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Sylvain for their help, support and advice although they were sometimes far

from “here”. The last person I would like to thank, but not the least, is the

woman who shared my life for the last seven years, Narie, and who brought me

strength, happiness, support and encouragements to overcome all the doubts

and difficulties.
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Abstract

The 21st century has seen the emergence of new technologies in several fields.

Nano-objects and nanostructures are now involved in a variety of applications

in bio-medicine, electronics, telecommunication devices, new compounds for

aeronautics and sport equipments or pharmaceutical products. To develop

such applications, one needs to understand the modifications of the physical

laws when downsizing the materials to the nanoscale. Nanofabrication, exper-

imental and theoretical aspects are still a challenge to fully understand fine

optical and vibrational properties of these nanostructures.

This work is devoted to the study of the optical and vibrational properties

of semiconductor and metallic nanostructures. The inelastic light scatter-

ing by low frequency acoustic vibrations (few meV), named Raman-Brillouin

scattering, gives access to such properties. On one hand, due to their size,

the electronic states of semiconductor nanostructures (e.g. quantum wells,

nanowire or quantum dots) are confined and discretized. These electronic

states are involved in the Raman-Brillouin scattering and act as an intermedi-

ary during the optical process. On the other hand, when applying an external

electric field, metallic nano-objects sustain collective oscillation modes of the

free electron gas called surface plasmons. In the Raman-Brillouin scattering,

these surface plasmon modes also act as an intermediary during the emission

and the absorption of low frequency acoustic vibrations. The understanding

of the interaction between the acoustic vibrations and the electronic excita-

tions, whether they are excitons (confined electronic states in semiconductors)

or surface plasmons (in metals), gives direct information on the optical and

vibrational properties of those nano-objects.

This work is based on the development of numerical simulations devoted to

the understanding these interaction processes. In particular, new physical con-

cepts are introduced as theoretical tools for the interpretation of the Raman-

Brillouin scattering in semiconductors and metals. An effective electronic



density, called the “Raman-Brillouin Electronic Density”, which is responsi-

ble for the Raman-Brillouin scattering in semiconductors, is here introduced

for the first time. This physical quantity is a new advanced theoretical tool for

the interpretation of the inelastic light scattering processes by low frequency

acoustic vibrations. Finally, the concept of acousto-plasmonics is also intro-

duced for the first time to study and describe the modulation of the plasmonic

properties of metallic nano-objects by the acoustic vibrations. To do so, ad-

vanced numerical methods such as the Boundary Element Method (BEM), the

Discrete Dipole Approximation (DDA) or the Finite-Difference Time Domain

(FDTD) have been used to solve Maxwell’s equations in the case of metallic

nano-objects.

These methods as well as the concepts introduced in this work allow for

the study of the optical properties of metallic nano-objects, such as spher-

ical nanoparticles, nanocolumns, nanorings, nanodisks, nano-antennas, and

dimers of nanoparticles and of semiconductor nanostructures, such as mem-

branes and superlattices. They allowed to interpret fine physical effects such

as significant and unpredicted spectral red-shifts of plasmons resonances in

gold nanorings and unexpected observations of acoustic vibration modes by

Raman-Brillouin spectroscopy, whether it is in semi-conductors or in metals.

The latter lead to the establishment of new Raman-Brillouin selection rules

in silver nanocolumns.

Keywords: Semiconductors; (Mutiple) Quantum wells; Confined electronic

states; Excitons; Perturbations theory; Quantum mechanics; Metallic nanos-

tructures/nanoparticles; Plasmonics; Surface plasmon-polaritons; Near-field

optics; Optical properties of nanoparticles; Nano-optics; Nanophotonics; Elec-

tromagnetic field; Acoustic vibrations; Phonons; Acousto-plasmonics; Raman-

Brillouin scattering/spectroscopy; Numerical simulation/modeling; Finite- dif-

ference time-domain (FDTD); Discrete dipole approximation (DDA); Bound-

ary element method (BEM).



French abstract - Résumé

Le XXIème siècle a vu l’avènement des nouvelles technologies dans un grand

nombre de domaines. Du bio-médical, à l’électronique, en passant par les

télécommunications, les nouveaux alliages pour l’aéronautique ou pour les

équipements sportifs ou même les cosmétiques, l’utilisation de nano-objets

ou de nanostructures a été une révolution. La course à la miniaturisation

des systèmes nécessite de comprendre ce qu’il se passe lorsque l’on réduit

la taille des objets. La nano-fabrication ainsi que les études expérimentales et

théoriques restent un défi pour une compréhension fine des propriétés optiques

et vibrationnelles de ces nanostructures.

Ce travail de thèse s’articule autour de l’étude des propriétés optiques et vi-

brationelles de nanostructures semiconductrices et métalliques par le biais

des processus de diffusion inélastique de la lumière par les vibrations acous-

tiques basses fréquences (quelques meV) présentes dans les matériaux : la

diffusion Raman-Brillouin. Les nanostructures semiconductrices (ex : puits,

fils ou boites quantiques) possèdent, de par leurs dimensions nanométriques,

des états électroniques confinés, qui sont impliqués dans le processus de dif-

fusion Raman-Brillouin. Les excitations électroniques (excitons) sont des in-

termédiaires lors de ce processus. Les nano-objets métalliques, lorsqu’ils sont

soumis à un champ électrique externe, supportent quand à eux des modes d’os-

cillation collective des électrons de conduction appelés plasmons de surface.

Lors de la diffusion Raman-Brillouin, les plasmons de surface jouent le rôle

d’intermédiaires lors du processus d’absorption ou d’émission des vibrations

acoustiques dans le système. L’étude des interactions entre les modes de vi-

brations acoustiques et les excitations électroniques, que ce soient des excitons

(semiconducteurs) ou des plasmons de surface (métaux), sondées par spectro-

scopies optiques, nous renseignent directement sur les propriétés optiques et

vibrationnelles de ces nano-objets.

Ce travail de recherche s’axe plus spécifiquement sur le développement d’outils

numériques pour la modélisation de ces processus d’interaction. De nouveaux



concepts physiques sont introduits pour l’interprétation des processus de diffu-

sion Raman-Brillouin dans les nanostructures semiconductrices et métalliques.

Ainsi, une densité électronique effective, “Raman-Brillouin Electronic Den-

sity”, directement responsable de la diffusion Raman-Brillouin dans le cas

des semiconducteurs, est introduite ici pour la première fois. Cette quan-

tité physique est un outils d’interprétation avancés des processus de diffusion

inélastique de la lumière par les vibrations acoustiques basses fréquences. En-

fin, le concept d’acousto-plasmonique est également introduit pour la première

fois afin de rendre compte et de décrire la modulation des propriétés plasmo-

niques des nano-objets métalliques par les vibrations acoustiques. Pour ce

faire, l’utilisation de méthodes numériques avancées telles que la Boundary

Element Method (BEM), la Discrete Dipole Approximation (DDA) ou encore

la Finite-Difference Time Domain (FDTD) a été nécessaire afin de résoudre

les équations de Maxwell dans le cas des nano-objets métalliques.

Les méthodes utilisées et les concepts introduits ont permis l’étude des pro-

priétés optiques de nano-objets métalliques, tels que des nanoparticules sphéri-

ques, nanocolonnes, nano-anneaux, nanodisques, nano-antennes et dimères de

nanoparticules ainsi que des nanostructures semiconductrices telles que des

membranes et des super-réseaux. Ils ont permis de rendre compte d’effets

physiques fins tels que d’importants décalages vers le rouge non prédits de

résonances plasmons dans des nano-anneaux d’or ou encore l’observation inat-

tendue de certains modes de vibrations acoustiques par spectroscopie Raman-

Brillouin, que se soit dans les semiconducteurs ou bien les métaux. Ce dernier

a conduit l’établissement de nouvelles règles de sélection Raman-Brillouin

dans des nanocolonnes d’argent.

Mots clés : Semiconducteurs ; (Multi-)Puits quantiques ; Etats électroniques

confinés ; Excitons ; Théorie des perturbations ; Mécanique quantique ; Nano-

structures/nanoparticules métalliques ; Plasmonique ; Plasmons de surface ;

Polaritons ; Champ proche ; Propriétés optiques de nanoparticules ; Nano-

optique ; Nanophotonique ; Champs électromagnetiques ; Vibrations acousti-

ques ; Phonons ; Diffusion/ spectroscopie Raman-Brillouin ; Simulation/modé-

lisation numérique ; Finite-difference time-domain (FDTD) ; Discrete dipole

approximation (DDA) ; Boundary element method (BEM).



Spanish abstract - Resumen

El siglo XXI ha sido testigo del impacto de las nuevas tecnoloǵıas en un gran

número de sectores, desde el biomédico, y la electrónica, pasando por las tele-

comunicaciones, las nuevas aleaciones para la aeronáutica o para los equipos

deportivos o también los productos farmacéuticos. La utilización de nano-

objetos o de nano-estructuras ha supuesto una revolución. La carrera de la

miniaturización de los sistemas hace necesaŕıa la comprensión de lo que suce-

de cuando se reduce el tamaño de los objetos. La nanofabricación, aśı como

el desarrollo de los estudios experimentales y teóricos suponen un constante

reto para la comprensión profunda de las propiedades ópticas y vibracionales

de estas nano-estructuras.

Este trabajo de tesis se articula alrededor del estudio de las propiedades ópti-

cas y vibracionales de nano-estructuras semiconductoras y metálicas mediante

el estudio de los procesos de difusión inelástica de la luz por las vibraciones

acústicas de frecuencias bajas (algunos meV) presentes en los materiales: la di-

fusión Raman-Brillouin. Las nano-estructuras semiconductoras (p.ej.: pozos,

hilos o puntos cuánticos) poseen, por sus dimensiones nanométricas, esta-

dos electrónicos confinados, que participan en el proceso de difusión Raman-

Brillouin. Las excitaciones electrónicas (i.e. excitones) son unos intermedia-

rios en este proceso. Los nano-objetos metálicos, cuando están sometidos a

un campo eléctrico externo, soportan unos modos de oscilación colectiva de

los electrones de conducción llamados plasmones de superficie. En la difusión

Raman-Brillouin de metales, los plasmones de superficie son los que desem-

peñan el papel de intermediarios en el proceso de absorción o de emisión de

las vibraciones acústicas en el sistema. El estudio de las interacciones entre

los modos de vibraciones acústicas y las excitaciones electrónicas, mediante

sondas espectroscópicas ópticas, sean excitones (semiconductores) o plasmo-

nes de superficie (metales), nos informa directamente sobre las propiedades

ópticas y vibracionales de estos nano-objetos.

Este trabajo de investigación desarrolla la modelización numérica de estos



procesos de interacciones. Se introducen nuevos conceptos f́ısicos para com-

prender los resultados experimentales y entender los fundamentos de cada pro-

ceso de difusión Raman-Brillouin en las nano-estructuras semiconductoras y

metálicas. Aśı, se introduce por primera vez una densidad electrónica efectiva,

“Raman-Brillouin Electronic Density”, directamente responsable de la difu-

sión Raman-Brillouin en el caso de los semiconductores. Esta cantidad f́ısica

es herramienta teórica avanzada para la interpretación de los procesos de difu-

sión inelástica de la luz por las vibraciones acústicas de frecuencias bajas. Por

último, se presenta también por primera vez el concepto de acousto-plasmóni-

ca con el fin de describir la modulación de las propiedades plasmónicas de

los nano-objetos metálicos por las vibraciones acústicas. Para ello, se utili-

zan métodos numéricos avanzados tales como el Boundary Element Method

(BEM), Discrete Dipole Approximation (DDA) y Finite-Difference Time Do-

main (FDTD) con el fin de resolver las ecuaciones de Maxwell en el caso de

nano-objetos metálicos.

Los métodos utilizados y los conceptos introducidos han permitido el estu-

dio de las propiedades ópticas de nano-objetos metálicos, tales como las na-

nopart́ıculas esféricas, las nanocolumnas, los nanoanillos, los nanodiscos, las

nanoantenas y d́ımeros de nanopart́ıculas y también de nano-estructuras semi-

conductoras, tales como membranas y super-redes. Se han estudiado de efectos

tales como corrimientos hacia el rojo de resonancias de plasmones no predi-

chos en nano-anillos de oro o también la observación inesperada de ciertos

modos de vibraciones acústicas por espectroscoṕıa Raman-Brillouin, ya sea

en los semiconductores aśı como en los metales. Esta último estudia condujo

al establecimiento de nuevas reglas de selección Raman-Billouin en nanoco-

lumnas de plata.

Palabras clave: Semiconductores; (Multi-)Pozos cuánticos; Estados elec-

trónicos confinados; Excitones; Teoŕıa perturbacional; Mecánica cuántica; Nano-

estructuras/ nanopart́ıculas metaĺıcas; Plasmónica; Plasmones de superficie;

Polaritones; Campo cercano; Propiedades ópticas de nanopart́ıculas; Nano-

óptica; Nanofotónica; Campos electromagnéticos; Vibraciones acústicas; Fono-

nes; Acousto-plasmónica; Dispersión/ espectroscoṕıa Raman-Brillouin; Simu-

lación/modelización numérica; Finite-difference time-domain (FDTD); Discre-



te dipole approximation (DDA); Boundary element method (BEM).
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Introduction

Although nanotechnology is a relatively recent research field (the term “nanotechnology”

was first defined by Norio Taniguchi in 1974), the development of its central concepts

happened over a longer period of time. Nanotechnology has unwittingly been used for

thousands of years in making steel, in vulcanizing rubber, and in paintings (e.g. Lycurgus

Cup, Notre Dame Cathedral in Paris). Moreover, nanometer-scale structures are also

present in Nature: photonic crystals on butterfly wings give their colors. Each of these

processes relies on the properties of stochastically-formed atomic ensembles of several

nanometers in size, and are distinguished from chemistry in that they do not rely on

the properties of individual molecules but rather on the properties that reach several

hundreds of atoms. However, the development of the body of concepts now subsumed

under the term nanotechnology has been slower. Indeed, the first mention of some of the

distinguishing concepts in nanotechnology was in 1867 by James Clerk Maxwell when he

proposed as a thought experiment a tiny entity known as Maxwell’s Demon able to handle

individual molecules. The first observations and size measurements of nanoparticles were

made during the first decade of the 20th century. They are mostly associated with Richard

Adolf Zsigmondy who made a detailed study of gold sols and other nanomaterials with

sizes less than 10 nm by use of a dark-field ultramicroscope. Zsigmondy was the first who

used “nanometer” explicitly for characterizing particle size in 1914.

Nowadays, a large set of materials and improved products relies on a change in their

physical properties when the feature sizes are shrunk. Nano-objects and nanostructures

are now involved in a variety of applications in bio-medicine (e.g. drug delivery, assisted

surgery, medical imaging, diagnostic sensors, and cancer therapy) [93; 111; 139], electron-

ics (e.g. transistors, integrated circuits, molecular electronic devices, NEMS, and photo

detectors/solar cells) [13; 132; 141; 177], telecommunication devices (e.g. nano-antennas,

optical switches, waveguides, and optical lenses) [96; 164; 173], in aeronautics, aerospace

and sport equipments (e.g. increase of optical, thermal, electric or mechanical proper-
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INTRODUCTION

ties of steel, glass, polymers and other compounds) [22], or cosmetics (e.g. sunscreens,

and anti-aging cream). To develop such applications, it is necessary to understand the

underlying physics when shrinking the size of the materials to the nanoscale. Nanofabri-

cation, experimental and theoretical studies are still challenging to fully understand fine

properties of these nanostructures.

This work is devoted to the study of the optical properties of nanostructures and

nano-objects [65; 138]. More specifically, it focuses on inelastic light scattering properties

of such nanomaterials [30; 194]. Based on the development of numerical tools, the in-

teraction between electronic excitations and low frequency acoustic vibration modes [few

milli-electronvolts (meV)] involved in the Raman-Brillouin scattering process are inves-

tigated. A first part of the manuscript is devoted to the understanding of the optical

and acoustic properties of semiconductor nanostructures [98; 128]. After a brief overview

of the Raman-Brillouin scattering (Chapter 1) I introduce, in the case of a freestand-

ing silicon membrane, a Raman-Brillouin Electronic Density which is a new theoretical

tool for the interpretation of the Raman-Brillouin spectra (Chapter 2). A third chapter

(Chapter 3) is then dedicated to the extension of the Raman-Brillouin Electronic Density

formalism to a more complex system: a semiconductor superlattice. The second part, is

dedicated to metallic nano-objects and to their optical properties. I first introduce the

basic physics of acoustic vibrations [162] and surface plasmons [69; 115; 166] (Chapter 4).

The last two chapters are devoted to the plasmonic properties (Chapter 5) [96; 97] and

to the acousto-plasmonic dynamics (Chapter 6) [99; 100] of metallic nano-objects.
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Inelastic light scattering by acoustic vibrations in low dimensional systems has attracted

much interest since the early works of Merz et al. [121] and Colvard et al. [38] who ob-

served light scattering by acoustic phonons (acoustic vibrations) due to Brillouin zone

folding in semiconductor superlattices (SLs). Afterwards, many experimental and the-

oretical studies have extended the use of Raman-Brillouin scattering to the study of

nanostructures [30; 88; 194] consisting of spatially distributed quantum objects (wells,

wires, dots) [30; 88; 158]. The interest lies in the fact that the wavelengths of acoustic

vibrations, in solids and in the THz frequency range, are of the order of few nanometers,

i.e. well adapted to nano-sized objects [15; 127]. Another important advantage of acous-

tic phonons is the delocalized nature of their displacement field. Unlike optical phonons,

which are usually confined within one type of material, acoustic vibrations may extend

over distances much larger than the average separation between distributed scatterers.

As a result, collective effects, due to spatial ordering, appear in the electron-phonon in-

teraction and in the light scattering process [15; 127]. Hence, the information that can be

extracted through modeling and simulations of the Raman-Brillouin spectra is very rich

(size and shape distributions, spatial correlations...).

Low-frequency Raman-Brillouin scattering in semiconductor SLs displays spectral fea-

tures related to folding of acoustic phonons which originates in the periodic modulation

of the acoustic and acousto-optical properties. This topic has been extensively investi-

gated in the past [18; 30; 37; 85; 120] and has recently regained a significant interest

due to possible generation and detection of high frequency coherent acoustic waves us-

ing femtosecond laser pulses [28; 46; 131; 134]. Applications in vibrational spectroscopy,

nanoscale imaging of defects and picosecond modulation of semiconductor optoelectronic

properties are targeted. In particular, a strong effort is devoted to the enhancement of
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the acousto-optic transduction efficiency in these devices using optical resonances. Most

of the published works report Raman scattering by folded acoustic phonons recorded un-

der non-resonant excitation conditions [30; 85], i.e. with probe energies far from specific

optical transitions of the system. These results were fairly well explained using the Pho-

toelastic Model (PEM) which assumes a periodic step-like variation of the Photoelastic

coefficients along the SL axis: inside each layer the photoelastic coefficients are constant

and their values in the bulk materials are used [37]. This model does not take into account

explicitly neither the size dependence of the photoelastic coefficients, nor the changes in

the spatial dependence of the photoelastic coefficient due to the electronic confinement.

Therefore, it fails to describe the resonance behaviour of the Raman-Brillouin scattering

due to folded acoustic phonons.

Since the work of Colvard et al. [37] and Merlin et al. [120], it has been shown that res-

onant Raman-Brillouin scattering by folded acoustic phonons in semiconductor SLs can

be properly interpreted using quantum mechanics: the inelastic light scattering process is

described within a third order perturbation theory in which the resonantly excited optical

transitions are taken into account explicitly. The acousto-optical interaction is mediated

by the electronic states of the system owing to the electron-phonon and electron-photon in-

teractions [159; 194]. Therefore, the resonant Raman-Brillouin spectra strongly reflect the

electronic states selected by the optical excitation. In particular, the adequacy between

the symmetry of the acoustic displacement field and that of the intermediate electronic

states determines the Raman selection rules. However, when several electronic transitions

are involved in the resonant light scattering process, interpretation of the Raman-Brillouin

features becomes difficult due to interferences between the different scattering paths [64].

Moreover, the SL/substrate interface, the sample surface [109; 110], the thickness fluctu-

ations of the SL layers [21; 158; 160], and the presence of impurities may strongly affect

the electronic states thus reflecting in the resonant Raman-Brillouin spectra. For these

reasons, the relationship between the electronic properties of a system and its resonant

Raman-Brillouin spectra can be very complex.

In a first chapter, a new concept of Raman-Brillouin electronic density [80] is in-

troduced as a theoretical tool for the interpretation of the Raman-Brillouin scattering

measurements. It is applied to a simple system consisting on a freestanding silicon mem-

brane [128]. A second chapter is devoted to the extension of this approach to more

complex nanostructures consisting in GaAs/AlAs superlattices [98].
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Raman and Brillouin scattering are inelastic scattering processes in which the wave-

length of the scattered radiation is different from that of the incident light and a change

in the internal energy of the scattering medium occurs [25; 30]. The two processes exhibit

a range of similarities and differences in the properties of the scattering process as well

as in the materials that are involved. In the litterature, “Raman scattering” is often used

as a generic term for both Raman and Brillouin scattering. In the following I will use the

term “Raman-Brillouin”.

1.1 Raman-Brillouin scattering process

1.1.1 Principle

Light-matter interaction can be described by quantum mechanics in the framework of

the perturbation theory (cf. Section 2.1). Order 0 event corresponds to the propagation
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of an electromagnetic radiation (i.e. photon) without interaction (Figure 1.1a). Fermi’s

golden rule gives the transition rates between eigenstates, and is the first order of the

perturbation theory. These transitions correspond to one-step absorption or emission of

a photon by creation or anihilation of an electron-hole pair (Figure 1.1b). If the photo-

excited electron-hole pair scatters elastically, for instance by impurities or defects before

recombining, then the light scattering process is energy conserving and is called Rayleigh

scattering (Thomson scattering in the case of free charged particles) (Figure 1.1c). The

scattered photon wavevector satisfies both ~ks 6= ~ki and |~ks| = |~ki|. This optical process is

the order 2 of the perturbation theory.

Light is inelastically scattered (order 3) when there is some energy and wavevector

transfers from the electron bath to the phonon bath (e.g. creation or anihilation of

vibrations): Es 6= Ei. In such case, the inelastic scattering process is called Raman-

Brillouin scattering (Figure 1.1d).

The inelastically scattered light contains frequencies different from those of the ex-

citation source. Those new components are shifted to lower and higher frequencies and

are called Stokes and anti-Stokes Raman-Brillouin components, respectively. Raman-

Brillouin scattering can be understood using the energy level diagrams shown in Fig-

ure 1.2. Stokes Raman-Brillouin scattering consists of a virtual transition from a valence

state |v〉 to a conduction state |c′〉 (blue arrow), a non-radiative transition from the elec-

tronic state |c′〉 to the electronic state |c〉 leading to the emission of a phonon of energy

~ωphn (gray arrow), and finally the emission of a scattered photon with the transition

from |c〉 to |v〉 (black arrow). Anti-Stokes Raman-Brillouin scattering entails a virtual

transition from a valence state |v〉 to a conduction state |c〉 and the absorption of a phonon

of energy ~ωphn during the process. The anti-Stokes lines are typically much weaker than

the Stokes lines due to contribution of both stimulated and spontaneous Raman-Brillouin

scattering in Stokes process. The phonon population factor for the anti-Stokes process

is given by Bose-Einstein distribution n(ωphn) = [1 + exp (~ωphn/kBT )]
−1

, where ωphn is

the frequency of the phonon, kB is the Boltzmann factor and T is the temperature. For

the Stokes process the phonon population factor is given by n(ωphn) + 1.

1.1.2 Models

Two main approaches are used for the interpretation and calculation of the Raman-

Brillouin scattering by acoustic phonon in nanostructures. First, the well-known Photoe-

lastic model [135] (PEM) assumes a modulation of the bulk material optical properties

by acoustic vibrations through photoelastic coefficients, also known as Pockels coeffi-
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Figure 1.1: Optical processes: a) Order 0: Propagation of light in a medium i, with energy

Ei, and momentum ~ki; b) Order 1: Absorption or emission of light creating or anihiling
an electron e-hole h pair. Enrico Fermi (1901-1954); c) Order 2: Elastic light scattering

producing photons with scattered energy Es equal to Ei, but momentum ~ks different
to ~ki. Sir Joseph John Thomson (1856-1940) and Lord John William Strutt Rayleigh
(1842-1919); d) Order 3: Inelastic light scattering by the vibrations where energy Es of
the scattered photon is reduced by the energy of the vibration Evib. Sir Chandrashekhara
Venkata Râman (1888-1970) and Léon Brillouin (1889-1969).

cients [148]. It was initially developed for the interpretation of Brillouin scattering in

bulk materials. It has been further extended to two-dimensional structures [30] (super-

lattices, cavities, membranes). The PEM is very useful for studying acoustic cavity effects

as shown by Giehler et al. [64] and Fainstein et al. [57]. Acoustic confinement in semi-

conductor membranes (tens of nanometers thick) has been also pointed out recently by

Sotomayor et al. [172] using a detailed comparison between Raman-Brillouin scattering

measurements and PEM simulations. In the PEM only the acoustic vibrations are mod-

ified by reflections and transmissions at interfaces and surfaces. The electronic structure

is taken into account only through the spatial variation of the Photoelastic coefficients

(which are material dependent). Optical cavity effects have also been introduced in some
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Figure 1.2: Energy level diagrams showing the three orders of an optical process: Ab-
sorption/Emission, Rayleigh scattering and non-resonant (anti-)Stokes Raman-Brillouin
scattering. The width of the arrows indicates the relative importance of the different
optical processes. |v〉, |c〉, |c′〉, and |c′′〉 are valence and conduction electronic states,
respectively.

cases [57; 172]. The PEM is valid for excitation energy far from any electronic transition

(i.e. out of resonance). It is worthwhile to mention that the PEM is widely used also

for the interpretation of the acoustic phonon echos observed in time-resolved pump-probe

experiments [47; 118; 179]. The conclusions of the present work are mainly concerned

with Raman-Brillouin scattering but they apply to the time-modulation of the optical

properties as well.

The second way of calculating the Raman-Brillouin efficiency is based on a quantum

mechanical description of the light scattering. The latter is a three step process: incident

photon absorption, phonon emission (or absorption), and scattered photon emission. The

electronic states play the role of intermediate states in the sense that the photon-phonon

interaction is not direct, but occurs via electron-photon and electron-phonon interactions.

Unlike in the PEM, in the Raman-Brillouin Quantum Model (RBQM) the electronic

energies and wave functions are considered explicitly. This model has been successfully

used for the simulation of resonantly excited Raman-Brillouin spectra, i.e. when the light

scattering properties are determined by the electronic structure.
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First studies of acoustic phonon scattering due to electronic wave-function localization

were reported by Kop’ev et al. [90] and Sapega et al. [159] in GaAs/AlAs multiple quantum

wells. In these structures, the electronic transitions were inhomogeneously broadened

leading to resonant selection of localized electron and hole wave functions of individual

quantum wells. Because of the spatial localization of the intermediate electronic states

the wave vector exchanged during the scattering process is no longer transferred to a

unique vibration mode but to all modes of the Brillouin zone. As a consequence, the

spectral shape of the acoustic phonon Raman-Brillouin scattering reflects the spatial

distribution of the excited electronic density[127]. The RBQM has been used to extract

characteristic features of the electronic states such as localization and correlation lengths.

These basic ideas have been recently extended to semiconductor quantum dots to include

three-dimensional confinement effects[169] and spatial ordering effects[32; 33; 52; 79; 123;

124] .

Despite the fact that the PEM and RBQM were extensively used for the interpretation

of the Raman-Brillouin measurements, the connection between both models still needs to

be clarified. This is particularly important for the interpretation of experiments performed

close to resonance, for which the validity of the PEM becomes questionable. On the other

hand, under resonant excitation, only a few intermediate electronic states are responsible

for the light scattering and therefore those are the main ones contributing to the RBQM.

Out of (or close to) resonance, this approximation is no longer valid and the whole density

of electronic states should be included in the RBQM. This is also the case when the energy

separation between electronic states is smaller than the homogeneous broadening of the

resonant optical transitions.

1.2 Acoustic vibrations

The acoustic vibrations can be described in the framework of elasticity theory [112] assum-

ing a continuous elastic medium. This assumption is valid when the vibration wavelength

is much larger than the inter-atomic distance. The displacement field ~u is then given by

ρ
∂2~u

∂t2
= (λ+ 2µ)

−−→
grad (div ~u) − µ

−→
rot

(−→
rot ~u

)
. (1.1)

Equation 1.1 is the Navier-Stokes’ equation and gives the displacement ~u. ρ is the density,

and λ and µ are known as Lamé coefficients of the considered medium [112]. This equation
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allows to introduce the longitudinal vL and transverse vT sound velocities:

vL =

√
λ+ 2µ

ρ
(1.2a)

vT =

√
µ

ρ
. (1.2b)

The displacement field of the acoustic vibrations can also be described in quantum

mechanics using the second quantization theory. In such approach, the acoustic vibrations

are described as a sum of harmonic oscillators. For an infinite medium, the eigenmodes

are given by

~̂um(~r, t) =

√
~

2ρV ωm

ǫ
ωm,~km

(
b̂
ωm,~km

e−i~km~r + b̂+
ωm,~km

ei~km~r
)
, (1.3)

where V is the volume of the medium, b̂
ωm,~km

and b̂+
ωm,~km

are the vibration annihilation

and creation operators, and ǫ
ωm,~km

is the polarisation of the vibrations. ωm and ~km

are the frequency and the wavevector, respectively of the vibration mode m. The factor√
~/(2ρV ωm) ensures the normalization of the vibration mode to the energy ~ωm.

1.3 Electronic structure

In Raman-Brillouin scattering, the electronic states play an intermediate role in the scat-

tering process (cf. Figures 1.1 and 1.2). Therefore, it is important to correctly describe

the electronic structure of the materials.

Band structure derives from the diffraction of the quantum mechanical electron waves

in a periodic crystal lattice with a specific crystal system and Bravais lattice [87] and deter-

mines several characteristics, in particular the material’s electronic and optical properties.

Several methods allow to calculate the electronic band structure of materials such

as (i) the k · p method based on the perturbation theory [194], (ii) the nearly-free elec-

tron model [87], (iii) the tight binding method [194], (iv) the density functional theory

(DFT) [53], or (v) Ab-initio quantum chemistry methods.

Figure 1.3 shows the electronic band structure of bulk silicon. Its indirect band gap is

Eg =1.1242 eV [20] at room temperature, and the direct band gaps are E′
0 =3.4 eV and

E0 =4.2 eV [31; 147].

Figure 1.4 shows the electronic band structures of two III-V semiconductor com-

pounds: Gallium Arsenide (GaAs, Figure 1.4a) and Aluminium Arsenide (AlAs, Fig-
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1.3. Electronic structure

Figure 1.3: Electronic band diagram of silicon. It includes the L, Λ, Γ, ∆, X , U , K, and
Σ symmetry points in the reciprocal space. E′

0, E0 and Eg are the two direct and the
indirect band gaps, respectively, and Ev indicates the top of the valence band.

ure 1.4b). Contrary to silicon, GaAs has a direct band gap (Γ point in the reciprocal space)

of E0 = Eg =1.424 eV [20] while AlAs is also an indirect band gap material with a gap (X

point) of Eg =2.153 eV [20]. The direct gap of AlAs (Γ point) is E0 =3.02 eV [20]. Elec-

tronic properties of GaAs/A1As short-period superlattices have been studied by Daran

et al [43].
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Figure 1.4: Electronic band diagrams of GaAs (a) and AlAs (b). It includes the L, Λ,

Γ, ∆, X , W , U , K, and Σ symmetry points in the reciprocal space. E0 and Eg are the

direct and the indirect band gaps, respectively.
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In order to understand and interpret Raman-Brillouin scattering spectra, it is impor-

tant to correctly describe the interaction between the electronic states and the acoustic

vibrations involved in the scattering process. Figure 2.1 shows experimental Raman-

Brillouin spectra of a thin Silicon-On-Insulator (SOI) membrane [172]. These spectra

show well-defined scattering by acoustic vibrations confined into the silicon layer (sketched

in Figure 2.2).

In this chapter I present calculations of Raman-Brillouin scattering using both the

PEM and RBQM in the case of freestanding silicon films with the aim of understanding

the experimental spectra shown in Figure 2.1. The main points addressed in this chapter
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Figure 2.1: (a) Experimental Raman-Brillouin spectra of a 32.5 nm thick SOI mem-
brane for two different resolutions. (b) Experimental Raman-Brillouin spectrum (dots)
compared to PEM simulation (black line). Figures taken from Reference [172].

are: i) the dependence of the Raman-Brillouin spectra simulated with the RBQM on the

optical excitation energy (resonance effects), ii) the comparison between the results of

the Photoelastic model and the Raman-Brillouin Quantum model, iii) the validity of the

step-like profile of the photoelastic constant used in the PEM.

2.1 Raman-Brillouin electronic density formalism

In this section I briefly recall the RBQM (Chapter 1) and introduce the effective Raman-

Brillouin electronic density for a free standing quantum film (cf. Figure 2.2) [128].

2.1.1 Raman-Brillouin quantum model

When the scattering process occurs at the conduction band, i.e. when the scatterers are

the electons, the Raman-Brillouin scattering rate is given by:

P(~ki, ~ks, ~km) =
2π

~

∣∣∣∣∣∣

∑

e,e′,h

〈h|Hs
e−pht |e′〉 〈e′|He−vib |e〉 〈e|Hi

e−pht |h〉
(Es − Ee′−h + iγe′−h)(Ei − Ee−h + iγe−h)

∣∣∣∣∣∣

2

δ(Es ± ~ωm −Ei),

(2.1)

where e, e′, and h′ are electron and hole eigenstates; Ee−h and γe−h are the energy and

the homogeneous line width of the e − h transition, respectively; Ee−h is defined as:

Ee−h = E0 + Ee + Eh where E0 is the bulk direct band gap and Ee (resp. Eh) is the

electron (resp. hole) confinement energy. Ei and Es = Ei ± ~ωm are respectively the
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2.1. Raman-Brillouin electronic density formalism

Figure 2.2: Sketch of Si membrane showing the first three confined electronic states
(n =1, 2, and 3) along the z-direction. The membrane is considered to be infinite along
the x- and y-directions.

incident and scattered photon energies, ~ωm being the energy of the absorbed or emitted

vibration mode m of frequency ωm. He−pht and He−vib are the electron-photon and

electron-vibration interaction Hamiltonians, respectively. A second contribution to the

scattering rate is given by the scattering by the holes where the initial and final eigenstates

are now e and the intermediate eigenstates are h and h′. Both contributions are taken into

account the following. The Raman-Brillouin intensity measured by an experimental setup

is then given by the non-coherent summation of all the contributions over the Brillouin

zone (BZ):

IRB(ωi, ωs) =

∫

BZ

P(~ki, ~ks, ~km)g(ωm)dωm, (2.2)

where g(ωm) is the density of vibration modes.

The conduction states e and e′ and valence states h can be described by Bloch wave-

functions ψe(h)(~r) = uc(v)(~r)φ(~r) where uc(v)(~r) are the atomic-like wavefunctions and

φ(~r) the slowly varying envelope functions.

For the sake of simplicity, I consider here only zero in-plane wavevector electron-hole

transitions. This restriction allows to discuss the relation between PEM and RBQM with

simplified notations and without loss of generality. It must be however reconsidered for

a detailed comparison with experiments.

Assuming that electrons and holes are perfectly confined within the film, the enve-
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lope wavefunctions are given by the Krönig-Penney model for thick barriers (i.e. infinite

quantum well approximation) [87; 91]

φnz
(z) =

√
2

Lz

sin

(
nzπz

Lz

)
, (2.3)

where nz is an integer and Lz ≪ Lx, Ly is the film thickness. The first four confined

electronic states of the membrane Ψkx,ky,nz
= φkx

φky
φnz

are plotted in the (y, z) plane

in Figure 2.3 and sketched in Figure 2.2. Wavefunctions along x- and y-directions φkx(y)

are planewaves of wavevectors kx(y).

Figure 2.3: First four envelope wavefunctions (nz =1, 2, 3, and 4) of a Lz = 10 nm,
Lx = Ly = 1000 nm silicon thin film plotted in the (y, z) plane. nx = ny = 1.

Using the parabolic band approximation to describe the electronic structure at the

center of the Brillouin zone (Γ point, Figure 1.3), the electron (resp. hole) confinement

energy is:

Enz

e(h) =
~

2π2

2me(h)

nz
2

L2
z

, (2.4)

where me and mh are respectively the electron and hole effective masses used in the
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2.1. Raman-Brillouin electronic density formalism

Table 2.1: Longitudinal sound velocity vL, density ρ, deformation potentials of the
conduction Dc and valence (averaged potential) Dv bands, and electron and hole effective
masses me/m0, and mh/m0 of silicon [67; 168]

.
vL (m.s−1) ρ (kg.m−3) Dc (eV) Dv (eV) me/m0 mh/m0

8430 2329 -2.46 2.0 0.28 0.49

calculations (cf. Table 2.1). Moreover, the bulk direct band gap of silicon is E0 = 4.2 eV.

It corresponds to direct transitions from the top of the valence band to the Γ2 conduction

band minimum [31; 147]. For this transition the parabolic band approximation is valid

at least around the Γ2 point (cf. Figure 1.3). Obviously, the confinement energies of

electrons and holes in very thin silicon layers are overestimated by the parabolic band

approximation (cf. Figure 1.3).

The electron-photon interaction Hamiltonian is given by

H
i(s)
e−pht =

q~p · ~Ai(s)

me

, (2.5)

~p being the momentum of the electron, q is the charge of the electron, and ~Ai(s) the vector

potential of the incident (resp. scattered) radiations. We assume deformation-potential

(DP) electron-vibration interaction involving longitudinal acoustic (LA) vibrations. Thus

the electron-vibration Hamiltonian, acting on the envelope wavefunctions, reads He−vib =

Dc(v)div ~u, where ~u is the displacement vector, andDc(v) is the conduction (resp. averaged

valence) band deformation potential energy (cf. Table 2.1). Using stress-free boundary

conditions at the film surfaces, the displacement field of confined LA vibrations along the

z-direction is given by

um(z) =

√
~

2ρV ωm

cos

(
mπz

Lz

)
, (2.6)

where ρ and V are the mass density and film volume within the cell, respectively. The

frequency of LA phonons, ωvib, assuming a linear dispersion, is proportional to the longi-

tudinal sound velocity vL and the phonon wavevector km = π m
Lz

, as ωvib = ωm = vLkm

(where m is an integer labeling the vibration mode).

When only one intermediate electronic state is resonantly excited by the probe light,

the sum of scattering amplitudes (Equation 2.1) can be limited to one term; the off-

resonance terms can be neglected. In that case the Raman-Brillouin peak positions and

intensities are directly related to the spatial distribution of the electronic density selected

by the optical excitation. Otherwise, one has to sum a large number of terms which
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leads to strong interference effects in the overall scattering efficiency. Therefore, the

characteristics of the Raman-Brillouin spectra can hardly be related to characteristic

features of the excited electronic states.

In order to overcome this difficulty, the Raman-Brillouin scattering rate (Equation 2.1)

can be rewritten introducing a Raman-Brillouin electronic density defined as [80; 128]

ρRB(Ei, Es, z) =
1

R(Ei, Es)

∑

e,e′,h

Rs
h,e′(Es)φ

∗
e′ (z)Ri

e,h(Ei)φe(z), (2.7)

where R
i(s)
e,h (Ei(s)) is a dimensionless resonance factor given by

R
i(s)
e,h (E) =

〈e|Hi(s)
e−pht |h〉

Ei(s) − Ee−h + iγe−h

(2.8)

and

R(Ei, Es) =
∑

e,h

Rs
h,e(Es)R

i
e,h(Ei) (2.9)

is a normalization factor satisfying
∫
ρRB(z)dz = 1.

ρRB(z) is determined by the sum over the initial hole states of the overlapping between

the effective electronic state
∑

e R
i
e,h(Ei)φe(z) excited at the probe laser energy Ei, and

the effective electronic state
∑

e′ Rs
h,e′(Es)φe′ (z) giving rise to emission of a scattered

photon at energy Es = Ei ± ~ωvib; ρRB(z) has real and imaginary contributions because

of the homogeneous broadening of the electron-hole transitions (Equation 2.8). Using

Equation 2.7, Equation 2.1 becomes

P(~ki, ~ks, ~km) =
2π

~

∣∣∣∣R(Ei, Es)Dc

∫
ρRB(z)

∂um(z)

∂z
dz

∣∣∣∣
2

δ(Es ± ~ωm − Ei). (2.10)

From Equation 2.10, it can be noticed that ρRB(z) is the electronic density distribu-

tion that interacts with the vibration field and is responsible for the Raman-Brillouin

scattering.

Strictly speaking Equation 2.10 does not contain new physics with respect to Equa-

tion 2.1 in the sense that both equations are equivalent. However, using Equation 2.10, it

is possible to plot an electronic density distribution which is directly connected to char-

acteristic features of the Raman-Brillouin spectra, although many electronic states are

involved in the light scattering.
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2.1.2 Photoelastic model

In the Photoelastic model, the Raman-Brillouin scattering efficiency by LA vibrations is

given by

P(~ki, ~ks, ~km) =
2π

~

∣∣∣∣
∫

~A∗
s(z)

~Ai(z)P (z)
∂um(z)

∂z
dz

∣∣∣∣
2

δ(Es ± ~ωm − Ei), (2.11)

where P (z) is the spatial variation of the photoelastic coefficient, and ~Ai (resp. ~As) is

the incident (resp. scattered) photon field.

In order to introduce the spatial variation of the incident and scattered photon fields

in a simple way, we can assume (for both PEM and RBQM) that Ai(s)(z) is of the form

cos
[
ki(s)(z − Lz/2)

]
, ki(s) being the incident or scattered photon wavevector component

along the z-direction. The in-plane component of the incident and scattered wavevectors

can be neglected in the backscattering configuration (excitation and detection along the

z-direction). Optical cavity effects, due to reflections at the material/air interfaces, may

play an important role because the symmetry of the electromagnetic fields inside the layer

is responsible for a selection of the confined vibration modes that gives rise to Raman-

Brillouin scattering. Although important for the interpretation of experimental data, such

effects are not addressed in this chapter. Moreover, with the form adopted for Ai(s)(z)

(standing waves) the backward and forward scattering configurations are equivalent.

Here, because the system consists of a single two-dimensional layer (cf. Figure 2.2),

P (z) is taken as a rectangular function. The photoelastic coefficient is constant inside the

layer and zero outside. In the following I will refer to this P (z) profile as a “step-like”

profile. In that case, the wavevector conservation law breaks down (along the z-direction)

and all acoustic vibration modes become allowed. Their Raman activity depends on their

symmetry (with respect to the middle of the layer) and on the electromagnetic fields

inside the layer (cf. Equation 2.11).

2.2 Results and discussion

2.2.1 Construction of the Raman-Brillouin electronic density

Figure 2.4 shows the spatial distribution of the RBED calculated using Equation 2.7 for

a film thickness Lz = 10 nm. Since I am interested in studying the change of the Raman-

Brillouin scattering around the fundamental electronic transition, ρRB(z) was generated

using the first fifteen electron and first fifteen hole states. A homogeneous broadening
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γe−h = 25 meV (thermal broadening at room temperature) was used for all transitions.

The RBED shown in Figure 2.4 was calculated for various values of the detuning between

the incident photon energy and the fundamental electron-hole transition; the detuning is

defined as: δ = Ei − (E0 + E1
e + E1

h) where E1
e (resp. E1

h) is the confinement energy of

the fundamental electron (resp. hole) state. A reduced detuning δ′ = δ/(E1
e +E1

h) and a

reduced broadening γ′ = γe−h/(E
1
e + E1

h) are also defined.

The scattered photon energy is fixed at the Stokes value Es = Ei −~ω1 corresponding

to emission of the first confined acoustic vibration mode.

Because ~ωvib ≪ γe−h, in-coming and out-going resonances occur simultaneously,

and the RBED is rather independent of the acoustic vibration energy (this point will be

reconsidered later on).

Figure 2.4: Modulus of the Raman-Brillouin electronic density along the z-axis of a
10 nm thick layer, for reduced detuning ranging from δ′ = −7 to δ′ = 12. The reduced
homogeneous broadening is γ′ = γe−h/(E

1
e +E1

h) = 1.2. The plots were shifted vertically
for clarity: the origin being at z = 0.

For excitation well below the fundamental electron-hole transition (δ′ = −7 and −4)

, the RBED distribution within the layer is quasi-uniform (i.e. constant except in the

vicinity of the film surfaces). In this situation (far from resonance), there is no selection

of a particular transition. Close to resonance (δ′ = −1.5), the contribution of the first

confined electron-hole transition emerges and becomes dominant for resonant excitation

(δ′ = 0). Higher energy confined transitions come into resonance, for δ′ = 2, 7 and 12,

and give rise to strong oscillations of the RBED.

Figure 2.5 shows resonance profiles calculated according to Equation 2.9 for three
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Figure 2.5: Raman-Brillouin intensity as a function of the detuning δ′ for a 10 nm
thick layer. Resonance profiles are shown for homogeneous broadening γ = 2.5 meV
(γ′ = 0.12), 25 meV (γ′ = 1.2) and 250 meV (γ′ = 12).

values of the reduced homogeneous broadening γ′ = γe−h/(E
1
e + E1

h). For rather small

homogeneous broadening (γ′ = 0.12 and 1.2) resonance peaks occur at each confined

electron-hole transition: the selection of a given transition by the optical excitation is

very efficient and the light scattering is mediated by the corresponding electron and hole

states. For larger homogeneous broadening (γ′ = 12), many electron-hole transitions

are excited leading to interferences between different scattering paths: the low-energy

tail (negative detuning in Figure 2.5) is due to the resonance effect and also to the fact

that, for negative detuning, all scattering amplitudes have nearly the same phase (that

of the optical excitation). In that case, the interferences between the different scattering

amplitudes (terms of the summation in Equation 2.7) are constructive. Whereas, for

positive and large detuning (δ′ ≫ 1) some scattering amplitudes have a positive phase

and others a negative phase depending on whether the energy of the excited (and detected)

electron-hole transition is larger or smaller than the excitation energy. As a consequence,

the scattered intensity falls down for positive detuning due to destructive interference

between all scattering amplitudes.

Figure 2.6 shows the construction of the Raman-Brillouin electronic density for δ′ =

−7 and γ′ = 1.2 (plotted in Figure 2.4). The number n for electron and hole states is

increased from 1 to 15.

It can be noticed that even for excitation well below (δ′ = −7) the fundamental
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electron-hole transition, high energy transitions play an important role in the construction

of the RBED (i.e. in the scattering process). For instance, the maximum value of the

RBED reaches only 91 percent of its final value (inset of Figure. 2.6) when including 3

electron and 3 hole states. The convergence curves and the plots in Figure 2.6 show that

the RBED tends to be quasi-uniform and does not evolve once 10 electron and 10 hole

states are taken into account.

As can be noticed, the convergence of the RBED is very rapid. This allows generating

Raman-Brillouin spectra, within a reasonable computation time, even for large systems.

Figure 2.6: Construction of the RBED for δ′ = −7 (excitation below the fundamental
optical resonance) and γ′ = 1.2. n is the number of electron and the number of hole
states used in the calculations. Starting from the lowest plot n = 1 (one electron and one
hole states), n is increased up to 15. The inset shows convergence curves defined as µ =
||ρn

RB,max|− |ρn−1
RB,max||/|ρn

RB,max| (circles) and η = 1−||ρ15
RB,max|− |ρn

RB,max||/|ρ15
RB,max|

(stars).

From Equation 2.7 it is evident that the RBED has a real part and an imaginary

part; the latter is due to the homogeneous broadening of the electronic transitions. For

δ′ = −7 and γ′ = 1.2 the imaginary part of the RBED is rather small in comparison with

the real part. It however, increases when approaching the resonance and has a noticeable

influence on the spatial distribution of |ρRB(z)|.
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2.2.2 Size dependence of the RBED

The lower panel in Figure 2.7 shows the spatial distribution of the RBED along the z-axis

for various layer thicknesses Lz. The excitation energy Ei and homogeneous broadening

γ are fixed at 4.075 eV and 25 meV, respectively. In that case, the reduced detuning δ′

and homogeneous broadening γ′ depend on the layer thickness as indicated in the figure

caption. For very thin layers (Lz = 2 nm) both δ′ and γ′ are small. Then, the fundamental

electron-hole transition is efficiently selected by the optical excitation. For this reason the

RBED reduces to the density distribution associated with the first confined electron and

hole states (Equation 2.3). With increasing layer thickness, the energy separation between

the confined electronic states decreases and many transitions come into resonance. This

leads to a quasi-uniform distribution of the RBED for Lz = 10 and 25 nm as shown

in Figures 2.6 and 2.7. However, for Lz = 100 nm the RBED oscillates and strongly

deviates from a quasi-uniform distribution. In fact, it is the wavevector conservation law

that starts to come out with increasing layer thickness.

Indeed, for ki(s)Lz ≪ 1, i.e. for a layer thickness much smaller than the (incident

and scattered) photon wavelength (around 150 nm inside the layer) the electromagnetic

fields Ai(z) and As(z) are slowly varying functions along the z-axis. Therefore, the

electron-photon matrix elements are proportional to the overlapping between the electron

and hole wavefunctions. Thus, only electron and hole states having the same envelope

wavefunctions are relevant for both the photon absorption and emission steps. As a

consequence, the intermediate states e and e′ in Equations 2.1 and 2.10 are inevitably

the same and the RBED is composed of diagonal matrix elements. The RBED plotted

in Figures 2.5 and 2.6 are mainly due to such diagonal contributions (ki(s)Lz ≈ 0.1).

Off-diagonal transitions have been taken into account but are negligible for Lz . 10 nm.

Figure 2.8 shows the spatial distribution of both diagonal and off-diagonal Raman-

Brillouin electronic densities. For these plots, Ei and γ are varied so that the reduced

detuning and homogeneous broadening are fixed (δ′ = −7 and γ′ = 1.2). This allows to

compare similar resonance conditions for the different layer thicknesses.

With increasing layer thickness the off-diagonal part of the RBED increases and be-

comes important for Lz = 100 nm (Figure 2.8). Indeed, for a layer thickness comparable

to the absorbed and emitted photon wavelengths, ki(s)Lz ∼ 1, the spatial variation of the

electromagnetic fields allows transitions between electron and hole states having different

envelope wavefunctions. Therefore, different states e and e′ in Equations 2.1 and 2.10 can

be involved in the light scattering. In the limit of ki(s)Lz & 1 the RBED involves only

transitions that fulfill the wavevector conservation rule at the electron-photon interaction
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Figure 2.7: Lower panel: Modulus of the RBED along the z-axis for layer thickness
ranging from Lz =2 nm to 100 nm. The excitation energy is fixed at Ei = 4.075 eV
and the homogeneous broadening is γ = 25 meV. Reduced detuning and homogeneous
broadening (δ′, γ′) are, from bottom to top, (-1.2, 0.05), (-7, 1.2), (-38, 7.4) and (-590,
120). For each Lz are shown the step-like profile (bold dotted line) and the trapezoid-like
profile (bold dashed line); z− and z+ are the z-coordinates (dashed lines) which define
the trapezoid. Upper panel: deviation of the step-like and trapezoid-like profiles from the
RBED evaluated as ξstep(trap) = |Sstep(trap) −

∫
|ρRB(z)|dz|/

∫
|ρRB(z)|dz.
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steps (emission and absorption). In that case states e and e′ differ by the exchanged

wavevector.

It is interesting to notice that the RBED shown in Figure 2.8 for Lz = 2 nm strongly

differs from the one plotted in Figure 2.7 for the same layer thickness. The reduced

detuning is not the same in these figures. In Figure 2.8 the optical excitation is well

below (δ′ = −7) the electron-hole transition. It is much larger, in absolute value, than

the separation between the confined energy levels. In that case, the resonance factors

associated with the different transitions are similar. That is why the RBED tends to be

quasi uniform for a very negative detuning.

The study of the RBED distribution shows that the optical transitions giving rise to

the light scattering process strongly depends on size effects. This is particularly impor-

tant for the emission and absorption of vibration modes and for the interpretation of

experimental data.

Figure 2.8: Diagonal (ρon
RB) and off-diagonal (ρoff

RB) RBED modulus along the z-axis for
Lz = 2 nm, 10 nm, 25 nm and 100 nm. Detuning and homogeneous broadening are
respectively δ′ = −7 and γ′ = 1.2

In the photoelastic model a step-like photoelastic coefficient (constant within the layer

and zero outside) is usually assumed.

By comparing Equation 2.10 and Equation 2.11 it can be noticed that the product
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A∗
s(z)Ai(z)P (z) can be identified with the RBED ρRB(z). For ki(s)Lz ≪ 1 (i.e. nano-

sized layer thickness), A∗
s(z)Ai(z) is rather constant and thus it is mainly the photoelastic

coefficient profile that determines the Raman-Brillouin spectra in the photoelastic model.

That is why, in the following, a direct comparison between ρRB(z) and P (z) is shown.

First, as can be seen in Figure 2.7, the RBED is far from being constant within the

layer; it vanishes at the film surfaces because only the first confined transitions signifi-

cantly contribute to the RBED (Figure 2.6).

In other words, if all transitions could equally contribute to the light scattering, the

RBED would approach a step-like profile. This is of course not the case since high energy

transitions are far away from the optical excitation, thus leading to very small resonance

factors.

The top panel in Figure 2.7 presents a comparison between the RBED distribution, the

step-like profile usually adopted for the photoelastic coefficient and a proposed trapezoid-

like profile. This comparison is performed for fixed excitation energy (Ei = 4.075 eV) and

homogeneous broadening (γ = 25 meV). The parameter used to evaluate the deviation of

the RBED from the step-like or from the trapezoid-like profile is defined as:

ξstep(trap) =

∣∣Sstep(trap) −
∫
|ρRB(z)| dz

∣∣
∫
|ρRB(z)|dz , (2.12)

where Sstep(trap) is the integral of the step-like (resp. trapezoid-like) profile over the

layer thickness. The amplitude of the step-like and trapezoid-like profiles are fixed to the

maximum value of the RBED inside the layer (cf. Figure 2.7).

It is clear that the step-like profile shows strong deviations from the RBED for very

narrow layers (less than 10 nm). The trapezoid-like profile fits much better the RBED

distribution. In other words, by forcing the photoelastic coefficient to vanish at the layer

surfaces, the quantum nature of the thin film is, in that artificial way, taken into account

(the thin layer is no longer considered simply as a part of a bulk material from the point

of view of the optical properties). For Lz & 30 nm the RBED starts to oscillate (cf. plot

for Lz = 100 nm in Figure 2.7). It strongly deviates from the step-like and trapezoid-like

profiles because the spatial variation of A∗
s(z)Ai(z) is not taken into account when only

the photoelastic coefficient is plotted.

Second, by studying the variation of the RBED as a function of Lz it is possible to

propose trapezoid-like profiles that fit the RBED for layer thicknesses ranging from 2 nm

to 25 nm; the parameters z− and z+ defined in Figure 2.7 are z− = 0.74 nm+0.13Lz

and z+ = −0.74 nm+0.87Lz, where Lz is in nanometers. Notice that for very thin

layers (Lz = 2 nm in Figure 2.7) the trapezoid-like profile becomes a triangle-like profile
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and obviously it strongly deviates from a step-like profile. By comparing the RBED

distribution with these profiles it clearly appears that, for layer thickness ranging from

2 nm to 25 nm, the proposed trapezoid-like profile is more realistic than the step-like

profile usually assumed for the photoelastic coefficient. For larger layer thickness (Lz &

25 nm) the deviations of the step-like and trapezoid-like profiles from the RBED indicate

that the A∗
sAi terms should be taken into account, even for Lz about five times smaller

than the photon wavelengths.

Finally, strong deviations of the RBED distribution from the step-like and trapezoid-

like photoelastic profiles are evident if resonant excitation is considered (cf. Figure 2.4):

both profiles are unable to approximate the RBED for excitation close to and above

the fundamental electron-hole transition. The PEM, in which a real and dispersion-less

photoelastic coefficient is assumed, is valid only for excitation below the fundamental

electron-hole transition. That is why the RBQM and PEM are compared for negative δ′

in Figure 2.7.

The emission and absorption of acoustic vibrations will now be investigated and the

inelastic light scattering spectra simulated using the RBED (quantum model) and the

photoelastic model, in which either the step-like or trapezoid-like profile of the of the

photoelastic constant is assumed, will be compared.

2.2.3 Simulations of Raman-Brillouin spectra

2.2.3.1 Diagonal/off diagonal contributions

Figure 2.9 presents Raman-Brillouin spectra calculated using Equation 2.10. The peaks in

the Stokes and anti-Stokes regions are due to emission and absorption of confined acoustic

vibrations (their frequencies scale as the inverse of the layer thickness Lz). For each Lz

the spectra simulated with either diagonal or off-diagonal RBED are shown in Figure 2.8.

One must however keep in mind that the overall scattered intensity is the coherent sum

of the diagonal and off-diagonal contributions.

As mentioned above, for Lz = 2 nm, 10 nm and 25 nm the Raman-Brillouin spectra

are mainly determined by the diagonal part of the RBED. Off-diagonal RBED contributes

only a little to the light scattering. It also means that, for ki(s)Lz ≪ 1, mainly diagonal

electron-vibration matrix elements are responsible for the inelastic light scattering. This

can be deduced directly from Equation 2.1 by letting the intermediate states e and e′ be

the same. With increasing layer thickness off-diagonal electron-vibration matrix elements

come out since the excited electronic state e can be different from the one, e′, giving

rise to the optical emission of the scattered photon. The off-diagonal contribution to the
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Figure 2.9: Inelastic light scattering spectra simulated according to the Raman-Brillouin
quantum model for fixed δ′ = −7 and γ′ = 1.2. For each thickness Lz, the scattered
intensity has been separated into diagonal (Ion) and off-diagonal (Ioff) contributions.
When it is too weak Ioff has been multiplied by the indicated rescaling factor. Calculations
were performed for a limited number of low-frequency confined modes. The inset shows
the evolution of Ion, Ioff and Ion/Ioff as a function of layer thickness. For these plots the
intensities were integrated over the whole spectrum

Raman-Brillouin spectra becomes dominant for ki(s)Lz ≫ 1 (cf. plots for Lz = 100 nm

in Figure 2.9). For infinite systems the diagonal contribution is forbidden whereas the

off-diagonal contribution gives a single scattered peak: a Brillouin peak located at the

acoustic vibration frequency of the wavevector km = ki − ks.

The inset in Figure 2.9 shows the evolution of the diagonal (Ion) and off-diagonal

(Ioff) Raman-Brillouin intensities as a function of the layer thickness. These curves are

particularly important for analyzing experimental data. Indeed, since the intensity ratios

between the Raman-Brillouin lines, due to confined acoustic vibrations, strongly depend

on the spatial distribution of the electronic density it is important to evaluate, for a given

layer thickness, the relative contributions of diagonal and off-diagonal RBED as both do

not have the same spatial distribution (Figure 2.8). From the evolution of Ion and Ioff it

can be noticed that for (Lz . 30 nm) the contribution of the off-diagonal RBED to the
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Raman-Brillouin scattering can be neglected.

Notice that for Lz = 25 nm and 100 nm the anti-Stokes intensity is larger than the

Stokes intensity because of the stronger outgoing resonance for the anti-Stokes scattering.

As a matter of fact, δ′ = −7 and γ′ = 1.2 correspond to detuning δ = −1.25 meV and

homogeneous broadening γ = 0.25 meV for Lz = 100 nm. These values indicate that the

energy separation between the Stokes and anti-Stokes frequencies is comparable to the

detuning and smaller than the homogeneous broadening. In that case strong differences

between outgoing resonances in the Stokes and anti-Stokes regions can indeed be expected.

2.2.3.2 Step-like, trapezoid-like and RBED profiles

Figure 2.10 shows the spectra calculated in the framework of the Raman-Brillouin quan-

tum model and of the photoelastic model for a layer thickness Lz = 10 nm. The trapezoid-

like photoelastic coefficient used in the PEM is the one that fits the RBED for Lz = 10 nm

(cf. Figure 2.7). Each spectrum was normalized to the intensity of the first low-frequency

peak. Some differences in the peak intensity ratios can be noticed. These differences lie

in the spatial distribution of the RBED and of the photoelastic coefficient profiles.

As indicated in Figure 2.10, the intensity ratios of the peaks generated with the PEM

using either the step-like or the trapezoid-like profile are different. The wavelengths of

the lowest frequency peaks associated with the m = 1 and m = 3 confined modes (cf.

Equation 2.6) are comparable to the layer thickness. They are less sensitive to the details

of the photoelastic coefficient profile than the vibration modes at higher frequencies.

Indeed, the Raman-Brillouin intensities of the high frequency peaks due to the m = 5, 7,

9 and 11 modes are overestimated by the step-like photoelastic profile.

In Figure 2.11 the trapezoid-like/step-like Raman-Brillouin intensity ratios is shown

as a function of layer thickness Lz. These ratios are calculated using the analytical

expression

Itrap

Istep

=

[
sin(kmz−)

kmz−

]2

(2.13)

which is a simple squared sinc function, where km = mπ/Lz. The trapezoid-like profiles

(characterized by z−) are those discussed in the previous section, and plotted in Fig-

ure 2.7. These profiles were obtained for a fixed excitation energy (Ei = 4.075 eV) and

homogeneous broadening (γ = 25 meV), and for layer thickness ranging from 2 nm to

25 nm (plotted range in Figure 2.11). It can be seen that the convergence between the

trapezoid-like and step-like models is rather rapid for the first confined mode m = 1. The

intensity ratio is around 0.4 for Lz = 2 nm and reaches 0.9 for Lz = 17 nm. For the

m = 3 mode this ratio is only 0.33 at Lz = 17 nm and less than 0.05 for the m = 5 and 7
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Figure 2.10: Inelastic light scattering spectra simulated according to the Raman-Brillouin
quantum model (δ′ = −7 and γ′ = 1.2) and using the photoelastic model with step-like
and trapezoid-like profiles of the photoelastic coefficient. The layer thickness is 10 nm.
Each spectrum has been normalized to the intensity of the first low-frequency peak (out
of the vertical scale). The intensity ratios, with respect to the first peak, are indicated
for the anti-Stokes scattering.

modes. The shorter the wavelength is (in comparison with z−) the greater the sensitivity

to the photoelastic profile is.

In most of the published works [30; 64], the photoelastic model, with the crude assump-

tion of a step-like photoelastic coefficient, succeeded in simulating the acoustic vibrations

induced Raman-Brillouin scattering and the modulation of the optical response observed

in time-resolved pump-probe experiments. However, in some cases, for instance in short

period superlattices (i.e. with layer thicknesses smaller that the acoustic wavelengths), or

for excitation close to optical resonances [161], strong deviations between measured and

calculated Raman-Brillouin intensities are noticed. In these situations the photoelastic

profile can strongly deviate from a step-like profile as shown in Figures 2.4, 2.6 and 2.7.

Therefore, we propose to improve the PEM (in the high vibration frequency range) by

using trapezoid-like, instead of step-like, profiles for the photoelastic coefficient. The de-

pendence of these profiles on the layer thickness is also relevant and has been discussed
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Figure 2.11: Raman-Brillouin intensity ratio Itrap/Istep as a function of the layer thick-
ness Lz, calculated using the PEM with either the trapezoid-like or the step-like pho-
toelastic profiles. The trapezoid-like profiles are those fitting the RBED for excitation
energy Ei = 4.075 eV and homogeneous broadening γ = 25 meV. Results are shown for
the m = 1, 3, 5, and 7 confined vibration modes.

in the previous section. Nevertheless, it is important to keep in mind that these profiles

depend on the excitation energy.

Moreover, experimental data were reported in Reference [172] on silicon membranes

with thicknesses ranging from 24 nm to 32 nm (cf. Figure 2.1). The light scattering

was excited below the fundamental direct transition. It has been shown that the PEM

with a step-like photoelastic constant, well accounts for the Raman-Brillouin intensities

associated to the first confined acoustic vibrations. However, some deviations of the

simulated spectra from the measured ones can be noticed for the high frequency confined

vibrations (cf. Figure 2.1b). According to Figure 2.7 differences between the Raman-

Brillouin intensities calculated with the trapezoid-like and step-like profiles are indeed

expected for such thin layers. It is worthwhile to mention that due to the low scattering

efficiency of very thin layers, experiments are usually performed close to resonance with

some optical transitions involving confined electronic states. This enhances the Raman-

Brillouin scattering but the latter can no longer be described in the framework of the

PEM independently of the profile of the photoelastic constant used (trapezoid-like or

step-like). As shown in Figure 2.4 the RBQM is more appropriate in the case of resonant

excitation.

It is worthwhile to underline that the experimental Raman-Brillouin peak intensities

strongly depend on the incident and scattered photon fields [172], i.e. on the scattering
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configuration (forward and backward scattering). In these calculations a simple standing

electromagnetic waves (cosine functions) were considered. More complete modeling of the

optical properties is required to compare directly with experiments.

The scattered intensities calculated with the RBQM differ from those obtained with

the PEM for both the step-like and trapezoid-like profiles. Although, the latter is based

on a good approximation of the RBED distribution inside the layer, it does not take

into account explicitly outgoing resonance effects. Indeed, the RBED depends on the

excitation energy, optical transitions (energy, homogeneous broadening) and also on the

scattered photon energy, i.e. on the vibration mode energy (resonance factor for the

outgoing photons in Equation 2.9). This was not taken into account while fitting the

RBED with trapezoid-like profiles. In other words, the vibration energies were assumed

to be smaller than the homogeneous broadening of the electronic transitions and thus

identical resonance factors for the incident and scattered photons are considered. It can be

noticed from Figure 2.10 that the explored vibration energy range (40 meV in both Stokes

and anti-Stokes regions) is larger than the homogeneous broadening (γ = 25 meV) of the

optical transitions. Thus, strictly speaking, for a given layer thickness and excitation

energy, a particular trapezoid-like profile should be determined for each scattered photon

energy (i.e. for each emitted or absorbed vibration mode) for the description to be fully

correct. This points out the limitations of the PEM to describe acoustic vibrations, even

if size-dependent trapezoid-like profiles are included.

The limitations of the PEM pointed out, as well as the improvements proposed in this

chapter are of importance for the interpretation of Raman-Brillouin scattering measure-

ments in more complex nanostructures. An application of the theoretical approach will

be further discussed in the case of semiconductor superlattices in the following chapter.
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In the previous chapter, I have introduced a Raman-Brillouin electronic density (RBED)

by combining the electronic transitions and electronic states of a system according to their

relative contribution to the light scattering process [80; 128]. This approach allows to gen-

erate electronic density profiles that capture the physics of the electron-vibration interac-

tion, and related Raman-Brillouin spectra, even though thousands of electronic transitions

may be involved. Indeed, the RBED is useful when a large number of electronic tran-

sitions are excited by the optical probe. This is for instance the case of semiconductor

quantum dots excited close to E1 transitions characterized by flat valence and conduc-

tion band dispersions (i.e. large effective masses) [80]. In that situation, interferences

between the numerous scattering paths take place, thus blurring the connexion between

the Raman-Brillouin spectral features and the excited electronic states. Moreover, it has
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been shown that the RBED is the link between the widely used Photoelastic model of the

Raman scattering and quantum models which account for optical resonance effects.

The present chapter is devoted to the implementation of the Raman-Brillouin elec-

tronic density for two-dimensional periodic nanostructures [188]. Indeed, short period

GaAs/AlAs superlattices (SL) are considered here as a model system where the utility

of the RBED can be tested [98]. Direct comparison between simulated and measured

spectra will be presented. For each SL, the spatial distribution of the RBED will be

studied for various excitation energies. It is shown how these RBED profiles, combined

with the symmetry of the acoustic vibration modes, allow for a clear understanding of the

resonant Raman-Brillouin scattering in complex nanostructures where periodicity, quan-

tum confinement, layering of the vibrational properties and optical selection of electronic

transitions are simultaneously present. Moreover, the RBED profiles are compared to the

step-like profile of the Photoelastic coefficient. I show why the profile of this coefficient

underestimates or overestimates the electron-vibration interaction thus leading to erro-

neous Raman-Brillouin scattering intensities of folded acoustic vibrations. The originality

of the work presented in this chapter lies in the implementation of the RBED as a theo-

retical tool to understand and interpret the main tendencies observed experimentally in

complex nanostructures. With use of this formalism it is possible to describe variations

of acoustic vibration features, such as doublets in the spectrum that were not possible to

explain previously and fell out of the scope of the standard photoelastic model [92].

3.1 GaAs/AlAs superlattices

In this section superlattice systems that consist of periodic GaAs/AlAs quantum wells

will be considered (cf. Figure 3.1). Three GaAs/AlAs superlattices with nearly the same

nominal folding frequency (dGaAs/vGaAs + dAlAs/vAlAs)
−1 = 1.2 THz and different GaAs

(dGaAs) and AlAs (dAlAs) thicknesses are studied. vGaAs and vAlAs are the longitudinal

sound velocities in GaAs and AlAs. In Table 3.1 the nominal parameters characterizing

both materials, as well as the parameters deduced from X-Ray diffraction are shown.

The measured thicknesses are very close to the nominal ones. It is well known that

changing the well/barrier thickness ratio in SLs leads to strong variations of the associated

Raman signature (cf. Section 3.2.1) [30]. Our samples correspond to three different values

of the well/barrier thickness ratio (dGaAs

dAlAs
≈ 2.32, 0.82 and 0.28) while the SLs period

d = dGaAs + dAlAs is almost the same (around 4.4 nm). The samples SL1, SL2, and

SL3 were chosen to allow for a detailed investigation of their Raman-Brillouin scattering

properties covering the three situations dGaAs

dAlAs
< 1, dGaAs

dAlAs
= 1 and dGaAs

dAlAs
> 1.
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3.1. GaAs/AlAs superlattices

Figure 3.1: Sketch of GaAs/AlAs superlattice and potential profile of conduction and
valence bands along the growth direction (z-direction).

Table 3.1: Parameters describing three periodic GaAs/AlAs superlattices, SL1, SL2, and
SL3. Number of periods, nominal and measured thicknesses dGaAs(AlAs) of the GaAs
(resp. AlAs) layer, and type of the three superlattices.

Sample
Number of dGaAs (nm) dGaAs (nm) dAlAs (nm) dAlAs (nm) xAlAs Type

periods nominal measured nominal measured measured

SL1 200 2.954 2.90 1.173 1.25 0.3 I
SL2 200 1.969 2.00 2.346 2.43 0.54 II
SL3 200 0.985 0.99 3.519 3.55 0.78 II

An optical evidence of the direct-to-indirect-gap transition in GaAs-A1As short-period

superlattices has been evidenced has been pointed out by Danan et al [? ]. The optical

properties of the studied superlattice allow them to distinguish direct type-I SL on the

one hand, or indirect type-II SL, on the other hand.

Raman-Brillouin measurements have been performed by Bernard Jusserand and co-

workers at the Institut des NanoSciences de Paris [98]. The spectra have been recorded at

room temperature, in near-backscattering (BS) configuration, using a Dilor XY800 triple

spectrometer in the subtractive mode and a CCD detector. Six excitation wavelengths

from an Argon ion laser and from a near infrared tunable Ti:Sa laser have been used.

The Stokes Raman spectra, normalized either to the first (SL1) or to the second (SL2

and SL3) acoustic mode, are shown in Figure 3.2. In agreement with the design of the
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Figure 3.2: Color plots: Raman-Brillouin spectra recorded from the three superlattices
SL1, SL2, and SL3. The excitation energies Ei are indicated in the central panel. The
black spectra have been calculated using the PEM at Ei =1.65 eV. The drawings at the
top of the panels help to visualize the GaAs(blue)/AlAs(red) thickness ratio. Raman-
Brillouin measurements performed by B. Jusserand and co-workers at the Institut des
NanoSciences de Paris.

samples (constant period), the average Raman shift of the acoustic vibration doublets is

nearly the same for the three SLs and independent on the excitation energy, while the

doublet splitting reflects the energy dependence of the vibration wavevector probed in

BS and the slight variation of the average sound velocity from sample to sample. The

relative intensity of the first and second doublets and of the two components of each

doublet displays strong variations from sample to sample: changes of the intensity ratio

between the spectral components of the first acoustic doublet and the scattering by the

second acoustic doublet [21; 159; 160].

3.2 Raman-Brillouin electronic density formalism

The experimental results shown in Figure 3.2 can be interpreted using either the Photoe-

lastic Model (PEM) or the Raman-Brillouin Quantum Model (RBQM), as described in

detail in the previous chapter. In the RBQM, the SL electronic eigenstates are taken into
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account explicitly.

3.2.1 Photoelastic model

For scattering by longitudinal acoustic (LA) vibrations, the Raman-Brillouin intensity

is given by Equation 2.11. For superlattices, the photoelastic coefficient P (z) is now a

step-like periodic function along the superlattice axis, given by P (z) = 0.48 in GaAs and

P (z) = 0.005 in AlAs [37]. The displacement fields of LA vibrations are calculated as a

linear combination of reflected and transmitted waves using the transfer matrix method as

described in References [76] and [180]. The displacement field um(z) is normalized over

the whole superlattice. Dispersion relation of the LA vibrations in the case of infinite

superlattice is given by [30]:

cos(qd) = cos

[
ωq

(
dGaAs

vGaAs

+
dAlAs

vAlAs

)]
− ǫ2

2
sin

(
ωq

dGaAs

vGaAs

)
sin

(
ωq

dAlAs

vAlAs

)
, (3.1)

where q is the LA vibration wavevector and

ǫ =
̺GaAsvGaAs − ̺AlAsvAlAs√
̺GaAsvGaAs̺AlAsvAlAs

(3.2)

is a parameter describing the contrast between the acoustic impedances ̺GaAs(AlAs) of

both materials. The LA vibration dispersion is shown in Figure 3.3 for the three studied

superlattices (considered as infinite). Equation 3.1 allows for extracting the eigenfrequen-

cies ωq of the LA vibration modes.

For both PEM and RBQM, an incident (resp. scattered) electromagnetic field Ai(s)(z)

of the form exp(iki(s)z) is considered, where ki(s) is the incident (resp. scattered) photon

wavevector component along the z-direction. The in-plane component ~k‖ of the incident

and scattered wavevectors are neglected.

In Figure 3.2, the Raman-Brillouin spectra calculated using the PEM (Equation 2.11)

are shown as solid black lines at the bottom. The PEM spectra were generated with

a transferred wavevector corresponding to the near infrared excitation (Ei=1.65 eV).

The PEM intensities do not depend strongly on the excitation energy. In contrast, it

is very clear from the measured spectra (Figure 3.2) that significant variations of the

Raman-Brillouin intensities with excitation energy are observed experimentally. These

variations cannot be described by the photoelastic model. The most evident discrepancy

is the absence of the second doublet in the near infrared spectra of SL1 and SL3 (red

line in Figure 3.2). Moreover, strong intensity variations of the second acoustic doublet

69



CHAPTER 3. RAMAN-BRILLOUIN ELECTRONIC DENSITY IN
SUPERLATTICES

Figure 3.3: Left panel: Dispersion of LA vibrations for the superlattices, SL1 (green), SL2
(red) and SL3 (blue), calculated from Equation 3.1. The acoustic branches are identified

as (±1) and (±2). Right panels: Deformation field div[um(z )] = ∂um(z)
∂z

of the modes
(±1) and (±2), calculated using the transfer matrix method for each finite superlattice
and excitation energy. The deformations are shown within a unitary cell, centered on the
GaAs layer. The black dashed lines indicate the GaAs/AlAs interfaces.

and of the intensity ratio within the first acoustic doublet are observed depending on the

excitation energy.

3.2.2 Raman-Brillouin quantum model

Similarly to the PEM, the RBQM introduced in Chapter 2, and in particular Equation 2.1,

can be adapted to the case of the superlattices. e, e′ and h are now the electron and hole

eigenstates of the GaAs/AlAs superlattices. The electron-photon interaction Hamilto-

nian is given by Equation 2.5, where ~Ai(s) is the potential vector of the incident (resp.

scattered) light within the superlattice. The deformation-potential interaction between

the electronic states and the LA vibrations is now given by He−vib = De(h)(z)div [~um(z )],

where De(h)(z) is a step-like periodic function describing the electron (resp. hole) defor-
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mation potential [184; 189].

The sum in Equation 2.1 runs over all intermediate conduction states e and e′ and

initial valence states h. For the sake of simplicity, only zero in-plane wavevector electron-

hole transitions will be considered. Each state is described by a Bloch wavefunction

Ψe(h)(~r) = υe(h)(~r)φe(h)(z) where υe(h)(~r) is the atomic-like wavefunction of the electrons

(resp. holes) and φe(h)(z) the envelope wavefunction along the superlattice axis. The

latter is calculated by solving Schrödinger equation numerically and assuming parabolic

dispersion of the valence and conduction bands (cf. Figure 1.4). The validity of this

Krönig-Penney model [87; 91] is discussed further. Calculations are performed for the real

superlattices: the fact that the SL size is limited by the surface and substrate presence

has been taken into account. However, the superlattices length was limited to 40 periods

to keep within reasonable computation time. As a matter of fact, it is possible to check

that the results do not differ significantly when changing the number of periods from 20

to 40. Figure 3.4 shows the calculated subbands for electrons (blue) and holes (red) in

SL1. A zoom-in of the first electron subband helps to visualize the spatial localization as

well as the symmetry of the first five electron states within the SL.

Figure 3.4: Left panel: Electronic subbands calculated using the parabolic band approx-
imation in SL1. The electron (blue) and hole (red) subbands are shown in the potential
profiles of the valence and conduction bands. Right panel: Zoom-in showing the first five
electron states of the first subband.

Similarly to the case of the thin films, it is possible to introduce a Raman-Brillouin

electronic density which combines the superlattice wavefunctions of the intermediate elec-

tronic states according to their incoming and outgoing resonance factors by rewriting the
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inelastic light scattering efficiency (Equation 2.1). However, contrary to Chapter 1, the

RBED is here split into two different components: the electron RBED ρe
RB and the hole

RBED ρh
RB . For a scattering process mediated by the conduction electrons, the normal-

ized RBED is

ρe
RB(z) =

1

R

∑

e,e′,h

Rs
h,e′φ∗e′ (z)Ri

e,hφe(z), (3.3)

where the resonance factors Ri
e,h and Rs

h,e′ are given by:

Ri
e,h =

〈e|Hi
e−pht |h〉

Ei − Ee−h + iγe−h

(3.4a)

Rs
h,e′ =

〈h|Hs
e−pht |e′〉

Es − Ee′−h + iγe′−h

. (3.4b)

The scattering paths involving hole-vibration interactions give rise to:

ρh
RB(z) =

1

R

∑

e,h,h′

Rs
e,h′φ∗h′(z)Ri

h,eφh(z), (3.5)

where R is given by Equation 2.9. The overall Raman-Brillouin scattering rate is now

given by:

P(~ki, ~ks, ~km) =
2π

~

∣∣∣∣R
∫ [

De(z)ρ
e
RB(z) +Dh(z)ρh

RB(z)
] ∂um(z)

∂z
dz

∣∣∣∣
2

δ(Es ± ~ωm − Ei).

(3.6)

From Equation 3.6, Rρ
e(h)
RB (z) appears as the electronic density distribution interacting

with the vibration modes and giving rise to the Raman-Brillouin scattering. Rρ
e(h)
RB (z) are

complex functions (Equation 3.4) because of the homogeneous broadening of the electron-

hole transitions (Table 3.2) and because the photons potential vectors are complex.

Similarity between Equations 2.11 and 3.6 can be noticed. RDe(h)(z)ρ
e(h)
RB (z) in Equa-

tion 3.6 plays the same role as A∗
s(z)Ai(z)P (z) in Equation 2.11. Since RDe(h) is constant

and Ai(s) is nearly constant within each layer (dGaAs(AlAs) ≪ λi(s)), ρ
e(h)
RB (z) can be com-

pared to P (z). However, ρ
e(h)
RB (z) includes the electromagnetic fields and the electronic

structure of the system and is therefore well suited for the analysis of the resonant light

scattering process. As discussed in the previous chapter, the RBED is the link between

the Raman-Brillouin quantum model and the Photoelastic model.
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Table 3.2: Damping parameters of the electron-hole transitions γij and electron De and
hole (averaged) Dh deformation potentials in GaAs and AlAs. The ij subindices refer to
the electron and hole subbands. Deformation potentials are taken from References [184]
and [189].

γ11 γ22 γ13

GaAs AlAs
De Dh De Dh

10 meV 200 meV 500 meV 7.17 eV 2.72 eV 5.64 eV 2.61 eV

3.3 Results and discussion

3.3.1 Comparison between measured and simulated spectra

In this section I compare the measured RB spectra with those calculated using the Pho-

toelastic model and the Raman-Brillouin quantum model. The aim of this chapter is to

point out some limitations of the PEM and to show that the Raman-Brillouin quantum

model gives a more accurate and complete description of the experimental spectra and of

their changes with excitation energy (resonance effects). This is particularly important

because it ensures that the RBED, which will be described and discussed in the next

section, is indeed a description giving a good agreement with experiments.

Figures 3.5, 3.6 and 3.7 show the Raman-Brillouin spectra of the three superlattices

calculated using the RBQM (Equation 3.6) and for excitation energy ranging from 1.65 eV

to 2.75 eV. The calculated electron-heavy hole (e-hh) and electron-light hole (e-lh) tran-

sition energies are indicated in each figure. The optical indices used in these calculations

were extracted from ellipsometry measurements and depend on the excitation energy. The

electron-hole transition dampings γij used in the simulations as well as the deformation

potentials De(h) are quoted in Table 3.2. The dampings selected are those giving the best

agreement with the experimental results, and with the work by Kushibe et al [92].

Since the Raman-Brillouin peak frequencies of the (±1) and (±2) doublets are well

reproduced by both the PEM and RBQM, the comments will be focused on the scattered

intensities and on the comparison with the experiments.

For SL1 (Figure 3.5), the most remarkable point concerns the scattering by the second

doublet (±2). Indeed, the spectrum calculated using the RBQM (Equation 3.6) shows no

activation of the second doublet (±2) for red excitation (Ei =1.65 eV) and up to 2.2 eV.

This is in a very good agreement with the spectrum measured with excitation at 1.65 eV

(Figure 3.2). Scattering by the second doublet is indeed completely absent. On the

contrary, the spectrum calculated using the PEM (lower spectrum in Figure 3.2) exhibits
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scattering by both first and second doublets with similar intensities for any excitation

energy (not shown here). Indeed, only small variations of the scattered intensities are

expected due to small changes of the exchanged wavevector (cf. Equation 2.11). Moreover,

scattering by the second doublet is clearly activated for excitation at 2.41 eV in the

experiments and then decreases with increasing energy (Figure 3.2). This behaviour is

well reproduced by the calculated spectra in Figure 3.5. The intensity of the second

doublet is maximum at 2.55 eV and then decreases with further increase of the excitation

energy. The appearance of the second doublet coincides with the resonant excitation of

the electron-heavy hole e2 − hh2 and electron-light hole e2 − lh2 transitions (indicated in

Figure 3.5). For GaAs quantum wells of few monolayers, as those in the SLs investigated in

this chapter, the parabolic band approximation (Figure 3.4) overestimates the electronic

subband energies. Therefore the calculated electronic transitions may be larger than the

actual ones. This results in an underestimation of the interference effects, thus leading

to an overestimation of the Raman-Brillouin intensity of the second doublet. This could

explain why the calculated intensity maximum of the second doublet occurs at higher

excitation energy (2.55 eV) than experimentally observed (2.41 eV).

Concerning the scattering by the first doublet (±1) the experimental intensity ratio

I+1/I−1 increases from 0.25 at 1.65 eV to 0.7 at 2.54 eV and then decreases to 0.45 at

2.71 eV (Figure 3.2). This variation is also connected with the resonant excitation of

e2 − hh2 transitions and is well reproduced by the simulations based on the RBQM (cf.

Figure 3.5).

Figure 3.5: Raman-Brillouin spectra of SL1 calculated using the RBQM for different
excitation energies Ei. For each excitation energy the scattered intensity is normalized
to the first peak (−1). Calculated electron-hole transition energies involving the different
subbands are marked to the right.
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For SL2, the scattering by the second doublet (±2) is predicted to be very small

(with respect to scattering by the first doublet (±1)) by both the RBQM (Figure 3.6)

and the PEM (Figure 3.2) in agreement with the measurements (Figure 3.2). However,

the RBQM shows that a small activation is expected for excitation energies close to the

e2−hh2 transitions (2.88 eV< Ee2−hh2 <2.97 eV). This is indeed observed experimentally

for Ei ≈2.47 eV (Figure 3.2). As mentioned above, the parabolic bands approximation

may explain the shift between the calculated and observed excitation energies for this

activation.

The scattering by the first doublet shows an inversion of the I−1/I+1 intensity ratio

(Figure 3.2) that occurs when changing the excitation energy from 2.41 eV to 2.71 eV:

I−1/I+1 =0.72 at 2.41 eV and I−1/I+1 =1.37 at 2.71 eV. This behaviour is reproduced

by the RBQM even though the intensity ratio is reversed compared to the experimental

one. This discrepancy can be explained by the fact that, for SL2, the GaAs and AlAs

thicknesses are very similar and very small. Indeed, a difference of only one monolayer be-

tween the nominal and the actual average thicknesses can be responsible for the inversion

of the I−1/I+1 intensity ratio [85].

Figure 3.6: Raman-Brillouin spectra of SL2 calculated using the RBQM for different
excitation energies Ei. For each excitation energy the scattered intensity is normalized to
the first peak (+1). The inset is a zoom-in (color scale multiplied by 20) of the excitation
energies for which the small activation of the second doublet (±2) is predicted. Calculated
electron-hole transition energies involving the different subbands are marked to the right.

For SL3, the RBQM simulations are also in good agreement with the experimental

data. First, the measured I−1/I+1 intensity ratios are very close to the calculated ones

(cf. Figures 3.2 and 3.7). Even the oscillatory-like variation of the I−1/I+1 ratio with

excitation energy is well reproduced by the simulations: the measured I−1/I+1 oscillates
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between 0.2 (excitation at 2.45 eV) and 0.6 (excitation at 2.71 eV). This behaviour is well

reproduced by the RBQM.

Scattering by the second doublet (±2) is predicted by the RBQM (Figure 3.7). The

calculated intensity ratio I±2/I+1 is around 0.2 compared to 0.6 experimentally. It reaches

a maximum for excitation around Ei =2.45 eV, close to the resonances with the e1 − hh1

and e1 − lh1 transitions (cf. inset in Figure 3.7), in agreement with the experiments

(Figure 3.2). The discrepancy between measured and calculated I±2/I+1 intensity ratio,

like for SL1, is mostly due to the overestimation of the electronic subbands energies

which weaken the interference effects. Moreover, close to the maximum of the second

doublet, a broadening of the (±2) Raman bands is predicted (cf. inset in Figure 3.7).

This effect can explain the broad band observed experimentally (cf. Figure 3.2) for an

excitation at Ei =2.47 eV. Since the QWs of SL3 are very narrow, the symmetries of the

deformation fields associated to the acoustic modes are not as well defined as in SL1 and

in SL2. Indeed, a slight shift of the nodes with respect to the center of the QW changes

significantly the overlap between the deformation field and the RBED. This leads to a

bad selection of the wavevector q, resulting in a broadening of the (±2) Raman bands.

Such effect appears for the second doublet because the associated deformation fields are

strongly varying, and therefore they are more sensitive than for the to the first doublet.

Figure 3.7: Raman-Brillouin spectra of SL3 calculated using the RBQM for different
excitation energies Ei. For each excitation energy the intensity is normalized to the first
peak (+1). The inset is a zoom-in (color scale multiplied by 20) of the excitation energies
for which the broadening of the second doublet (±2) is predicted. Calculated electron-hole
transition energies involving the different subbands are marked to the right.
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3.3.2 Raman-Brillouin electronic density

In order to understand better the resonant Raman-Brillouin scattering, it is necessary to

consider the symmetry of the acoustic vibration modes and their coupling to the optically

excited electronic states.

According to the GaAs thicknesses, and to the number of periods in the SLs (used

in the simulations), there are about 4500 electron-hole transitions that may significantly

contribute to the light scattering process depending on the considered SL (symmetry for-

bidden transitions such as e1 − hh2, e1 − lh2, e2 − hh1 and e2 − lh1 can be excluded).

Since finite superlattices are considered here, there is no translational invariance because

of the presence of the surface and of the substrate [133]. Therefore, there is no wavevector

conservation in the three interaction steps (Equation 2.1) of the light scattering process,

and thus no (spatial) selection of electronic transitions. Wavevector conservation progres-

sively and naturally comes out in the simulations when increasing the SLs length with

respect to the optical wavelength (i.e. when translational invariance is recovered). Hence,

due to the huge number of possible interfering scattering paths, it is very difficult to con-

nect the electronic structure of the SLs to the changes of the Raman-Brillouin spectral

features. The Raman-Brillouin electronic density introduced in Section 3.2.2, allows to

overcome this difficulty by combining the thousands scattering paths into a single effective

electronic density.

The RBED generated for electrons (Equation 3.3) and for holes (Equation 3.5) are

very similar due to the fact that both are mostly confined within the GaAs quantum wells

(type I SLs) [188]. Only small differences are found in their spatial extension around the

QWs due to their different effective masses, thus we can focus on the RBED generated

for the electrons only. Moreover, since the RB scattering amplitude is proportional to the

RBED Rρe
RB(z) (cf. Equation 3.6), we will analyze the properties of this quantity rather

than those of the normalized RBED ρe
RB(z) (Equation 3.3).

Figures 3.8 to 3.10 show the Raman-Brillouin electronic density Rρe
RB(z) profiles along

the z-axis of the three superlattices and for excitation energies ranging from 1.6 eV to

2.85 eV. The real Re {RρeRB(z )} and the imaginary Im {RρeRB(z )} parts of the RBED as

well as its modulus |Rρe
RB(z)| are shown. The modulation along the superlattice axis z

is due to the spatial variation of the electromagnetic fields and to the spatial distribution

of the electronic states. The modulus of the RBED is mainly localized in the QWs and

reflects the SLs periodicity. The RBED profiles (Figures 3.8 to 3.10) strongly depend on

the excitation energy due to optical resonances with the electron-hole transitions involving

the different SL subbands. Moreover, it can be noticed that for some excitation energies
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the RBED profiles (real and imaginary parts and modulus) exhibit minima. These minima

occur around 1.7 eV and 1.9 eV in Figure 3.8 for instance. They arise from destructive

interferences between scattering paths from the e1−hh1, e1−lh1 and e1−hh3 transitions.

Let us examine how the RBED captures the essential physics of the resonant Raman-

Brillouin scattering for each superlattice.

Figure 3.8: Raman-Brillouin electronic density (RBED) Rρe
RB(z) spatial distribution for

SL1 for different excitation energies Ei. From top to bottom the real, imaginary parts
and the amplitude of the RBED are shown within a few periods of the SL. The color scale
of the real and imaginary parts is the same. In the lower panel (modulus of Rρe

RB(z)),
the color scale for energies above 2.2 eV should be divided by 50. The dashed lines show
the barrier/well interfaces. The electron-hole transition energies are marked to the right
of the lower panel.

For SL1, the RBED profiles (real and imaginary parts and modulus in Figure 3.8)

exhibit maxima or minima (for the real and imaginary parts) centered on each quantum

well for excitation energy 1.8 eV< Ei <2.2 eV, i.e. close to resonance with the e1 − hh1,

e1 − lh1 and e1 − hh3 transitions (cf. Figure 3.5). Therefore, the coupling of the RBED

to the acoustic mode (−1) is optimum since the associated deformation field is mainly

symmetric with respect to the center of the QWs (cf. Figure 3.3 and Equation 3.6).
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On the other hand, it can be noticed from Figure 3.3, that the deformation field of the

(+1) mode is mainly antisymmetric leading to a weaker overlapping with the RBED. The

corresponding Raman-Brillouin scattering is less intense than that of the (−1) mode (cf.

simulated spectra in Figure 3.5), in agreement with the measured spectra (Figure 3.2).

For excitation close to resonance with the e2 − hh2 transitions (2.4 eV< Ei <2.6 eV),

the RBED profiles (real and imaginary parts and modulus in Figure 3.8) are double

peaked with maxima close to the edges of the GaAs QWs. This gives rise to a good

overlapping with the deformations ∂u±2(z)
∂z

associated with the second acoustic doublet

(±2) since these deformations are symmetric with two nodes in the QW (cf. Figure 3.3).

As a consequence, Raman-Brillouin scattering by the second acoustic doublet is activated

(cf. Figures 3.2 and 3.5).

Moreover, scattering by the (±2) doublet does not come out (cf. Figures 3.2 and

3.5) for red excitation (Ei =1.65 eV) because, although mainly symmetric, the associated

deformations has negative and positive values (cf. Figure 3.3) that cancel the overlapping

with the single peaked symmetric RBED (cf. Figure 3.8).

It is worthwhile to mention that the RBED profiles reported in Figure 3.8 point out

the reason why the PEM, with a step-like variation of the Photoelastic coefficient (Equa-

tion 2.11), fails to describe the Raman-Brillouin scattering in SL1 even for non-resonant

excitation (red line in Figure 3.2). Indeed, scattering by the second acoustic doublet (±2)

is overestimated by the PEM with respect to the experimental data. Due to its step-like

shape, the PE coefficient strongly overlaps with the symmetric deformations of the (±2)

doublet leading to overestimation of the corresponding Raman-Brillouin intensity.

For SL2, the RBED profiles are symmetric with respect to the center of each GaAs

QW. As for SL1, the RBED modulus is maximum at the center of the GaAs QWs for

excitation close to resonance with the e1 − hh1 and e1 − lh1 transitions, whereas for

excitation close to resonance with e2 −hh2 transitions (2.88 eV< Ee2−hh2 <2.97 eV), the

maxima occur close to the edges of the QWs (cf. real and imaginary parts in Figure 3.9).

The latter occurs at higher energy than in SL1 because of the smaller GaAs thickness. It

is worthwhile to mention that, for energies around 2.8 eV, part of the RBED is delocalized

within the AlAs barriers.

In SL2, the deformation fields of the (±2) vibration modes are mainly antisymmetric

with respect to the center of the QWs (Figure 3.3). Therefore, their overlapping with the

symmetric RBED is very small (in comparison with the case of SL1) and the correspond-

ing Raman-Brillouin scattering is very weak (cf. Figures 3.2 and 3.6). As noticed in the

previous section, a small activation of the (±2) doublet is observed experimentally (Fig-

ure 3.2) for excitation energy around 2.41 eV and is well reproduced by the simulations
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Figure 3.9: Raman-Brillouin electronic density (RBED) Rρe
RB(z) spatial distribution for

SL2 for different excitation energies Ei. From top to bottom the real, imaginary parts
and the amplitude of the RBED are shown within a few periods of the SL. The color scale
of the real and imaginary parts is the same. In the lower panel (modulus of Rρe

RB(z)),
the color scale for energies above 2.4 eV should be divided by 50. The dashed lines show
the barrier/well interfaces. The electron-hole transition energies are marked to the right
of the lower panel.

around 2.6 eV (Figure 3.6).

Moreover, the change of the I−1/I+1 intensity ratio with excitation energy, noticed

in the previous section, arises from slight changes in the symmetry of the (±1) vibration

modes. Indeed, from Figure 3.3 it can be clearly seen that the nodes of the deformation

fields are shifted with respect to the center of the GaAs QW so leading to different

overlapping with the RBED and to the intensity inversion observed in Figure 3.2 when

changing the excitation energy.

For SL3, since the QW thickness is only 0.99 nm, the e2 nor hh2 subbands are at high

energies and therefore there are well above the quantum wells; the RBED is constructed

with e1, hh1 and lh1 subbands only. Therefore, the modulus of the RBED, as well as

its real and imaginary parts, are symmetric and exhibit a single lobe with respect to
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the center of the GaAs QW independently of the excitation energy (Figure 3.10). From

Figure 3.3 it can be noticed that the (−1) vibration mode is mainly antisymmetric with

respect to the center of the GaAs QW whereas the (+1) mode is mainly symmetric.

Hence, the overlapping of the (+1) mode with the RBED (Figure 3.10) is larger than

that of the (−1), giving a stronger Raman-Brillouin intensity as observed experimentally

(Figure 3.2) and in the simulations (Figure 3.7).

Figure 3.10: Raman-Brillouin electronic density (RBED) Rρe
RB(z) spatial distribution

for SL3 for different excitation energies Ei. From top to bottom the real, imaginary parts
and the amplitude of the RBED are shown within a few periods of the SL. The color
scale of the real and imaginary parts is the same. The dashed lines show the barrier/well
interfaces. The electron-hole transition energies are marked to the right of the lower
panel.

The deformation fields associated with the (±2) modes are mainly symmetric with

a single maximum located around the center of the GaAs QW (cf. Figure 3.3). Their

overlapping with the symmetric RBED gives rise to the activation of the Raman-Brillouin

scattering observed in Figure 3.2. It is worthwhile to notice that, once again, the PEM

overestimates the scattering by the second acoustic doublet with respect to the experi-
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mental data (spectra of SL1 and SL3 in Figure 3.2) and to the simulation performed with

the RBQM (Figures 3.5 and 3.7; red excitation Ei =1.65 eV).

Finally, it is interesting to mention that, according to the spatial distribution of the

RBED in the superlattices studied (Figures 3.8 to 3.10), we can conclude that the light

scattering process originates mainly from the GaAs QWs. This is the reason why the

empirical assumption PAlAs ≪ PGaAs has been often used in the PEM to describe the

RB scattering in such nanostructures. These examples based on the three SLs described

in this chapter stress the importance of the RBED as a very useful tool to interpret the

physical origin of many spectral features in the Raman-Brillouin spectroscopy of such

nanostructures.
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An effective electronic density has been introduced in the framework of the Raman-

Brillouin quantum model. It allows to discuss, in a direct and a rather simple way,

resonance effects and size dependence of the Raman-Brillouin spectra even when a large

number of intermediate electronic states are involved in the light scattering. In particular,

in the case of thin films, the importance of diagonal electron-vibration interaction matrix

elements for nano-sized objects has been pointed out, as they are responsible for the main

contribution to the Raman-Brillouin scattering. The Raman-Brillouin electronic density

(RBED) also serves to investigate the validity of the step-like profile of the photoelastic

coefficient usually assumed in the photoelastic model. It has been shown that for layer

thickness smaller than 25 nm the trapezoid-like profile is more realistic than the step-like

profile. The Raman-Brillouin spectra calculated using both profiles are comparable for

the lowest frequency vibration mode (m = 1 confined mode) and for layer thickness larger

than 17 nm. The profile of the photoelastic coefficient has strong impacts on the Raman-

Brillouin intensities of the highest frequency confined modes (m =3, 5, 9, ...), particularly

for very thin layers (below 10 nm). As a matter of fact, it has been pointed out that the

intensities of the m =5, 9, 11, ... vibration modes are overestimated by a step-like profile.

No convergence between the intensities calculated with the step-like and trapezoid-like

profiles was observed for layer thickness up to 25 nm. Moreover, it has been shown in this

part of the thesis that due to optical selection of confined electronic states, neither the

step-like nor the trapezoid-like profiles are able to approximate the RBED for resonant

excitation.

Furthermore, in the case of complex nanostructures such as quantum wells superlat-

tices, it has been shown that the information given by the spatial distribution of the

RBED along the superlattice axis, combined with the symmetry of the acoustic vibra-

tions, allow for a full understanding of the activation (or the absence) of light scattering

for resonant and non resonant excitation of the optical transitions. The electronic prop-

erties of the superlattices were described in the framework of the envelope wavefunction
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approximation, using parabolic dispersions of the valence and conduction bands. Despite

this simple model, which becomes questionable for very short superlattice periods, the

agreement between measured and simulated Raman-Brillouin spectra is very satisfactory

and the observed resonances behaviour is well accounted for. Comparison and analogy

between the profiles of the photoelastic coefficient and those obtained with used of the

RBED have been presented and discussed. In particular, the impact of the step-like

variation of the photoelastic coefficient on the electron-vibration interaction has been

pointed out: because the photoelastic coefficient is constant within each quantum well

the electron-vibrations interaction can be overestimated or underestimated depending on

the considered excitation energy. This leads to important discrepancies between the spec-

tra simulated using the PEM and the measured ones even for non resonant excitation,

i.e. in a situation where the PEM is commonly assumed to work. Finally, it is worth-

while to note that the concept of RBED as a theoretical tool for the interpretation of

the Raman-Brillouin scattering is general and can be extended to analyze the Raman-

Brillouin scattering in a variety of low-dimensional semiconductor and metallic systems.

It is very useful when several electronic transitions may be resonantly and simultaneously

excited by the probe light. Moreover, since the RBED depends only on the electronic

properties, it can be used for the analysis of the resonant Raman scattering by optical

vibrations.
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Part II - Acousto-Plasmonics

of Metallic Nano-Objects

Noble metals sustain localized surface plasmons when downsized to the nanoscale. These

collective oscillations produce optical resonances associated with intense and localized

electromagnetic fields. They can be spectrally and spatially fine tuned by controlling the

size, the shape, and the structure of the nano-objects as well as by the interaction between

nano-objects [65; 115; 145; 166]. These exceptional properties are pushing the synthesis

of new plasmonic nano-objects (e.g. nanospheres, nanorods [83; 145], nanodisks [95],

nanorice [187], nanorings [136], nanopyramids, nanostars [70]) and the fabrication of

new electronic and optical devices [13; 132; 141] for applications in various scientific

fields: nano-antennas [96; 164], negative refraction lenses, metamaterials, surface wave

guides for the control of the light emission [41; 63; 196], chips for bio- and chemical

sensing [42; 101], nano-objects for medical applications (imaging, diagnostic, therapy,

and assisted surgery) [93; 111; 139]. In particular, closely-spaced nanoshells, nanorods,

or nanoparticles arrays are suitable templates for Surface Enhanced Raman Scattering

(SERS) [19; 104; 105; 181; 195] as well as for Surface-Enhanced Infrared Absorption

(SEIRA) spectroscopy [4; 104; 178], where large electromagnetic field enhancements at

selective spatial locations can be tuned by controlling the small interparticle distances.

Tunable plasmonic nanostructures consisting of periodic arrays of interacting disks, rings

and concentric ring-disk particles are also promising candidates for efficient chemical and

bio-sensing [8; 97; 107; 178; 181]. One important challenge in the field of plasmonics is the

ability to synthesize and fabricate metallic nano-objects and nanostructures with targeted

optical properties on demand [97]. The influence of morphology on the optical properties

of small metallic nanoparticles has been studied both theoretically and experimentally by
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several groups [44; 66; 70; 99; 100; 108; 117; 125; 140; 145]. Due to small defects, or to

shape and size changes, strong variations in the optical properties of metallic nano-objects

are expected and can be experimentally observed [86; 178; 181; 183].

Since part of my work has been devoted on the dynamical properties surface plas-

mons, Chapter 4 will introduce some basic aspects of acoustic vibrations and surface

plasmons in metallic nano-objects. Plasmonic properties of metallic nano-objects will

then be studied for concentric ring-disk nanosensors [97] and photoconductively loaded

optical nanoswitches [96] in Chapter 5. I will show how the understanding of the optical

properties of some of the commonly used nanoparticles, such as nanorings, nanodisks,

and nanorods is still quite challenging and needs to be investigated further. Chapter 6

is devoted to the acousto-plasmonic dynamics in metallic nano-objects [99; 100; 181]. A

study of the interaction process between low frequency acoustic vibrations and localized

surface plasmons sustained by the metallic nano-ojects will be developed to conveniently

describe Raman-Brillouin spectroscopy of metallic nano-objects.
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Acousto-Plasmonics: Basics
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4.1 Acoustic vibrations

Acoustic vibrations in small metallic nanoparticles have been extensively investigated

both theoretically and experimentally [15; 17; 40; 130; 134; 162; 163]. More specifically,

some of these works focused on the Raman-Brillouin scattering by acoustic vibrations

confined in metallic nano-objects [15; 17; 51].

4.1.1 Lamb’s model

The free oscillations of a homogeneous, isotropic, and elastic sphere have been early stud-

ied mathematically by Horace Lamb in 1881 [94] (Figure 4.1) using elasticity theory [112]
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(cf. Chapter 1).

Figure 4.1: Sir Horace Lamb (1849-1934)

This approach is based on solving Navier-Stokes’ equation (Equation 1.1) for the

particular geometry. The general solution to this equation (Equation 1.3), in spherical

coordinates, is given by

~ul,m(~r, t) = Al
−−→
grad [jl(QLr)Ylm(θ, φ)]

+ Bl
−→
rot [jl(QT r)Ylm(θ, φ)~r]

+ Cl
−→
rot

{−→
rot [jl(QT r)Ylm(θ, φ)~r]

}
, (4.1)

where QL(T ) = ωvib/vL(T ) are wavevectors related to the longitudinal (L) and transverse

(T) sound velocities, jl are the spherical Bessel’s functions of order l, and Ylm are the

spherical harmonics, l being an integer (−l ≤ m ≤ l). Each vibration eigenfrequency is

five-fold degenerated (2l + 1).

Equation 4.1 involves two types of vibration modes: (i) torsional modes associated

with the Bl coefficient, and (ii) spheroidal modes described by the Al and Cl coefficients.

In the following, I will focus only on the spheroidal modes which are the Raman active

modes [15; 51].

In spherical coordinates, the force at the surface of the nanoparticle is given by [17]:

~F =

[
λ div ~ul,m + µ

~ul,m · ~er
r

]
~er + µ

−−→
grad (~ul,m · ~er) + µ

∂~ul,m

∂r
− µ

~ul,m

r
, (4.2)

where ~er is the unitary radial vector. λ and µ are known as Lamé coefficients [112]. The

coefficients Al and Cl in Equation 4.1 are determined by the boundary conditions of the

nanoparticle surface. For a free standing nanoparticle of radius R, the external force at

the surface is null ~F (R · ~er) = ~0. The effect of the presence of a surrounding medium on

the vibration modes has already been investigated [130].

Figure 4.2 shows the amplitude of the displacement due to the fundamental acoustic
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vibration modes (n = 1, l = 0, 1, 2), where n is the number of nodal spheres (i.e. where

the motion is null), and l is the number of nodal lines at the surface. A breathing mode

(l = 0) corresponds to a radial displacement of the nanoparticle surface (Figure 4.2a).

This acoustic vibration mode preserves the spherical symmetry of the nanoparticle. Dipo-

lar (l = 1) and quadrupolar (l = 2) modes exhibit nodes at the surface, leading to the

breaking of the spherical symmetry of the nanoparticle. Indeed, while parts of the surface

are displacing outward, other parts are displacing inward (Figures 4.2b and 4.2c). The

amplitude of the displacement is given by the normalization factor
√

~/(2ρV ωm).

Figure 4.2: Amplitudes of the displacement in a cross section of a spherical nanoparticle
of the first three fundamental eigenmodes (n = 1): (a) breathing mode (l = 0), (b) dipolar
mode (l = 1) (c) quadrupolar mode (l = 2). Figure taken from Reference [15].

Using Lamb’s model, one obtains that the eigenfrequencies of the vibration modes

are inversely proportional to the nanoparticle diameter D. For an homogeneous and

continuous sphere, the frequencies can be written as ν = Sv/D where S is a mode

dependent coefficient, and v is the transverse sound velocity (or longitudinal for the

spheroidal l = 0 modes). Typical relationships for the eigenfrequencies of the l = 0 and

l = 2 fundamental spheroidal modes of a free nanoparticle are [162]:

νl=0
n=1 = 0.9

vL

D
(4.3a)

νl=2
n=1 = 0.84

vT

D
. (4.3b)

In addition to Lamb theory, atomistic approaches can also be used to describe the physics

of the acoustic vibrations. Both theoretical approaches have been investigated and com-

pared recently in the work by Nicolas Combe and Lucien Saviot in small metallic nanopar-

ticles [40]. In this work, the importance of the anisotropy of the stiffness tensor in elastic

calculations has been pointed out. A good agreement between the two approaches has

been found for breathing and quadrupolar modes of silver nanoparticles larger than 2 nm.

However, the applicability of the linear elasticity depends on the considered vibration
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mode and the nanoparticle size, and does not strongly depend on the actual shape of the

nanoparticle. Moreover, critical sizes depend on the material.

4.1.2 Experimental techniques

Two main experimental techniques are commonly used to access the acoustic vibrations

in metallic nanostructures. The first technique is based on ultrafast spectroscopy (pump-

probe experiment), designed to measure time resolved optical transmission spectra and

their modulation by acoustic vibrations (cf. left panel in Figure 4.3a) [74; 75]. Typical

spectra are shown in the right panel of Figure 4.3a [28; 29]. They are obtained by taking

the Fourier transform of the temporal signal since this technique gives access to the

transitory regime of the system.

Figure 4.3: (a) Left panel: Time dependence of the transmission change ∆T/T measured
in self-assembled silver nanocolumns. The oscillating component of the signal is shown
in the inset. Right panel: Fast Fourier transform of the oscillating component of ∆T/T
obtained for two silver nanocolumn samples. Figures taken from Reference [29]. (b)
Raman spectra recorded for spherical silver nanoparticles (red line) and self-assembled
silver nanocolumns (black line). Both Stokes and anti-Stokes components are shown in
the spectra. Figure taken from Reference [116].
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The second technique that gives access to the vibrational properties of nano-objects,

is the Raman-Brillouin spectroscopy (cf. Chapter 1) [17]. An example of low frequency

Raman-Brillouin spectra of silver spherical nanoparticles and nanocolumns is given in

Figure 4.3b [116].

Time resolved femtosecond spectroscopy and Raman-Brillouin spectroscopy are com-

plementary techniques since they give access to different vibration modes due to different

selection rules, i.e. different electron-vibration coupling mechanisms (to be discussed in

Chapter 6).

4.2 Surface plasmons

Noble metals have shown interesting optical properties since the beginning of the history

giving for example particular colors in paintings like in Notre Dame Cathedral in Paris and

in the Lycurgus Cup. The Lycurgus Cup (Figure 4.4) is one of the first historical evidence

of the use of gold and silver nanoparticles for the coloring of stain glasses. This cup changes

its color depending on the illumination. When it reflects light the cup appears green

(Figure 4.4a), while in transmission it shows a reddish color (Figure 4.4b). Nowadays, it

is well known that the coloration of the Lycurgus Cup is due to the excitation of surface

plasmons (SP) of the metallic nanoparticles embedded into the glass. Their energies and

associated electromagnetic field can be obtained from Maxwell’s equations [24; 119; 125;

126; 166]:

~∇ · ~D = 0 (4.4a)

~∇ · ~B = 0 (4.4b)

~∇× ~E = −∂
~B

∂t
(4.4c)

~∇× ~H =
∂ ~D

∂t
. (4.4d)

Surface plasmons, exist at the interface between two materials where the real part of

the dielectric function ε changes sign across the interface (e.g. a metal-dielectric inter-

face) [3; 115; 138; 166]. The existence of surface plasmons was first predicted in 1957

by Rufus H. Ritchie [156] and then experimentally observed in 1960 by Cedric J. Pow-

ell [149; 150] using electron-energy loss spectroscopy (EELS).

Since their prediction, a large variety of studies have been devoted to the understand-

ing of the fundamental aspects of surface plasmons [69] such as substrate effects on the
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Figure 4.4: Roman Lycurgus Cup (British Museum, 4th century A.D.): (a) illuminated
from outside (reflection) appears in greenish color and (b) illuminated from inside (trans-
mission) appears in redish color.

Figure 4.5: James Clerk Maxwell (1831-1879) published his equations in 1873 in “A
Treatise on Electricity and Magnetism” [119].

plasmonic properties [89; 106; 185], Fano resonances [63; 72; 73; 103; 113; 171], life-

time [82; 167], higher order modes [86], retardation effects [61; 62], hybridization [137;

151; 190], and non local effects [6; 78]. I will briefly describe the optical properties of

noble metals and remind here the basic physics of surface plasmons.

4.2.1 Optical properties of noble metals

The optical properties of metals are determined by (i) the free motion of the conduction

electrons within the bulk materials, and (ii) electronic interband transitions. The collec-

tive response of the free-electron gas to the optical excitation gives rise to a macroscopic

polarization:
~P (ω) = ε0χe(ω) ~E(ω), (4.5)

where χe = ε(ω)−1 and ε are the electric frequency-dependent susceptibility and dielectric

function of the medium

Experimental real and imaginary parts of the dielectric function of gold and silver,
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taken from Johnson and Christy [84], are shown in Figures 4.6 and 4.7, respectively (black

stared lines).

Figure 4.6: Experimental dielectric function of gold taken from Johnson and Christy [84]
(black stared line) compared to the Drude dielectric function (green dashed line) and
to the interband contribution (red dashed line). The dielectric function resulting of the
summation of the Drude and interband contributions is also shown (blue line). Left
panel: Real part of the dielectric function (Re{ε}). Right panel: Imaginary part of the
dielectric function (Im{ε}). The physical parameters used for the Drude and interband
contributions are quoted in Table 4.1.

4.2.1.1 Drude-Sommerfeld theory

The frequency-dependent dielectric function can be described by the Drude-Sommerfeld

model [87; 115]. According to Drude-Sommerfeld model for the free-electron gas (electron

of the conduction band), the equation of motion can be written as:

me

∂2~r

∂t2
+meγ

∂~r

∂t
= e ~E0e

−iωt, (4.6)

where e and me are the charge and the effective mass of the free-electron, and ω and ~E0

are the frequency and the amplitude of the external electric field. γ = vF /l is a damping

term depending on the Fermi velocity vF and on the electron scattering mean free-path
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Figure 4.7: Experimental dielectric function of silver taken from Johnson and Christy [84]
(black stared line) compared to the Drude dielectric function (green dashed line) and to
the interband contribution (red dashed line). The dielectric function resulting of the
summation of the Drude and interband contributions is also shown (blue line). Left
panel: Real part of the dielectric function (Re{ε}). Right panel: Imaginary part of the
dielectric function (Im{ε}). The physical parameters used for the Drude and interband
contributions are quoted in Table 4.1.

l. The solutions of Equation 4.6 lead to:

εDrude(ω) = 1 −
ω2

p

ω2 + iγω
, (4.7)

where ωp =
√

nee2

meε0
is the bulk plasma frequency, ne being the electronic density. Table 4.1

gives the bulk plasma frequencies and damping of gold and silver [84; 140]. Real and

imaginary parts of the Drude dielectric function are shown in Figures 4.6 and 4.7 for gold

and silver, respectively (green dashed line).

4.2.1.2 Interband transitions

Drude-Sommerfeld theory gives an accurate description of the optical properties of metals

in the infrared spectral range (cf. Figures 4.6 and 4.7), or for some metals like aluminium

where the contribution of interband transitions is negligible. For gold and silver, it is
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Table 4.1: Fermi velocity vF , electronic density ne, plasma energy ~ωp, damping γ, and gs

coefficient (Fermi velocity to particle radius ratio) for gold and silver [84; 140]. Parameters
for the interband contributions ω̃p, γ̃p, and ω0 are also given for both materials.

Metal
vF ne ~ωp ~γ ~ω̃p ~γ̃ ~ω0 gs

(cm.s−1) (cm−3) (eV) (meV) (eV) (meV) (eV) (eV.nm)

Au 1.40×108 5.90×1022 8.9488 69.09 2.96 0.59 2.76 0.915
Ag 1.39×108 5.86×1022 9.17 21 5.27 1.14 4.47 0.918

necessary to take into account the contribution of the electronic interband transitions in

order to fully describe the optical properties of these metals in the visible range [115; 138].

In a first approximation, the contribution of the response of the bound electrons to the

dielectric function of the metal can be described by means of simple a Lorentz oscillator

of frequency ω0, adding an harmonic force ~FLorentz = −meω
2
0~r to Equation 4.6. The

resulting equation of motion, can then be solved with proper parameters ω̃p, γ̃p, and ω0

(quoted in Table 4.1). In this description, the interband dielectric function εInter is given

by:

εInter(ω) = 1 +
ω̃2

p

(ω2
0 − ω2) − iγ̃ω

, (4.8)

where ω̃p =
√

ñee2

meε0
, ñe being the density of the bound electrons (Drude-Lorentz theory).

Real and imaginary parts of the interband contribution to the dielectric function are

shown in Figures 4.6 and 4.7 for gold and silver, respectively (red dashed line). From

the interband contributions, a clear resonant behaviour from the imaginary part can be

observed (right panels in Figures 4.6 and 4.7) while a dispersive behaviour is observed

from the real part (left panels in Figures 4.6 and 4.7). From wavelengths below ≈600 nm

for gold (resp. ≈500 nm for silver), interband contributions obviously become significant

while a Drude-Sommerfeld tendency is observed for wavelengths ≈600 nm for gold (resp.

≈500 nm for silver). The dielectric function of noble metals can finally be expressed as:

ε(ω) = 1 + χIntra(ω) + χInter(ω) (4.9a)

⇔ ε(ω) = 1 −
ω2

p

ω2 + iγω
+

ω̃2
p

(ω2
0 − ω2) − iγ̃ω

, (4.9b)

where χIntra(Inter)(ω) = εIntra(Inter)(ω) − 1 is the intraband (resp. interband) contribu-

tion to the electric susceptibility. Although the Lorentz oscillator model is widely cited

in the litterature [24; 115; 138], it does not allow to correctly describe the interband
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Table 4.2: Fitting parameters for the interband contribution (Equation 4.11) to the
Johnson and Christy dielectric function of gold [84] taken from References [55; 56].

C1/ω1

φ1 2πc/ω1 2πc/γ1
C2/ω2

φ2 2πc/ω2 2πc/γ2

(rad) (nm) (nm) (rad) (nm) (nm)

1.27 −π/4 470 1900 1.1 −π/4 325 1060

contributions in gold and silver unless a sufficiently large number of Lorentz oscillators

are artificially added.

Following Pablo G. Etchegoin et al [55; 56], the contribution of the interband transi-

tions to the dielectric function are obtained substracting the Drude contribution (Equa-

tion 4.7) to the experimental values [84]. The so extracted interband contribution can

then be compared to the analytical models for these transitions. In the case of gold, an

analytical expression of the dielectric function has been proposed [55; 56]:

ε(ω) = εbulk + εDrude +G1(ω) +G2(ω) (4.10)

with

Gi(ω) = Ci

[
eiφi (ωi − ω − iγi)

νi + e−iφi (ωi + ω + iγi)
νi

]
(4.11)

the contributions of the interband transitions. Ci, φi, ωi, γi, and νi are the amplitude,

the phase, the frequency associated to the gap, the damping, and the order of the pole,

respectively. These parameters are adjusted in order to account for the interband contri-

bution to the dielectric function. The Gi functions give a more accurate approximation

of the interband transitions than a Lorentz oscillators model (Equation 4.8) [115; 138].

The results obtained using Equation 4.10 are shown in Figure 4.8 for gold (red lines) and

compared to experimental values (black stared lines). The fitting parameters extracted

from References [55; 56] for gold are quoted in Table 4.2.

Furthermore, the limitation of the electron mean free-path inside the nanoparticle im-

plies interactions of the electrons with the particle surface that result in a size-dependent

term in the damping parameter [45; 68; 115; 146]:

γ(ω,R) = γ0 + gs(ω)
vF

R
, (4.12)

where the parameter gs is close to 1 eV.nm and is weakly dependent on ω [45; 68]. The
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Figure 4.8: Upper panels: (a) Real Re{ε}, and (b) imaginary Im{ε} parts of the ana-
lytical dielectric function ε of gold (red line) compared to Johnson and Christy data [84]
(black stared line). Lower panels: (c) Real Re{ε}, and (d) imaginary Im{ε} parts of the
analytical interband contribution (red line) compared to the Johnson and Christy data
(black stared line).

size-dependent dielectric function used in the simulations is then given by:

ε(ω) = εbulk − εDrude −
ω2

p

ω2 + iγ(ω,R)ω
. (4.13)

The values of the gs coefficient and of the Fermi velocity vF for gold and silver are quoted

in Table 4.1.
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4.2.2 Localized surface plasmons

In bulk materials, the collective motion of the electrons can be described by Equation 4.6.

Under an external electromagnetic excitation (e.g. electric field, electrons), the electrons

are collectively displaced with respect to the positive charges of the metal (cf. Figure 4.9a).

The electron-electron Coulomb interaction is responsible for this collective and coherent

motion of the electrons. A restoring force is exerted, due to Coulomb interaction, by the

positive charges on the electron gas. The result of these two effects leads to a collective

harmonic oscillation of frequency ωp of the electrons, named bulk plasmon.

Figure 4.9: (a) Schematics of bulk plasmons: the electron density in metal oscillates

under an external electric field ~E0. (b) Schematics of SPP at a metal/dielectric interface,
propagating along the x-direction and confined in the z-direction. (c) Schematics of
localized surface plasmons: the charge distribution of a metallic nanoparticle oscillates
under an external electric field, inducing a dipole moment ~p.

When a 2D metal/dielectric interface is introduced, Maxwell’s equations can be solved

with proper boundary conditions. The solutions obtained support surface electromagnetic

waves propagating along the metal/dielectric interface, known as surface plasmon polari-

tons (cf. Figure 4.9b) [115; 138; 166]. Due to the dispersion of such electromagnetic

modes, it is impossible to excite with light SPP on planar surfaces. Indeed, the momen-

tum conservation cannot be fulfilled simultaneously for light and for SPP. However, there

are several ways to bring additional momentum to couple light with SPP. One of the possi-
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bilities consists of coupling light with the plasmon excitations in a metallic particle where

the finite size provides additional momentum to ensure the momentum conservation.

The optical response of a spherical metallic nanoparticle can be described in the

same way (cf. Section 4.2.1). Localized non-propagating collective excitations of the

free-electron gas, known as localized surface plasmons (LSPs), are obtained (cf. Fig-

ure 4.9c) [115; 138; 166]. For a spherical nanoparticle of radius R ≪ λ, the spatial

evolution of the electromagnetic field can be neglected, i.e. no retardation effect occurs

(electrostatic limit)The electromagnetic solutions to this problem can be found, in the

frequency domain, by solving Laplace’s equation ~∇2Φj = 0 . The electric field is then

given by ~Ej = −~∇Φj , where Φj is the scalar potential and j refers to the medium inside

(j = 1) and to the medium outside (j = 2) the sphere.

Figure 4.10: Framework adopted in this section. The incident electric field ~E0 is indicated
by the red arrow.

The potentials satisfying simultaneously Laplace’s equation and the proper boundary

conditions are

Φ1 = −E0
3ε2(ω)

ε1(ω) + 2ε2(ω)
r cos θ (4.14a)

Φ2 = −E0r cos θ + E0R
3 ε1(ω) − ε2(ω)

ε1(ω) + 2ε2(ω)

cos θ

r2
, (4.14b)

where ~E0 is an external field, and ε1(2) is the dielectric function of the metal (1) and of

the surrounding medium (2), respectively. The corresponding expressions for the electric
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field, deduced from ~Ej = −~∇Φj , are

~E1(r) = E0
3ε2(ω)

ε1(ω) + 2ε2(ω)
(cos θ ~er − sin θ ~eθ) (4.15a)

~E2(r) = E0 (cos θ ~er − sin θ ~eθ) + E0
ε1(ω) − ε2(ω)

ε1(ω) + 2ε2(ω)

R3

r3
(2 cos θ ~er + sin θ ~eθ) .(4.15b)

The electric field outside the sphere ~E2 is a superposition of the incident field and the

field induced by an elementary electric dipole located at the center of the sphere. The

induced dipole moment (cf. Figure 4.9c) is given by:

~p = α(ω) ~E0, (4.16)

where α is the frequency-dependent polarizability given by:

α(ω) = 4πε0R
3 ε1(ω) − ε2(ω)

ε1(ω) + 2ε2(ω)
. (4.17)

The spherical nanoparticle exhibits a localized surface plasmon resonance (LSPR) for the

Fröhlich condition ε1 = −2ε2 which corresponds to the dipolar surface plasmon of the

nanoparticle. For a spherical nanoparticle consisting of a metal described by a Drude-like

dielectric function (Equation 4.7) in vacuum, Equation 4.17 leads to:

α(ω) = 4πε0R
3 ε1(ω) − 1

ε1(ω) + 2
. (4.18)

The Fröhlich condition is then satisfied for ωl=1 = ωp/
√

3.

When going beyond the electrostatic approximation, the electric field induced by an

oscillating electric dipole of frequency ω with dipolar moment ~p is given by [24; 115; 138]:

~E(r) =
1

4πε0

[
k2 (~n× ~p) × ~n

eikr

r
+ (3~n (~n · ~p) − ~p)

(
1

r3
− ik

r2

)
eikr

]
eiωt, (4.19)

where ~n = ~r
r
. Using Equation 4.19 it is now possible to distinguish two regions for the

electric field: (i) the near-field region (r ≪ λ), and (ii) the far-field region (r ≫ λ). For an

incident plane wave, the electric field can be described by Equation 4.20a in the near-field

98



4.2. Surface plasmons

region and by Equation 4.20b in the far-field region.

~E(r) =
1

4πε0

3~n(~n · ~p) − ~p

r3
e−iωt (4.20a)

~E(r) =
k2

4πε0

(~n× ~p) × ~n

r
ei(kr−ωt). (4.20b)

The scattering Csca and absorption Cabs cross-sections can be obtained from the po-

larizability (obtained using Poynting’s theorem) [24; 126]:

Csca(ω) =
k4

6πε0
|α(ω)|2 =

8π

3
k4R6

∣∣∣∣
ε1(ω) − ε2(ω)

ε1(ω) + 2ε2(ω)

∣∣∣∣
2

(4.21a)

Cabs(ω) =
k

ε0
Im[α(ω)] = 4πkR3 Im

[
ε1(ω) − ε2(ω)

ε1(ω) + 2ε2(ω)

]
, (4.21b)

where k is the wavevector in the surrounding medium. The extinction cross section is

then simply given by: Cext = Cabs + Csca. It is interesting to notice that Csca scales

with R6/λ4 whereas Cabs scales with R3/λ. Consequently, the extinction cross section

for large particles is dominated by scattering, whereas for small particles it is dominated

by absorption. Moreover, scattering becomes stronger at shorter wavelengths.

Electrostatic limit is a first approximation and other methods are needed to analyze

larger objects (R 6≪ λ). The exact electromagnetic solutions to this problem can be

obtained using Mie theory [24; 122]. Mie theory takes into account retardation effects due

to the spatial variation of the electromagnetic field within the object. Surface plasmons are

then obtained. The R = 0 limit of Mie theory gives the quasi-static limit: ωl =
√

l
2l+1ωp.

Nevertheless, when the geometry of the object strongly differs from the spherical shape,

the use of numerical methods is required to solve this electromagnetic problem. In the

following chapters, the numerical calculations have been performed using the Boundary

Element Method (BEM), presented in Appendix B.

For gold and silver nanoparticles, the Localized Surface Plasmon Resonances fall into

the visible range of the electromagnetic spectrum. Several interesting properties of the

LSPs make them valuable materials in nanophotonics [115; 145]: (i) localization of the

electromagnetic fields close to the particle surface on subwavelength dimensions (beyond

the diffraction limit) [63], (ii) field enhancement induced by charge piling at the surface

of the particle [4], (iii) tunability of the LSPRs by changing the geometry of the particle,

the environment and the interaction with other nanostructures [103].
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In this chapter, two examples of plasmonic applications will be discussed: concentric

ring-disk nanosensors [97] for chemical and biological sensing [101] or field-enhanced spec-

troscopies [178; 181], and photoconductively loaded optical nanoswitchers [96] as highly

integrated optical devices [96; 164]. I will show how the understanding of the optical

properties of some of the commonly used nanoparticles, such as nanorings, nanodisks,

and nanorods is still quite challenging and need to be investigated further.
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5.1 Nano-antennas: optical switchers

5.1.1 Principle of the photoconductive optical switch

The functionality of plasmonic nano-antennas as novel building blocks for ultracompact

nonlinear photonic devices. I propose that the small footprint, large light-matter interac-

tion strength, and fast dynamics of single plasmonic nano-antennas can be used to design

a new type of optical switches for controlling both the far-field and near-field distribution

of light [144]. Tunability of the antenna by impedance loading of its nanogap using a

dielectric medium has recently been described theoretically [10] and experimentally [23].

An early work by Auston et al described a “novel approach” to generate and detect of

THz waves which are characterized by their high sensitivity and phase coherence [14].

Although the signal levels generated in these pionneer experiments are relatively low they

opened the road to new optical devices using intense optical pulses. In this section I

explore a related but conceptually very distinct approach using photoconductive loading

of the antenna gap. As many concepts in nanoplasmonics, photoconductive switching

draws on analogies in the radiowave regime [142]. The principle is based on the transi-

tion from capacitive to conductive coupling between two plasmon modes when bringing

two nanoparticles into physical contact [12; 157]. Recently near-field investigations have

shown control over progressive loading of a nano-antenna, which could be understood

within the framework of circuit theory [164]. We show here that free-carriers photoex-

cited by an external laser source can be used to short circuit the antenna arms, leading

to a strong modification of both the spectral resonance structure and near-field mode-

profile. As the plasmonic antenna switch is based on a strong confinement of optical

fields in space rather than in time, the antenna switch can operate at very low switching

energy while potentially reaching a much faster response than microphotonic switching

devices [9; 176].

The response of cylindrical gold nano-antennas is calculated using the boundary ele-

ment method. The nano-antennas consist of two closely spaced cylindrical rods with their

long axes aligned parallel as shown schematically in Figure 5.1. The rods have hemispher-

ical endcaps. For the antenna switches the interparticle gap is loaded with amorphous

silicon (a-Si). Amorphous silicon is chosen for its large electronic bandgap of 1.6 eV, high

free-carrier nonlinearity, and further for its wide application range and compatibility with

many technological processes (e.g. C-MOS process) [81]. The nonlinear optical response

of crystalline silicon has been shown to be dominated by free-carrier absorption, with a

much weaker contribution from gap filling and band structure renormalization [54; 170].
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As similar arguments hold for a-Si, the dielectric function ε̃(ω) of photoexcited a-Si has

been calculated by combining experimental dielectric function ε̃exp taken from Aspnes et

al. [11] with the free-carrier Drude response [170], resulting in

ε̃(ω) = ε̃exp(ω) −
(ωpl

ω

)2 1

1 + i 1
ωτD

, (5.1)

where ωpl =
√
Nehe2/ε0m∗

optme denotes the plasma frequency of the photoexcited carri-

ers, with Neh the free-carrier density, m∗
opt = (m∗−1

e +m∗−1
h )−1 the optical effective mass

of the carriers, and τD ∼ 10−14 s the Drude relaxation time. The optical effective mass for

a-Si, m∗
opt = 0.17, is close to the value for crystalline silicon [170]. The dielectric function

ε̃(ω) was calculated from Equation 5.1 for values of the free-electron density Neh ranging

from 0 to 1022 cm−3. Results are shown in Figure 5.2b, where the real and imaginary part

of the complex index ñ =
√
ε̃ = n+ iκ are plotted. For values of Neh above 1021 cm−3,

a strong modification of the refractive index occurs corresponding to the formation of

a free-carrier plasma. A critical density N crit
eh can be defined as the transition from a

primarily capacitive (dielectric) to primarily conductive (metallic) loading of the antenna

gap, given by the condition Im(
√
ε̃) > Re(

√
ε̃). This condition yields an expression for

the critical density:

N crit
eh (ω) =

Re[ε̃exp(ω)]ε0m∗
opt

e2

(
ω2 +

1

τ2
D

)
. (5.2)

The critical threshold depends quadratically on the optical frequency ω, while the influ-

ence of τD becomes prominent for τD < 1/ω ∼ 10−15 s, where it results in an overall shift

of N crit
eh to higher carrier densities.

The principle of operation of the nano-antenna switch is illustrated in Figure 5.1. In

the unswitched case (cf. Figure 5.1a), the antenna supports half wavelength resonances

over its individual arms [27; 59]. For gap sizes below S =50 nm, these half-wave modes

are hybridized into a symmetric combination by the capacitive interaction between the

two rods [151]. Figure 5.1b shows the response of the same antenna above the free-carrier

switching threshold. As the antenna arms are conductively coupled, the antenna now

supports a half-wave resonance over the full antenna length. As it will be shown below,

the conductive gap loading results in strong modifications of both the far-field antenna

response and the near-field mode-profiles.
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Figure 5.1: Illustration of the principle of antenna switching using a photoconductive gap,
showing the fundamental mode of an unswitched (a) and a switched (b) nano-antenna.

5.1.2 Photoconductive far-field switching

Figure 5.2 presents the effect of photoconductive switching on the far-field resonances of

a nano-antenna with a gap width S of 50 nm. The effect of a stationary carrier density

are presented here, and dynamic effects will be discussed further below. For this antenna,

the capacitive interaction between the two nanorods is relatively weak and the resonances

resemble those of the individual nanorods. Far-field extinction spectra were calculated for

free-carrier densities Neh below (0 cm−3, solid blue) and far above (1022 cm−3, dashed

red) the switching threshold. The unswitched antenna shows a strong resonance at a

wavelength λ1 = 980 nm, which can be attributed to the fundamental dipole modes of the

uncoupled antenna arms [4]. Photoconductive switching induces a shift of the resonance

position from λ1 to λ′1 over 350 nm, or a relative shift (λ′1−λ1)/λ1 of 36%. This switching

effect is many times larger than that typically observed using dielectric loading [23; 191].

Importantly, the sharp resonance profile of a dipole antenna results in a large switching

contrast of the extinction σon/σoff of 44 at the new resonance wavelength λ′1 = 1.33 µm

and inverse contrast σoff/σon of 11 at λ1 = 980 nm. Calculated far-field radiation patterns

corresponding to the two resonances of the unswitched and switched antenna are shown

in the inset of Figure 5.2a. As both resonances correspond to a dipolar mode, no change

is observed in the angular distribution pattern apart from an overall increase in radiative

efficiency. As the radiated power is roughly proportional to the particle volume squared,

this increase can be attributed to the addition of the photoconductive segment to the

total antenna size.

Figure 5.3 explores into more details the antenna far-field response with progressive

conductive loading for antennas with varying gap dimensions. The optical extinction

of nano-antennas has been calculated with gap sizes S ranging from 0 nm to 50 nm.

The dashed white lines in Figures 5.3a to 5.3f indicate the strongly wavelength dependent

104

Chapter7/Chapter7Figs/Figure1b.eps


5.1. Nano-antennas: optical switchers

Figure 5.2: (a) Extinction spectra for an S = 50 nm antenna, under unswitched (blue) and
switched (red, dash) conditions, corresponding to respective carrier densities of Neh =
0 cm−3 and 1022 cm−3. The 3D radiation patterns are associated to the λ1 and λ′1
resonances of each switching mode. The inset represents the 2D cross section of these
radiation patterns. (b) Real n and imaginary κ parts of the refractive index ñ = n+ iκ,
calculated using Equation 5.1 as a function of the wavelength and the photoexcited free-
carrier density Neh.

switching threshold for N crit
eh introduced in Equation 5.2. The results shown in Figure 5.3f

correspond to the antenna of Figure 5.2. The general behavior of the resonance structure

with increasing free-carrier density can be understood using basic circuit theory [10; 164].

The blue-shift of the antenna resonance below the switching threshold can be understood

using a simple resistor model. One can think of this coupled-antenna resonance as a pure

capacitive cavity where the positive and negative polarization charges act as a capacitor.

As the carrier density increases in the bottleneck of the cavity, there is a reduction of

the charges (reduction of the Coulomb interaction), and there will be a blue-shift which

is proportional to the reduction of the area of the capacitive coupling. There is a point

where the current flow is so large, that this capacitive mode at the cavity cannot be

sustained any more, thus it gets completely damped and dies out.

The emergence of a new resonance at longer wavelengths above the critical switching

threshold corresponds to the transition of a capacitively coupled to a conductively coupled

cavity, where the strong dispersion results from the peculiar charge density pattern which

piles up positive and negative charges at the end of the antenna (cf. Figure 5.6). Starting

from the purely conductive mode at 1022 cm−3, as the carrier density decreases and
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Figure 5.3: Color density maps of the antenna spectral response as a function of pho-
toexcited free-carrier concentration Neh, for antennas with gap sizes 0 nm (a), 2 nm (b),
5 nm (c), 10 nm (d), 20 nm (e) and 50 nm (f).

therefore the gap becomes less conductive, this mode would present net charge in one of

the arms of the antenna and negative in the other. As this configuration is not physically

possible, this modes shifts dramatically to longer wavelengths, and eventually damps and

dies out [157; 164]. We point out that the spectral mode in the strongly dispersive regime

is relatively narrow, which indicates a reduced damping of this mode. As a consequence of

the strong wavelength dependence of N crit
eh , the antenna can be simultaneously switched

and unswitched in different parts of the spectrum. In this transitional regime, the antenna

supports both conductively coupled modes at longer wavelength and capacitive modes at

shorter wavelengths, which could be of interest for device applications.

The S = 50 nm gap width (Figure 5.3f) represents the virtually uncoupled regime,

where capacitive interaction is very weak. For these wide-gap antennas, the far-field pho-

toconductive switching effect is the strongest, firstly because of the absence of the red-

shift associated with capacitive coupling, and secondly because the total antenna length

is the largest, leading to a longer wavelength fundamental mode. In comparison, for the

S = 2 nm antenna (Figure 5.3b), switching from the capacitive to conductive state does

not produce a marked wavelength shift. For the S = 0 nm antenna (Figure 5.3a), the pres-

ence of a conductive singularity results in a strongly renormalized mode structure [157].

106

Chapter7/Chapter7Figs/Figure3b.eps


5.1. Nano-antennas: optical switchers

Photoconductive antenna switching in this case strongly modifies the conductive area

between the antenna arms, allowing a proper antenna mode to be formed.

5.1.3 Photoconductive near-field switching

Figure 5.4: Near-field intensity maps calculated for an antenna of L = 100 nm arm
length and S = 10 nm gap size, as function of wavelength and free-carrier density, for the
antenna midgap (a) and 5 nm away from the antenna arms (b). (c-f) Near-field intensity
maps around the antenna of (a) for resonance wavelength λ′1(c, d) and λ1 (e, f), under
unswitched (Neh = 0 cm−3) (c, e) and switched (Neh = 1022 cm−3) (d, f) conditions.

Together with the switching of the far-field radiative properties, active control over

the near-field distribution and the associated local density of states will be of enormous

importance. The near-field intensity has been calculated at various positions around a

photoconductive antenna switch. Figures 5.4a and 5.4b show the intensity at the center

of the antenna gap and 5 nm from the antenna ends for a dimer antenna with S = 10 nm

gap width. This narrow-gap antenna supports a fundamental mode at a wavelength

λ1 = 1100 nm with a high local intensity enhancement of around 35 times the incident

intensity in the gap region. The mode-profile of this antenna resonance can be observed
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in detail in the near-field maps of Figures 5.4e and 5.4f. Photoconductive switching of the

antenna results in a strong quenching of the midgap intensity by an order of magnitude,

due to the redistribution of charges associated with the suppression of the gap capacitor

(Figure 5.4f). A new mode is formed at a wavelength λ′1 = 1290 nm, where the intensity

is mainly concentrated around the endpoints of the antenna and the midgap intensity is

absent (Figure 5.4d). Remarkably, Figure 5.4a shows that a transitional regime exists

above N crit
eh where the new mode shows a large midgap intensity, even exceeding that of

the purely capacitive antenna. It should be noted that here the semiconductor still is

partly dielectric, as otherwise the fields in the gap would be suppressed. The physical

origin of this enhancement is again related to the particular charge distribution in the

antenna in the cross-over regime as discussed above.

5.1.4 Figures of merit

For the rational design of antenna switches, figures of merit of antenna performanceare

defined for respectively far-field extinction and near-field intensity enhancements. For

applications requiring large spectral shifts and extinction contrast, the relative resonance

shift (λ′1 − λ1)/λ1 and the on-off extinction ratio σon/σoff at λ1 and λ′1 are calculated.

For the near-field switching, key parameters of interest are the on-off ratios of the local

intensity at the midgap and antenna end positions A and B respectively. Resulting

values are shown in Figures 5.5a and 5.5b for the antennas with various gap widths. The

increasing capacitive loading for decreasing gap width S drives the individual particle

resonances λ1 toward that of the half-wave antenna λ′1 [129], resulting in a reduced far-

field switching performance. Therefore, for far-field switching, antennas with a large gap

are favorable for achieving a large spectral shift and high switching contrast. We should

bear in mind though that antennas with a large gap require more energy for switching

and do not benefit as much from reduced switching thresholds at antenna resonances.

For the near-field switching, antennas with a narrow gap are more favorable as they

produce higher local field enhancements. Active manipulation of the local near-fields

around plasmonic nano-antennas will be of importance for applications involving coherent

control over local field amplitudes and phases [2] and for active manipulation of quantum

emitters [7].

The free-carrier densities required for nano-antenna switching at near-infrared wave-

lengths are higher than those in the terahertz range [34; 77]. However such densities are

routinely achievable using ultrafast laser excitation of an electron-hole plasma. [54; 170]

In order to compare the switching energies required for photoconductive antenna switch-
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Figure 5.5: Figures of merit for switching operation in far-field (a) and near-field (b). (a)
Relative resonance shift (λ′1 −λ1)/λ1 (left scale bar) and on-off extinction ratios σon/σoff

at wavelengths λ1 and λ′1 (inverse off-on ratio), versus antenna gap width S. (b) Near-
field intensity off-on ratios Ioff/Ion at λ1, point A (midgap) and λ′1, point B (5 nm from
tip, inverse off-on ratio).

ing with state-of-the-art microphotonic devices, the pumping energies has been estimated

for direct and 2-photon optical excitation. In this estimate, dynamical effects occurring

on the timescale of the optical pump pulse, which will be discussed further below, were

not considered. For pulsed optical excitation on a time scale much shorter than carrier

relaxation process in the system, the free-carrier density Neh can be estimated from the

incident optical fluence F0 using [81]

Neh =
F0

~ω

(
α0 +

βF0

2
√

2πt0

)
, (5.3)

where ω = 2π/λ, α0, and β are the linear and two-photon absorption coefficients, and

t0 the time duration of the pulse. For excitation of a-Si in the telecommunication range

using an ultrafast laser, a critical density N crit
eh of around 1021 cm−3 is achieved via two-

step absorption (β ≈ 120 cm/GW) at a fluence of F0 = 0.73 mJ.cm−2 [81]. Similar

switching fluences are obtained using linear absorption above the bandgap, where α0 >

105 cm−1 [54]. For excitation using a diffraction-limited spot of around 1 µm2 area, the

above fluence gives a switching energy of 7.3 pJ. This compares well to values achieved

using microphotonic ring resonators [9] and photonic crystal nanocavities [176], which
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are however intrinsically several orders of magnitude slower than plasmonic devices [114].

The above switching energies are valid for ultrafast pulsed excitation. Under stationary

pumping conditions, the carrier density will be limited by different relaxation mechanisms

such as surface recombination, Auger processes, and electron diffusion. The ultrafast

response of a-Si thin films has been extensively studied by Esser et al. [54], who have shown

that carrier densities in the 1021 cm−3 can be achieved using ultrafast laser absorption.

Carrier-trapping into localized states leads to a considerable reduction of the free-carrier

lifetime for a thin film compared to bulk crystalline Si. Above densities of 8× 1019 cm−1

another contribution to the relaxation time appears due to Auger processes involving

spatially overlapping electron-hole pairs. The combined processes result in a relaxation

time of the order of 100 fs at carrier densities around 1021 cm−3 [54]. An additional

limiting factor to the carrier concentration is carrier diffusion out of the gap region. For

a 20 nm gap region and an electron diffusion constant of 36 cm2.s−1, electron diffusion

will contribute to a relaxation time of around 100 fs.

These relaxation processes limit the carrier density that can be achieved using station-

ary excitation; however they also provide the ultrafast time response of the nano-antenna

switch. Eventually all the energy deposited into the system will be converted into heat by

electron-phonon relaxation on a time scale of picoseconds [131]. In the extreme case that

all this energy is dissipated entirely in the nano-antenna, it produces a temperature rise of

around 30 K. For this calculation, the lattice heat capacity of gold CL ≃ 2.5×106 J/m3K

and a total amount of 106 generated electron-hole pairs per antenna and per pump pulse

has been used. Effects of heat piling up can be substantially reduced by embedding the

antenna into an environment with a good thermal conductivity.

The combination of strong optical resonances with a high local field enhancement in

the antenna gap opens up opportunities for optical pumping employing the mode struc-

ture and its dynamic modulation. Since only a nanometer-sized active volume has to be

pumped, which is strategically located in the antenna gap, the estimated pump intensity

required for switching can be significantly reduced through funneling of pump energy into

the resonant antenna mode. Considering a typical resonant intensity enhancement in

the antenna gap of order 102 [4; 129], an ultimate switching energy is estimated around

100 fJ. In addition, it may be possible to employ the strong resonant enhancement of

nonlinear optical phenomena in the feed gap, such as second harmonic and supercontin-

uum generation [129; 165], to produce a nonlinear absorption complementary to two-step

absorption. The above resonant reduction of the pumping threshold assumes that this

energy can be deposited into the resonant mode before the switching itself changes the

antenna mode structure. In the other limit of stationary resonant pumping, the dynamic
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switching of the antenna will result in optically bistable behavior [1]. We propose that

the nano-antenna switch can thus be used as a saturable absorber element. This appli-

cation may hold substantial promise for semiconductor lasers, which currently operate in

the sub-100 fs pulsed regime [153]. The exact conditions for successful operation of plas-

monic saturable absorbers will require extensive modeling which goes beyond the work

presented in this thesis.

5.2 Gold ring-based nanoresonators

Among the wide variety of plasmonic nanoresonators, ring-disks are very interesting nano-

objects because they allow for a high tunability of the LSPR owing to the interaction

between the nanoring walls [5; 19; 71; 73; 101; 136; 173]. Moreover, it has been shown

that small structural symmetry breaking of such nano-objects leads to strong variations

of the LSPRs [72; 73; 171]. In this section, the dependence of the surface plasmon

properties of ring-disks on fine shape details, namely the wall sharpness and profile of

the nanoring and of the nanodisk are investigated experimentally and numerically. A

comparison between numerical and experimental results, combined with high-resolution

scanning electron microscopy (HRSEM) and atomic force microscopy (AFM) is presented.

5.2.1 Nanofabrication and optical measurements

Two gold nanoring-disk samples NRD240 and NRD280, consisting in periodic arrays of

concentric nanodisk (ND) and nanoring (NR), have been studied. The samples were

fabricated using a protocol combining electron beam lithography (EBL) and thermal

evaporation of Au(25 nm)/Cr(3 nm) on quartz substrates [107; 178; 181]. The ND and

NR have a nominal height of h =28 nm and were processed on a 100 µm ×100 µm

area. Figure 5.6 shows HRSEM (a), AFM (b, d) images, and an AFM profile scan (c) of a

typical nanoring-disk. The average size parameters extracted from the HRSEM and AFM

measurements are quoted in Table 5.1. The axis to axis separation between ring-disks

is 480 nm and 560 nm for samples NRD240 and NRD280, respectively. For such large

separation, the electromagnetic near-field interactions between adjacent ring-disks can be

neglected [157].

The fine details of the shape of a typical ring-disk are revealed by the AFM measure-

ments (Figures 5.6c and 5.6d). The fabrication process leads to two main features: i) the

side walls of the NR and ND are not vertical but slightly tilted, ii) the NR and the ND do
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Figure 5.6: HRSEM (a) and AFM (b, d) images of the NRD240 ring-disk sample. AFM
profile scan (c) of a typical ring-disk.

Table 5.1: Average size parameters from samples NRD240 and NRD280. DNR,out,
DNR,in and w are the outer and inner diameters and wall thickness of the NR, respectively.
DND is the nanodisk diameter. The pitch, i.e. axis to axis separation between nanoring-
disks, is also indicated.

Samples
DNR,out DNR,in w DND Pitch

(nm) (nm) (nm) (nm) (nm)

NRD240 240 ±3 180 ±3 30 ±3 90 ±3 480
NRD280 280 ±3 202 ±3 39 ±3 112 ±3 560

not present the ideal profile characterized by flat surfaces and sharp edges. They rather

exhibit a rounded surface on top and smooth edges. Defects resembling small bumps and

craters on the top of the ring-disk are also visible. One must keep in mind that the AFM

resolution is limited by the tip size and by the response time of the experimental setup.

The AFM image and topography profile in Figures 5.6d and 5.6c were acquired at low

speed (ṽtip ≈5 µm/s) in order to reduce those limitations.

Figure 5.7 shows the optical density (OD) spectra of samples NRD240 and NRD280

obtained as OD = − log(T ), where T is the measured transmittance. Spectra were

recorded in the 400-1700 nm spectral range and do not extend further into the infrared

due to limitation of the spectrophotometer. The incident light was unpolarized. The

transmitted light was collected through a 36X long working distance microscope objective

with 0.5 numerical aperture. The probed area is around 250 µm2 located at the center

of the 100 µm ×100 µm processed area. The number of probed nano-objects is about

1100 and 800 in the case of ring-disks separated by 480 nm and 560 nm, respectively. As
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observed in Figure 5.7, the OD spectra exhibit two resonances: one in the visible (around

670 nm) and another in the infrared (around 1550 nm and 1700 nm, depending on sample)

which are associated to disk-like and ring-like LSPRs, respectively [71; 137; 151; 190].

The measured LSPR wavelengths and linewidths are quoted in Table 5.2. The ring-disks

showed a good uniformity as attested by the weak dependence of the LSPR wavelengths

on the probed point of the 100 µm ×100 µm area.

Figure 5.7: Experimental (dots) and calculated (full lines) spectra of the NRD240 (red)
and NRD280 (blue) nanoring-disk samples. The BEM simulations assume perfect ring-
disks with NR and ND showing flat surfaces and sharp edges. The scale in the range
400-800 nm is multiplied by a factor of 4.

5.2.2 Simulations and comparison with experiments

To compare the experimental results with the calculations, the surface plasmon properties

of ring-disks have been calculated using the boundary elements method (BEM) [4; 5; 61;

62]. The bulk dielectric function of gold used in the calculations has been taken from

Johnson and Christy [84]. Calculations were performed for a single ring-disk with charac-

teristic dimensions corresponding to samples NRD240 and NRD280 (cf. Table 5.1). The

ring-disk is located on the top of a quartz substrate (optical index from Reference [182]),

and the incident electric field ~Ei is propagating at normal incidence with polarization in

the plane of the ring-disk. The 3 nm-Cr layer (optical index from Reference [143]), that
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allows for improving the attachment of the ring-disk to the quartz substrate, is taken into

account in the simulations.

The spectra presented in Figure 5.7 were calculated for a perfect ring-disk, i.e. for NR

and ND with sharp edges and flat surfaces as sketched in Figure 5.8a. The wavelength

of the disk-like LSPR is correctly described by the calculations (cf. Table 5.2). On the

contrary, the discrepancy between measured and calculated wavelengths of the ring-like

LSPR is considerable. Indeed, the ring-like LSPR measured for samples NRD240 and

NRD280 are red-shifted by 316 nm and 469 nm, respectively, in comparison with the

calculated LSPRs (Figure 5.7). Such differences cannot be explained by variations in the

ND and NR sizes. Indeed, it would be necessary to double the NR diameter in order to

account for the measured ring-like LSPR wavelengths.

Since the ring walls are here very thin (30 nm and 39 nm for NRD240 and NRD280,

respectively), their actual shape may strongly influence their surface plasmon resonances.

In particular, the ring walls exhibit a rounded shape on top, rather than being ideally flat,

as observed by AFM imaging and topography profiles (Figures 5.6c and 5.6d). Therefore,

ring-disks with more realistic profiles, i.e. shapes mimicking those observed by AFM, are

considered (Figure 5.8b). Instead of being vertical and sharp, the NR and ND walls are

now tilted and have a rounded shape on top.

Figure 5.8: Model profiles of ring-disks (a) with flat surfaces and sharp edges, and (b)
with rounded surfaces and smooth edges.

Figure 5.9 presents extinction spectra of NRD240 and NRD280 ring-disks simulated

for various ND and NR profiles. The disk-like LSPR λND is only slightly affected by

the change in shape: a maximum red-shift of only 11 nm with respect to the ideal sharp

profile is found. Intuitively, this can be understood in terms of small shape deformation

compared to the large disk size (either 90 nm or 112 nm in diameter). On the contrary, the

infrared ring-like LSPR λNR red-shifts by several hundreds of nanometers with increasing
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Figure 5.9: Extinction spectra of NRD280 (a) and NRD240 (b) calculated for the various
profiles of the ring-disks shown in the insets (only half the ring-disk is sketched). The
spectrum corresponding to each profile is color-encoded. The profiles of the perfect ring-
disks with sharp edges and flat surfaces and the corresponding spectra are shown in black
dashed lines. The measured optical density spectra [OD = − log(T )] are plotted with
black dots. The inset in panel (a) shows the relative LSPR shift ∆λ/λideal

LSPR as a function
of the relative deviation of the mean NR wall thickness (w − 〈w〉) /w.

deformation (Figure 5.9a). This significant spectral shift is directly connected to the

interaction between inner and outer NR walls [5]. Indeed, by rounding the ring, both

walls are slightly tilted and so result in a decrease of the mean wall thickness, thus leading

to an increase of the inter-walls interaction. The smoother the edges are, the thinner the

ring is, and the stronger the interaction becomes. This is the reason why the ring-like

LSPR red-shifts when the rounded shape of the NR becomes more and more pronounced.

The inset in Figure 5.9a shows the dependence of the relative spectral shift of the LSPR

∆λ/λideal
LSPR, λideal

LSPR being the LSPR wavelength of the ideally flat ring-disk exhibiting

sharp edges, as a function of the deviation of the mean NR wall thickness 〈w〉 from the

nominal wall thickness w of the ideal NR. It can be noticed from this figure of merit that

a 10% decrease of the mean wall thickness induces a 25% spectral red-shift of the ring-like

LSPR. The strong sensitivity of the ring-like LSPR to small shape variations is due to

the small ring wall thickness (either 30 nm or 39 nm). This point is specifically addressed

further with the near-field study. Figure 5.9b presents a comparison between the measured

optical density (OD) spectrum and the extinction spectra calculated for both the ring-disk

with sharp edges and the ring-disk with the rounded shape that accounts for the observed

ring-like LSPR wavelength. This comparison is presented for sample NRD240 for which

the infrared ring-like LSPR is clearly observed. The calculated LSPR wavelengths and

linewidths are quoted in Table 5.2.
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Table 5.2: Calculated and measured LSPR wavelengths λ and linewidths Γ from the two
ring-disk samples: NRD240 and NRD280. The accuracy of the wavelength determination
is ±2 nm.

NRD280 NRD240
λND ΓND λNR ΓNR λND ΓND λNR ΓNR

(nm) (nm) (nm) (nm) (nm) (nm) (nm) (nm)

Measured 676 115 ∼1700 ∼300 645 88 1546 223
Calculated 675 87 1688 210 630 61 1530 117

The experimental spectra are acquired from 1100 and 800 ring-disks in case of samples

NRD240 and NRD280, respectively (cf. Section 5.2.1). The quantitative analysis of the

ring-like LSPR allows for determining the average shape of those probed ring-disks as

shown in Figure 5.9. Furthermore, it is interesting to notice that the calculated ring-like

LSPR is narrower and nearly three times more intense than the measured LSPR (Table 5.2

and Figure 5.9b) in case of sample NRD240. This difference can be attributed to the fact

that the bulk dielectric function of gold is used in the simulations whereas our ring-disks

present a high surface to volume ratio, which deviates from the bulk approximation.

Moreover, size and shape fluctuations of the ring-disk as well as the roughness (bump

and crater defects) visible in the AFM images (Figures 5.6b and 5.6d) have already been

studied [140]. It has been shown that a distribution of about 360 bumps and craters

with diameters ranging from 8 nm to 20 nm on the surface of a nanoshell induces a

spectral red-shift of about 20 nm and contributes to the inhomogeneous broadening of

the LSPR. The eccentricity of the ring-disks has also been studied both experimentally

and theoretically [72; 73; 171]. A 17 nm displacement of the ND with respect to the NR

center induces a spectral red-shift of the order of 25 nm. Considering the good quality

of the studied samples, and the relatively small influence of the two effects (relative

spectral shifts of the order of 2%), it is possible to conclude that neither the presence of

some defects (bumps and craters) nor the very small eccentricity of the ring-disks can be

responsible for the significant spectral shift of the ring-like LSPR reported here.

Figure 5.10 compares the model profiles, extracted from the quantitative analysis of the

extinction spectra (cf. Figure 5.9), to the top part of the AFM profiles (cf. Figure 5.6).

The latter were obtained by averaging AFM-profile scans measured from 10 ring-disks

of samples NRD240 and NRD280 (green full line). The general feature of the realistic

rounded ring-disk profiles (blue dashed line) is in good agreement with the measured

topography profiles (green full line). In particular, the rounded shape of the NR top

surface is well accounted for, though the actual AFM profiles appear broader due to
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Figure 5.10: Top part of the average AFM topography profiles (green lines) and of the
model ring-disk profiles having both flat surfaces with sharp edges (black dashed lines),
and rounded surface with smooth edges (blue dashed lines) for both samples NRD280 (a)
and NRD240 (b). For NRD240, a profile with hNR =25 nm< hND =28 nm is also shown
in red dashed line.

experimental limitations, specially at the ring-disk base (cf. Section 5.2.1). However,

the HRSEM image (cf. Figure 5.6a) shows a clear gap between the NR and the ND,

thus supporting this AFM resolution limit. From the simulations, it has been found that

a 3 nm broadening of the NR base (corresponding to the experimental accuracy) leads

to a blue-shift of the ring-like LSPR of about 15 nm. This value is much smaller than

the shift induced by the rounded shapes (Figure 5.9). Furthermore, it can be noticed

that for NRD240, the experimental NR height (hNR) is slightly lower than that of the

ND (hND). The calculations performed with a profile taking into account this mismatch

(hNR =25 nm< hND =28 nm, red dashed line in Figure 5.10b) show that the ring-like

LSPR red-shifts by only 30 nm (with respect to the LSPR obtained with the ideal profile).

Indeed, since the ring-like surface plasmon modes are related to the inter-walls interaction,

the LSPRs only weakly depend on the NR and ND height fluctuations.

It is worthwhile to determine the impact of the ring-disk shape on the surface plas-

mon near-field distribution. To do so, the local field enhancement | ~Eloc|/| ~Ei| has been

calculated for both ring-disks with sharp edges and ring-disks with the rounded shape

that accounts for the observed LSPRs (blue dashed line in Figure 5.10). The results

are presented in Figure 5.11 for the ring-disk NRD240. The near-field distributions are

shown for resonant excitation of the disk-like (Figures 5.11a and 5.11b) and ring-like

(Figures 5.11c and 5.11d) LSPRs. For resonant excitation with the visible LSPR, only

the dipolar surface plasmon mode of the ND is activated, thus supporting the disk-like

nature of this LSPR. Similarly, the resonant excitation of the infrared LSPR generates
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a strong field localization around the NR. This surface plasmon mode corresponds to

the interaction between the NR walls. Moreover, part of the local field is also localized

within the NR-ND gap due to the interaction between the NR and the ND. The spatial

distributions of the near-field intensity around the NR support the ring-like nature of the

surface plasmon modes. Though slight amplitude changes can be noticed in Figures 5.11c

and 5.11d, when rounding the NR and ND shapes, the general feature is preserved. These

little changes arise from the sharpness of the NR edges. Indeed, in the sharp NR, there

is a strong surface charge density localization on top of the NR sustained by the edges,

while in the rounded NR it is quasi-uniformly distributed all over the NR wall. This effect

reflects in the near-field distribution (upper panels in Figures 5.11c and 5.11d). Further-

more, it is worthwhile to notice that the electric near-field is more localized around the

ring-disk with rounded surfaces and smooth edges (Figure 5.11d) due to stronger NR

inter-wall interaction (as compared to Figure 5.11c). Figure 5.11e shows the near-field

distribution around the ring-disk with smooth edges and rounded surfaces with an inci-

dent wavelength in resonance with the LSPR of the ring-disk presenting sharp edges and

flat surfaces (λideal
LSPR = 1214 nm). From these near-field maps it can be noticed that the

excitation is now out of resonance (lower local field enhancement) and that the ring-like

behavior is lost (near-field more localized within the NR-ND gap). Indeed, the LSP mode

excited at 1214 nm is now the result of a mixing between the disk-like and the ring-like

LSPRs.
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Figure 5.11: All the upper panels show a side view at y = 0 and all the lower panels show
a top view at z = h/2 = 14 nm of the calculated near-field distributions for both sharp
(a, c) and rounded (b, d) ring-disks (NRD240) associated to both disk-like (a, b) and
ring-like (c, d) LSPRs. Panel (e) shows the near-field distribution around the rounded
ring-disk (NRD240) excited in resonance with the ring-like LSPR of the sharp ring-disk.

The white arrow indicates the polarization of the incident field ~Ei which propagates along
the z-direction. The color scale refers to the field enhancement factor | ~Eloc|/| ~Ei|.
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Localized surface plasmons have been extensively studied both theoretically and ex-

perimentally in objects and nanostructures [4; 105; 137; 138; 155; 157; 175; 192]. Only

few experimental techniques address the dynamics of surface plasmons of vibrating nano-

objects. In this section I report on the importance of analyzing the interaction between

localized surface plasmons and acoustic vibrations for understanding of their inelastic

light scattering properties, in particular resonant Raman-Brillouin scattering [15; 116].

6.1 Raman-Brillouin scattering in metals

In metallic nanostructures, surface plasmons play the role of intermediate states in the

three-steps resonant Raman-Brillouin scattering process [17]: absorption of the incident

photon, absorption or emission of a vibration mode and emission of the scattered pho-

ton. The scattering rate intoduced in Equation 2.1 is now expressed for localized surface

plasmons:

P(~ki, ~ks) = 2π
~
δ(~ωs ± ~ωvib − ~ωi) × (6.1)

∣∣∣∣
∑
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,

where n~ki(s)
is the number of incident (resp. scattered) photons with wavevector ~ki(s) and

energy ~ωi(s). na(b), ~ωa(b) and Γa(b) are the occupation numbers, energy and homoge-

neous broadening of the intermediate localized surface plasmon states (labelled a and b)

involved in the optical absorption and emission steps. H
i(s)
pl−pht is the interaction Hamilto-

nian between the LSP and the incident (resp. scattered) light. Hpl−vib is the interaction

Hamiltonian between the localized surface plasmons and the acoustic vibrations and is

given by [17; 100]:

〈nb + 1, na|Hpl−vib |nb, na + 1〉 = −
∫

NCl

~Eb(~r) · δvib
~Pa(~r)dV , (6.2)

where δvib
~Pa(~r) is the modulation of the optically excited polarization by the acoustic

vibrations and ~Eb(~r) is the electric field of the LSP state b emitting the scattered photon.
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6.1.1 Deformation potential coupling mechanism

Starting from ~Pa = ǫ0χ~Ea, the modulation of the induced polarization can then be

expressed as [15; 17]:

δvib
~Pa(~r) = ǫ0δvibχ(~r) ~Ea(~r) + ǫ0χ(~r)δvib

~Ea(~r). (6.3)

The first component of Equation 6.3, i.e. ǫ0δvibχ(~r) ~Ea(~r), is called Deformation Poten-

tial coupling mechanism. Similar to the DP coupling mechanism introduced for semi-

conductors in Chapter 2, the modulation of the interband dielectric susceptibility χinter

contributes to the modulation of the optically induced polarization. In principle, both

intraband and interband components of the dielectric susceptibility may be modulated

via DP mechanism. However, because the single particle intraband excitations fall in the

infrared range, the effect of their interaction with acoustic vibrations on the collective

intraband response is negligible in the visible range [17]. The contribution of the DP

coupling mechanism to the modulation of the induced polarization is then given by:

δvib
~PDP

a (~r) = ǫ0χinter(~r)

(
De−vib

~ω − ~Ωinter

div ~uvib(~r)

)
~Ea(~r), (6.4)

where ~uvib is the displacement field associated to the acoustic vibration, ~Ωinter is the

interband transition energy, and De−vib is the deformation potential [15; 17].

6.1.2 Surface orientation coupling mechanism

The second term in Equation 6.3, i.e. ǫ0χ(~r)δvib
~Ea(~r), is related to the modulation

of the induced electric field by changes in size and shape of the nano-object. Due to a

change in shape, induced by acoustic vibrations, the surface charge density of the metallic

nano-object is redistributed at the surface of the nano-object. The electric field changes

both in amplitude and in direction. This acousto-plasmon interaction considered here is

called Surface Orientation (SO) coupling mechanism. It has been proposed by Guillaume

Bachelier and Adnen Mlayah and introduced in a perpurbation approach [15; 17].
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6.2 Acousto-Plasmonic dynamics in silver nanocolumns

6.2.1 Silver nanocolumns growth

Ag:Al2O3 nanocomposite thin films containing silver NCls were produced on glass sub-

strates by alternate pulsed laser deposition (a-PLD) [29; 116] of Ag nanoparticles and

amorphous Al2O3 layers (a-Al2O3). When the thickness of the a-Al2O3 layers is reduced

down to a critical value, Ag nanoparticles nucleate preferentially on top of nanoparticles

of the previous layers, leading to the formation of self-aligned silver NCls [116], as ob-

served in the TEM image in Figure 6.1a. Three silver nanocolumn samples, with mean

lengths of 6.5 nm, 12 nm and 13±0.2 nm (labelled NCls1, NCls2 and NCls3, respectively)

and a mean diameter of 2.5 ± 0.2 nm were studied.

Figure 6.1: (a) TEM image cross section of the NCls and schematic of the incident light

wavevector (~ki) and electric fields for S- and P-polarizations. The green arrow indicates
the direction onto which the scattered light is analyzed. The angle between the incident
wavevector and the NCl axis is θi = 34.5◦ inside the sample. A zoom of the TEM
image shows a typical NCl formed by a stacking of quasispherical NPs. This stacking is
modeled by an indented NCl as displayed in the schematics. (b) Calculated (full line) and
measured (stars, sample NCls2) extinction spectra for P-polarized (blue) and S-polarized
(red) light. The Raman excitation wavelength (413 nm) is marked on the graph as a
dashed line.

Optical extinction spectra from NCls2 were measured for both P and S incident po-

larizations. The experimental spectra in Figure 6.1b show a transverse localized surface

plasmon resonance (around 375 nm) [108] visible for P- and S-polarizations (cf. schemat-
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ics of incident polarization in Figure 6.1a), and a red-shifted broad band which has been

already assigned to the longitudinal surface plasmon resonance [116] of the nanocolumns.

The latter is only observed for P-polarization [117]. The longitudinal-transverse surface

plasmon splitting reveals the elongated nature of these nano-objects, consistent with the

TEM images.

6.2.2 Raman-Brillouin scattering and pump-probe experiments

Low frequency Raman-Brillouin scattering by confined acoustic vibrations was excited

using the λi = 413 nm krypton laser wavelength close to the transverse surface plas-

mon resonance (dotted line in Figure 6.1b). The scattered light was dispersed using

a customized T64000 Jobin-Yvon spectrometer which allows for low-frequency Raman-

Brillouin measurements with a very high rejection of the Rayleigh scattering.

Figure 6.2 shows the Raman-Brillouin spectra recorded from the three NCls samples

(NCls1, NCls2, NCls3) and from a sample consisting of five well separated layers of iso-

lated spherical nanoparticles (NPs) grown on a Si substrate. Both P- and S-polarizations

of the incident light have been used, whereas the polarization of the scattered light has

been analyzed in the horizontal direction in the plane of incidence. This scattering con-

figuration, together with the identical orientation of all the NCls allow for tracing the

activation of different vibrational modes (selection rules).

The Raman-Brillouin spectra of the NCls consist of a main peak located around

23 ± 2 cm−1 which has been previously ascribed to scattering by quadrupolar-like con-

fined acoustic vibrations [29; 116] (a sketch of the associated displacement field is shown

in Figure 6.2). As observed in the spectra of NCls1, NCls2 and NCls3, the frequency

of the quadrupolar-like Raman band is basically independent on the NCls length, with

very small shifts due to differences in the lateral average dimensions of the nanocolumns.

The extensional vibration mode of the NCls (shown in the sketch of Figure 6.2) can be

observed only in time resolved pump-probe experiments [28; 29]. The femtosecond time

resolved transient absorption measurements were performed using the pump-probe tech-

nique (excitation at 860 nm and detection at 430 nm) [29]. Only the result obtained

for NCls2 is presented here for comparison with the Raman-Brillouin data. The Fourier

transform (FT) of the transient absorption oscillations from NCls2 (top spectrum of Fig-

ure 6.2) exhibits a spectral line around 5 cm−1 due to extentional vibration modes of

the NCls. This line shifts down with increasing nanocolumn length as shown in Refer-

ence [29]. Moreover, a band around 38 ± 2 cm−1, identified as a breathing-like mode of

the nanocolumns, can also be observed in the FT spectrum (cf. sketch on the top of
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Figure 6.2: From bottom to top: Resonant Raman-Brillouin spectra (stars) of samples
NCls1, NCls2 and NCls3 and of isolated nanoparticles (NPs) for P-polarized (blue) and
S-polarized (red) incident light. The corresponding fits (full lines) have been obtained
using two Gaussian line-shapes and a background (dashed lines). Upper spectrum is the
Fourier transform of the oscillating component of the time resolved transient absorption
from sample NCls2. Field displacement vectors of the vibrations are shown with the
sketches in the upper part of the figure. The peak marked by a black star in the spectra
corresponding to the sample containing isolated nanoparticles corresponds to the Brillouin
peak of the Si substrate. Raman-Brillouin spectra recorded by Adnen Mlayah at the
University of Toulouse.

Figure 6.2).

In the Raman-Brillouin spectra, remarkably, an additional band is visible on the high

frequency tail of the quadrupolar-like mode for the three nanocolumn samples (NCls1,

NCls2, NCls3). This band is mainly observed for P-polarization (blue line) and almost

vanishes for S-polarization (red line). The observation of this “anomalous” band in the

Raman-Brillouin spectra is a striking finding. By fitting the Raman-Brillouin spectra

with Gaussian line shapes it is possible to extract the frequencies, bandwidths and relative

intensities of the observed bands.

The Raman-Brillouin bandwidth is due to both homogeneous and inhomogeneous

broadening of the vibration modes. The homogeneous broadening is due to the pres-
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ence of a matrix and increases with decreasing NP size [46]. From these time resolved

pump-probe experiments (Figure 6.2), the homogeneous broadening of the breathing-like

mode is estimated around Γhom =16 cm−1. On the other hand, the contribution of the

NCls width distribution (0.4 nm) to the inhomogeneous broadening is estimated around

Γinhom =4 cm−1. The homogeneous broadening and the inhomogeneous broadening due

to the lateral size distribution of the NCls solely cannot fully explain the observed Raman-

Brillouin bandwidth which is around 20 cm−1. From the TEM (Figure 6.1a) it can be

noticed that the NCls may strongly differ in shape (misalignment of the NPs) and can be

described by a stacking of 3-5 NPs. This shape distortion is responsible for an additional

inhomogeneous broadening which gives the strongest contribution to the Raman-Brillouin

bandwidths. This is the reason why Gaussian functions are used, rather than Lorentzian,

for the fitting of the Raman-Brillouin spectra.

The frequency of the “anomalous” band is dispersed from 39 cm−1 (NCls1) to 36 cm−1

(NCls2) and 35±2 cm−1 (NCls3) quasi-independently on the NCl length, similarly to the

behaviour of the quadrupolar-like mode. Interestingly, the frequency of the anomalous

band is very close to that of the breathing-like vibration band observed in the FT spectrum

of the transient absorption (cf. Figure 6.2). Therefore, it seems natural to associate the

additional band observed in the NCls Raman-Brillouin spectra to scattering by their

breathing-like acoustic vibrations.

However, according to the SO coupling mechanism (cf. Section 6.1.2), which has been

shown to be the most important mechanism for the Raman-Brillouin scattering in metallic

nano-objects, breathing-like vibrations are not expected to have a strong Raman-Brillouin

activity. Indeed, this coupling mechanism involves the modulation of the localized surface

plasmon polarization field by shape deformation of the nano-object (modulation of the

surface polarization charges by the acoustic vibrations). Therefore, because breathing-like

vibrations produce mainly a volume change and not a shape deformation they are hardly

observed by Raman-Brillouin scattering. Nevertheless, the associated volume change

gives rise to deformation potential interaction with the surface plasmons. For silver nano-

objects this Raman-Brillouin scattering mechanism is about one order of magnitude less

efficient than the surface orientation mechanism [16; 17]. As a matter of fact, quadrupolar-

like vibration modes dominate the Raman-Brillouin spectra (Figure 6.2) owing to the

strong shape deformation they produce, thus leading to efficient modulation of the surface

plasmon polarization [16; 17].

To further investigate the activation of the “anomalous” band, it is interesting to

trace the dependence of the Raman-Brillouin spectra on polarization of the excitation

light. Figure 6.3 shows the vanishing of this band when continuously changing the po-
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larization from P to S. Figure 6.3b gives the variation of the integrated intensity of the

“anomalous” band normalized to that of the quadrupolar-like vibration band. A clear

cosine-like intensity evolution is observed.

Figure 6.3: (a) Resonant Raman-Brillouin spectra (stars) from sample NCls2 and the
corresponding fits (full lines) obtained with Gaussian line shapes (dashed lines), for five
polarization angles from P (blue) to S (red) configurations. (b) Integrated intensity of
the band at 36 cm−1 normalized to that of the quadrupolar-like mode as a function of
the polarization angle αi (points) defined by ~Ei = ~EP cosαi + ~ES sinαi. The green arrow
indicates the direction onto which the scattered light is analyzed. The line is a fit to the
experimental data obtained with 0.46 cos2 αi + 0.4.

For S-polarized incident light the electric field is perpendicular to that of the scattered

and analyzed light. In this crossed configuration, only acoustic vibrations projecting

the polarization vector onto the perpendicular direction (because of shape deformation)

are observable. This is the case of the quadrupolar-like vibrations, which are indeed

observed in both crossed and parallel configurations (Figure 6.2). On the other hand,

breathing-like vibrations do not present such a projection since they do not produce

shape deformation of the vibrating object. As a consequence, Raman-Brillouin scattering

by breathing-like modes, if activated, would occur only in the parallel configuration.

This is precisely the tendency observed in Figures 6.2 and 6.3 for the “anomalous” band

(significant intensity decreases in the crossed configuration). In comparison, the line shape

of the Raman-Brillouin spectra recorded from isolated nanoparticles in both crossed and

parallel configurations are identical (NPs in Figure 6.2) thus indicating the absence of
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any contribution from breathing vibrations. The scattering in this case is dominated by

the well known quadrupolar acoustic vibration modes allowed in both configurations [51].

All the above strongly support the assignment of the “anomalous” band to breathing-like

acoustic vibrations of the NCls.

To address the reason why the breathing-like acoustic vibrations of the NCls effi-

ciently scatter the light inelastically, I performed dynamical simulations of the surface

plasmons near-field for these particular vibration modes. The acoustic vibration eigen-

modes have been calculated in order to use their associated displacement fields as geo-

metrical boundary inputs for the calculation of the localized surface plasmons eigenstates.

The modulation of the LSP electromagnetic near-field generated in that way determines

the Raman-Brillouin activity of the vibration modes.

6.2.3 Modeling of the nanocolumn vibrational properties

Two different shapes of the NCls have been modeled: (i) smooth cylindrical nanocolumns

and (ii) nanocolumns with indentations. The indented nanocolumn resembles the shape

of the actual NCls, as shown in Figure 6.1a due to the growth process (self-alignment

of spherical NPs). Of course the exact shape may fluctuate and the indentations may

be more or less pronounced depending on the NCls. Nevertheless, the theoretical results

presented in this section and the interpretation of the experimental data do not depend

critically on the exact NCls shape.

The acoustic vibrations of the NCls have been calculated by Lucien Saviot at the

Laboratoire Interdisciplinaire Carnot de Bourgogne, in the University of Bourgogne. The

calculations assume an elastic continuous medium (cf. Section 4.1) [35; 36; 39; 154]

and use the Resonant Ultrasound Spectroscopy (RUS) method proposed by Visscher et

al. [186]. Because of the polycrystalline nature of the NCls, the mechanical properties of

silver were approximated by isotropic elastic constants [116]. For the sake of simplicity,

in order to obtain discretized vibrational modes, the nanocolumns are considered to be in

vacuum. The calculations provide both the eigenfrequencies and the eigenvectors of the

vibrations. The irreducible representations as well as the volume variation, associated to

each vibration mode can be determined in this way [163], thus providing a straightforward

way to identify the modes. In Figure 6.4 are shown the surface displacement fields of the

indented nanocolumn for four relevant acoustic vibration modes: (a) extensional mode

(A1g symmetry), (b) quadrupolar-like mode (E2g symmetry), (c, d) two breathing-like

modes (A1g symmetry).

The vibration frequencies calculated for the extensional (a) and quadrupolar-like (b)
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Figure 6.4: Relevant acoustic vibration modes of the indented nanocolumns. The arrows
show the displacement eigenvectors at the surface of the model nanocolumn vibrating in
its (a) extensional, (b) quadrupolar-like, (c, d) breathing-like eigenmodes. Cross section
along the NCl main axis shows the deformed surface (red line) and the surface of the NCl
at equilibrium (blue dashed line).

modes are respectively 4 cm−1 and 16 cm−1 (cf. Table 6.1) in good agreement with the

band frequencies observed in time resolved FT (5 cm−1) and Raman-Brillouin spectra

(23 ± 2 cm−1). The two breathing-like modes (Figures 6.4c and 6.4d) are radial modes

mainly (A1g symmetry); they give rise to the largest volume variation. The fact that

two breathing-like modes are obtained, and not a single mode as for an isolated spherical

particle, can be understood in terms of mixing between the spheroidal vibration modes

of a spherical particle when the shape evolves from a sphere to a column [36]. The two

breathing-like modes (Figures 6.4c and 6.4d) are quasi-degenerated: 34 cm−1 for mode

(c) and 36 cm−1 for mode (d). Their average frequency is in excellent agreement with

the frequency of the breathing-like vibration observed in the FT spectrum of the time-

resolved transient absorption oscillations (Figure 6.2). More interestingly the agreement

with the frequency of the “anomalous” Raman-Brillouin band is remarkable. This pro-

vides additional support for the assignment of the “anomalous” Raman-Brillouin band to

scattering by breathing-like acoustic vibrations.
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Table 6.1: Calculated ωcalc and measured ωexp vibration frequencies of the extensional (a),
quadrupolar-like (b) and breathing-like (c, d) acoustic vibration modes of the indented
nanocolumns where a-d refer to the vibration mode shown in Figure 6.4. The technique
used to extract the experimental values is indicated in the table.

Acoustic vibration mode ωexp (cm−1) ωcalc (cm−1)

Extensional 5 (Pump-Probe) 4 (a)
Quadrupolar-like 23 (Raman-Brillouin) 16 (b)

Breathing-like
36 (Raman-Brillouin) 34 (c)
38 (Pump-Probe) 36 (b)

6.2.4 Modeling of nanocolumn plasmonic properties

The optical response and the acousto-plasmonic dynamics of the nanocolumns are now cal-

culated using the BEM. Maxwell’s equations are numerically solved for the experimental

excitation conditions and for both static nanocolumns and for nanocolumns deformed by

the acoustic vibrations. The calculated extinction spectra are shown in Figure 6.1b. The

transverse LSPR is well reproduced by the simulations. However, a small shift (around

15 nm) between the calculated and the measured resonances can be noticed. This shift

is due to interactions between the transverse LSP of the NCls that are not taken into

account in these simulations [117]. This small blue-shift has been described by a simple

theoretical model by J. Krenn and co-workers ??.

Because the acousto-plasmonic interaction depends on the modulation of the polariza-

tion associated to a particular vibration mode, the evolution of the near-field distribution

for the relevant breathing-like modes has been calculated. All the simulations are per-

formed at the experimental excitation wavelength, polarization (both P and S) and angle

of incidence. Snapshots of the NCls at equilibrium and at maximum deformation are pro-

vided in Figure 6.5. In terms of interaction steps, this is equivalent to map the first two

steps in the resonant Raman-Brillouin process described by Equation 6.1: optical excita-

tion of the localized surface plasmon (first intermediate state) and subsequent interaction

with the acoustic vibration mode given by Equation 6.2.

When these nano-objects are described as smooth cylindrical NCls, i.e. without inden-

tations (left panels in Figure 6.5), the modulation of the surface plasmon near-field by the

breathing-like vibrations is very weak both for P- and S-polarized light (cf. Figures 6.5a

and 6.5b, respectively). In contrast, for the indented NCls, the surface plasmon near-field

is strongly modulated by the breathing-like vibration modes (right panels in Figure 6.5).

Modulation occurs for both P- and S-polarizations. The strong surface plasmon modula-

tion is due to (i) the near-field intensity accumulation in the regions of indentations, and
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Figure 6.5: Local electric field distribution around the smooth cylindrical and indented
nanocolumns calculated for the experimental configuration at λi = 413 nm, θi = 34.5◦,
and for both P- and S-polarizations (resp. a and b). The color scale corresponds to the

local field enhancement factor | ~E(~r)|/| ~Ei(~r)|.

to (ii) the strong local shape deformation by the acoustic displacement also mediated by

the presence of indentations (cf. Figure 6.4). Following the dependence of the acoustic

vibration-surface plasmon coupling strength from Equation 6.2, both effects (i and ii) en-

hance the modulation of the surface plasmon polarization δvib
~Pa and effectively activate

the Raman-Brillouin scattering by the breathing-like vibration modes.

6.2.5 Acousto-plasmonics and polarization modulation

In order to gain more insight in the understanding of the role of the NCls shape I finally

present a quantitative analysis of the acousto-plasmonic coupling. Figure 6.6 shows the
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spatial distribution of the relative modulations δvib|~P |

|~P0|
of the surface plasmon polariza-

tion by the breathing-like modes (cf. Figure 6.4) for both smooth and indented NCls;
~P0 and δvib|~P | (cf. Equation 6.2) are respectively the surface plasmon polarization and

the modulation of its amplitude both calculated at a fixed distance of 0.5 nm from the

surface of the NCls at equilibrium. The modulation of the surface plasmon polarization

is once again much larger for the indented NCls than for the smooth cylindrical NCls,

particularly around the regions of indentations. The spikes in δvib|~P |

|~P0|
arising from the

strong shape deformation at the indentations can be considered as the hot-spots of the

acousto-plasmonic interaction. For P-polarized light (left panels in Figure 6.6), the rel-

ative modulation δvib|~P |

|~P0|
ranges from −9 to 4 for the breathing-like mode at 34 cm−1,

and from −9 to 6 for the mode at 36 cm−1, depending on the considered point. For the

smooth NCls, the minimum and the maximum of δvib|~P |

|~P0|
are −4 and 2, respectively, and

are visible only around the NCls end regions, whereas along the NCl walls δvib|~P |

|~P0|
presents

a very small value not exceeding −0.05. Similarly, with S-polarized light (right panels in

Figure 6.6), the relative modulation δvib|~P |

|~P0|
ranges from −9 to 9 for both breathing-like

modes of the indented NCls and is larger than that calculated for the smooth NCls. As

can be noticed in Figures 6.5 and 6.6, the modulation of the localized surface plasmons

occurs for both P- and S-polarized incident light whereas the Raman-Brillouin scatter-

ing by breathing-like vibrations appears mainly for P-polarization (Figures 6.3 and 6.4).

The reason lies in the fact that the Raman-Brillouin process does not consist only of the

optical excitation of the localized surface plasmons and their modulation by the acous-

tic vibrations but also of the emission of the scattered photon (outgoing photon term in

Equation 6.1). Indeed, the extinction of the Raman-Brillouin scattering for S-polarization

is due to the fact that the scattered light is analyzed in the orthogonal direction (crossed

configuration). In other words, even though the surface plasmons are efficiently excited

with S-polarized incident light and strongly modulated by the breathing-like vibrations,

the corresponding δvib
~Pa (Equation 6.2) has no component on the direction perpendicular

to ~Pa because of the shape conserving deformation.

The modulation of the optically induced polarization gives the strength of the acousto-

plasmon coupling. Indeed, the acousto-plasmonic hot-spots (spikes visible in Figure 6.6 for

the indented NCls) give rise to non-vanishing interaction matrix elements (Equation 6.2),

thus leading to the activation of breathing-like vibration modes which are otherwise inef-

ficient Raman-Brillouin scatterers. In fact, considering wall region of the indented NCls,

the relative surface plasmons modulation is roughly in the range 10 times (between spikes)

to 200 times (at the spikes) larger than that of the smooth NCls, depending on the con-
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sidered point.

Figure 6.6: Relative modulation of the amplitude of the induced polarization by the

breathing-like modes at a fixed distance of 0.5 nm from the surface of the NCls at

equilibrium: δvib|~P |/|~P0|. The modulation, shown here for the smooth and indented

nanocolumns, were calculated for the experimental configuration at λi = 413 nm,

θi = 34.5◦, and for both P- and S-polarizations (resp. a and b). The color scale sat-

urates at −1 and 1 even though the minimum and the maximum values are −9 and 9

respectively.
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6.3 Acousto-plasmonic dynamics in gold dimers

Another interesting nanostructure which provides excellent properties for plasmonic-based

nanophotonics is the system of two metallic nanoparticles or dimers. Raman-Brillouin

scattering by acoustic vibrations in small metallic nanoparticles has been studied ex-

perimentally [58]. In particular, the plasmonic properties of dimers [59; 102; 137; 157],

trimers [26; 107; 178; 181], or quadrumers [26] of metallic nano-objects have already been

investigated intensively. Nevertheless, the acousto-plasmonic properties of these systems

are still a challenge to be fully understood. Dimers of nanoparticles can be considered as a

building block of more complex nanostructures (e.g. clusters of nanoparticles). An impor-

tant feature of these interacting nano-objects is that they exhibit gaps where plasmonic

hot-spots can be localized. These hot-spots are very useful properties in field-enhanced

spectroscopies [4; 178; 181]. Furthermore, these gaps can be easily controlled changing

the interparticle distance and nano-particle sizes thus leading to controlable properties of

the hot-spots.

6.3.1 Far-field properties

In Section 6.2, the concept of acousto-plasmonics has been introduced in the case of an iso-

lated nano-object exhibiting plasmonic hot-spots due to shape effects. Here this approach

is extended to the case of interacting nano-objects and more specifically to dimers of gold

nanoparticles. This nano-object is of interest since it can be viewed as a building block

for more complex nanostructures such as clusters of nanoparticles. Several parameters

can affect the plasmonic properties of dimers: (i) the material of the two nanoparticles,

that can be different, (ii) the radii of the nanoparticles, that can be also different, (iii)

the inter-particle distance, and (iv) the surrounding medium. In order to investigate the

effect of these parameters, the extinction cross section has been calculated for different

cases. The results are shown in Figure 6.7. First, it can be noticed that the LSPR of the

dimers red-shifts when they are embedded in a matrix. Second, the spectral separation

between the longitudinal and transverse excitations (i.e. Transverse/Longitudinal split-

ting) increases when the inter-particle distance decreases (from 10 nm-17 nm in vacuum

to 28 nm-69 nm in Al2O3). This effect is due to the screening of the interaction by the

polarizability of the surrounding medium [157].

These effects underline how the LSPR can be very sensitive, leading to a high tun-

ability and control of the optical properties of the system.
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Figure 6.7: Extinction spectra of gold dimers in vacuum (blue spectra) and in Al2O3

(red spectra) both in the transverse (dashed lines) and longitudinal (full line) excitation

configurations. The spectra have been calculated for two separation distances d =0.7 nm

and 2.1 nm (sketches are shown close to the corresponding spectra). The inset shows a

zoom-in of the spectra of the dimer in vacuum. The incident light polarizations are shown

in the inset.

6.3.2 Controllable acousto-plasmonic hot-spots

Plasmonic hot-spots are generated in the gap between the nanoparticles [102; 137; 157],

similarly to the coupled nano-antenna in Section 5.1. Figure 6.8 shows the electric field

distribution (Figure 6.8a) and the induced polarization (Figure 6.8b) for (i) both nanopar-

ticles at rest (left panels), (ii) upper nanoparticle vibrating in the l = 0 mode, i.e. breath-

ing mode, (center panels), and (iii) upper nanoparticle vibrating in the l = 2,m = 0

mode, i.e. quadrupolar mode, (right panels).
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Figure 6.8: (a) Electric field distribution and (b) Polarization of a gold dimer embedded

in Al2O3, where both particles are at rest (left panels), the upper nanoparticle is vibrating

in l = 0 mode (center panels), and the upper nanoparticle is vibrating in l = 2,m = 0

mode (right panels). The excitation wavelength is 578 nm.

As it can be seen from the electric field distribution, the plasmonic hot-spot, localized

in the gap, is efficiently modulated by the acoustic vibration. Both a change in amplitude

and in spatial distribution of the electric field can be noticed from Figure 6.8a by com-

paring the near-field distributions of the particle deformed (center and right panels) with

that of the particle at rest (left panel). The breathing l = 0 mode has a spherical symme-

try and is thus forbidden in Raman-Brillouin scattering of isolated nano-particle [15; 51],

whereas it is allowed in dimers of nanoparticles, where the spherical symmetry is broken.

An acousto-plasmonic hot-spot is generated similarly to the breathing-like mode with the
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indentations of the NCls that was discussed in Section 6.2.4. Quadrupolar l = 2,m = 0

mode, which breaks the spherical symmetry of an isolated nanoparticle, is also responsible

for the generation of an acousto-plasmonic hot-spot in the dimer.

Figure 6.9: Modulus of the modulation of the induced polarization |δvib
~P (~r)| for (a)

isolated nanoparticle in vacuum and (b) dimer in Al2O3 for both l = 0 (upper panels)

and l = 2,m = 0 (lower panels) vibration modes.

Figure 6.9 shows the modulus of the modulation of the polarization |δvib
~P (~r)| for

(a) isolated nanoparticle in vacuum and (b) dimer in Al2O3. In the case of an isolated

nanoparticle in vacuum, vibrating in either l = 0 or l = 2 mode, the modulation of the

polarization is negligible and limited to the nanoparticle volume (cf. Figure 6.9a). This

small contribution to the Raman-Brillouin scattering intensity (cf. Equation 6.1) is then

negligible. For interacting nanoparticles, the acousto-plasmonic hot-spots can be clearly

seen in the gap (cf. Figure 6.9b). The penetration of the polarization, and its modulation,

in the gap occur because of the presence of the surrounding matrix. The presence of the

surrounding matrix as well as the strong interaction between the nanoparticles strongly

enhance the amplitude of the polarization modulation. Indeed, for l = 2 vibration mode,

the dimer exhibits a modulation of about 100 times larger than the modulation generated
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in the isolated nanoparticle in vacuum (cf. lower panels in Figure 6.9). This effect is

much more pronounced for the l = 0 vibration mode where the modulation is increased

by a factor of 4 × 106 (cf. upper panels in Figure 6.9). Moreover, it has to be noticed

that the polarization in the particle at rest (lower nanoparticle) is efficiently modulated

by the quadrupolar mode of the upper nanoparticle (cf. lower panel of Figure 6.9b). This

strong acousto-plasmonic effect, which is of the same order of magnitude as the acousto-

plasmonic hot-spot, is of fundamental interest for the study of vibrational transfer between

interacting nano-objects.

The acoustic vibration modes do not only modulate the amplitude of the polarization

but also efficiently modulate its direction. The changes in the direction of the polarization

field are shown in Figure 6.10 for both breathing (a) and quadrupolar (b) vibration modes.

Snapshots of the near-field distribution for the minimum (~r−δ~u, left panels) and maximum

(~r+δ~u, right panels) deformation of the nanoparticle are shown for both acoustic vibration

modes. An area where the modulation of the direction of the polarization vector is clearly

visible is marked with a white circle in Figure 6.10. These direction changes also contribute

to the Raman-Brillouin scattering through the surface orientation coupling mechanism

(Equation 6.2).

Figure 6.10: Polarization maps of a gold dimer embedded in Al2O3, deformed by (a) l = 0

vibration mode and (b) l = 2,m = 0 vibration mode. For each acoustic vibration, the

polarization is shown for the maximum and the minimum deformation.

Similarly to the nanocolumns, these controllable acousto-plasmonic hot-spots, via

Equations 6.2 and 6.1, are directly related to the Raman-Brillouin scattering intensity.

Modulation of these hot-spots opens new perspectives in the interpretation of Raman-

Brillouin measurements in more complex nano-objects and nanostructures. Moreover, fine

physical effects have been pointed out toward the control of acousto-optical properties of
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such metallic nano-objects and shine the light on possible vibrational transfer between

interacting nano-objects, mediated by the acousto-plasmonic dynamics.
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Summary Part II

In Chapter 5, I have shown that tailoring the optical properties of plasmonic nanostruc-

tures requires a complete understanding of the physical parameters that may influence

the LSPR (e.g. shape, size, materials).

In a first part, I have investigated a new class of nanoscale optical switches consisting

of a plasmonic nano-antenna loaded with a photoconductive semiconductor material. By

short circuiting the antenna gap using a semiconductor free-carrier plasma, I have shown

that the mode spectrum of the antenna shifts dramatically using only a very modest

pumping energy. The nano-antenna switch can be used to control both far-field and near-

field properties. In addition, I have identified a regime of partially conductive gap where

a new plasmon mode is formed, which combines a narrow spectral profile with a large

local-field enhancement in the antenna gap. The nano-antenna switch combines large

modulation depth, low switching threshold, and potentially ultrafast time response. Al-

though the switching threshold is relatively high compared to terahertz photoconductive

devices, it is expected that these carrier densities can be achieved using ultrafast optical

pumping. As the switching mechanism is universal to any photoconductive medium, other

semiconductors or semimetals such as InP and ITO can be explored. Further optimiza-

tion may be possible by considering antenna designs different from the coupled-dipole

configuration. Nano-antenna switches open up new avenues to applications ranging from

integrated photonics, ultrafast lasers, to quantum information devices.

Plasmonic nano-resonators are generally designed from numerical simulations of ideal

nano-objects with the aim of targeting specific applications. In a second part of this work

it has been shown that in a ring-disk, the ring-like LSPR wavelength is determined not

only by the disk and ring diameters but also by the fine shape deformation of the ring

walls and edges caused by the lithography and lift-off processes. It has been found that

a rounded shape of the ring surfaces and edges is responsible for significant red-shifts of

the ring-like LSPR that can be as large as 469 nm with respect to the perfect ring-disk

with vertical side walls, flat surfaces and sharp edges. Moreover, based on numerical
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simulations and on a quantitative analysis of the shape effect it has been possible to

extract, from the measured optical spectra, average ring-disk shapes. Good agreement

was found with the AFM profiles. This work has shown that the actual shape of plas-

monic nanoresonators that exhibit small imperfections can strongly impacts their LSPR

properties. It sheds light on the importance of taking into account the fine shape details

of nanostructures exhibiting corners, edges and wedges (e.g. bowtie antennas, nanorods,

nanostars) and of systems involving strong electromagnetic interactions (e.g. sharp tip

interacting with an object, coupled nano-antennas). This effect is also of importance for

the accurate design of plasmonic structures for optical signal processing and control.

These physical parameters are thus important for the understanding of the plasmonic

properties, as it has been shown previously, but also for the acousto-plasmonic proper-

ties and the understanding of inelastic light scattering properties such as Raman-Brillouin

scattering. Indeed, based on the concept of acousto-plasmonic hot-spots, I provided a con-

ceptual understanding of the fundamental mechanism leading to the activation of normally

very weak modes in the Raman-Brillouin scattering of nano-objects (Chapter 6). I have

shown that, for the surface orientation mechanism, the breathing-like vibrations which

are almost silent for smooth cylindrical nanocolumns are strongly enhanced in the case of

indented nanocolumns. The indentations of the silver nanocolumns are responsible for the

strong localization of the surface plasmon near-field and its modulation by breathing-like

acoustic vibrations. Understanding the acousto-plasmonic dynamics of metallic nano-

objects is useful not only for the interpretation of Raman-Brillouin and time-resolved

pump-probe experiments but also for nanometrology, i.e. extracting information on size

and shape distributions from these optical measurements. The concepts, the numerical

and experimental approaches have been extended to interacting nano-objects exhibiting

strong field localization (i.e. dimers of nano-objects). It has been shown that due to the

gap between the two nano-objects, a strong field localization (hot-spot) modulated by the

acoustic vibration gives rise to a controllable acousto-plasmonics hot-spot responsible for

the activation of Raman band normally forbidden in isolated nano-objects. These activa-

tions are induced due to breaking of the vibrational symmetries in the system, leading to

the breaking of the Raman-Brillouin selection rules. This concept of acousto-plasmonic

hot-spot is the fundamental basis of the vibrational transfer between interacting nano-

objects. The concepts developed in this work can thus be extend to more complex inter-

acting systems such as clusters of nanoparticles since the dimer can be seen as a building

block of such system.
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This work focused on the interactions between low frequency acoustic vibrations and

electronic excitations, i.e. confined electronic states in semiconductors and localized sur-

face plasmons in metals, involved in resonant Raman-Brillouin scattering. The use of

advanced numerical methods has allowed to develop new theoretical tools and physical

concepts that help to deeply understand and interpret Raman-Brillouin scattering mea-

surements on semiconductor and metallic nanostructures: (i) Raman-Brillouin Electronic

Density, and (ii) Acousto-plasmonic hot-spots.

A direct and a rather simple way to fully understand Raman-Brillouin scattering in

semiconductors, taking into account resonance effects and size dependence of the spectra,

even though a large number of electronic states are involved in the light scattering, is

the Raman-Brillouin Electronic Density (RBED). The RBED is also a tool to investigate

the validity of the step-like profile of the photoelastic coefficient usually assumed in the

photoelastic model. Indeed, I have shown that both in the case of membranes and super-

lattices the use of the RBED allowed to clearly understand the activation and deactivation

of Raman-Brillouin acoustic modes. Comparison between the profiles of the photoelastic

coefficients and of the RBED were presented and discussed in the case of thin films and

superlattices. In particular, because the photoelastic coefficient is constant within each

quantum well the electron-vibration interaction may be overestimated or underestimated

depending on the considered excitation energy. The RBED is very useful when numerous

electronic transitions may be resonantly and simultaneously excited.

In metallic nanostructures, the electronic excitations involved in the Raman-Brillouin

scattering process are the surface plasmons. The understanding of the coupling mecha-

nisms are of importance to fully determine the origin of the ineslastic light scattering in

complex metallic nanostructures. To investigate that, I first focused on the understanding

of plasmonic properties of metallic nanostructures, i.e. gold nanoring-disks and optical

nano-antennas. A new class of optical nanoswitchers consisting of a plasmonic nano-
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antenna loaded with a photoconductive semiconductor material has been introduced. The

nano-antenna optical response is dramatically shifted by short-circuiting the nano-antenna

with the free-carriers of the photoconductive material gap. This photoconductive switcher

can be used to control both far-field and near-field properties. Furthermore, shape and

size effects on plasmonic nano-resonators (i.e. nanoring-disks) have been investigated. I

have found that a rounded shape of the ring surfaces and edges is responsible for sig-

nificant red-shifts of the ring-like LSPR that can be very large with respect to the ideal

ring-disk exhibiting vertical side walls, flat surfaces and sharp edges. Good agreement

was found with the AFM and optical measurements. Shape effects are also important

for the understanding of Raman-Brillouin scattering properties. Indeed, I introduced the

concept of acousto-plasmonic hot-spots in metallic nanostructures. Well known plasmon-

ics hot-spots, modulated by low frequency acoustic vibrations, are responsible for the

activation of Raman-Brillouin acoustic modes in the scattering process of metallic nano-

objects. The presence of defects (e.g. indentations in silver nanocolumns) or systems

with interacting nanoparticles (e.g. gold dimers) held such acousto-plasmonic hot-spots.

I have shown that, for the surface orientation mechanism, the breathing-like vibra-

tions which are almost silent for smooth cylindrical nanocolumns are strongly enhanced

in the case of indented nanocolumns. The indentations of the silver nanocolumns are re-

sponsible for the strong localization of the surface plasmon near-field and its modulation

by breathing-like acoustic vibrations. Understanding the acousto-plasmonic dynamics of

metallic nano-objects is useful not only for the interpretation of Raman-Brillouin and

time-resolved pump-probe experiments but also for nanometrology, i.e. extracting infor-

mation on size and shape distributions from these optical measurements. The concepts,

the numerical and experimental approaches have been extended to other isolated nano-

objects exhibiting strong field localization (dimers of nano-objects). It has been shown

that in the gap between the interacting nanoparticles, a strong field modulation by the

acoustic vibrations takes place. This modulation of controllable hot-spots may give rise

to Raman-Brillouin scattering by acoustic vibration modes that are normally forbidden in

isolated nanoparticles. The concept of acousto-plasmonic hot-spots opens up the way for

the vibrational transfer between interacting metallic nano-objects and can be extended

to clusters of nanoparticles or other interacting nanostructures.
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Appendix A

Fundamental Physical

Constants

Table A.1: Fundamental physical constants taken from 2010 CODATA recommended
values.

Quantity Symbol Value Unit Rel. std uncert.
speed of light in vacuum c 299792458 m.s−1 exact
magnetic constant µ0 4π × 10−7 N.A−2 exact
electric constant 1/µ0c

2 ε0 8.854187817...×10−12 F.m−1 exact
Planck constant h 6.62606957(29)×10−34 J.s 4.4×10−8

reduced Planck constant ~ = h/2π 1.054571726(47)×10−34 J.s 4.4×10−8

elementary charge e 1.602176565(35)×10−19 C 2.2×10−8

Bohr radius a0 0.52917721092(17)×10−10 m 3.2×10−10

electron mass me 9.10938291(40)×10−31 kg 4.4×10−8

Boltzmann constant kB 1.3806488(13)×10−23 J.K−1 9.1×10−7
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Appendix B

Numerical Methods to Solve

Maxwell’s Equations

Analytical exact solutions to Maxwell’s equations (cf. Equations 4.4a) can be obtained

only in simple cases such as spheres. The theoretical study of plasmonic properties of

metallic nano-objects can be challenging when the shape of these nano-objects departs

from this canonical shape. To do so, numerical methods are required to solve Maxwell’s

equations. The Boundary Element Method (BEM) was used to obtain the numerical re-

sults presented in this manuscript. I briefly introduced here the principle of this method.

In order to emphasize the specificities of the BEM, two extensively used numerical meth-

ods are briefly presented in this appendix: Discrete Dipole Approximation, and Finite-

Difference Time-Domain.

B.1 Boundary Element Method - BEM

The Boundary Element Method (BEM) is a numerical computational method to solve

linear partial differential equations of field problems by solving an equivalent source prob-

lem [60; 61; 62]. Maxwell’s equations are expressed in terms of charges σj and currents
~hj at the surfaces of the considered objects (boundary-charge method), j referring to the

media εj at each side of boundary. These charges and currents interact self-consistently

with themselves as well as with any external field.
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The advantages in BEM lie in the fact that only the surfaces which are the material

interfaces require a discretization (cf. Figure B.1a), contrary to FEM where the whole

volume of the object has to be sub-divided. Thus the 3 dimensional physical problem of

calculation the electric ~E and magnetic ~H fields is effectively reduced to 2 dimensions. The

boundary conditions for the electric and magnetic fields transform Maxwell’s equations

into surface integrals where surface charges and surface currents are unknowns. Once the

surface currents and surface charges are calculated, the scalar potential Φ and the vector

potential ~A can be expressed as:

[
Φ(~r)
~A(~r)

]
=

∫
d~r′Gj

(
|~r − ~r′|

) [
ρ(~r′)/ε(~r′, ω)

~j(~r′)/c

]
+

∫

S

d~s Gj (|~r − ~s|)
[
σj(~s)
~hj(~s)

]
, (B.1)

where Gj = exp(ikjr)/r and kj = ω
√
εj(ω)/c. ρ and ~j are the external charge and

current densities respectively. The electric and magnetic fields are then calculated as:

~E(~r) =
iω

c
~A(~r) − ~∇Φ(~r) (B.2a)

~H(~r) = ~∇× ~A(~r). (B.2b)

(a) (b)

Figure B.1: (a) BEM discretizes the surface of the object. (b) Extinction spectra of a
gold nanoparticle (R = 3.5 nm) in vacuum calculated with BEM for N =10, 25, 50, 100,
and 200 points for the contour. Inset: zoom-in view of the LSPR.
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B.2. Discrete Dipole Approximation - DDA

Extinction spectra calculated using BEM are shown in Figure B.1b in the simple

case of a gold spherical nanoparticle of R = 4.5 nm in vacuum. The results are shown

for different number of discretization points of the countour N . In this case, complete

convergence is obained for N ≈ 50 (light blue line). Nevertheless, a good convergence can

be obtained for N ≈ 25 (green line).

The version of the BEM used during the development of this thesis is limited to

systems with azimuthal symmetry, i.e. that they are the result of a 2π rotation of a given

contour. This is the main limitation of the 2D-version of BEM. The only assumption of

this method is that the media constituting the considered objects have to be described by

a frequency-dependent homogeneous local dielectric function. In that case, the boundaries

and interfaces of the objects are sharp and abrupt. A further description of this method

can be found in References [60; 61; 62].

B.2 Discrete Dipole Approximation - DDA

The Discrete Dipole Approximation (DDA) was first proposed by Purcell and Pennyparker

in 1973 [152] and has been further reviewed, developed and implemented in the DDSCAT

package by Draine et al. since 1988 [48; 49; 50]. This numerical method solves the problem

of scattering and absorption by a finite object, represented by an array of polarizable

dipoles (cf. Figure B.2), interacting with a monochromatic plane wave.

The advantage of DDA is the flexibility regarding the geometry of the studied object

and is not limited to azimuthal symmetry contrary to 2D BEM. The main limitation of

this method is the need to use a interdipole distance d small enough compared to the

typical structural dimensions of the considered object. The convergence criterion to be

satisfied is: |ñ|kd < 1, where ñ = n + iκ is the complex refractive index of the object

material and k = 2π/λ. The actual volume V of the object is then given by the number

of dipoles N , located on a cubic array, and the interdipole distance d: V = Nd3 (cf.

Figure B.2).

B.3 Finite-Difference Time-Domain - FDTD

Finite-Difference Time-Domain method (FDTD), first introduced in 1966 by Kane Yee, is

an effective computational tool for finding numerical solutions of Maxwell’s equations [174;

193]. This method is based on the approximation of the derivatives by central differences

(leapfrog integration algorithm) and on the use of Yee’s scheme to evaluate the electric
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Figure B.2: DDA approximates a solid scatterer (gray sphere) by an array of polarizable
N dipoles. Here N = 136, 304, 1064, and 2320.

and magnetic field components (cf. Figure B.3). Contrary to the BEM and the DDA, this

method is a time-domain method. FDTD is well adapted to large systems (e.g. micro-

objects) and to periodic systems (e.g. periodic arrays of nano-objects) [140]. It is widely

used for simulations of waveguiding, radar, photonic crytals and metamaterials and other

applications in photonics [140].

Yee’s algorithm centers the E- and H-components in a three-dimensional space grid

as shown in Figure B.3. The E-components are centered on the edges while the H-

components are centered on the faces of Yee’s cube. FDTD solves Maxwell’s curl equations

(Equations 4.4c and 4.4d) in a non-magnetic medium ( ~J = ~0).

In three dimensions, Maxwell’s equations have six electromagnetic field components:

Ex, Ey, Ez , Hx, Hy, and Hz. If one assumes that the structure is infinite in the z-

drirection and that the fields are independent of z:

∂ ~E

∂z
=
∂ ~H

∂z
= 0, (B.3)

then Maxwell’s equations split into two independent sets of equations which can be solved

in the (x, y) plane only. These are termed the TE (transverse electric), and TM (transverse
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B.3. Finite-Difference Time-Domain - FDTD

Figure B.3: Yee’s cube: Position of the electric and magnetic field components. The
E-components (red) are in the middle of the edges and the H-components (blue) are in
the center of the faces. i, j, and k label the position on the Yee’s grid.

magnetic) equations. Both sets of equations can be solved with the following components:

Ex, Ey, Hz for TE, and Hx, Hy, Ez for TM. For example, in the TM case, Maxwell’s

equations reduce to:

∂Dz

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(B.4a)

∂Hx

∂t
= − 1

µ0

∂Ez

∂y
(B.4b)

∂Hy

∂t
=

1

µ0

∂Ez

∂x
. (B.4c)

FDTD is used to calculate the electromagnetic fields as a function of frequency or wave-

length by performing Fourier transforms during the simulation. Complex-valued fields

and other derived quantities such as the complex Poynting’s vector, normalized transmis-

sion, and far-field projections can be obtained.
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