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Nonlinear transport effects in response to external magnetic fields, i.e., electrical magnetochiral anisotropy
(eMChA), have attracted much attention for their importance in studying quantum and spin-related phenomena.
Indeed, they have permitted the exploration of topological surface states and charge to spin conversion processes
in low-symmetry systems. Nevertheless, despite the inherent correlation between the symmetry of the material
under examination and its nonlinear transport characteristics, there is a lack of experimental demonstration
to delve into this relationship and to unveil their microscopic mechanisms. Here, we study eMChA in chiral
elemental tellurium (Te) along different crystallographic directions, establishing the connection between the
different eMChA components and the crystal symmetry of Te. We observed different longitudinal eMChA com-
ponents with collinear current and magnetic field, demonstrating experimentally the radial angular momentum
texture of Te. We also measured a transverse nonlinear resistance which, as the longitudinal counterpart, scales
bilinearly with current and magnetic fields, illustrating that they are different manifestations of the same effect.
Finally, we study the scaling law of the eMChA, evidencing that extrinsic scattering is the dominant microscopic
mechanism. These findings underscore the efficacy of symmetry-based investigations in understanding and
predicting nonlinear transport phenomena, with potential applications in spintronics and energy harvesting.

DOI: 10.1103/PhysRevB.111.024405

I. INTRODUCTION

Low-symmetry materials have revolutionized the field of
electronic transport. This disruption stems from the breaking
of inversion symmetry within such systems, which permits
nonlinear transport effects where the voltage (V ) scales
quadratically with the current (I) [1]. Notably, this nonlinear
behavior can manifest both with and without the presence of
external magnetic fields (B) [2].

On the one hand, nonlinear transport effects in the absence
of B (I ∝ V 2) have recently attracted much attention [3–6].
Indeed, they allowed for the study of novel quantum prop-
erties, such as the Berry curvature [7,8] or Berry connection
polarizability [9,10], and have the potential to be exploited
for energy harvesting through radio-frequency rectification
[11–14]. Systematic studies have been performed, identifying
both longitudinal (i.e., nonlinear conductivity [15,16]) and
transverse (i.e., nonlinear Hall effect (NLHE) [3,4,17]) com-
ponents, and its connection with the crystal symmetry of the
tested material.

*Contact author: marco.gobbi@ehu.eus
†Contact author: l.hueso@nanogune.eu
‡Contact author: f.casanova@nanogune.eu

On the other hand, nonlinear transport effects in the pres-
ence of B (I ∝ V 2B) have great importance for spintronics
as they can be employed for the investigation of spin-related
effects [18]. In general, these phenomena are named electri-
cal magnetochiral anisotropy (eMChA) [19,20]. However, as
most reports are focused on the longitudinal manifestation,
they are commonly known as unidirectional magnetoresis-
tance (UMR) [18] or bilinear magnetoresistance (BMR)
[21,22]. Although there are a few reports on the transverse
manifestation, i.e., nonlinear planar Hall effect (NLPHE)
[23,24], an experimental demonstration of the fundamental
connection between the two effects and the crystal symmetry
of the material is still absent. Furthermore, the microscopic
mechanisms behind these effects remain unclear.

Chiral materials provide an exceptional platform for inves-
tigating nonlinear transport effects due to their absence of both
inversion and mirror symmetry [25–27]. In this context, a ma-
terial with strong spin-orbit coupling such as chiral tellurium
(Te) [28], which can be chemically synthesized [29] and pat-
terned into desired shapes, emerges as the ideal candidate.

In this paper, we present an experimental study of
eMChA in Te, encompassing both longitudinal and transverse
measurements, along with an analysis of the crystallographic
direction dependence. Te flakes are grown via a hydrothermal
process and patterned into star-shaped structures, enabling
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FIG. 1. Anisotropic transport in Te. (a), (b) Crystal structure
sketch of trigonal Te in the (a) x − y and (b) x − z plane. (c) Sketch
of the star-shaped Te device. The relative orientation between B and
the device is indicated. (d) Temperature dependence of Rω

‖ when Iω

is injected along the x (θ = 90◦) and z axis (θ = 0◦). (e) Rω
‖ and Rω

⊥
as a function of θ at 50 K. The dashed lines are fits to the equations
introduced in the main text. The Rω

‖ and Rω
⊥ values are obtained from

the linear fittings in Fig. S1 [30]. All measurements were performed
at B = 0 T with |Iω| = 1 µA.

precise measurements along different crystallographic direc-
tions. By taking into account the symmetry of trigonal Te,
we derive equations that accurately describe the experimental
nonlinear transport in Te across all configurations. We observe
a longitudinal eMChA, i.e., UMR or BMR, when B and I
are aligned along the z axis, consistent with previous reports
[18]. Remarkably, we also observe a longitudinal eMChA
when both B and I are along the x axis, thus demonstrating
the anisotropic radial angular momentum texture of Te by
electrical means. Additionally, we detect a transverse eMChA,
i.e., NLPHE, when B is along the z axis and I is along the
x axis. We illustrate that this transverse nonlinear resistance
exhibits bilinear dependence on B and I . Finally, by exam-
ining the dependence of the eMChA on the resistivity, we
establish that the eMChA in Te is primarily governed by ex-
trinsic mechanisms. Our findings underscore how the analysis
of crystal symmetry and resistivity scaling facilitate the pre-
diction of nonlinear transport effects, providing insights into
permitted components and microscopic mechanisms. There-
fore, we aim to inspire similar analyses devoted to discovering
novel systems suitable for spintronics and energy harvesting
applications.

II. ANISOTROPIC TRANSPORT

Trigonal elemental Te displays a chiral crystal structure,
belonging to P3121 (right-handed) or P3221 (left-handed)
space groups [Figs. 1(a) and 1(b)]. We grow single crystalline
Te flakes following a hydrothermal process [29], and we
pattern them into a star-shaped device by e-beam lithogra-
phy and reactive ion etching. Finally, we contact them with
Pt electrodes allowing electrical measurements for different

crystallographic directions (Supplemental Material, Sec. 1
[30]; also see [31–35]). A harmonic current at frequency ω =
31 Hz (Iω) is injected between two electrodes aligned in the
same direction at a θ angle from the chiral z axis. During this
process, both the first- (V ω) and second- (V 2ω) harmonic volt-
ages are recorded. The measurements are conducted in both
longitudinal (V‖) and transverse (V⊥) configurations using a
rotating reference frame. Our setup also enables temperature
modulation (2–300 K) and the application of B up to 9 T in all
directions [Fig. 1(c)].

Figure 1(d) shows the temperature dependence of the first-

harmonic longitudinal resistance (Rω
‖ ≡ V ω

‖
Iω ) along the z axis

(θ = 0◦) as well as the x axis (θ = 90◦). We note that the re-
sistance along the x axis is much higher than along the z axis,
which is a direct consequence of the anisotropic crystal struc-
ture: the electronic transport is much more favorable along
the covalently bonded Te helices (z axis) than between them
(x axis). To further study the anisotropic electronic transport
in Te and to ensure proper control of current directionality,
we measure the first-harmonic longitudinal (Rω

‖ ) and trans-

verse resistance (Rω
⊥ ≡ V ω

⊥
Iω ) for different θ angles, between

the current Iω and the chiral z axis [Fig. 1(e)]. On the one
hand, Rω

‖ follows Rω
‖ (θ ) = (L‖/A)[ρzzcos2(θ ) + ρxxsin2(θ )],

where L‖ is the distance between longitudinal contacts, A
is the cross section of the contacts, and ρzz and ρxx are
the resistivities along the z and x axis, respectively. We
observe that ρxx � ρzz, in agreement with the temperature
dependence study [Fig. 1(d)]. On the other hand, Rω

⊥ follows
Rω

⊥(θ ) = (L⊥/A)(ρxx − ρzz )cos(θ )sin(θ ), where L⊥ is the dis-
tance between transverse contacts. The excellent fittings of
the experimental data to the expected θ dependence indicate
precise control of the current directionality in our devices,
allowing for further crystallographic-dependent transport ex-
periments (see Supplemental Material, Sec. 2 [30]).

III. ANISOTROPIC MAGNETOTRANSPORT

Recently, the electronic transport properties of Te in
response to B have attracted much attention. Negative mag-
netoresistance [18,36] and planar Hall effect [37] have been
reported, both being considered as possible signatures of Weyl
physics [37]. However, it is worth noting that the Weyl points
in trigonal Te are at ∼0.4 and 0.5 eV below the top of the
valence band [38], thus far away from where the electronic
transport generally occurs [39]. In the following, we will
demonstrate that, from crystal symmetry considerations, it is
possible to analyze the different magnetoresistance and Hall
components in trigonal Te.

The first-order electric field (Eω
i ) in response to a current

density ( jωj ) and a magnetic field (Bk,l ) can be expressed
through the material magnetoresistance (Ti jkl ) and Hall (Ri jk)
tensors as Eω

i = Ti jkl jωj BkBl + Ri jk jωj Bk . We observe that
the magnetoresistance and Hall contributions are even and
odd, respectively, with respect to Bk,l . Therefore, it is possible
to differentiate them experimentally. For Te, considering Eω

i
and jωj in the x − z plane and Bk,l in all directions, the mag-
netoresistance and Hall tensors have nine and two nonzero
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FIG. 2. Anisotropic magnetotransport in Te. (a), (b) Te MR as a
function of α angle (β = 0◦, blue curve) and β angle (α = 0◦, red
curve) when Iω is along the (a) z axis (θ = 0◦) and (b) x axis (θ =
90◦). (c), (d) Rω

⊥ as a function of α angle (β = 0◦, blue curve) and
β angle (α = 0◦, red curve) when Iω is along the (c) z axis (θ = 0◦)
and (d) x axis (θ = 90◦). All measurements were performed at 50 K
and B = 9 T. The solid lines are fits to Eqs. (3)–(6).

elements, respectively [40]:

T Te
i jkl =

⎛
⎝

Txxxx Txxyy Txxzz Txxyz 0 0
Tzzxx Tzzyy Tzzzz 0 0 0

0 0 0 0 Txzxz Txzxy

⎞
⎠, (1)

RTe
i jk =

⎛
⎜⎜⎝

0 0 0
0 Rxzy 0
0 −Rxzy 0
0 0 0

⎞
⎟⎟⎠. (2)

Therefore, we can obtain the expressions of the longi-
tudinal and transverse electric fields as a function of θ ,
α, and β angles in terms of Ti jkl and Ri jk (see Supple-
mental Material, Sec. 2 [30]). To disentangle the different
components, we have measured the Te magnetoresistance

(MR ≡ Rω
‖ (B=9T )−Rω

‖ (B=0T )

Rω
‖ (B=0T ) ) for θ = 0◦ [Fig. 2(a)] and θ =

90◦ [Fig. 2(b)], and also Rω
⊥ for θ = 0◦ [Fig. 2(c)] and θ = 90◦

[Fig. 2(d)], by rotating B = 9 T in both the α and β planes
[Fig. 1(c)].

Figures 2(a) and 2(b) manifest that the equations obtained
from our analysis based on Te crystal symmetry perfectly
capture the experimental response, both for the α-angle de-
pendence (blue curves),

MR = (B2/ρzz )cos2(θ )[Tzzxxsin2(α) + Tzzzzcos2(α)]

+ (B2/ρxx )sin2(θ )[Txxxxsin2(α) + Txxzzcos2(α)], (3)

and for the β-angle dependence (red curves),

MR = (B2/ρzz )cos2(θ )[Tzzyysin2(β ) + Tzzzzcos2(β )]

+ (B2/ρxx )sin2(θ )[Txxyzsin(β )cos(β ) + Txxyysin2(β )

+ Txxzzcos2(β )] (4)

(see Supplemental Material, Sec. 2 [30]). Importantly, we rec-
ognized that the critical parameter for the MR is the direction
of the magnetic field. The MR is negative when B is along
the z axis (α = β = 0◦), independently on the direction of Iω

(see also Figs. S2(a) and S2(b) [30]). Previous reports have
studied the magnetotransport of Te only when Iω is along the z
axis, and related its negative MR with the chiral anomaly [37].
However, the chiral anomaly can only apply for B ‖ Iω [41],
and we also observe negative MR when B⊥Iω. Therefore, our
observation suggests a different mechanism behind the neg-
ative MR in Te, such as Berry curvature or orbital moments
[42–45]. A temperature dependence of the MR can be found
in Figs. S2(c) and S2(d) [30].

Regarding the transverse measurements [Figs. 2(c) and
2(d)], we observe that the β-angle dependence (α = 0◦, red
curves) is given by the Hall component:

Rω
⊥ = (L‖/A)RxzyBsin(β )[sin2(θ ) + cos2(θ )]. (5)

Indeed, when the magnetic field is out of plane (B ‖ y axis)
we detect the ordinary Hall effect in Te, whose sign and
magnitude indicate that the electronic transport is dominated
by holes and permits one to obtain the carrier density nh ≈
6.5 × 1017 cm−3 (Figs. S2(e) and S2(f) [30]). For the α-angle
dependence (β = 0◦, blue curves), we observe the so-called
planar Hall effect:

Rω
⊥ = −2(L⊥/A)TxzxzB

2sin(α)cos(α)[sin2(θ ) − cos2(θ )].
(6)

The planar Hall effect is even with respect to B, and thus is not
a true Hall effect [46]. The planar Hall effect has been consid-
ered a signature of Weyl physics [37], but we demonstrate that
it is directly allowed by the symmetry of Te and its associated
MR tensor (Txzxz component). Therefore, as for the negative
MR, its origin may be related to Berry curvature or orbital
moments. More importantly, the equations obtained from the
analysis of Te symmetry perfectly capture all the experimental
observations (solid lines in Fig. 2), demonstrating that it is a
powerful method. From the fittings of the experimental data,
we determined the values of the resistivity, magnetoresistance,
and Hall tensor components (Table S1 [30]).

IV. ELECTRICAL MAGNETOCHIRAL ANISOTROPY

Nonlinear transport effects in response to external mag-
netic fields, i.e., eMChA, have attracted much attention for
their importance in spintronics. Indeed, eMChA has been
reported in two-dimensional electron gases [22] and topo-
logical insulators [21], unveiling the helical spin texture of
these systems. Recently, eMChA has also been reported in
elemental Te [18]. The symmetry of chiral Te gives rise to an
anisotropic handedness-dependent radial spin texture [28,47],
which is compatible with the eMChA experiments. Therefore,
the eMChA measurements can be exploited to determine the
handedness of Te crystals [18]. These experiments have been
limited to currents along the chiral z axis. However, the Te
chiral structure offers a rich family of eMChA components
[20] that can be investigated with our star-shaped Te devices.

In general, the second-order current density ( j2ω
i ) in re-

sponse to an electric (Eω
j,k) and magnetic (Bl ) field can be

expressed through the eMChA conductivity tensor (σi jkl ) of
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FIG. 3. Crystallographic direction dependence of eMChA in Te.
(a) V 2ω

‖ and (b) V 2ω
⊥ when Iω is along the z axis (θ = 0◦, green

curve) and the x axis (θ = 90◦, magenta curve) as a function of α

angle at 9 T and β = 0◦. All measurements were performed at 50 K
with |Iω| = 1 μA. The solid lines are fits of the experimental data to
Eqs. (8)–(11).

the material as j2ω
i = σi jkl Eω

j Eω
k Bl . For Te, considering Eω

j,k

and j2ω
i in the x − z plane and Bl in all directions, the

eMChA conductivity tensor has eight independent nonzero
elements [40]:

σi jkl =

⎛
⎜⎜⎜⎜⎜⎜⎝

σxxxx σxzzx 0
0 0 σxxzy

0 0 σxxzz

0 0 σzxzx

σzxxy 0 0
σzxxz σzzzz 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

As in the previous section, we can measure both the lon-
gitudinal and transverse response when Iω is along the z axis
(θ = 0◦) and x axis (θ = 90◦). For such current directions,
the longitudinal second-harmonic voltage (V 2ω

‖ ) is given by
(for more details, see Supplemental Material, Sec. 3 [30]) the
following equations:

θ = 0◦ → V 2ω
‖ = − L‖

A2
(Iω )2

ρ3
zzσzzzzBcos(α)cos(β ), (8)

θ = 90◦ → V 2ω
‖ = − L‖

A2
(Iω )2

ρ3
xxσxxxxBsin(α)cos(β ). (9)

To explore the longitudinal components, we recorded V 2ω
‖

as a function of the α angle at B = 9 T and β = 0◦ [Fig. 3(a)].
For Iω ‖ z axis (θ = 0◦), the maximum signal is when B and
Iω are collinear (B ‖ Iω ‖ z), as indicated by Eq. (8) and in
agreement with previous reports [18]. Interestingly, for Iω ‖ x
axis (θ = 90◦), the maximum signal is also when B and Iω

are collinear (B ‖ Iω ‖ x), as predicted by Eq. (9). There-
fore, these results demonstrate the radial angular momentum
texture of Te by purely electrical means. The eMChA is
maximum when the external magnetic field is parallel to the
current-induced angular momentum accumulation (Ji), which
points along the z axis when the current is along the z axis
(Jz ‖ Iω ‖ z), and points along the x axis when the current is
along the x axis (Jx ‖ Iω ‖ x). The longitudinal eMChA is usu-
ally related to the spin texture of the system [21,22]. However,
recent theoretical works suggest that the orbital contribution
may be dominant [48]. Indeed, theoretical predictions indicate
that, in Te, the orbital (Li) is stronger than the spin com-
ponent (Si) and, thus, dictates the eMChA response [20,49].

Therefore, as they have the same symmetry and we cannot
distinguish between them in our experiments, we have de-
cided to use the term “angular momentum texture” to account
for both contributions (Ji = Li + Si). From the fittings, we
obtain the values of σxxxx = (−5.31 ± 0.48)10−6AV−2T and
σzzzz = (−1.283 ± 0.048)10−4AV−2T. The substantial differ-
ence between the magnitudes of σxxxx and σzzzz indicates that
the angular momentum texture of Te is not merely radial but
also anisotropic.

The transverse eMChA, i.e., NLPHE, has been much less
studied in the literature [23,24]. Indeed, current direction-
dependent studies, which identify the connections between
the eMChA components and the crystal symmetry of the
studied material, are still absent. Here, we employ our analysis
based on Te symmetry, which determines that the transverse
second-harmonic voltage (V 2ω

⊥ ) is given by (see Supplemental
Material, Sec. 3 [30]) the following equations:

θ = 0◦ → V 2ω
⊥ = −L⊥

A2
(Iω )2

ρxxρ
2
zzσxzzxBsin(α)cos(β ),

(10)

θ = 90◦ → V 2ω
⊥ = −L⊥

A2
(Iω )2

ρ2
xxρzzB[σzxxzcos(α)cos(β )

+ σzxxysin(β )]. (11)

Hence, to explore the transverse components, we record
V 2ω

⊥ as a function of the α angle at B = 9 T [Fig. 3(b)]. We
note that, in the α-angle dependence at β = 0◦, the component
σzxxy does not contribute [see Eq. (11)]. Remarkably, we ob-
serve a clear eMChA signal when Iω ‖ x (magenta curve, θ =
90◦) but not when Iω ‖ z (green curve, θ = 0◦). Assuming
σzxxz and σxzzx to be of the same order of magnitude, V 2ω

⊥ is ex-
pected to be larger for Iω ‖ x, because ρxx � ρzz [see Eqs. (10)
and (11)]. Moreover, V 2ω

⊥ in response to Iω and B has also a
contribution coming from a combination of nonlinear conduc-
tivity and ordinary Hall. For β = 0◦, this extra contribution
has no impact when Iω ‖ x but does have one when Iω ‖ z and,
therefore, it may cancel out the eMChA component (see Sup-
plemental Material, Sec. 4 [30]). From the fitting to Eq. (11),
we quantify the value of σzxxz = (2.603 ± 0.039)10−6AV−2T.
More importantly, for both longitudinal and transverse mea-
surements, our symmetry analysis perfectly captures the
experimental response (solid lines in Fig. 3), unveiling the
relationships between voltage, current, and magnetic field di-
rections for which the eMChA in Te is allowed.

We further explore the transverse eMChA, by studying its
current, field, and temperature dependence. The longitudinal
eMChA, when defined as a resistance (R2ω

‖ = V 2ω
‖ /Iω), is

commonly known as BMR because it depends linearly on Iω

and B [Eqs. (8) and (9)]. However, as dictated by Eqs. (10)
and (11), the transverse nonlinear resistance (R2ω

⊥ = V 2ω
⊥ /Iω)

is also expected to depend linearly on both. To prove this,
we record V 2ω

⊥ for different Iω at B = 9 T [Fig. 4(a)] and
for different B at |Iω| = 1 μA [Fig. 4(b)], as a function of
the β angle at α = 0◦ and θ = 90◦. We note that, to fully
demonstrate the accuracy of our symmetry analysis, we have
studied V 2ω

⊥ as a function of the α angle in Fig. 3 and as a
function of the β angle in Fig. 4. As observed, the experi-
mental behavior of V 2ω

⊥ is perfectly captured by Eq. (11), and
R2ω

⊥ depends bilinearly on current and magnetic field [insets in
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FIG. 4. Current, field, and temperature dependence of the
eMChA in Te. (a)–(c) V 2ω

⊥ when Iω is along the x axis (θ = 90◦) as a
function of β angle for (a) different Iω at B = 9 T and T = 50 K,
(b) different B at T = 50 K and |Iω| = 1 μA, and (c) different T
at B = 9 T and |Iω| = 1 μA. (d) V 2ω

⊥ when Iω is along the x axis
(θ = 90◦), obtained from the fittings in panel (c) to Eq. (11), as a
function of ρxx . The dashed line is a fit to Eq. (12). Insets: (a) Iω

and (b) B dependence of R2ω
⊥ = V2ω

⊥ /Iω, (c) T dependence of V 2ω
⊥ .

The values have been obtained from the fittings in panels (a)–(c) to
Eq. (11). (d) Sketch of the measurement configurations.

Figs. 4(a) and 4(b)]. The same bilinear dependence is obtained
with the results as a function of the α angle (Fig. S3 [30]),
providing further evidence of the accuracy of our symme-
try analysis. Equation (11) includes a term σzxxysin(β ), but
experimentally no sin(β ) dependence is observed. The reason
may be that σzxxy is negligible with respect to σzxxz or its
impact on V 2ω

⊥ could be canceled out by the contribution of
the nonlinear conductivity combined with the ordinary Hall
effect, which is also allowed for θ = 90◦ with the same sin(β )
dependence (see Supplemental Material, Sec. 4 [30]).

Finally, we studied the microscopic mechanism of the
eMChA [2]. For that purpose, we adapted the analysis de-
veloped for time-odd nonlinear transport in magnetic systems
[50]. Indeed, the external magnetic field in eMChA plays
a similar role to the internal magnetic vectors in time-odd
nonlinear transport within magnetic systems. However, in the
eMChA analysis, the orbital magnetic field contributions must

also be included [20] (for more details, see Supplemental
Material, Sec. 5 [30]). The procedure relies on examining the
scaling law between the output voltage, in this case V 2ω

⊥ , and
the resistivity of the material, ρxx,

V 2ω
⊥

(Iω)2 = γ ρ−1
xx + δ + ξρxx + ζρ2

xx + ηρ3
xx, (12)

where η is a resistivity-independent parameter, while γ , δ, ξ ,
and ζ only depend on the residual resistivity of the material.
The intrinsic contributions of the eMChA are included in
the ξ and η parameters (see Supplemental Material, Sec. 5
[30]). To explore the eMChA scaling law in our Te device, we
modulate the resistivity by varying T [Fig. 1(d)]. Within this
T range, we recorded V 2ω

⊥ for Iω along the x axis (θ = 90◦) as
a function of the β angle at B = 9 T and α = 0◦ [Fig. 4(c)].
Hence we can now represent V 2ω

⊥ as a function of T [inset
in Fig. 4(c)] and, thus, as a function of ρxx [Fig. 4(d)]. By
fitting the experimental data to Eq. (12), we discern that the
ζ term dominates, demonstrating that an extrinsic mechanism
governs the eMChA in Te (see Supplemental Material, Sec.
5 [30]). We performed the same analysis for the longitudinal
eMChA with Iω along the z axis (θ = 0◦), obtaining the same
conclusions (Fig. S4, Table S2 [30]). Therefore, we have
successfully identified the dominant microscopic mechanism
in our Te devices. This methodology paves the way for sim-
ilar analyses to uncover the microscopic mechanisms behind
eMChA in a wide range of noncentrosymmetric systems.
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