becomes significAht® The concept of

adiabatic curvéP ;i £(t) ], the more so a¥ increases. This a Ak-dependent critical field applies only to the attempt to

illustrates the point, emphasized in Ref. 4, that the state olbsbtain solutions in the presence of a static electric field from

tained by minimizing a field-dependent energy functionalan energy variational principle. By going back to the original

should be thought of as the one which is generated from thdynamical problem of slowly ramping up the field, we cir-

zero-field state by adiabatically turning én cumvent the difficulties that ultimately resulted from trying
Let us now explore the regime abov&(N), where to treat as astablg stationary state what is really a long-

energy-minimization schemes fail. Fé.,>E-(N) the exact  lived resonance.

adiabatic limit of the process of ramping up the field is un-

attainable. Nevertheless, ., is small compared to the D. Dielectric function in a static field

field scale at whiclintrinsic breakdown occuré.e., at which

the Zener tunneling rate becomes of the order of interbangf

frequencies, which is a bulk pro_peﬁ’y, a quasistationary. s, example of such an electro-optical effect is the field-

§tate should be reachable by turning on.the field at a rate th?ﬁduced modification of the dielectric function. This is

is slow compared to the usual electronic processes, but fa

. . . ﬂwown as the Franz-Keldysh effect, or electroabsorption.
compared to the characteristic tunneling time at the MaXinjhough it has been extensively studied in  bulk

mum field _encountered. Alter the rampup_is completgd, buEemiconductoré2 quantum well? and superlattice¥ we
at times still short compared to the tunneling rate, this state ..\, aware ,of any first-prir,wiples investigatioﬁs The
should provide the appropriate extrapolation to fields abov?)resent method may provide a route to such calculations.

&.(N) of the truly stationary state that exists belgW(N). We compute the dielectric function in the presence of a

To illustrate this situation, we repeated the CaICUIat'O.nstatic field€, as follows. The system is preparedtatO in

with 200k points depicted in Fig. 4, but increasing the maxi- v o stationary state polarized by a fiefigt A€, with |A¢]
mum field from 0.025 to 0.05, somewhat larger th"’m<|¢€o|. By using a field of magnitude below the critical field,
50(200).N0'.037' The resultlng_curve far(t) is very S|m|lar we are able to find that state by minimizing the energy. For
to that n F_|g. 4, without any sign O.f runaway behavior. As a{>0 we let the system evolve in time in the presence of the
more striking example, we show in Fig. 5 the outcome Oftarget field&y. Let Pgaid o] be static polarization of the

calculations with the same final field 6f,,,=0.05, but with : o
. system under the field,. The polarization response to the
even denser sets of 400 and 80@oints. For the latte€, step-function discontinuity in E(t)=&+AE6(—t) is

~0.01, considerably smaller thd,,,, and still there is no AP(t)=P(t)— Pyl €]. To obtain the frequency-

sign of instability. (Note also that theP(t) curve in Fig. :
5—whose vertical scale differs from that in Fig. 4 by the ??eﬁeiwge:rt”;e.sponse we need the Fourier transforivPf)
f :

same factor of 2 that exists between the respective values
Emax—looks almost identical to that in Fig. 4These results +oo _
confirm that, as long as we are solvingtime-dependent AP((D)ZI AP(t)ell2tdt, (795
Schralinger equation for a given history of switching on the 0

field, there is no such thing as&k-dependent critical field; where a damping facta¥ has been introduced as an approxi-
the thermodynamic limit of an infinitely dengepoint mesh  mate way to account for level broadenitiglo linear order

is perfectly well defined. The only breakdown behavior thatin A€ the susceptibility is

There is great interest in modulating the optical properties
crystals and superlattices by applying static electric fields.
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sidering the time evolution of an initially insulating electron

6_ system under the very general Hamiltonig?), where the
=4 lattice-periodic partH°(t) and the homogeneous electric
b~ field £(t) may have an arbitrarily strong and rapid variation
&’ 2_ in time. In the absence of scattering, we have proved that the

integrated currenAP= [J(t)dt is still given by the King-
Smith—Vanderbilt formula, but written in terms of the instan-
taneous Bloch-like solutions of the time-dependent Schro
dinger equation. The coherent dynamic polarizaf¢t) was
interpreted as a nonadiabatic geometric pHégeese gen-
eralizations of the theory allowed us to justify recent devel-
opments in which the energy functional of Nunes and
Gonz€ has been used as the basis for direct density-
functional theory calculations of insulators in a static homo-
geneous electric field® The limitation of those methods to
2 3 4 fields of magnitude smaller than Ak-dependent critical
Energy field that vanishes in the thermodynamic limit has been re-
moved: we have shown numerically that quasistationary
FIG. 6. (Color onling Susceptibilityy!“d(w) in the presence of ~ states in finite fields exist for arbitrarily dendepoint
a static fieldc, for =0 and 10k points, using a level broadening meshes, and can be obtained by solving the time-dependent
6=0.04. Dotted lines: Kubo formula result fé,=0; solid lines: Shradinger equation for a slowly increasing field. The
results using our method, for botfy=0 and&,=0.05. The latter 1, asent method also provides a convenient framework for the
xl%lays the_|||=r§1nz-Kfeldysh s.ffffeCt' Thb‘? 'n?.eﬁ dcgon;%a(r)zs thgg':ran ‘omputation of coherent time-dependent excitations in insu-
ysh oscillations for two different bias fields,=0.05 ands lators. As an example, the dielectric function was calculated
=0.03. . Lo L
for a tight-binding model by considering the response to a
step-function discontinuity ir€(t), illustrating effects such
M _ ﬂ|m AP(w), (76) as photon-assisted tunneling and Franz-Keldysh oscillations.
¢ |, A ’ A full ab initio implementation within the framework of
° time-dependent density-functional theory should be possible.

Reylfl(w)=

w
Im x[é(w)= s ReAP(w). (77) ACKNOWLEDGMENTS
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real-time, vector-potential scheme valid for bulk systems was APPENDIX A: CRYSTAL-MOMENTUM
proposed in Ref. 47. REPRESENTATION

We validate our method by comparing in Fig. 6 the  The introduction of linear scalar potentials in crystals is
ground-state susceptibility with the analytic Kubo formula usually discussed in the language of the crystal-momentum
(sum-over-statggesult, using in both cases the same broad'representatior(CMR).“ Instead, we have used the Berry-
ening & andk-point mesh. Also shown in Fig. 6 is the sus- phase theory of polarization, and the purpose of this appen-

ceptibility in the presence of & =0.05 bias field, displaying gix is to show how to switch from one to the other. The CMR

the Franz-Keldysh effect: an absorption tail below the 98R,ses as a basis the eigenstatas,) of £1° with eigenvalues
caused by photon-assisted tunneling and oscillations abovlg

i 2
the gap'> The Franz-Keldysh oscillations become more; 'Em' Ir; acc:)rdance with E$17) We.taSSLljlme tlhdﬁﬂkm(_l[t)J )
widely spaced with increasin§jy. This is illustrated in the :”mgﬁ’ggfg 0 one over the unit cell volume. a
inset of Fig. 6, where we compare them f&=0.05 and
&,=0.03.

<l/fkm|‘/’k’l>5f PN e (1) dr =QgS(k—K") 5y -
VIl. SUMMARY (A1)

The work of King-Smith and Vanderbilt demonstrated thatThe CMR expansion of the identity operator is
the bulk electronic polarization, defined in terms of the cur-
rent flowing during theadiabatic evolution of an insulating . 4 ”
system in avanishing macroscopic electric figldould be 1=0Qg m§=:1 Jdk|¢km><‘/’km|a (A2)
related to a Berry's phase defined over the manifold of oc-
cupied Bloch statesWe have generalized this result by con- so that a general one-electron stpte is expanded as
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|¢>:i|¢>=mz:l fdk'fk'm|¢k/m>y (A3)

where f,=Qg ¥ ml¢). For the occupied Bloch-like
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e ~n
Jinter= — ;Trc( nVOd) = f dI(nk mIVk Im -

(A15)

(277)3 mi=1

states|¢y,) in a WR manifold, the CMR wave function In the above we used the CMR form of EQ9),

fr m(k,n) takes the form
frrm(k,n)=Cyr nmd(k" —K) (A4)

with =7 _1]c, nml2=1, which leads to Eq(9).

1. Current and the CMR velocity operator

The velocity operatof31) is diagonal ink and is conve-

Tre(0) = 12 f dke (Yl Ol ), (AL6)
whereN should be taken to signiff2g5(0).4°

Plugging Eq.(9) into Eq.(27) yields, after some manipu-
lations, Egs.(Al1l), (Al14), and (A15), confirming that the
Berry-phase polarization correctly accounts for both intra-

niently split into a sum of two operators, one diagonal and®@nd and interband contributions. It is instructive to consider

the other off-diagonal in the band indé&:
v=vd+vod, (A5)
The matrix elements of? are

(e VI 1) = QpS(k—K") SiViem (A6)
where

d 1
Vkm:g HEkm- (A7)
The matrix elements of° are
(e V) ) = QL S(k— k'’ )Vk mi s (A8)
where
Vo= 7 Xk mil Exm— Ewi] (A9)
and we have defined the Hermitian matrix

Xié mi= 1 Ukl 9k Uk} (A10)

which is analogous to Eq26) for the [v ).

The current, Eq(28), is split into intraband and interband

parts,
J(1) =Jintra( 1) T Jined 1) (All)
Writing the density matrix as
(Yl D 1) = Qg S(K—K )Ny (A12)
where
M
nk,mI:nZl Ci,nml C,ni] ™ (A13)
we find
€ ang — < d
I = TNV = 5 20 | Ak
(A14)
and

some particular cases. The adiabatic curi@at(dP/d\)\
discussed in Refs. 1 and 37 is purely interband. If the pertur-
bation is a sinusoidal electric field, the linear response is
again a purely interband current, while the nonlinear re-
sponse has also an intraband compon®ni.

2. Polarization and the CMR position operator
Along the same lines, one can show that the Berry-phase
expression folP is consistent with the CMR position opera-
tor, which takes the forfit

—iQpdy S(K’

<¢km|F|‘/’k’l>: _k)amn+985(k’_k)xk,ml-

(A17)
Combined with Eqs(A12) and (A16) this yields

P=— —Trc(nr)

f dKny miXi im »
(A18)

which is the same result one gets from inserting the CMR
expansion(9) into the nonadiabatic Berry-phase formula
(21). The linear character afis reflected in the above equa-
tion being defined only up to a quantum of polarization.

( 77')3ml 1

3. CMR dynamical equations

In the case wher&® (and hence the CMR basits con-

stant in time, plugging Eq9) into the TDSE(14) yields the

CMR form of the Schrdinger equatioriZ?

i%Cem= (Exm+i1€E- D) Chn» (A19)
where we have simplifiedy ,, to ¢y, and defined
Dy Ckm= 5kam_iZl XkiCki » (A20)

which is reminiscent of the covariant derivative, E¢2)
(but note the difference in the sign of the last terr is
customary to write Eq(A19) as

iﬁékm:(E(kjr})]+ ie&- &k)ckm_’_ e&- I;m Ck|Xk,m| s
(A21)
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where i.e., the action of 3, on an occupied state is identical to that
E&g: Exnt €€ Xic mm (A22) of |Qkﬁk_and|Qk<9kPk. Tfley differ in how they act on the
unoccupied states. Unlikg, , the other two are not Hermit-

ian: for instance, iQdxPy) |vin) =0. It follows from these
considerations that Eq41) can be recast as

is a shifted energy eigenvalug(}) is identical to Eq.(37)
except thafv,,) has been replaced by the zero-field eigen-
state|u,,). Upon averaging ovek the last term on the right-

hand side becomes the first-order shift in total energy, i|vgn)=[HY+e& (IQraPr+H.C)llvn). (B4
—vPy- €, whereP, is the spontaneous Berry-phase polariza-
tion. This is the form of the TDSE to which Eq&3) and (64)

In general the above TDSE has no stationary solutionsteduce in the continuurk-limit, since
Approximate solutions—the Wannier-Stark states—result ~ L
from restricting the wave-packet dynamics to a single band wi=ie&- Qi dxPy (BS)
(the semiclassical approximatipThat is achieved by drop-
ping the sum on the right-hand side of E&21), which is
responsible for interband tunnelify>?

Finally, combining Eqgs.(A13) and (A19) produces the
dynamical equation for the CMR density matrix:

[compare with Eq(59)].

APPENDIX C: GRADIENT OF THE ENERGY
FUNCTIONAL

The purpose of this appendix is to obtain expressions for
the derivatives of the two terms in the energy functional of
o Eq. (45) with respect to the occupied Bloch-like states in the

—e€- D (N niXiim— X nNim)- (A23)  discretek case. The results have been used in Secs. IV B and
=1 B T V A for the discussion of the time-dependent evolution equa-

A closely related form has been used to study the nonlineatons and the stationary solutions, respectively.
optical susceptibilities of semiconductors>®

iﬁnk,nmz(Ekn_ Ekm)nk,nm+ ie&- aknk,nm

1. Band-structure contribution

APPENDIX B: COVARIANT DERIVATIVE To find the gradientSE/(v,,| of the energy functional
AND RELATED OPERATORS (45), let us isolate the terms that depend(oR,|. Using Eq.

In Sec. IV A we introduced a modified TDSE that con- (43 the zero-field part(46) can be expressed aE"

5 00
tains the multiband covariant derivatig, Eq. (42), that =(IN)Z tr[PyH], so that
was instrumental for making contact with the discrietey- 0 A a0
namical equations of Sec. IV B. Here we summarize the JoE :i SUPH,]
properties of the covariant derivative and other closely re- (Svial N (v

lated operators. In order to allow for arbitrary variations db,,|, even those

The covariant derivatives|vi,) of an occupied state for which (v,,| do not remain orthonormal, we write
transforms in the same way as that state under a gauge trans-

(CDY

formation, Eq.(10): R M .
y Pi=2 (S D mrlvkm{vial, (C2)
- - mn=1
f7k|vkn>—>m§=:1 U,mn9k|vkm)- (B1) whereSy mn={vkml|vkn). Dropping the subscripk,
Moreover, it is orthogonal to the occupied subspack, at St PR =t (6P)A°]
(V[ I 1n) =0. (B2

. . ) :2 (S_l)mn[<vn|H0|5vm>+<5vn|H0|Um>]

Recalling that parallel transport is characterized by m.n

(Vknldvin)=0, for m=n this relation shows tha, acting A

in an arbitrary gauge gives the same resulgaacting in the + 2 (wnl Ao m) (S ™Y mn- (C3

parallel-transport gauge that shares the same states|at mn

the discretized fornt60) the property(B1) is a consequence Using (S H=-87258 and  8Smn=(vmldvy)

of Eq. (59), and the propertyB2) is a consequence of EqQ. + (s, |v,), and evaluating af=1, we arrive at

(54). Like idy, idy is Hermitian. By this we mean that its

matrix representation in an orthonormal bagsg., |vy,). St[PHR . .o

n=1,... M complemented by a set of unoccupied states WZQkHHUW- (C9

|ckj)) is Hermitian. This is closely related to the hermiticity

of the matrixAy defined in Eq(26). Finally, note that Thus the consequence of expressfhgas Eq.(C2) instead

of Eq. (43) is to render the gradient orthogonal to the occu-

i 9| vkn) =1Q kv kn) =1Q kP vin), (B3)  pied manifold atk. [When we derived the dynamical equa-
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tion (58) using Eq.(47), the gradient oE° was not orthogo- The corresponding derivative of the last term of EG9)
nalized, which is why the dynamics did not follow parallel vanishes sinc&S(k’,k)={(v/n|vin) does not contaifuv,|
transport(see Sec. IV @. as a bra. We thus arrive at

2. Polarization contribution

Sp(k,k')y i o
To find the gradient of the field-coupling terfov £- P we ¢5(—|) = §|Uk’n>v (C12
needdT; /{6v\,|. Let us start by recasting E¢52) as {01
g MM hich combined with Eq(C7) gi
— i R which combined wi ives
N=r 2 3 o kvak),  (©9 e
N;- =1 =0
where we have defined the phase 5Fi i ~
<5 | = Al Ulvkio,n>' (C13)
é(k,k’)=—ImIndetS(k,k"). (CO) Ukl 2Nj o==1

Using ¢(k',k)=— ¢(k, k"), this becomes
This is automatically orthogonal to the occupied manifold at
1 . k. (See Refs. 7 and 10 for alternative derivatipi@ollecting
N 0:211 opkkio)+- -, €7 terms and using Ed57), we obtain Eq(69) for the gradient
: of the full energy functionak.

T-

where only the terms depending ¢n,,| were written ex-
plicitly. Hence

APPENDIX D: DISCRETIZED FORMULA

ST 1 ) . FOR THE CURRENT
ol "N o221 Tl 00 (€O
n i o=* n

Just as the macroscopic polarizatinis evaluated in

The phasep(k,k’) can be expressed as practice via a finite-difference formula on a meskkgfoints,
the same can be done for the macroscopic curi&nt
d(K,K")=—Imtrin S(k,k") =dP/dt. The invariance of Eq(27) under the replacement

i i d—dy allows us to then use the discretization r¢&o),
=§trln S(k,k’)—ztrln S(k’,k). (C9) leading to

For an arbitrary nonsingular matrik we have

3 g ~ 01~
Strin A=trIn(A+ 8A)—trIn(A) J= > m(vkn|Hk|vkiU,n)a1-+c.c.
=trin[(A+ SA)A™ 1] | (D1)

=trin[1+(5A)A™1]
We have checked numerically on our one-dimensional tight-

— -1 2
=UlA "oA]TO(A%), (C10 binding model that Eq(D1) yields, for smallAt, the same
so that result as[P(t+At)—P(t)]/At computed with the dis-
cretized Berry-phase formula.
otrin S(k, k") il sk K oS(k,k") The same strategy as outlined above can be used to derive
(Svinl ' (kK" (8l a discretized formula for the Berry curvatu(25 summed

M over bands, which is also invariant undgr—d, . This may
—1 / ~ be useful in other contexts, such as semiclassical wave-

k,k ’ = ’ . Cll . . !

m§=:1 Smn(KKDorm) =[vien). (€LY packet dynamics in crystats.
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