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ABSTRACT

Along this thesis we present several contributions to improve the

understanding of the interaction between the optical properties of plas-

monic nanostructures and electronic transport.

Chapter 1 provides an introduction to the emerging fields of nanopho-

tonics and plasmonics in the framework of nanoscience and nanotechnol-

ogy. The main concepts regarding the electromagnetism of metals and

plasmon excitations are revised. The connection between optical prop-

erties and nanoelectronics is also presented.

This thesis is devoted to study the optical response of a plasmonic

dimer where both sides of the nanostructure are connected by an ensem-

ble of molecules, focusing on the relation between the fields of plasmonics

and nanoelectronics. The molecules are modelled as a conductive ma-

terial linking the dimer. The dielectric response of the linker has been

characterized using different approaches to understand its impact on the

optical properties of the whole system.

In chapter 2 the Localized Surface Plasmon Resonances (LSPRs) gov-
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ABSTRACT

erning the optical response of a conductively connected dimer are intro-

duced. The conductance of the linker is shown to be the crucial magni-

tude influencing the response.

Chapter 3 presents a model to connect the optical and transport

properties by means of a pure conductive linker connecting a plasmonic

dimer. The influence of the conductive linker in the optical properties

is analyzed. Time-scale arguments are used to derive analytical expres-

sions which provide the thresholds of conductance which determine the

optical response. The effects of the size of the conductive linker and its

morphology are also studied in detail.

In order to describe the linker connecting the dimer in a more realistic

way, Chapter 4 explores the optical response of the nanostructure when

the material forming the linker presents an excitonic transition. The

presence of an exciton substantially alters the behaviour of the LSPRs.

Different dielectric responses of the molecular linker are considered by

means of changes in the characteristics of the excitonic transition. It is

confirmed that the expressions for the thresholds of conductance derived

from time-scale arguments for the pure conductive linker are still valid,

even though a more complex optical spectrum is produced due to the

coupling of plasmons and excitons in this case.

Due to the potential application of plasmonic nanostructures as sen-

sors, Chapter 5 studies the efficiency of plasmonic structures conductively

connected for LSPR sensing. Finally, a new paradigm for LSPR sens-

ing is proposed, in which the magnitude to be exploited in sensing is

the change in the intensity of the LSPR, rather than the shift of the

resonance.
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y que, sabiéndolo o no, han aportado su granito de arena para que yo
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Seguramente me dejaré a muchos y, por falta de espacio, no puedo

nombrar a todo el mundo, pero hay algunos que se merecen especial-
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CHAPTER 1

INTRODUCTION

In prehistoric times, before the crucial invention of writing and when

knowledge was transmitted orally, human being was able to create primi-

tive technology which allowed the increase of the probabilities of survival

and the improvement of the quality of life. From our current perspec-

tive, fire (controlled by early humans approximately 1.5 million years

ago), agriculture (developed at least 10.000 years ago in Western Asia,

Ancient Egypt and India) or the appearance of the wheel (used near-

simustaneously in Mesopotamia, Northern Caucasus and Central Europe

from the mid 4th millennium B.C.), may appear as everyday knowledge,

but they once formed the primitive basis of our progress. Along History,

technology, understood as the application of knowledge for practical pur-

poses, has developed in parallel to the social, political, religious, econom-

ical, artistic and scientific evolution of cultures all around the globe. Our

current world is the consequence of the astonishing scientific and techno-

logical explosion which took place along the XIXth and XXth centuries.

In the past, the transfer of knowledge between our basic understanding

of natural phenomena and technical purposes used to be a long process.

However, nowadays, due to the demanding necessities of our global so-
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ciety, the relation between scientific knowledge and technology has been

systematized resulting in a rapid transmission between the results of ba-

sic research and technological applications.

Nanotechnology, understood as the application of nanoscience, takes

advantage of our knowledge of nanometre-sized systems. This multidisci-

plinary field has emerged in the last decades as one of the most promising

areas of technology contributing to human progress, with potential ap-

plications in medicine, communication technologies or renewable energy,

to cite only a few [1]. Nanophotonics is the branch of nanotechnology

which studies the interaction between light and matter on the nanometre

size scale. Plasmonics, one of the areas of nanophotonics, explores the

interaction of light with nanometre-sized metallic structures supporting

Surface Plasmon Resonances (SPRs), which are collective excitations of

the electrons in the free electron gas. This thesis explores theoretically

the connection between transport and optical properties of plasmonic

systems.

In the following, a brief historical introduction to the study of light-

matter interaction, nanophotonics and plasmonics is presented. The rest

of the chapter is mainly devoted to introduce some basic concepts of elec-

tromagnetism applied to metallic nanostructures and to introduce SPRs

in a variety of canonical systems. We conclude the chapter introduc-

ing the connection between the optical properties of plasmonic systems

and their transport properties when an electronic conduction channel is

established between plasmonic structures.

1.1 Introduction to nanophotonics and plas-

monics

Light, which plays a central role in current technology, has always

fascinated human beings. Even before any serious theory explaining its
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CHAPTER 1. INTRODUCTION

nature was developed, Romans or medieval masons, for example, were

able to surprisingly manipulate light with technology mainly based on

trial and error. The well-known Lycurgus cup, a magnificent piece of ro-

man smithery made of ruby glass illustrating the myth of king Lycurgus,

looks green in daylight, when observed in reflected light. However, if it

is illuminated from the inside, in transmission mode, the cup turns red,

showing its glowing ruby colour. This effect is due to the presence of

small gold and silver particles in the glass, around 5− 60 nm in size [2].

The same effect is also responsible for the colours of stained glass, very

popular in Western Europe since the High Middle Ages. Figure 1.1 a)

shows a detail of a colourful stained glass window as seen in daylight, in

transmitted light, from the inside of the gothic cathedral in Figure 1.1

b). The beautiful ruby red colour has its origin in the presence of tiny

gold particles, formed in the process of the fabrication of the glass by the

reduction of metallic ions [3]. These colours cannot be appreciated when

the windows are observed in daylight from the outside of the building, in

a reflected mode of observation. This difference is shown in Figures 1.1

c) and d), where the rose window of the cathedral appears as seen from

the inside (c), and from the outside (d) of the building.

Nowadays, we consider the nature of light based on the concept

of the wave-particle duality. In simple terms, light, which is emitted

and absorbed in discrete packets called photons, exhibits a dual nature,

showing corpuscular characteristics when it interacts with matter and

behaving as a wave when it propagates. From the corpuscular theory of

the XVIIIth century to current quantum electrodynamics, physics has

travelled a long route to understand and explain all the physical phe-

nomena related to light. Without any doubt, one of the most important

moments along this path was when James Clerk Maxwell published his

famous work A Treatise on Electricity and Electromagnetism in 1873.

Maxwell concluded that light was a form of electromagnetic radiation
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Figure 1.1: a) Detail of a coloured stained glass window of the gothic cathe-

dral of León, Spain (XIIIth century). The beautiful colours appear in daylight

when observed from the inside of the building, in transmitted light. b) Out-

side of the cathedral with stained glass windows. c) Rose window as seen from

the inside of the building, in transmitted light. d) Rose window in c), as seen

from the outside of the building, in a reflected mode of observation, when the

colours cannot be appreciated. (Photographs courtesy of Macu Álvarez).
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CHAPTER 1. INTRODUCTION

and reported a full mathematical description of the dynamics of the elec-

tromagnetic fields governed by what is nowadays known as Maxwell’s

equations [4]. Ironically, when Maxwell’s wave theory of light was con-

firmed by the experiment by H.R. Hertz in 1887, the photoelectric effect

was also discovered. This effect was later explained by Albert Einstein in

terms of a corpuscular theory of light [5]. The study of the interaction of

electromagnetic waves and matter contributed to the progress of the the-

ory of electromagnetic radiation, which culminated in the development of

quantum electrodynamics by Richard Feynman, Julian Schwinger, Shin-

Ichiro Tomonaga, and others.

In the last part of the XXth century, nanotechnology, boosted by

breakthroughs such as the development of the scanning tunneling mi-

croscope [6], arose as the area of science and technology which explores

the properties of matter in the range of the nanometre. Nowadays, even

though scientific research has become so specialized, nanotechnology can

only be understood as a multidisciplinary area of basic science and tech-

nology where different disciplines, such as physics, chemistry, biology,

medicine and engineering, merge harmoniously.

Nanophotonics, understood as the study of the interaction between

light and matter on the nanometre size scale, has become a frontier

branch of nanotechnology providing new challenges for research and novel

technologies. Nanophotonics explores phenomena such as the confine-

ment of light to dimensions which are much smaller than the wavelength

of light, or the interaction between light and matter when the dimen-

sion of the materials is on the nanometric scale [7]. Another approach

of this area is the study of the confinement of a photoprocess where the

change in the chemical phase is light-induced [7]. Among the opportu-

nities provided by nanophotonics, one can find novel synthetic routes of

nanomaterials [8], single photon sources for quantum information pro-

cessing [9], nanoscale nonlinear optical processes [10], devices based on
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photonic crystals [11] or optical nanoprobes for clinical diagnosis [12].

In the last years, the interaction between electromagnetic waves and

metallic nanostructures has become particularly important in nanopho-

tonics. Metallic nanostructures support SPRs, which are collective exci-

tations of the electronic charge density localized at the metallic bound-

aries. The particles sustaining SPRs, which from now on are called plas-

monic nanoparticles, exhibit unique optical properties derived from the

huge enhancement and localization of the electromagnetic fields associ-

ated with the excitation of SPRs. The optical properties of these metallic

nanostructures differ from the optical response of the same metallic mate-

rial in bulk. The differences are not originated by quantum effects of the

confinement of the materials, but they appear due to electrodynamical

effects and also to the modification of the dielectric environment [7, 13].

Although plasmonics is a novel area of research, the understanding

of the optical properties of small particles and the existence of electro-

magnetic surface waves have been long known. About one century ago,

Mie explained the strong absorption of green light by subwavelength gold

spheres when illuminated by plane waves by means of classical electro-

dynamics [14]. SPRs have been studied for decades since the theoretical

prediction of plasma losses in metallic slabs by Ritchie in 1957 [15], and

the consequent experimental evidence by Powell and Swan [16]. As a

fundamental excitation in condensed matter, during the second half of

the XXth century, SPRs have been extensively analyzed mainly from

the perspective of surface science, giving rise to a good understanding of

the SPR properties when excited on metallic surfaces and small particles

[17, 18].

With the advent of the new century and thanks to the emergence of

sophisticated synthesis methods and analysis tools, a renewed interest

in plasmons has been boosted [19]. It has been found that the shape of

metallic structures on the nanometric scale and the configuration of the
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materials are crucial to determine the surface plasmon properties, what

resulted in a big effort in basic and applied investigation searching for po-

tential applications such as biosensing, surface-enhanced spectroscopies,

cancer therapies, renewable energies or active devices [20, 21, 22, 23, 24].

When, instead of extended surfaces, metallic nanoparticles are consid-

ered, electromagnetic waves are localized on the finite surface of the par-

ticle, adopting the terminology of Localized Surface Plasmon Resonances

(LSPRs). A key property of metallic nanoparticles is the dependence of

the energies of their LSPRs on the geometry of the structure, as well as

their sensitivity to the dielectric environment [25, 26]. Thus, depending

on the particular property of interest and, by engineering the shape, the

materials or the geometric configuration, a huge variety of nanostructures

has been synthesized, such as rings, nanoparticle dimers, nanoshells, na-

noeggs, rods, nanorices or nanostars [27, 28, 29, 30, 31, 32, 33]. In this

thesis, we focus our attention on nanoparticle dimers, as a canonical

structure where the energy of the coupled LSPR sustained by the struc-

ture can be strongly modified, both in spectral position and intensity, in

comparison to the LSPR of the individual constituent nanoparticles.

1.2 Basics of electromagnetism in metals

The interaction between electromagnetic fields and metals is described

by means of classical electrodynamics. Even for nanometre-sized parti-

cles, the high density of free carriers in metallic materials implies a negli-

gible separation between the energy levels of the electrons in comparison

to the thermal excitation kBT at room temperature and, consequently,

in many practical situations there is no need to use quantum theory to

describe the optical response [13].

In this section, we review important ingredients of electromagnetism

involved to understand the interaction between light and metallic mate-
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rials. We also introduce the dielectric formalism within linear response

theory describing the response of metals.

Note that along this thesis, we use Gaussian units to express the

mathematical expressions, otherwise it is explicitly pointed out.

1.2.1 Maxwell’s equations and constitutive relations

of materials

The description of the interaction between light and matter, in the

framework of classical electrodynamics, is summarized by Maxwell’s equa-

tions. In Gaussian units, Maxwell’s equations are expressed in a differ-

ential form as follows [4]:

∇ ·D = 4πρ, (1.1)

∇ ·B = 0, (1.2)

∇× E +
1

c

∂B

∂t
= 0, (1.3)

∇×H− 1

c

∂D

∂t
=

4π

c
j, (1.4)

where E and H are the electric and magnetic fields. D is the electric

displacement vector and B is the magnetic flux density or magnetic in-

duction. These four macroscopic fields (E, H, D and B) are thus related

via Maxwell’s equations to the external charge and current densities, ρ

and j respectively.

The electric and magnetic fields, E and H, are related to the electric

displacement D and to the magnetic induction B by means of the con-

stitutive relations of the materials. The electric field is connected to the

electric displacement vector via the dielectric constant or permittivity ε:

D = E + 4πP = εE, (1.5)

where P is the polarization. P describes the electric dipole moment per

unit volume in the material, caused by the alignment of the microscopic
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dipoles of the material with the electric field. The magnetic field is

connected to the magnetic induction via the magnetic permeability µ:

B = H + 4πM = µH, (1.6)

where M is the magnetization. M describes the magnetic moment per

unit volume in the material, i.e., the magnetic response of the material.

Typically, the magnetic response of metallic materials at optical frequen-

cies is several orders of magnitude smaller than the dielectric response

at the same frequencies and, for this reason, the diamagnetic and para-

megnetic properties are usually neglected in comparison to the dielectric

properties when the optical electromagnetic field interacts with a metal-

lic medium [34]. In this thesis, we follow this assumption supposing that

the imaginary component of the permeability is zero, and that µ = 1.

Another important relation to point out is Ohm’s law, relating the

electric field E to the current density j [34]:

j = κE, (1.7)

where the relation is defined in terms of the conductivity κ, which is

the magnitude describing the ability of a certain material to conduct

the electrical current. The complex conductivity, κ = κ1 + iκ2, and the

dielectric constant, ε = ε1+iε2, can be related by the following expression

[34]:

ε = 1 + i
4πκ

ω
. (1.8)

This relation implies that the real part of the dielectric function ε1 is re-

lated to the imaginary contribution of the conductivity σ2, and viceversa

as follows:

ε1 = 1− 4πκ2
ω

, (1.9)

ε2 =
4πκ1
ω

. (1.10)

We finish this section introducing the wave equations for the electro-

magnetic field in the case of vacuum and in the presence of matter. In
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vacuum and in the absence of external charge and free current (ρ = 0

and j = 0), when applying vector identities to Maxwell’s equations (see

Eqs. (1.1) to (1.4)), the following relations are obtained [34]:

∇2E =
1

c2
∂2E

∂t2
, (1.11)

∇2B =
1

c2
∂2B

∂t2
. (1.12)

The above equations correspond to a partial differential equation describ-

ing the propagation of a wave, of amplitude u and velocity v, generically

expressed as:

∇2u =
1

v2
∂2u

∂t2
. (1.13)

In the case of an electromagnetic wave, the velocity corresponds to the

speed of light in vacuum v = c. Thus, Maxwell’s equations show implic-

itly that both the electric and the magnetic fields can adopt the form of

propagating waves, stressing the wave nature of light.

In the presence of matter and in the absence of external charge and

free current (ρ = 0 and j = 0), the wave equations are expressed as [34]:

∇2E =
εµ

c2
∂2E

∂t2
+

4πµκ1
c2

∂E

∂t
, (1.14)

∇2B =
εµ

c2
∂2B

∂t2
+

4πµκ1
c2

∂B

∂t
, (1.15)

where, in this case, the velocity is v = c/
√
εµ. The new terms in Eqs.

(1.14) and (1.15) are associated to the conductivity, and account for the

damping of electromagnetic waves in conductive materials.

1.2.2 Dielectric response of metals

As a consequence of the strong dependance of the optical properties of

metallic materials on frequency, there is a big variety of unexpected op-

tical phenomena when studying the optical properties of metallic nanos-

tructures.
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In the low-frequency regime, for frequencies up to the visible range

(see the electromagnetic spectrum shown in Figure 1.2), metals behave

as perfect conductors and do not allow the penetration of electromag-

netic waves into the material. When higher frequencies are considered,

towards the visible and Near-InfraRed (NIR) ranges of the electromag-

netic spectrum, the penetration of the field into the metal is no longer

negligible. Thus, under these conditions, a strategy based on the size-

scaling of metallic structures working properly at lower frequencies, such

at radio-frequency or microwave wavelengths, is not straightforward. For

frequencies in the ultraviolet range, metals behave as dielectric materi-

als and allow the propagation of electromagnetic waves inside them with

different degrees of attenuation related to the details of the particular

electronic band structure [13].

The optical response of metals and the dispersive behaviour pointed

out above are described by means of a dielectric response function ε =

ε(k, ω), which, in principle, depends on both the momentum k and the

frequency ω of the incoming electromagnetic signal [35, 36]. There have

been many approximations to the dielectric function. Lindhard [37] ob-

tained an expression using the random phase approximation, where the

electrons are assumed to respond to the external fields independently.

Mermin [38] modified this approximation to take into account the damp-

ing of the electronic oscillations. However, when the main interest is the

collective excitation of the free electron gas of metals, the dependence

of the dielectric response on the momentum can be surpassed, using the

optical approximation where ε = ε(k → 0, ω) = ε(ω) [36]. This approx-

imation is valid as long as the wavelength inside the material is longer

than its characteristic dimensions, i.e., the dimension of its unit cell or

the mean free path of the electrons.

The simplest dielectric response function describing the behaviour of

a metallic material is based on the Drude model. This model considers
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Figure 1.2: Band division of the electromagnetic spectrum (Source: Creative

Commons).
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that the metal is formed of a core of positive ions and free electrons in the

vicinity characterized by a damping constant γ. The explicit expression

of the dielectric function giving account for the energy losses of these free

electrons is the following:

ε(ω) = ε1(ω) + iε2(ω) = 1−
ω2
p

ω(ω + iγ)
, (1.16)

where ωp is the plasma frequency, a natural frequency of the collective

oscillations of the electron gas (its physical meaning is discussed in more

detail later). Figure 1.3 a) shows the real and imaginary parts of a Drude

dielectric function used to describe the optical response of aluminum.

The parameters defining the function for Al are ωp = 15.3 eV and γ = 0.1

eV [35]. A zoom-in is also included to show the details of the function

in the proximity of the plasma frequency ωp. The damping constant of

the metal γ basically takes into account the relaxation of the motion of

the electron gas into lattice vibrations or phonons. Considering γ = 0

implies that the motion of the electron gas does not decay and Eq. (1.16)

reduces to:

ε(ω) = 1−
ω2
p

ω2
. (1.17)

This situation is commonly used to easily calculate the position of modes.

A more detailed description of a particular material is provided by

means of the experimental dielectric response function. This function is

usually obtained from experimental optical data, based on the measure-

ment of the reflectance of the metal [39]. In Figure 1.3 b) the real and

imaginary parts of ε are plotted for the experimental dielectric function

of gold [40]. Although the experimental function still resembles the form

of a Drude-like function, the included zoom-in shows that the spectral de-

tails in the proximity of ωp differ from the form of the Drude model and

that other features, including inter-band transitions, can be described

better by the experimental function.
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Figure 1.3: a) Real ε1 and imaginary ε2 parts of the Drude dielectric response

function ε = ε1 + iε2 for Al. The defining parameters are ωp = 15.3 eV and

γ = 0.1 eV [35]. b) Real ε1 and imaginary ε2 parts of the dielectric response

function ε = ε1 + iε2 for Au from the experimental optical data by Johnson

and Christy [40].

1.3 Plasmons

In this section, we introduce the concept of SPR as the collective

oscillation of the free electron gas. We also show the extension of this

concept to a situation where planar interfaces are present. Finally, we

focus on the localization of SPR on the surfaces of finite-sized particles.

1.3.1 Collective electromagnetic oscillations of the

free electron gas: bulk plasmons

A solid can be described as an electrically neutral medium where

there is equal concentration of positive and negative charges, being one

of them mobile [35]. In metals, the negative charges of the free mobile

conduction electrons are compensated by the positive charges of the ion
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Figure 1.4: Schematic representation of a bulk plasma oscillation in a metal.

The action of an electric field E produces the deviation of the free electron gas

from its equilibrium position. The positive ion cores induce a restoring force

to move the electron cloud back to its original position, causing a collective

oscillatory motion of the electron gas around the equilibrium position.

cores. When an electric (or electromagnetic) signal E(t) is applied to a

metal, the electron gas reacts to this incoming field displacing the elec-

trons a certain distance δ(t) from the equilibrium position, as depicted

in Figure 1.4. As a consequence, the positive ion cores induce a restoring

force which induces the motion of the electron cloud back to its original

position. The simultaneous action of these two forces causes a collective

oscillatory motion of the electron gas around the equilibrium position

which is damped due to the collisions of the mobile electrons with the

lattice. This damped motion is characterized by a damping constant γ,

which is relatively large in metals at optical frequencies.

The dielectric response of the electron gas is derived from the equa-

tion of motion of an electron in an electric field [13, 35]:

me
d2δ(t)

dt2
+meγ

dδ(t)

dt
= −eE(t), (1.18)

where me and e are the mass and electric charge of an electron, respec-

tively, δ(t) is the displacement of the electron gas, γ is the damping

constant and E is the incident electric field. Both δ(t) and E(t) have the

same harmonic temporal dependance, δ(t) = δe−iωt and E(t) = Ee−iωt.
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We assume this dependence and establish Eq. (1.18) in the Fourier-

transformed space:

−ω2meδ − iωmeγδ = −eE. (1.19)

The polarization, defined as the dipolar moment (p = −eδ) per unit

volume is given by:

P = −neδ = − ne2

me(ω2 + iγω)
E, (1.20)

where n is the electron concentration. The dielectric function at a given

frequency is (see Eq. (1.5)):

ε(ω) =
D

E
=
E + 4πP

E
= 1 + 4π

P

E
. (1.21)

Taking into account Eq. (1.42), we can express ε(ω) as:

ε(ω) = 1− 4πne2

me(ω2 + iγω)
= 1−

ω2
p

(ω2 + iγω)
, (1.22)

where a natural frequency of the oscillation of a free electron gas, or

plasma frequency ωp, is defined as:

ωp ≡
4πne2

me

. (1.23)

Since we have assumed that all the electrons move in phase, these os-

cillations correspond to the long-wavelength limit where k = 0. The

quanta of these charge density oscillations are called bulk plasmons. The

plasma frequency of metals can be determined experimentally by means

of Electron Energy Loss Spectroscopy (EELS), where fast electrons travel

through portions of metallic materials loosing energy in quanta of h̄ωp

due to the excitation of bulk plasmons. Typically, for most metals, the

plasma frequency falls in the visible-ultraviolet regime, 2−15 eV, whereas

for doped semiconductors, with lower free carrier concentration, plasma
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frequencies at InfraRed (IR) and THz regimes can be found [35].

The effects of the plasma oscillations for frequencies below the plasma

frequency ωp, where the real part of the dielectric constant ε1 is negative,

lead to electromagnetic properties which differ from those of ordinary di-

electrics in that spectral range. In this frequency range, the wave vector

of light in the medium is imaginary, consequently, electromagnetic waves

cannot propagate.

1.3.2 Surface plasmons and surface plasmon polari-

tons

When we consider a surface in a metal which breaks the symmetry

of the bulk material, electron plasma oscillations or Surface Plasmons

(SPs) can be sustained at the surface [41]. The frequency of a SP excita-

tion ωSP on the flat surface dividing space into two semi-infinite regions,

being one of the regions a metal and the other one a dielectric, is deter-

mined based on the boundary conditions for the electromagnetic field at

the metal-dielectric interface.

In the following, we derive the explicit expression in the electrostatic

approximation, without retardation effects, by solving the problem of two

semi-infinite media separated by a flat surface (see Figure 1.5 a)). The

metallic medium is characterized by the frequency dependent dielectric

functions εm(ω) and the dielectric medium is characterized by εd(ω).

Since there is no electric charge, the solution of the electrostatic prob-

lem consists in solving Laplace’s equation for the particular boundary

conditions:

∇2φ = 0, (1.24)

where φ is the electrostatic potential. This procedure leads to the fol-

lowing resonance condition for the electromagnetic modes:

εm(ω) + εd(ω) = 0. (1.25)
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Figure 1.5: a) Simplest geometry sustaining SPPs: two semi-infinite media

separated by a flat interface, where one of the media is a dielectric character-

ized by εd(ω) > 0, and the other one is a metal with Re{εm(ω)} < 0. The

black lines in the schematic indicate the decay of the field associated with SPPs

at each medium. b) Representation of the dispersion curves for bulk plasmon

(red line), light in vacuum (black line) and SPP (green line). The frequencies

of the bulk plasmon ωp and the SP ωSP are also marked with dashed black

lines.
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If the frequency dependent dielectric functions for the metal is expressed

as a Drude function without damping, εm(ω) = 1 − ω2
p/ω

2, and the

dielectric constant characterizing the dielectric medium is εd then, the

frequency of the plasmon excitation on the surface is:

ω2
SP =

ω2
p

1 + εd
, (1.26)

where ωp is the plasma frequency of the metallic medium. When the

dielectric medium is vacuum, Eq. (1.25) leads to the semi-infinite surface

plasmon resonance frequency:

ωSP =
ωp√

2
. (1.27)

Surface Plasmon Polaritons (SPPs) are electromagnetic excitations

propagating at interfaces, resulting from the coupling of a SP to light

[41]. These excitations are evanescently confined in the perpendicular

direction to the interface. In general, plasmons do not couple to photons

(see the dispersion curve for SPPs in Figure 1.5 b)).

The simplest geometry sustaining SPPs is a flat interface separating

a semi-infinite, loss-less dielectric and a semi-infinite metal, character-

ized by frequency-dependent dielectric functions εd(ω) and εm(ω), respec-

tively (see Figure 1.5 a)). Whereas for the loss-less, dielectric medium

εd(ω) > 1, note that for the metal Re{εm(ω)} < 1. In order to derive

the wave solutions propagating at the interface, Maxwell’s equations are

solved considering the appropriate boundary conditions. The dispersion

relation of SPPs propagating at the interface between the two media is

given by [13, 41]:

ωSPP =

√
εm + εd
εmεd

ck. (1.28)

Assuming a Drude function for the metal, εm(ω) = 1−ω2
p/ω

2, one obtains

the dispersion curve for SPPs shown in Figure 1.5 b), where the ωp and

ωSP are also included.
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1.3.3 Localized surface plasmons

Localized Surface Plasmon Resonances (LSPRs) are non-propagating

excitations which arise from the coupling of light to the charge density

oscillations on the closed surfaces of metallic nanoparticles [25]. As in the

case of bulk plasmons, an incoming electric signal deviates the electron

cloud inside the particle from its equilibrium position. As a consequence,

regions of positive and negative charge appear, and the positive back-

ground of the nanostructure tries to restore the equilibrium, thus estab-

lishing the collective oscillation known as LSPR, schematically depicted

in Figure 1.6. The closed, curved surface of the nanoparticle provides

the neccesary momentum so that momentum conservation is fulfilled and

light can couple to the electromagnetic excitation.

These localized electromagnetic modes arise naturally from the scat-

tering problem of a small sub-wavelength nanoparticle in an oscillating

electromagnetic field. We begin studying explicitly the case of the electro-

magnetic modes of a spherical metallic nanoparticle. We also summarize

the results of other geometries and, finally, we introduce the plasmon

hybridization picture explaining the plasmonic modes of more complex

nanostructures.

1.3.3.1 LSPRs in spherical geometry

When considering the problem of a metallic sphere with radius R in

a dielectric environment under the effect of an incoming electromagnetic

field, the quasi-static approximation is valid as long as the particle is

much smaller than the incident wavelength in the surrounding medium,

i.e., when 2R << λ [13]. Under these conditions, the phase of the os-

cillating electromagnetic field is approximately constant over the volume

of the particle, thus, the calculation of the electromagnetic field can be

treated as an electrostatic problem. Once the fields are calculated, the

harmonic temporal dependence can be added to the solution.
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Figure 1.6: Schematic representation of the excitation of a LSPR in a metal-

lic spherical nanoparticle under the influence of a linearly polarized electric

field.

In order to describe the electromagnetic surface modes in the quasi-

static limit, one needs to solve Laplace’s equation using the appropriate

boundary conditions. In this case, we consider a metallic spherical par-

ticle of radius R and characterized by a frequency-dependent dielectric

function εm(ω) (see Figure 1.7). The particle is embedded in an infinite

dielectric medium characterized by εd(ω). The solution of the problem

by means of Laplace’s equation leads to the following resonance condi-

tion for the fields, which is the equation describing the electromagnetic

surface modes:

εm(ω)l + εd(ω)(l + 1) = 0. (1.29)

If the response of the metallic nanoparticle is expressed in terms of a

Drude-like dielectric function without damping, εm(ω) = 1−ω2
p/ω

2, and

the embedding medium is vacuum, εd(ω) = 1, then, the eigenfrequencies

of the surface electromagnetic modes are:

ωsphl =

√
l

2l + 1
ωp, (1.30)

where l is the order of the spherical harmonic in which the deformations

of the electron gas is decomposed due to the spherical symmetry of the

problem. Thus, the frequency of the dipolar (l = 1) surface plasmon
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Figure 1.7: Schematic representation of a metallic spherical nanoparticle,
characterized by εm(ω), embedded in a dielectric medium, characterized by
εd(ω).

mode of a sphere in vacuum is given by:

ωsphl=1 = ωsphdip =
ωp√

3
. (1.31)

The dipolar mode is the most relevant one in the optical excitation of

small spheres. An increase in the size of the sphere makes higher order

modes more significant. In the limit of very large spheres (R→∞), the

result for a flat surface is recovered (ωl→∞ = ωp/
√

2 = ωSP ).

LSPRs also appear in the reciprocal situation of voids embedded in

metallic media. In order to consider a spherical cavity embedded in a

metallic medium, in the geometry depicted in Figure 1.7 we can consider

that the sphere is now vacuum and the embedding medium is a metal.

Thus, εd(ω) = 1 is the dielectric constant characterizing the cavity and

the response of the embedding metal is expressed using a Drude dielectric

function εm(ω) = 1 − ω2
p/ω

2. In this situation, the frequencies of the

electromagnetic modes are given by:

ωcavl =

√
l + 1

2l + 1
ωp, (1.32)
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and the corresponding dipolar mode of a cavity is:

ωcavl=1 = ωcavdip =

√
2

3
ωp. (1.33)

From these results (see Eqs. (1.30) and (1.32)), an interesting summation

rule can be inferred [42]:

(ωsphl )2 + (ωcavl )2 = ω2
p. (1.34)

1.3.3.2 Other geometries

There is a big variety of metallic nanostructures sustaining LSPRs. As

the complexity of the geometry increases, obtaining explicit expressions

for the surface electromagnetic modes becomes increasingly difficult. An-

alytical and semi-analytical solutions have been obtained for the LSPRs

in a big variety of nanostructures such as slabs [43], cylinders [44], edges

[45], coupled spheres [46] and nanoparticle arrays [47]. However, when

one needs to study the optical properties of metallic structures showing

complex arbitrary geometries, computational approaches are necessary to

solve Maxwell’s equations. Some of the most common numerical meth-

ods used in the calculation of plasmon modes in complex structures are

the Finite Difference Time Domain (FDTD) [48], the Discrete Dipole

Approximation (DDA) [49] or the Boundary Element Methods (BEM)

[50]. In this thesis, we will use the BEM method to calculate the optical

response of the complex plasmonic systems under study, namely, linked

metallic dimers. In this method, the boundary conditions are set up at a

grid of points defining the surface elements which separate the different

dielectric regions defining the particular geometry. Maxwell’s equations

are solved for each surface element in terms of the effective surface charges

and currents self-consistently determined. Once the distribution of the

charges and currents is obtained, the near-field and far-field properties

can be obtained. Technical information on this method is found in Ap-

pendix A of this thesis.
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Figure 1.8: Examples of different metallic nanostructures supporting LSPRs.
a) Nanorings, b) coupled nanorods (top) and single nanorods (bottom), c)
nanoshells and d) nanomatryushkas.

With the help of current computational resources, the optical proper-

ties of a huge variety of metallic nanostructures showing complex geome-

tries (see some examples in Figure 1.8) are explored. Among these nanos-

tructures we can find nanorings [27], coupled nanorods and nanorods

[31, 51], coupled nanoparticles [28], nanoshells and coupled nanoshells

[29], which are structures composed of dielectric cores surrounded by

metallic shells, nanomatryushkas [52], which are a succession of con-

centric dielectric core-metallic shells, nanostars [33], etc... Each struc-

ture shows particular optical properties of field localization and radiation

rates.
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1.3.3.3 LSPRs in complex geometries: hybridization model

In the last years, a hybridization model has been proposed to under-

stand and explain the spectral distribution of the plasmonic modes in

coupled nanostructures [54]. The hybridization model is an electromag-

netic analog of the orbital molecular hybridization theory, and explains

the resonances of complex nanostructures in terms of the well-known

plasmonic modes supported by the basic entities forming them. This

model has been very successful in understanding the behaviour of metal-

lic nanostructures of increasing geometric complexity such as dimers,

nanoshells, nanostars or nanomatryuskas. In this section, we consider

the case of a metallic shell to illustrate how the hybridization picture

works.

In the electrostatic approximation, the energy of the modes of a metal-

lic shell can also be derived from classical electromagnetic theory. Con-

sidering the shell as the particular case of a spherical cavity, with radius

Rcav and characterized by εm = 1, coupled to a metallic sphere in an

embedding dielectric medium, with radius Rsph and also characterized

by εm = 1 (see schematics in Figure 1.9), then the resonance condition

of the electromagnetic surface modes is:

ε(ω)2 +
ε(ω)

1− gl
[
2gl +

l2 + (l + 1)2

l(l + 1)

]
+ 1 = 0. (1.35)

gl is a geometric parameter defined as:

gl =
(Rcav

Rsph

)2l+1
, (1.36)

which gives the ratio between the radii of the cavity Rcav and the sphere

Rsph. The frequencies of the plasmon modes of the coupled system are:

ω±l =
ωp√

2

[
1± 1

2l + 1

√
1 + 4l(l + 1)gl

]1/2
. (1.37)

The energy of the dipolar mode (l = 1) is given by:

ω±l=1 = ω±dip =
ωp√

2

[
1± 1

3

√
1 + 8gl

]1/2
. (1.38)
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Figure 1.9: Schematic representation of the application of the hybridiza-

tion model to describe the energy levels of the plasmonic modes of a metallic

nanoshell as a result of the hybridization of the plasmon modes of a cavity

and a sphere.

In the limit Rcav → 0:

lim
Rcav→0

ω+
dip =

√
2

3
ωp, (1.39)

and:

lim
Rcav→0

ω−dip =

√
1

3
ωp, (1.40)

which correspond to the energies of the dipolar modes of a metallic cavity

and a metallic sphere, respectively.

In terms of the hybridization picture, Figure 1.9 shows the plas-

mon energy-level diagram of a shell arising from the coupling between

the modes of the metallic cavity and the metallic sphere. The plasmon
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modes of a sphere and a cavity are electromagnetic excitations which

induce surface charges at the outer and inner interfaces. Due to the fi-

nite thickness of the metallic shell, the plasmon modes of the cavity and

the sphere interact, resulting in the splitting of the LSPR into two new

LSPR: the bonding plasmon ω−, with lower energy, and the anti-bonding

plasmon ω+, with higher energy.

This hybridization model has also been applied succesfully to explain

the plasmon modes of other systems such as nanoparticle dimers [55].

The success of this picture is mainly based on its simplicity and also on

the intuitive way of explaining the complex nature of the electromagnetic

surface modes of nanostructures.

1.4 The optical extinction spectrum

Along this thesis, we analyze the optical properties of plasmonic

nanostructures mainly in terms of the optical extinction cross-section

of the structures under study. In order to understand the physical mean-

ing of this magnitude, we now introduce the basic concepts related to

the phenomena of optical extinction, scattering and absorption.

When a particle is illuminated by a beam of light, part of the light is

absorbed by the particle, and part of it is scattered in the form of new

radiation. The amount of light scattered and absorbed by the particle,

as well as the angular distribution of the scattered light, depend on the

particular characteristics of the particle, i.e., its shape, size and material

properties. Extinction is the attenuation of an electromagnetic wave by

the phenomena of scattering and absorption taking place when it illu-

minates a particular structure. It can be shown [18] that the extinction

of an electromagnetic wave after going through a particle only depends

on the scattering in the forward direction, even though this phenomenon

is an effect of the combination of the absorption in the particle and the
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scattering by the particle in all directions.

The study of the scattering phenomena of an incoming electromag-

netic radiation, incident in the direction n0 with polarization e0, involves

the calculation of the scattering cross-section. A cross-section is a quan-

tity with dimensions of area per unit solid angle. The differential scat-

tering cross-section in a certain direction of space n indicates the power

radiated in this direction n and polarization e, per unit solid angle, per

unit incident flux [4].

The general approach to the scattering problem consists in the fol-

lowing: considering an arbitrarily polarized monochromatic wave illu-

minating the particle, one needs to determine the electromagnetic field

distribution to obtain the power radiated in all directions. In general,

this is a very complex problem but, there is a particularly relevant case

which is exactly soluble: the scattering of light by small spherical par-

ticles [14, 18]. Figure 1.10 shows a schematic representation of the ab-

sorption, scattering and extinction phenomena when incoming light with

linearly polarized electric field E illuminates a spherical particle.

For small sphere with radius R (characterized by a dielectric function

εm) embedded in a medium (characterized by εd), the electrostatic ap-

proximation is valid and the dipolar momentum induced by the presence

of a quasistatic uniform electric field E0 can be expressed as:

p = εdα
sphE0, (1.41)

where αsph is the polarizability of the sphere defined as [18]:

αsph = 4πR3 εm − εd
εm + 2εd

. (1.42)

In the electrostatic approximation, thus, a sphere can be considered an

ideal dipole. We can replace the sphere by an ideal dipole with dipolar

moment p = εdα
sphE0 to describe the radiation properties of the particle.

Taking this into account, the scattering and absorption cross-sections,
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Figure 1.10: Schematic representation of the extinction, scattering and

absorption phenomena by a metallic sphere. The incoming light is a plane

wave with wave-vector k and linearly polarized electric field E, exciting the

dipolar plasmon mode.

Csca and Cabs, can be referred to this dipolar moment and, thus, to the

polarizability of the sphere as:

Csca = |αsph|2 k
4

6π
=

8π

3
k4R6

∣∣∣ εm − εd
εm + 2εd

∣∣∣2, (1.43)

Cabs = kIm(αsph) = 4πkR3Im
[ εm − εd
εm + 2εd

]
. (1.44)

For small particles absorption, which scales with R3, dominates over

scattering, which scales with R6. Finally, once the scattering and the

absorption cross-section are known, the extinction cross section can be

obtained as the sum of both:

Cext = Csca + Cabs. (1.45)

In Figure 1.11 the calculated normalized extinction, scattering and

absorption cross-sections for silver spheres in vacuum are shown. In Fig-

ure 1.11 a) we consider a sphere with radius R = 10 nm, whereas in

Figure 1.11 b) the sphere has R = 25 nm as radius. For the smaller par-

ticle, the absorption is the most important contribution to the extinction
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Figure 1.11: Calculated normalized extinction, scattering and absorption

cross-section for silver spheres in vacuum with radii a) R = 10 nm and b)

R = 25 nm.

process, being the scattering negligible, due to the scaling of Cabs and

Csca with R3 and R6, respectively. In contrast, when a bigger particle is

considered, both contributions are equally important.

1.5 Connecting optical properties and elec-

tronic transport

Within the huge diversity of plasmonic nanoparticles, dimers have

emerged as a canonical structure due to their important role in the un-

derstanding of more complex plasmonic structures. When two nanopar-

ticles are placed next to each other forming a dimer, they no longer be-

have individually, but as a new interacting system in which the plasmonic

modes of the individual nanoparticles interact and can be understood in

terms of the hybridization of the plasmonic resonances of the constituent

nanoparticles [55]. For very close particles, when there is no conduc-
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tive path linking both parts of the dimer, the optical response is mainly

governed by the Bonding Dimer Plasmon (BDP) resonance. This BDP

mode, which arises from the hybridization of the dipolar modes (l = 1) of

the individual nanoparticles, presents strongly localized charge densities

of opposite sign and enormously enhanced local electromagnetic fields in

the dimer cavity. In contrast, for touching particles, where a conductive

path is established between both parts of the dimer, the optical response

is governed by the Charge Transfer (CTP) mode, which allows electric

current density through the cavity, involving an oscillating charge dis-

tribution of net charge at every individual nanoparticle [28]. We will

introduce these plasmon modes in Chapter 2, before analyzing their con-

nection to electronic transport and excitonic transitions.

In parallel to the development of plasmonic cavities, electronic trans-

port through molecules has become a vibrant field in nanoscience due

to its potential technological applications in nanoelectronics, connected

to novel nanofabrication and nanomanipulation methods and improved

current detection schemes. During the past decade, many fundamental

advances in our understanding of molecular transport at DC or low AC

frequencies have been achieved. Among this accomplishments we find

the single-molecule transistor [56], the measurement of conductance in

individual molecules [57], the visualization and resolution of the spec-

troscopy of metal-molecule-metal structures [58], single-molecule circuits

[59], the plasmon-induced electric conduction in molecular devices [60]

or the switching of conductance in molecular junctions [61]. In molecular

electronics, it is clearly of significant importance to understand transport

at GHz or higher frequencies. While there has been significant theoret-

ical effort devoted to understand electron transport through molecular

devices and quantum dots at elevated frequencies [62, 63, 64], standard

electrical transport measurements cannot be performed in this regime

due to the strong capacitive coupling between electrodes. In Chapter 3,
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we study the dependence of the optical properties on the conductance

in coupled dimers linked by a conductive path between both sides of the

dimer nanostructure. We explore the connection between the optical re-

sponse and the electronic transport processes taking place through the

conductive linker.

Furthermore, there has been a growing interest in the interaction be-

tween plasmonic modes and molecular excitations, since the control of

the coupling of molecular complexes to metallic structures is very im-

portant for the development of active plasmonics components dealing

with optoelectronics signals [65, 66]. Among the broad range of poten-

tial applications of these systems we can find molecular switches, light

harvesting structures or modulators [24, 67, 68]. In particular, it has

been shown that in systems composed of metal nanoparticle-molecular

complexes, the presence of molecules shifts the plasmon mode by chang-

ing the interation between the molecular and plasmonic resonances [24].

In Chapter 4, we study how the presence of an excitonic transition in the

material linking a metallic dimer influences the optical response of the

nanostructure. We also connect the spectral changes and the conduction

properties of the excitonic linker.

Along the development of plasmonics, there have been many studies

of the sensitivity of plasmonic systems to the embedding medium. These

studies have been boosted by the potential use of plasmonic structures as

sensors [69, 70]. This sensitivity has been found to be relevant for differ-

ent types of nanostructures, such as nanorods, nanoshells or nanodisks

and, more recently, significant advances have been reported in the sensing

capability with the use of Fano resonances [71], due to their sharp spec-

tral features which are more sensitive to the surrounding environment.

In Chapter 5, we study the sensitivity of dimers linked by a conductive

path to the embedding medium. We also propose a new paradigm for

sensing application based on the intensity, rather than on the shift of the
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plasmons.

All the topics developed in this thesis point out in the direction of a

better understanding of the complex connection between transport prop-

erties through metallic structures and the optical properties. This con-

nection promises novel and valuable information which could lead to a

new way of characterizing transport at high frequencies.
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CHAPTER 2

PLASMONIC RESONANCES IN

NANOPARTICLE DIMERS: THE BDP AND CTP

MODES

During the last decade, the emerging field of plasmonics has developed

a growing interest in the optical properties of coupled metallic nanopar-

ticles due to the potential applications of their localized plasmonic res-

onances [25, 26]. Among all the variety of existing nanostructures, dif-

ferent nanoparticle pairs, usually named dimers, with different shapes,

sizes and materials, have been profoundly studied [28, 29, 31]. A dimer

can be considered as a canonical structure which helps to understand the

optical behaviour of other nanostructures with increasing complexity.

When the two parts of a dimer are closely located, a cavity is formed.

Depending on how close the particles are situated, or whether they es-

tablish a conductive contact, two main plasmonic resonances can be dis-

tinguished: the Bonding Dimer Plasmon (BDP) mode and the Charge

Transfer Plasmon (CTP) mode. In this chapter we explore the general

features of these Localized Surface Plasmon Resonances (LSPRs), since

they are deeply studied along this thesis in relation to the conduction
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properties in the Plasmonic Cavity (PC).

2.1 Plasmonic dimers: from non-conductive

to conductive regime

When two metallic nanoparticles are placed next to each other, they

no longer behave as the original individual nanoparticles, but as a new

structure that we name as dimer. This new nanostructure presents its

own plasmon modes due to the coupling between the nanoparticles com-

posing the dimer. The coupled modes differ from the original modes and

can be intuitively understood in terms of the hybrization model [55].

In order to understand the behaviour of these coupled modes, we have

studied the optical properties of a dimer consisting of two gold spheri-

cal nanoparticles with identical radii R = 50 nm. To this end, we have

calculated the normalized optical extinction cross-section of different con-

figurations of the dimer system, as well as the corresponding near-field

distributions. The dimer is considered to be suspended in vacuum and

the gold nanoparticles are characterized by frequency dependent dielec-

tric functions ε(ω) taken from the literature [40].

We first explore the non-conductive situation, where there is a sep-

aration distance between the edges of the particles and there is no con-

ductivity in the PC. Then, we consider the conductive regime, where a

conductive path links both parts of the dimer.

2.1.1 Non-conductive regime: BDP mode

Figure 2.1 a) shows a schematic representation of the structure un-

der consideration: a gold nanoparticle dimer suspended in vacuum and

illuminated by a plane wave with linear polarization along the symme-

try axis of the system, and wave-vector k, perpendicular to the same
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Figure 2.1: a) Schematic representation of a gold nanoparticle dimer
with interparticle distance d between the surfaces of the particles. The
radius of each particle is R = 50 nm and the incident light consists of
a plane wave with wave-vector k and the electric field linearly polarized
along the vertical symmetry axis of the system. The dashed lines indi-
cate that there is no conductive path linking both parts of the dimer. b)
Shift of the wavelength at which the calculated normalized optical ex-
tinction cross-section of the dimer is maximum as d is varied. The points
correspond to the calculations in c) and d), while the line is the curve
fitting of the points. c) and d) Calculated normalized optical extinction
cross-section of the dimer as the interparticle distance d is varied, for
long separation distances (c), and for short separation distances (d).
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symmetry axis. The surfaces of the gold nanoparticles are separated by

an interparticle distance d. The dashed lines included in the schemat-

ics indicate that, in the non-conductive regime, there is no conductive

path filling the PC formed in the dimer. Once the geometric parameters

and the constitutive materials are defined, the interparticle distance d

is the parameter governing the evolution of the optical properties of the

system, as observed in Figure 2.1 b). This figure shows the shift of the

wavelength at which the calculated normalized optical extinction cross-

section of the gold dimer is maximum as the interparticle distance d is

varied. The points correspond to the calculations, while the line is the

curve fitting of the points. As the nanoparticles are closer, forming a

cavity between the surfaces of the nanoparticles, a clear red-shift of this

maximum is observed, being this shift more pronounced as the separation

is reduced. These results are consistent with previously reported studies

on the optical response of plasmonic dimers in the nearly-touching and

touching regimes [28].

Figure 2.1 b) also shows that the dependence of the shift on the in-

terparticle distance presents an exponential-like behaviour. In the last

years, this kind of decay of the plasmon shift of dimers as a function

of the interparticle distance has been observed for several systems, such

as elliptical and spherical nanoparticles or nanodiscs [72, 73, 74], when

the polarization of the incident light is along the interparticle axis, as in

this case (see Figure 2.1 a)). In parallel to these studies a plasmon ruler

equation, proportional to e−d/2R, was successfully proposed to determine

the universal dependence of the coupling of plasmons on the interparticle

distance [74]. Our results are in good agreement with this scaling decay.

In more detail, in Figures 2.1 c) and d) we observe the normalized

optical extinction cross-section of the gold dimer as d is varied. In Figure

2.1 c), the cases with long interparticle distances are plotted, where the

nanoparticles are separated by distances longer than several particle radii,
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so that the coupling between them is very weak, together with the case

of an isolated nanoparticle. We observe that the spectral position of the

plasmon resonance of the isolated gold nanoparticle (d → ∞), initially

found at λ = 520 nm, is the same as for the case when the interparticle

distance doubles the diameter of the individual particles (d/2R = 2).

Thus, in this case, there is no coupling between the nanoparticles. As d

is decreased, the plasmon resonance is slowly red-shifted towards longer

wavelengths. This long-distance non-conductive regime is governed by

the single particle bonding dipolar mode. Figure 2.1 d) shows the nearly-

touching regime (d/R < 0.2), where the distance between the particles is

small in comparison to the radius so that coupling between the nanopar-

ticles becomes stronger, and where the increasing red-shift of the mode

is observed as the nanoparticles get increasingly closer. Contrary to

the case where the interparticle distance is longer, this nearly-touching

regime is governed by the BDP mode, arising from the hybridization of

the dipolar modes of the individual nanoparticles. For the cases of max-

imum proximity considered here, where d = 2.0 nm, 1.0 nm and 0.5 nm,

a blue-shifted mode emergesamarcord72. This higher energy mode is the

Bonding Quadrupolar Plasmon (BQP) mode, which arises from the hy-

bridization of the quadrupolar modes of the individual nanoparticles.

In terms of the hybridization picture, the BDP mode is understood as

the hybridization of the dipolar modes (l = 1) of the individual particles

due to the coupling between the nanoparticles [55], as shown in Figure

2.2. Explicitly, the dipolar plasmon modes of the individual nanoparti-

cles couple and form two collective modes: the bonding mode, with lower

energy, and the anti-bonding mode, with higher energy. The bonding or

BDP mode corresponnds to an electric charge distribution in the dimer

which can be interpreted as two parallel dipoles. Thus, the BDP mode

has a large dipolar moment and it couples very effectively to the inci-

dent light, being the predominant mode ruling the optical properties of
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Figure 2.2: Hybridization model for a nanoparticle dimer showing the
formation of the BDP mode from the combination of the l = 1 modes of
the individual particles.

nanoparticle dimers. In contrast, for the anti-bonding mode the electric

charge distribution in the dimer corresponds to two anti-parallel dipoles,

therefore, it presents no net dipolar moment and it does not couple to

light. This kind of mode is usually named as dark mode, contrary to the

case of the highly radiative modes, usually referred to as bright modes

due to their ability to couple to light. However, the anti-bonding mode

can be excited by other means, for example, with an electron beam [75].

Similar to the dipolar modes, the hybridization picture can also be

applied to higher order modes. It is the case of the lower energy mode

emerging for small interparticle distances in Figure 2.1, which corre-

sponds to the coupling of the quadrupolar modes (l = 2) of the individual

nanoparticles and appears when the interparticle distance is very small

and/or larger particles are considered. In the limit of nearly-touching

nanoparticles, the coupling between the dipolar individual modes and
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higher order modes occur, forming hybridized modes with mixed charac-

ter.

All this hybridization of modes is characteristic of dimers illuminated

by light with the electric field polarized along the symmetry axis of the

system, as considered in this work. When the incident light presents the

electric field with polarization perpendicular to the symmetry axis, the

particles hardly couple and the mixing of the modes is not observed.

2.1.2 Conductive regime: CTP mode

In order to study the conductive regime, we connect physically the

two nanoparticles forming the dimer by a junction modelled as a cylinder

with length d and radius a, forming a linker which matches perfectly the

spherical nanoparticles. This junction filling the PC opens a conductive

path between both parts of the dimer with conductivity κ(ω). The con-

ductivity is related to the dielectric function characterizing the junction

by means of Eq. (1.8). Figure 2.3 a) shows a schematic representation of

the structure under consideration: a gold nanoparticle dimer suspended

in vacuum and illuminated by a plane wave with wave-vector k perpen-

dicular to the symmetry axis of the system and with the electric field

linearly polarized along the same symmetry axis.

In the conductive case, once the geometric parameters and the con-

stitutive materials are defined, the radius a is the parameter governing

the evolution of the optical properties of the system, as shown in Figure

2.3 b). We display the normalized optical extinction cross-section, over

a large wavelength scale, of a gold dimer for different radii a of the junc-

tion, for a small distance between the surfaces of the particles d = 1 nm,

so that the structure is highly coupled. Contrary to the non-conductive

case, the BDP mode blue-shifts as the radius of the conductive path is

wider. This blue-shift has been previously reported in touching dimers,

where the conductive path is open by overlapping the particles [28, 76].
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Figure 2.3: a) Schematic representation of a gold dimer with a con-
ductive path connecting both nanoparticles. The interparticle distance
between the surfaces of the particles is d, and a is the radius of the gold
junction linking both parts of the dimer. The radius of each particle is
R = 50 nm and the incident light is a plane wave with the electric field po-
larized along the vertical symmetry axis of the system. The gold junction
opens up a conductive path between both parts of the dimer with con-
ductivity κ(ω) b) Calculated normalized optical extinction cross-section,
over a large wavelength scale, of a conductively connected dimer as the
radius a of the junction is varied. The blue-shift of the BDP mode and
the emergence of the CTP mode are observed.
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A new mode at very long wavelegths emerges in the Near-InfraRed (NIR)

range of the spectrum, also blue-shifting as the conductive path becomes

wider and consistent with previous results in overlapping particles. This

lower-energy mode is the so-called CTP mode and it has also been ob-

served when both parts of a dimer overlap [28, 76].

The CTP mode can also be understood with the help of the hy-

bridization picture, as illustrated in Figure 2.4. In this case, the CTP

mode arises from the hybridization of the monopolar modes of the indi-

vidual nanoparticles, resulting in a dipolar mode when considering the

structure as a whole. The charge transfer through the conductive path

allows the charge neutrality of the entire system, even though each in-

dividual nanoparticule present net charge of opposite sign. Note, that

the monopolar modes for the individual nanoparticles are not real modes

since, for the isolated nanoparticles, the principle of charge neutrality

needs to be fulfilled.

In the conductive case, it is worth pointing out that, for the material

forming the dimer and the junction with conductivity κ, the radius a

governs the conductance of the conductive path. In previous studies on

the emergence of the CTP [28, 76], there has not been an explicit study

on the dependence on the conductance properties of the junction linking

the dimer. Thus, in the following chapters, we develop a study on the

optical properties of the BDP and CTP modes in the conductive regime

and on how these optical properties are affected by the conductance of

the conductive path of the dimer.

2.2 Near-field distributions

In order to complete the introduction of the BDP and the CTP modes,

we address now their near-field distributions. Two particular cases have

been chosen: the BDP mode in the non-conductive regime when the sys-
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Figure 2.4: Model of the CTP mode understood as the hybridization of
the monopolar modes (l = 0) of the individual nanoparticles. The black
dashed lines indicate that the monopolar modes do not really exist for
individual nanoparticles.

tem is highly coupled, and the CTP mode in the conductive regime with

the same coupling strength. These near-field distributions are shown in

Figure 2.5, where the modulus of the electric field is represented with a

surface plot.

Figure 2.5 a) shows the surface plot of the modulus of the electric field

for the BDP mode in the non-conductive regime when the interparticle

distance is d = 2 nm, calculated at λ = 630 nm. The field is largely

enhanced in the interparticle gap, showing a clear “hot-spot”, due to the

concentration of charges of opposite sign on the surfaces of both sides of

the PC. Thus, the capacitance of the cavity is very large. This ability of

the BDP mode of adjacent nanoparticles to focus light is very promising

for Surfance Enhanced Raman Scattering (SERS) applications [77].

Figure 2.5 b) shows the surface plot of the modulus of the electric

field for the CTP mode in the conductive regime where the interparticle

distance is d = 1 nm and the radius of the linker is a = 8 nm, calculated

at λ = 1250 nm. Contrary to the BDP, the electric field is not concen-

trated in the cavity since the charge transfer through the conductive path

considerably diminishes the capacitance in the junction, allowing for the

redistribution of the charge along the whole dimer. Thus, the field is
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Figure 2.5: Surface plots showing the near-field distributions for the
BDP and CTP modes of gold dimers in the y = 0 plane. The incident
light consists of a plane wave with wave-vector along the x axis and the
electric field linearly polarized along the z axis (see Figures 2.1 a) and 2.3
a)). a) BDP mode in the non-conductive regime when the interparticle
distance is d = 2 nm, calculated at λ = 630 nm. b) CTP mode in the
conductive regime when the interparticle distance is d = 1 nm and the
radius of the linker is a = 8 nm, calculated at λ = 1250 nm.
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expelled from the filled gap in this situation. We also observe that the

field is homogeneously distributed all around the dimer, since the electric

charge is not concentrated in the cavity, in contrast to the case of the

BDP mode.

2.3 Summary

In this chapter we have introduced the two main resonances govern-

ing the optical response of highly coupled plasmonic dimers. When there

is no conductive path between nanoparticles forming the dimer, the BDP

mode is responsible for the spectral features. The BDP mode arises from

the hybridization of the dipolar modes (l = 1) of the individual nanopar-

ticles and presents huge field enhancement of the electric field and large

capacitance in the cavity between the particles. When there is a con-

ductive path linking both nanoparticles, the CTP mode emerges for long

wavelength values. The CTP mode is understood as the hybridization of

the monopolar modes (l = 0) of the individual particles (forbidden when

there is no connection). For the CTP the local electric field around the

nanoparticles presents a more homogeneous distribution, in comparison

to the BDP. The field in this case is expelled from the linked region due

to the reduced capacitance of the cavity, or its total suppression.
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ELECTRON TRANSPORT EFFECTS AND

OPTICAL PLASMONIC SPECTROSCOPY

It has been recently shown, both experimentally and theoretically,

that when two nanoparticles are very closely spaced, so that a conduc-

tive overlap between them is established, the associated optical spectra

and local field enhancements can be dramatically modified [28, 29, 31,

76, 78, 79, 80, 81]. In addition to the Bonding Dimer Plasmon (BDP)

mode, which is the main optical feature of close particles, we have al-

ready introduced in Chapter 2 that when a conduction path between

the two parts of the dimer is opened, a Charge Transfer Plasmon (CTP)

mode, involving charge transfer across the junction, emerges as an opti-

cal feature. Theoretical simulations showed that the energy of the CTP

mode depends strongly on the touching profile [28]. This geometrical

dependence is connected with the conductance established through the

junction between the two particles. However, no explicit study had been

performed on the dependance of the CTP on the conductance through

the overlap between the two particles of the dimer.

In this chapter, we present a theoretical study of the optical prop-
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erties of a Plasmonic Conductive Cavity (PCC) consisting of a strongly

coupled (non-touching) nanoparticle dimer connected by a conductive

bridge, focusing on the spectral signature of the system in relation to

the conductance through the junction between the nanoparticles. This

system can be viewed as a simple model of two nanoparticles linked by

an ensemble of conductive molecules. In the following, we show how

strongly the optical properties of the PCC depend on the conductance

of the bridge.

3.1 Optical response of a conductive linker

Shape and size of the constituents are two key ingredients in the study

of plasmonic systems. We therefore define the geometry of our system

in the schematics in Figure 3.1 a). We consider an heterogeneous nanos-

tructure composed of two nanoshells, acting as electrodes, with silica

cores of radius Rint = 45 nm covered by gold shells of radius R = 55 nm,

namely, the thickness of the gold shells is 10 nm. The conductive linker

connecting the dimer is modelled as a solid cylinder perfectly matching

the spherical shape of the electrodes. The linker is characterized by two

parameters: the radius a and the length d, defined as the shortest inter-

particle distance between the nanoshells. In this study we consider the

interparticle distance to be d = 1nm, so that the nanoshells are strongly

coupled. The incident light is a plane wave with the electric field linearly

polarized along the symmetry axis of the system and wave vector k per-

pendicular to the same symmetry axis.

The surrounding medium is another key feature influencing the plas-

monic properties. In our case, the dimer is assumed to be suspended in

vacuum and the materials composing the different parts of the system

are characterized by local dielectric functions, ε(ω), taken from the liter-

ature, both for gold [40] and silica [39]. For the sake of simplicity, we have
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Figure 3.1: a) Schematic representation of a nanoparticle dimer connected

by a cylindrical linker. The linker is zoomed so that its concave endings and

geometrical parameters, radius a and length d, can be clearly appreciated

(d = 1 nm and R = 55 nm). The incident light is a plane wave with linear

polarization along the symmetry axis of the system and wave vector k is

perpendicular to the same symmetry axis. b) Ratio conductance/conductivity

for a perfect conductive cylinder with planar endings, where G/κ = πa2/d

(solid line), and for a conductive linker with curved endings (dashed line),

where the G/κJ is given by Eq. (3.2).

first modelled the conductive linker as a pure conductor characterised by

a DC conductivity κJ , so that the corresponding frequency-dependent

dielectric function ε(ω) can be expressed as:

ε(ω) = 1 + i
4πκJ
ω

. (3.1)

The conductivity of the linker κJ is then related to its conductance G

through geometric parameters. In our case, the consideration of the

spherical connection between the linker and the particles leads to a math-

ematical expression for the ratio G/κJ involving the parameters a, R and

59



3.1. OPTICAL RESPONSE OF A CONDUCTIVE LINKER

d:

G

κJ
=

G

κJ
(a,R, d) = π

{√
R2 − a2 −R

+(d/2 +R) ln
[
1 + 2(R−

√
R2 − a2)/d

]}
, (3.2)

where R is the external radius of the nanoshell, a is the radius of the

linker and d is the interparticle distance. In the limit of very thin linkers,

a << d, the function G/κJ(a,R, d) (Eq. (3.2)) behaves as a conductive

cylindrical wire with planar endings, and the expression becomes:

lim
a�d,R

G

κJ
=
πa2

d
. (3.3)

We should notice that the real part of ε(ω) is frequency independent (see

Eq. (3.1)), since we have assumed the linker to be a pure conductor. In

contrast, the imaginary contribution, which is related to energy losses, is

the only part of the dielectric function affected by any possible change

in the parameters. These changes in the imaginary part of ε(ω) can be

related to the variation of DC conductivity κJ , which is governed by vari-

ations in the geometry, variations in the conductance or a combination

of both. Whereas in the limit of very thin linkers the conductance has

a quadratic dependence with the radius of the linker, as shown in Eq.

(3.3), a nearly linear trend is obtained in Eq. (3.2) when thicker linkers

are considered. We can observe in Figure 3.1 b) that this implies that

G/κJ hass always smaller values than those given by the function of a

wire, due to the effect of the curvature of the nanoshells. For the inter-

particle distance considered in the present work, d = 1nm, this implies

a quadratic behaviour of G/κJ up to radius a ' 3 nm, as appreciated in

Figure 3.1.

In order to connect with the terminology for molecular conductances,

we will vary κJ so that the total conductance of the linker is equal to an

integer number n of quantum units of conductance G0, i.e., G = nG0,

where G0 = 2e2/h ≈ 77.5µS.
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3.2 Optical signature of the BDP and CTP

modes

We show the evolution of the calculated normalized optical extinc-

tion cross-section of the PCC in Figure 3.2 a) over a large wavelength

scale as a function of the conductance through the junction. The peak

around λ ≈ 840 nm, also present when there is no junction linking the

particles, is the hybridized dipolar BDP mode resulting from the capac-

itive coupling of the dipolar plasmon modes of the individual nanoshells

[55], introduced in section 2.1.1. As the conductance of the junction is in-

creased, the BDP mode blue-shifts and its width changes. For the largest

conductance, a new plasmon mode, highly red-shifted and damped, ap-

pears around λ ≈ 2940 nm. This emerging resonance is the CTP mode

where, the net charge of the individual nanoshells will oscillate in time

across the junction.

Figure 3.2 b) shows the local electric field distributions inside the

junction and its surroundings for some of the plasmon resonances in Fig-

ure 3.2 a). When low conductance is considered, G = 5G0 in the top

panel, the electric field is still maximum at the junction, similarly to the

case of an empty junction, allowing a significant capacitive coupling be-

tween the two nanoparticles. As the conductance is gradually increased,

the local field is progressively expelled from the junction, reducing the

capacitive coupling across the cavity. For intermediate values of conduc-

tance, G = 62G0 in the central panel, it can clearly be observed that the

local field across the molecular bridge has decreased dramatically. In this

case, the capacitive coupling between the two nanoshells is reduced, re-

sulting in a slight blue-shift of the BDP. We will refer to this blue-shifted

BDP as the Screened BDP (SBDP) mode. The bottom panel shows the

field distribution of the CTP mode for large conductance, G = 1053G0,

clearly revealing that the electric field outside the molecular bridge is also
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Figure 3.2: a) Calculated normalized optical extinction cross-section of a

PCC with a = 2 nm as a function of conductance. Insets illustrate the charge

distributions of the BDP and the CTP modes. b) Near-field distributions for

some of the resonance wavelengths in a): BDP at λ = 840 nm (top), SBDP

at λ = 790 nm (middle) and CTP at λ = 2940 nm (bottom).

strongly reduced and that inside the junction the field has been expelled.

In this limit, the conductive junction acts as a short circuit, drastically

reducing the potential difference between the two nanoparticles.

Now, we address in more detail the tendencies of the spectral fea-

tures and near-field distributions of both the BDP and the CTP modes

as optical fingerprints of the conductance of the junction. We consider

separately two regimes in the next two subsections: the small and large

conductance regimes.

3.2.1 Small conductance regime: from BDP to SBDP

mode

Figure 3.3 shows the calculated normalized optical extinction cross-

section of the PCC in the region of the spectrum around the BDP as the
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conductance is increased for three different radii of the linker. For small

values of the conductance, the energy of the BDP remains unaltered,

with a monotonic increase in its linewidth with increasing conductance.

For intermediate conductance, the BDP blue-shifts and the SBDP mode

is formed. As the conductance becomes larger, the energy of the SBDP

remains unchanged but its linewidth decreases. This behavior is found

systematically for the three different sizes of the conductive junctions we

have considered in Figures 3.3 a), b) and c), where a = 1 nm, 2 nm and

3 nm, respectively.

Figure 3.4 a) shows how the linewidth of the SBDP (Full Width at

Half Maximum (FWHM)) depends on the conductivity of the junction κJ

for different sizes of the junction, with the conductivity of the junction is

expressed in units of the conductivity of gold. This linewidth dependence

on the conductance can be qualitatively understood in terms of the simple

resistor model depicted in Figure 3.5 a), where the PCC is modelled as a

serial combination of resistors, rAu for the gold particles and rjunction for

the junction. The power dissipated in the junction WJ , when a potential

V is applied, is calculated using Joule’s law:

WJ = I2rJ =
V 2rJ

(2rAu + rJ)2
, (3.4)

where I is the electric current in our model circuit. For low junc-

tion conductance (rJ >> rAu), the dissipation in the junction scales

as WJ ∝ 1/rJ ∝ κJ ∝ G. In the low conductance limit, the dissipation

in the junction and, hence the broadening of the SBDP, increases linearly

with the conductivity of the junction κJ and, thus with the conductance

G. On the contrary, for large junction conductance (rJ << rAu), the

dissipation in the junction scales as WJ ∝ rJ ∝ 1/κJ ∝ 1/G, i.e., a fur-

ther increase of junction conductivity κJ , and consequently an increase

of the conductance G, produces a decrease of the dissipation and hence,

a reduction in the linewidth.

Figure 3.4 b) shows that the magnitude of the blue-shift increases
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Figure 3.3: Calculated nor-

malized optical extinction cross-

section of a PCC as a function of

conductance for different radii of

the linker: a) a = 1 nm, b) a = 2

nm and c) a = 3 nm.
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Figure 3.4: a) Evolution of the linewidth and b) blue-shift of the BDP as a

function of conductivity for different radii of the PCC. c) Near-field distribu-

tions of the SBDP mode for a = 0.5 nm (Left) and a = 2 nm (Right).

with the increase of the radius a. In the absence of linker, a large Coulomb

attraction between the two nearby sides of nanoparticles is present for

the BDP mode, as illustrated in the top schematic plot of Figure 3.5

b). Once the SBDP mode has been formed, as illustrated in the bot-

tom schematic plot, the Coulomb attraction is reduced, since the surface

charge facing the junction is screened. This decrease in the capacitive

coupling with increasing a can also be inferred from the near-field dis-

tributions in Figure 3.4 c), which show that wider junctions screen more

surface charge, resulting in lower field enhancements in comparison to

narrower junctions.
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Figure 3.5: a) Resistor model describing the screening of the PCC. Each

nanoparticle is represented by a resistor rAu, and the conductive bridge by

rJ . The voltage from the incident field is V . b) Schematic representation

of the PCC illustrating the reduction of the capacitive coupling through the

junction, which leads to the formation of the SBDP (bottom) from the BDP

(top), as the conductance through the junction increases.

3.2.2 Large conductance regime: emergence of the

CTP mode

In order to explore the spectral features of the CTP mode, Figures

3.6 a) and b) show the normalized optical extinction cross section as

the conductance across the junction is dramatically increased for two

different radii of the junction. In this limit, the dimer acts as a single

nanostructure, rather than a coupled pair of nanoparticles. The plasmon

frequencies in the large conductance regime remain fixed for the same ge-

ometry. The geometrical dependence is clearly observed in Figure 3.6 a),

which shows a strong red-shift of the CTP mode for the narrow junction.

Figures 3.6 a) and b) also show a significant decrease of the linewidth

of the CTP mode as conductance is increased. This behaviour can be

understood in terms of the reduced dissipation for large conductance,

in agreement with the predictions of the simple resistor model, already
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Figure 3.6: Calculated normalized optical extinction cross section of a PCC

as a function of conductance for different radii of the junction. a) a = 2 nm

and b) a = 4 nm. c) Near-field distributions for some of the resonances in

a) and b): Top - a = 2 nm, G = 1053G0, λ = 2940 nm and bottom - a = 4

nm, G = 1000G0, λ = 1750 nm. d) Schematic representation of the PCC

illustrating the reduction of the capacitive coupling through the junction for

the CTP mode.
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introduced to explain the linewidth dependance of the BDP mode (see

Eq. (3.4)).

Figure 3.6 c) shows the near-field distributions associated to two of

the spectra in a) and b). In particular, the near-field inside the junction

and its surroundings is shown for two linkers with radii a = 2 nm and

a = 4 nm in the large conductance regime. We observe that the field has

been expelled from the PCC reducing the Coulomb attraction between

the shells. This situation corresponds to the schematic plot shown in

Figure 3.6 d).

3.2.3 Near-field distribution of the SBDP and CTP

modes. Effect of the skin-depth.

The nature of the plasmon modes can be illustrated by observing the

near-field associated to the resonances. For the nanoparticle dimer linked

by a conductive junction, we have already shown in this section that the

electric field is progressively expelled from the junction as the conduc-

tance is increased. For low conductance values the junction still acts as

a perfect capacitive cavity, whereas for values of the conductance larger

than a certain threshold value GSBDP , the Coulomb attraction between

the gold shells and the capacitance of the cavity is reduced, therefore

the local field is progressively expelled from this region. An estimation

of this threshold value of the conductance is derived in the next section.

This decrease of the electric field in the PCC can be clearly observed

in Figure 3.7, where the modulus of the near-field is represented in the

plane defined by the propagating vector k of the incident plane wave and

the axis of polarization of the electric field E (see schematics in Figure

3.7).

In order to observe the different charge distribution of the SBDP

and CTP resonances, we compare the near-field distributions of these

two modes also in Figure 3.7, where a conductive junction with radius
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Figure 3.7: Near-field distribution of the SBDP and CTP modes for a

nanoshell dimer linked by a conductive junction with radius a = 8 nm, con-

ductivity κJ = 5κAu and conductance G = 7229G0: a) SBDP at λ = 670 nm

and b) CTP at λ = 1380 nm.

a = 8 nm and conductance G = 7229G0 is considered: Figure 3.7 a)

corresponds to the SBDP resonance at λ = 670 nm, and Figure 3.7 b)

corresponds to the CTP resonance at λ = 1380 nm. In both cases, the

local field is expelled from the junction and the near-field takes its high-

est values around the molecular junction, but some differences can be

observed. For the SBDP mode, the distribution of the field corresponds

to a dipole-dipole pattern, in connection with the BDP distribution. In

this case, the surface charge is highly localized at the cavity, with charge

of opposite sign at both sides of the cavity, observing dipolar electric field

distributions and fulfilling charge neutrality in each nanoparticle, sepa-

rately. In contrast, for the CTP mode, the near-field distribution has a

quite uniform intensity distribution all around the dimer (see Figure 3.7

b), in agreement with the near-field patterns obtained for interpenetrat-
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ing particles [28]. In this case, charge neutrality is fulfilled for the whole

nanostructure, but each side of the dimer presents net-charge.

In relation to this behaviour of the electric field and, observing in

Figure 3.7 its penetration into the gold shells, one can try to establish a

connection between the reduction of the field and the skin depth. The

skin depth δ is the parameter describing the ability of the electromag-

netic field to penetrate into a material. In SI units this parameter is

given by [82]:

δ =

√
2

µ0ωκ
, (3.5)

where µ0 is the magnetic permeability of free space, ω is the frequency

of the incident field and κ is the DC conductivity. If we analyze the

skin depth for the cases considered in Figure 3.7, where κ = κJ = 5κAu

and its corresponding conductance G = 7229G0, we obtain values of

δSBDP (λ = 670 nm)≈ 12 nm for the SBDP mode and δCTP (λ = 1625

nm) ≈ 17 nm for the CTP mode. These values of the skin depth are of

the order of the size of the junction in this case, where a = 8 nm. How-

ever, in most of the situations considered along this chapter, mimicking

feasible dimensions of molecular linkers, the conductance at the junction

is much smaller. To illustrate better this concept, in Figure 3.8 we show

the calculated optical extinction cross-section (a) and the modulus of

the near-field in the junction (b), in the plane formed by the propagating

vector k and the field (b) and along the x axis at the centre of the cavity

(c), for a conductive junction with radius a = 2 nm. In Figure 3.8 a),

the formation of the SBDP mode is observed as the conductance is in-

creased. In this situation, the skin depth is reduced as the conductance

increases, taking the following values: G = 5G0 - δ(λ = 840 nm)≈ 149

nm, G = 33G0 - δ(λ = 810 nm)≈ 57 nm and G = 132G0 - δ(λ = 790

nm)≈ 28 nm. These values of the skin depth are much larger than the

dimensions of the nanometric junction. Thus, the skin depth allows the

penetration of the field into the conductive junction. However, it is clear
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Figure 3.8: a) Calculated

optical extinction cross-section

for a nanoshell nanoparticle

dimer linked by a conductive

junction with radius a = 2

nm as the conductance G is in-

creased. b) Near-field patterns

inside the junction and its sur-

roundings where the progres-

sive expulsion of the field from

the PCC is evident as conduc-

tance is increased. The space

occupied by the junction is in-

dicated by a rectangular shape

plotted with a dashed black

line. c) Modulus of the near-

field inside the junction and

its surroundings along the axis

of propagation of the incident

plane wave.
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from Figures 3.8 b) and c) that the field is progressively reduced, even

for small values of G. For all the above, one can conclude that it is the

intrinsic nature of the conductance for the BDP and CTP modes in rela-

tion to the dimer the key aspect determining the spectral features of the

system rather than the skin depth.

3.3 Connection between electronic trans-

port processes and optical properties:

time-scale approach

Both the SBDP and CTP plasmon modes involve oscillatory charge

transport across the junction. To establish the connection between elec-

tronic transport and optical processes, we relate the time of the optical

cycle top, corresponding to each plasmon resonances ωBDP and ωCTP ,

to the time of transport te of the electrons through the PCC, which is

related to the conductivity. Before establishing the analytical connec-

tion between both aspects, it is helpful to illustrate the meaning of the

excitation of resonant plasmonic modes, as shown in Figure 3.9. These

schematics show that, for a complete optical cycle, the plasmon involves

a full oscillation of the charge in a time period of tBDP . More explicitly,

if we consider, for instance, the BDP mode in Figure 3.9 a), we can es-

tablish a time t = 0 and the evolution of the charge density along the

cycle. As a consequence of an external harmonic electric field, the elec-

tric charge density forms the BDP pattern which can be visualized at a

time t = tBDP/4. Then, the charge density continues its oscillation with

reverse charge pattern in t = 3tBDP/4. Finally, the dimer recovers the

initial situation after the whole optical cycle T = tBDP . If the electrons

cannot move as fast as at least 1/4 of this tBDP , the charge transfer be-
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Figure 3.9: Schematic representation of the electric charge distributions of

the BDP (a) and CTP (b) modes along an optical cycle T.

tween the cavities will not occur. Any transfer of charge through the

cavity thus involve transport times which need to be faster than about

1/4 of the optical cycle, i.e., certain minimum conductance values as we

describe in the following.

3.3.1 Conductance threshold for the BDP mode

As illustrated in Figure 3.5 b), the creation of the SBDP mode takes

place when the junction allows electron transfer to occur fast enough as

to neutralize partially the surface charge on the surfaces. In order to

estimate the magnitude of the charge that needs to be transported in

each cycle so that the SBDP mode starts evolving, we relate the optical

time of the BDP mode tBDP to the transport time of the electrons moving

through the junction τBDP . The optical cycle time is given by:

tBDP =
2π

ωBDP
. (3.6)

73



3.3. CONNECTION BETWEEN ELECTRONIC TRANSPORT
PROCESSES AND OPTICAL PROPERTIES: TIME-SCALE
APPROACH

The transport time is related to the charge and the current intensity

through the junction as:

τBDP =
QBDP

I
, (3.7)

where QBDP is the electric charge associated with the BDP mode and

I is the electric current. To estimate QBDP we note that, for the BDP

mode, the electric field enhancement η in the junction is given by [83]:

η =
2R + d

d
, (3.8)

and the local electric field in the junction is then given by:

Eloc =
2R + d

d
Eext, (3.9)

where Eext is the external electric field. Since d << 2R, we can assume

that:

Eloc =
2R

d
Eext. (3.10)

This local electric field corresponds to the surface charge density of the

BDP mode σBDP :

σBDP =
Eloc

4π
. (3.11)

For small junctions, as the ones considered in the present study, one can

assume the surface charge density to be constant across the junction,

resulting in a total charge given by:

QBDP = πa2σBDP = πa2
Eloc

4π
, (3.12)

where QBDP is the total electric charge to be screened through the junc-

tion in each cycle. To estimate I, we take into account that the con-

ductance of a wire can be easily related to the electric current via the

current density j:

G = κJ
πa2

d
=

j

Eloc

πa2

d
=

I

Elocd
. (3.13)
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Thus, the electric current through the junction is:

I = GElocd, (3.14)

and finally, the time for this electron transport process is given by:

τBDP =
QBDP

I
=

a2

4Gd
. (3.15)

For the SBDP to be formed, the time of electron transport must be

shorter than about 1/4 of an optical cycle, as introduced in the previous

section. The time of electron transport must fulfill:

τBDP =
a2

4Gd
≤ π

2ωBDP
. (3.16)

We thus obtain the threshold of conductance GSBDP for the SBDP to

start getting screened,

GSBDP ≥
ωBDP

2π

a2

d
. (3.17)

As discussed above and shown by Eq. (3.17), the formation of the

SBDP mode depends on the geometry of the junction. This equation

shows that, once the interparticle distance is fixed, wider junctions need

larger conductance to develop the SBDP from the BDP mode, as already

discussed in Figure 3.3. To test the validity of this estimation, Figure

3.10 shows the initial shift of the BDP with increasing conductance for

different radii of the conductive linker in the low conductivity regime. A

systematic trend is observed for all the cases: a range of low conductance

where the BDP peak remains at the same spectral position (λ = 840

nm), followed by a blue-shift of the BDP, when the junction allows a

conductance larger than GSBDP , thus eventually developing the SBDP.

The thresholds of conductance GSBDP provided by Eq. (3.17) are marked

with crosses for each radius of the junction in Figure 3.10, corroborating

that the blue-shift of the resonance for the different radii occurs exactly

for the threshold of conductance given by Eq. (3.17).
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Figure 3.10: Blue-shift of the BDP mode for small values of the conductance.

The crosses indicate the threshold values GSBDP of conductance predicted by

the time-scale approach (Eq. 3.17).

3.3.2 Conductance threshold for the CTP mode

Similar arguments can be applied to understand the conductance

required to sustain the CTP mode. The CTP is fully formed, the electric

charge is distributed in both nanoparticles and the total field across the

junction is negligible (see schematic plot included in Figure 3.2 a) and

the corresponding near-field distribution in Figure 3.7 b)). The optical

cycle time tCTP is in this case:

tCTP =
2π

ωCTP
, (3.18)

and the time of the electron transport tCTP is given by:

τCTP =
QCTP

I
. (3.19)
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In the case of the CTP, the total charge that needs to be transported in

each cycle through the junction is:

QCTP =
R2
ext

4
Eext. (3.20)

Since the field inside the junction is negligible, for the CTP the plasmon

induced field in the junction is thus given by:

Eloc = −Eext, (3.21)

and the amplitude of the instantaneous local field is 2Eext. Having these

arguments into account, the timescale for this charge transport is:

τCTP =
QCTP

I
=
R2
ext

4Gd

Eext

2Eext
. (3.22)

As for the SBDP, the CTP requires τCTP to be a fraction of the optical

cycle time tCTP = π
2ωCTP

: tCTP ≤ 1/4tCTP . This leads to the following

expression for the threshold of conductance:

GCTP ≥
ωCTP

4π

R2
ext

d
. (3.23)

This expression shows that the CTP is related to the conductance of

the junction rather than its conductivity and that the CTP requires sig-

nificantly larger conductances to be formed, in comparison to the SBDP.

For the junction in Figure 3.11, with radius a = 4 nm, the estimation

based on the comparison of time scales gives a threshold value (Eq.(3.23))

of GCTP ≈ 370G0. This result is in excellent agreement with the calcu-

lated optical extinction cross-sections, which show the emergence of the

CTP mode at λ = 1750 nm around these values of G.

For the junctions in Figures 3.2 a) and 3.6 a), Eq. (3.23) predicts

GCTP ≈ 225G0 and GCTP ≈ 370G0, respectively. These thresholds of

conductance are also consistent with the corresponding fully developed

CTP modes for G = 263G0 and G = 404G0 in those figures.
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Figure 3.11: Calculated normalized optical extinction cross-section for a

junction with radius a = 4 nm as conductance is increased. The threshold

values of the BDP and CTP modes, GSBDP = 8G0 and GCTP = 370G0, are

indicated by white dashed lines.

3.4 Spectral changes due to size and mor-

phological changes in the linker

In the previous sections have we considered a physical situation where

we change the material properties of the linker while keeping the geo-

metrical features fixed. Now, in this section we explore the role of the

morphology of the conductive linker. To this end, we first consider the

effect of changing the size of the junction while its conductivity is fixed,

thus a variation of conductance is produced. Second, we study the ge-
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ometrical distribution of the current within the junction by varying the

morphology of the linker.

3.4.1 Influence of the size of the linker

So far we have only considered the variation of conductance through

the junction while its size remains unaltered. This corresponds to a phys-

ical situation where we change the nature of the linker while keeping the

structural features fixed. We now maintain the conductivity fixed while

the radius of the linker is varied, which corresponds to a physical situa-

tion where the material linking the nanoparticles is unchanged while the

size is varied, thus producing the variation of the linker’s conductance G.

Figure 3.12 shows the colour maps of the calculated normalized optical

extinction cross section to observe the evolution of the plasmonic reso-

nances in a linked gold nanoparticle dimer with interparticle gap d = 1

nm, where the conductivity κJ of the linkers is fixed and its radius a is

varied. We observe that, under these conditions, the behaviour of both

the BDP and the CTP modes differs from the previous case. For the

BDP, it is still possible to observe the blue-shift of the resonance, but

its intensity decreases as the junction becomes wider (without regaining

intensity). In the case of the CTP (in the top part of the maps, for longer

wavelength values), after the emergence of the resonance we observe a

considerable blue-shift as the radius a is increased. However, in contrast

to the BDP, this resonance becomes more intense as the junction becomes

wider. We also notice that, while the BDP is present for any considered

value of the conductance and radius, the CTP dies out for situations of

low conductance and small radius. A similar behaviour has been pre-

viously reported in the literature for touching nanoparticle dimers and

loaded antennas[28, 31, 84]. While for the touching nanoparticle dimers

the optical response is governed by the interparticle distance [28], when

considering loaded antennas, the size of the load and the free-carrier den-
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sity at the cavity are the key ingredients controlling the optical response

[31, 84]. In particular, these cases correspond to the colour map of Fig-

ure 3.12 b), where the conductivity κJ of the junction is equal to the

conductivity κAu of the gold shells acting as electrodes.

We can also understand this behaviour in terms of the excitation of

the BDP and CTP modes. The BDP mode, arising from the hybridiza-

tion of the dipolar terms of the individual particles (see schematics in

Figure 3.2 a)), can exist for any value of the radius of the linker, loosing

intensity as the junction becomes wider and wider due to the increase

of conductance. In contrast, the CTP mode, arising from the excita-

tion of the hybridized monopolar (l = 0) individual nanoshell modes

(see schematics in Figure 3.2 a)), is not sustained neither when there

is no physical connection between the particles nor when the conduc-

tance is below GCTP . This mode becomes the prominent resonant mode

when conductance is large enough, satisfying the ordinary sum rules

for the modes excitation. Figure 3.12 also shows the threshold value,

GCTP = 468G0, obtained from Eq. (3.23) (an arrow in Figure 3.12 a)

since the GCTP falls out of the limits of the graphics). In this case the

threshold value, calculated for the saturated wavelength of the CTP,

around λ = 1390 nm, points out that, the higher conductivity κJ we

consider for the junction, the narrower junctions can sustain the CTP

resonance. This relation between the size and conductance of the junc-

tion and its conductivity was expected from Eq. (3.2), which also shows

that for an increasing conductivity of the material, the amount of mate-

rial needed to sustain conductance is reduced. Thus, these results help

to establish a connection between the spectral changes in optical spectra

and molecular conductance including aspects such as the size of molecular

bridges.
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Figure 3.12: Colour maps

of the calculated normalized

optical extinction cross sec-

tion showing the evolution

of the plasmonic resonances

BDP and CTP in a gold

nanoparticle dimer with inter-

particle distance d = 1 nm

linked by conductive molecu-

lar junctions with fixed con-

ductivity κJ while radius a

is varied: a) κJ = 0.25κAu,

b) κJ = 1.09κAu, c) κJ =

2κAu. The vertical dashed

white lines and the arrow in a)

indicate the threshold of con-

ductance of the CTP mode

GCTP = 468G0.
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3.4.2 Influence of the morphology: geometrical dis-

tribution of the electrical current within the

linker

In order to explore the properties of the distribution of the electrical

current through the junction, we study in this section how the optical

response of the dimer is affected by morphological changes in the con-

ductive junction. To this end, instead of a solid cylinder, we consider

a hollow cylindrical shell, as depicted in the schematic representation in

Figure 3.13. As for the solid case, the junction is characterized by its

length d, corresponding to the interparticle gap. The junction is char-

acterized by two parameters in this case: the internal and external radii

of the conductive junction a1 and a2, respectively. To study how these

two parameters affect the optical response we explore different situations.

When we first fix the external radius a2 and vary the internal radius a1,

varying the amount of material holding the current density.

As for the case of a solid junction, conductance and conductivity are

related to each other via the geometric parameters:

G

κJ
(a1, a2, R, d) = π

{√
R2 − a22 −

√
R2 − a21 +

(R + d/2)ln
[(R + d/2)−

√
R2 − a22

(R + d/2)−
√
R2 − a21

]}
, (3.24)

where a1 and a2 are the internal and external radii of the ring junction,

R is the radius of the gold shell and d is the length of the junction. It is

quite clear from Eq. (3.24) that Eq. (3.2) is recovered in the limit of small

internal radius a1 → 0. Thus, in this hollow junction, the conductivity

is given by:

κJ = nG0

{
π
{√

R2 − a22 −
√
R2 − a21 +

(R + d/2)ln
[(R + d/2)−

√
R2 − a22

(R + d/2)−
√
R2 − a21

]}}−1
. (3.25)
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Figure 3.13: Schematic representation of a gold nanoshell dimer connected

by a hollow conductive junction with ring-like shape. The junction is amplified

so that its concave endings and geometrical parameters, internal radius a1,

external radius a2, and length d, are clearly appreciated.

In Figure 3.14 a) we represent the calculated normalized optical ex-

tinction cross section for a gold nanoshell dimer linked by a conductive

ring-like junction as the internal radius a1 is increased, while the ex-

ternal radius and conductivity are fixed to a2 = 5 nm and κJ = κAu,

respectively. This situation creates an increasingly thinner ring sustain-

ing smaller conductance. The results are compared to the case of a solid

molecular junction with the same radius and the same conductivity. For

small values of a1, even though we remove the central part of the cylin-

der, the spectrum of the solid junction does not vary noticeably. This

behaviour suggests that the conduction through the molecular junction

takes place mainly in the external region of the junction. This distri-

bution of the current explains why the results of a solid junction are

still reproduced when we remove wide central parts of the junction. In

this case, the BDP mode red-shifts negligibly as the conductance de-

creases when considering thinner rings (with larger a1), consistent with

the behaviour of the BDP in solid junctions shown in Figure 3.12. The

spectral position of the CTP, when fully formed (once the conductance

value allows for its appearance), remains at the same spectral position

for a fixed external radius, as the conductance is increased (decrease of
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Figure 3.14: Calculated normalized optical extinction cross sections for a

gold nanoshell dimer linked by a conductive cylindrical shell junction: a) The

internal radius of the junction is varied from a1 = 0.5 nm to a1 = 4 nm., while

the external radius is a2 = 5 nm and the conductivity is κJ = κAu. The dashed

line represents the spectrum corresponding to a dimer connected by a solid

junction with a = 5 nm. b) The external radius is varied from a2 = 2.5 nm

to a2 = 10 nm (solid lines), while the internal radius is a1 = 0.5 nm and the

conductivity is κJ = κAu. Dashed lines indicate the cases with solid junctions

with the same external radii.
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a1), consistent with the behaviour shown for the CTP in Figure 3.11.

We also observe in Figure 3.14 a) that the CTP excitation disappears

when we consider a very narrow ring-like junction, an effect which can

be explained due to the fact that the conductance of a ring-like junction

with a1 = 4 nm and a2 = 5 nm is G = 224G0, below the conductance

threshold for the emergence of the CTP, as derived from Eq. (3.23).

In Figure 3.14 b) we represent the calculated normalized optical ex-

tinction cross section for a nanoshell dimer linked by a conductive ring-

like junction as the external radius a2 is increased. In this case the

internal radius a1 and conductivity κJ are fixed so that every spectrum

is comparable to the spectrum of a solid junction with the same external

radius. If we compare every ring-like junction spectrum to its solid junc-

tion counterpart, we observe that the modes remain in the same position

and the main effect of removing the central part of the junction is the

increase of the intensity of the resonance. Considering the results shown

in Figure 3.14 a), suggesting that the conduction between the nanopar-

ticles occurs mainly out of the central part of the junction, we expect

the spectra for thick ring-like junctions to be very similar to their solid

counterparts. A small hollow cavity with a1 = 0.5 nm hardly affects

the conduction process through the junction. This can be observed in

Figure 3.14 b), where the intensity of the BDP resonance decreases as

the external radius is increased and the resonance is blue-shifted towards

shorter wavelength values, exactly as in the case of solid junctions (see

Figure 3.12). For the CTP resonance, its intensity is increased as the

external radius is increased from 2.5 nm to 10 nm, and its peak position

is blue-shifted, again consistent with the behaviour of a solid junction

(see Figure 3.12).
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3.5 Summary and remarks

In this chapter, we have studied theoretically the effect of the pres-

ence of a conductive bridge in the optical properties of a plasmonic cavity

formed by a strongly coupled (non-touching) nanoparticle dimer. This

system can be viewed as a first step to model two nanoparticles linked

by an ensemble of molecules and study the interplay between optical and

transport properties. Two plasmonic resonances are responsible for the

main spectral features of the cavity: the BDP mode and the CTP mode.

We have shown that the optical properties of the PCC depend strongly on

the conductive and geometrical properties of the bridge. As the conduc-

tance is increased, the BDP mode blue-shifts and broadens, turning into

a SBDP mode. For large conductance, a CTP mode emerges, becoming

the prominent plasmon mode. We explain this behaviour in terms of a

simple physical model which connects the time-scale of the optical process

with the time-scale of the electron transport process. This relationship

provides simple analytical expressions indicating the values of conduc-

tance where the SBDP mode develops and the CTP mode emerges.

It is worthwhile to point out the following remarks:

• A blue shift of the BDP mode and the emergence of a CTP mode as

a function of the conductive overlap between two nanoparticles is

an effect which has been previously reported in nanoparticle dimers

and in cylindrical infrared gap antennas where metallic junctions

bridge the gap [28, 29, 31, 76]. In these cases, the conductivity of

the junctions is the same as the surrounding nanoparticles. In such

a situation, the resulting plasmon modes are controlled only by the

geometry of the junction. The results for the infrared antennas

[31] are in excellent qualitative agreement with the present results.

As the diameter and consequently the conductance of the junction

is increased, the BDP blueshift and a low energy CTP appears
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on the red side of the BDP for values of G0 consistent with the

conductivity of Au.

• The present calculation assumed a very simple frequency indepen-

dent conductivity of the bridge between the two nanoparticles. This

assumption was made to show that the optical response of the PCC

is sensitive to the conductance of the junction. In a realistic situa-

tion, a frequency independent conductance cannot be assumed. For

instance, if the junction consists of stacked molecules, one would

expect that a tunneling or ballistic electron could induce both vi-

brational and low energy electronic excitations of the molecules.

Such processes are likely to induce sharp resonances in the fre-

quency dependent conductance. For metallic nanowire junctions,

it is expectable that density of states effects and electron-electron

interactions could also introduce a strong frequency dependence of

the conductance.

• To experimentally probe situations where the junction conductance

is expected to exhibit sharp resonances, the energy of the PCC plas-

mons across the conductance resonance would need to be tuned.

Simply by changing the geometry of the structure, PCC resonances

can be tuned across the visible region to the far infrared region of

the spectrum. However, a more convenient approach for this tun-

ing would be embedding the structure in a dielectric medium. Our

calculations show that both the SBDP and CTP resonances are

indeed highly tunable in this manner, and that both resonances

readily can be shifted by more than 100 meV by simply chang-

ing their dielectric environment. This topic will be the object of

Chapter 5.

• To take full advantage of the SBDP and CTP as fingerprints of

electron transport processes at optical frequencies, it is possible to
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optimize the PCC by using smaller diameter nanoparticles, plas-

monic materials of lower conductivities, or plasmonic dimers with

more redshifted plasmon modes. Such systems will present smaller

threshold conductivities, and could thus be used to detect lower

conductance values.

• The study of spectral changes in plasmonic nanocavities linked by

conductive bridges such as molecules, nanotubes, and nanowires

can be used to probe molecular conductance and electrical trans-

port at visible frequencies, a regime not accessible through electrical

measurements.
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CHAPTER 4

OPTICAL AND TRANSPORT PROPERTIES OF

EXCITONIC LINKERS

In parallel to the study of the optical properties of plasmonic sys-

tems, and the achievements in the field of molecular electronics, there

has been a growing interest in the study of the interaction between plas-

monic modes and molecular excitations. This interest has been fostered

by the fact that the control of the coupling of molecular complexes to

metallic structures is very important for the development of active plas-

monics components dealing with optoelectronics signals [24, 65, 66, 67,

68, 85, 86]. The interaction between metallic nanoparticles and molecular

complexes is mainly ruled by the Localized Surface Plasmon Resonances

(LSPRs). These electromagnetic collective excitations couple to the op-

tical excitonic transitions of molecules, consisting of electron-hole pairs

created by the absorption of photons or the decay of plasmons. The

coupling between electrons and plasmons creates mixed plasmon-exciton

states, which are attractive due to their inherent interesting physical

properties and also due to their broad range of potential applications,

such as molecular switches, modulators or light harvesting structures
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[24, 68, 87].

Along this chapter we present a theoretical study on the optical

properties of a Plasmonic Cavity (PC), consisting of a strongly coupled

nanoparticle dimer, linked by a material formed by conductive molecules

which present an excitonic transition. This system can be viewed as a

model of two nanoparticles connected by an ensemble of molecules, all

of them characterized by the same excitonic transition. In the following,

we show that the intrinsic nature of the linker, as well as its conductive

properties, strongly affect the optical response of the Plasmon-Exciton

Cavity (PEC).

4.1 Dielectric response of molecular link-

ers

As a means to simplify the computational efforts to calculate the

optical response, in this chapter, instead of dimer composed of gold

nanoshells, we consider simple gold spherical particles. The geometry

of the system is depicted in Figure 4.1 a). The dimer consists of two gold

nanoparticles of radii R = 50 nm with a minimum separation distance

between them of d = 1 nm. No fundamental change is expected in rela-

tion to the previous consideration of a gold nanoshell dimer, apart from

the different energy of the plasmonic resonances. The incident light is a

plane-wave with the electric field linearly polarized along the longitudi-

nal symmetry axis of the system and wave-vector k perpendicular to this

symmetry axis.

As in previous chapters, the linker mimicking the ensemble of molecules

is modelled as a cylinder with spherical endings which match perfectly the

spherical surfaces of the nanoparticles (see Figure 4.1). Its geometric pa-

rameters are the radius a and length d = 1 nm. The frequency-dependent
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Figure 4.1: a) Schematic representation of a strongly-coupled gold nanopar-

ticle dimer connected by a molecular linker modelled as a cylinder of radius

a and length d. The radius of the gold nanoparticles is R = 50 nm and the

minimum separation distance between their surfaces is d = 1 nm (proportion-

ality is not realistic in this schematics). The incident electromagnetic signal

is a plane-wave with polarization of the electric field E along the longitudinal

symmetry axis of the system, and wave-vector k perpendicular to this symme-

try axis. b) Real and imaginary parts of the dielectric function given by Eq.

(4.1). The parameters correspond to rotaxane molecules in [24]: the energy of

the excitonic transition is Eex = h̄ωex = 1.51 eV (λex = 821 nm), the damping

factor γ = 0.1 eV and f = 1.5 as the reduced oscillator strength. A schematic

representation of a rotaxane molecule is included.
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dielectric function ε(ω) characterizing the gold particles is taken from the

literature [40] and the whole system is considered to be suspended in vac-

uum.

Note that in this chapter, due to the usual energy-based nomencla-

ture for excitonic transitions, we present all the results in terms of energy

E(eV ) instead of the wavelength λ(nm).

In order to characterize the dielectric response of the molecular linker,

we use the Drude-Lorentz model to describe the presence of an optical

interband transition in the junction and to establish its corresponding

frequency-dependent dielectric function ε(ω). This model, widely used

to study the optical properties of semiconductors, is able to describe

the interaction between light and atoms or molecules charaterizing every

atom or molecule through a resonant frequency ωex, corresponding to

the frequency of the atomic or molecular transition. Thus, we assume

that the linker is composed of identical molecules with a single molecular

transition of energy Eex = h̄ωex characterizing them. According to the

Drude-Lorentz model, the dielectric response function characterizing the

linker is written as [34]:

ε(ω) = 1− fω2
ex

(ω2 − ω2
ex) + iωγ

, (4.1)

where ωex is the natural oscillator frequency of the molecular transition,

γ is the damping and f describes the reduced oscillator strength. In

Figure 4.1 b), the real and imaginary parts of a Drude-Lorentz dielectric

function are shown as functions of the energy. The parameters corre-

spond to those of rotaxane molecules Eex = h̄ωex = 1.51 eV (λex = 821

nm), the damping factor γ = 0.1 eV [24] and f = 1.5 as the reduced

oscillator strength. The dielectric response of a molecular linker clearly

differs from that of a perfect conductor considered in Chapter 3. For the

molecular linker, the real part of the dielectric function ε1 takes both

positive and negative values, contrary to the conductive junction, where
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Figure 4.2: Resonant behaviour of the conductance G for molecular linkers

of radii a = 2 nm, 4 nm and 6 nm with an excitonic transition of energy

Eex = h̄ωex = 1.51 eV (λex = 821 nm), damping factor γ = 0.1 eV and f = 1.5

as the reduced oscillator strength, corresponding to rotaxane molecules [24].

ε1(ω) is always positive. The imaginary part ε2 for the molecular linker

presents a resonant behaviour centred in E = Eex = h̄ωex, in contrast to

the conductive junction where its dependence is Drude-like. This affects

the conductive properties of the molecular linker at these high frequen-

cies, as shown in the following.

The conductivity κ(ω) = κ1(ω) + iκ2(ω) of the linker can be ex-

pressed in terms of ε(ω) via the following expression (see Eq. (1.8)):

ε(ω) = 1 + i
4πκ

ω
. (4.2)

The conductance G associated to this molecular linker is related to the

real part of the conductivity κ1(ω) as follows:

G = κ1(ω)π
{√

R2 − a2 −R

+(d/2 +R) ln
[
1 + 2(R−

√
R2 − a2)/d

]}
, (4.3)
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where the analytically obtained geometrical factor is the same as the

one used in Chapter 3, since we have considered the same cylinder with

spherical endings to model the linker.

The consideration of a Drude-Lorentz dielectric response for the molec-

ular linker implies the resonant behaviour of its conductance, as shown

in Figure 4.2. In this particular case, we assume that the transition fre-

quency is that of rotaxane molecules, as in Figure 4.1 b). We observe

that the conductance G behaves as a lorentzian function located at the

transition energy of the molecule Eex, taken from the real part of the

conductivity κ1(ω). Figure 4.2 also shows that, for a given energy of the

excitonic transition, the conductance of the molecular linker is increased

as wider junctions are considered.

4.2 Influence of the size of molecular link-

ers

We begin analyzing the behaviour of the system when the radius of

the linker is varied for a particular type of molecular junction, i.e., the

case when we consider an increasing ensemble of molecules connecting

both nanoparticles of the dimer, all of them with the same transition

energy.

We explore two cases mimicking two different molecules: first rotaxane-

like molecules [24], and second J-aggregate-like molecules [66]. Apart

from the difference in the energy of the molecular transition, we consider

for both cases very different values of the reduced oscillator strength f ,

which turns into remarkable differences in the optical response of con-

nected dimers, as we detail below.
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4.2.1 Optical response of rotaxane-like molecular

linkers

Figure 4.3 a) shows the variation of the calculated normalized op-

tical extinction cross-section of a nanoparticle dimer connected by a

molecular linker of rotaxane-like molecules with the following parame-

ters: Eex = h̄ωex = 1.51 eV (λex = 821 nm), γ = 0.1 eV [24], and

f = 1.5. As a reference, in Figure 4.3 b) we also show a similar case

where, instead of an excitonic molecular linker filling the PEC, a metallic

linker of gold is considered. In the case of the excitonic molecular linker,

the optical response of the nanostructure is mainly governed by three

resonant modes (Figure 4.3 a)), whereas for the gold linker the Bonding

Dimer Plasmon (BDP) and the Charge Transfer Plasmon (CTP) are the

main modes observed in the spectrum (Figure 4.3 b)).

It is well known that, when the plasmonic cavity of a dimer is filled by

a metallic load, there is a transfer of spectral weight between the BDP

and the CTP modes [28, 31] (see also Figure 2.3). The BDP, arising

from the hybridization of the dipolar modes (l = 1) of the individual

nanoparticles, is the dominant mode in the disconnected situation, when

there is no conductive path between both parts of the dimer, and also

when narrow linkers are considered. Figure 4.3 b) shows that the BDP

blue-shifts towards higher energies as the linker is wider (the conductance

of the linker is thus increased). In contrast, the CTP mode, not allowed

in the non-conductive situation, and arising from the hybridization of

the monopolar modes (l = 0) of the individual nanoparticles, emerges

as the conductive path between both parts of the dimer becomes wider.

The CTP presents a dramatic blue-shift towards higher energy ranges as

the radius of the linker is increased (implying an increase of the conduc-

tance). In addition to the BDP and CTP modes, a Bonding Quadrupolar

Plasmon (BQP) mode is also observed as a small spectral feature around

EBQP = 2.30 eV (λBQP = 540 nm). This BQP mode, arising from
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Figure 4.3: a) Calculated normalized optical extinction cross-section of a

gold nanoparticle dimer bridged by a molecular linker with excitonic character

as the radius of the linker is varied. The energy of the excitonic transition is

Eex = 1.51 eV, indicated by the horizontal, white, dashed line. The vertical,

white, dashed line indicate the size of the linker corresponding to the thresh-

old value of conductance GCTP = 672G0 for the emergence of the CTP mode.

The points indicated by BDP+, BDP− and CTP correspond to the near-field

distributions, plotted in Figure 4.4, of these modes. b) Calculated normal-

ized optical extinction cross-section of a gold nanoparticle dimer bridged by a

metallic (gold) linker. The vertical, white, dashed line indicate the size of the

linker corresponding to the threshold value of conductance GCTP = 656G0 for

the emergence of the CTP mode.
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the hybridization of the quadrupolar modes (l = 2) of the individual

nanoparticles, looses intensity as the conductance of the plasmonic cav-

ity increases as well.

In the case of the molecular linker, Figure 4.3 a) shows that the BDP

and BQP modes, found at EBQP = 1.85 eV (λBDP = 670 nm) and

EBQP = 2.30 eV (λBQP = 540 nm), respectively, in the absence of linker,

also blue-shift and loose intensity progressively as a is increased. How-

ever, when we observe the Near-InfraRed (NIR) range of the spectrum,

two resonant modes appear, in contrast to the presence of only the CTP

resonance in the case of the metallic linker (Figure 4.3 b)).

From the near-field maps associated to the resonances in Figure 4.4,

which will be commented in detail later, it can be checked that the most

red-shifted resonance of the PEC, around E ≈ 1.29 eV (λ ≈ 960 nm),

sustains a BDP-like nature and it is named as BDP−. The higher energy

mode, initially found around E ≈ 1.85 eV (λ ≈ 670 nm), also presents a

BDP-like nature and it is named as BDP+. In contrast, the resonance

in-between, around E ≈ 1.52 eV (λ ≈ 815 nm), sustains a clear CTP-like

nature. This mixing of the different plasmonic resonances gives rise to

a more complex optical response of the molecular linker, in comparison

to the response of the metallic linker. The splitting of the BDP mode,

which does not appear in the metallic case, can be understood in terms of

the coupling of the excitons to the plasmonic cavity modes of the nanos-

tructure. Another difference between the response of both linkers is that,

for the molecular linker, the CTP mode does not emerge as a blue-shift

from the NIR range of the spectrum, but it appears approximately at the

transition energy Eex of the exciton. Consequently, these results show

that the consideration of a more complex nature characterizing the op-

tical response of the linker in the PEC strongly affects the behaviour of

the plasmonic cavity modes.
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Figure 4.4: Near-field distributions of a gold nanoparticle dimer connected

by a molecular linker. Each surface plot corresponds to the peaks marked as

BDP+, BDP− and CTP in Figure 4.3 a). The maps represent the electric

field in the plane defined by the wave-vector k and the incoming electric field

E (see Figure 4.1 a)). a) BDP-like mode with a = 1 nm and E = 1.88 eV, b)

BDP-like mode with a = 5 nm and E = 1.29 eV and c) CTP-like mode with

a = 25 nm and E = 1.52 eV.
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4.2.1.1 Near-field distributions

In order to explore more deeply the nature of these mixed states, we

plot in Figure 4.4 three representative cases of the distribution of the

intensity of the electric field in dimers connected by molecular linkers.

The cases correspond to the peaks marked as BDP+, BDP− and CTP

in Figure 4.3 a). The surface plots represent the electric field in the

plane defined by the wave-vector k and the direction of polarization of

the incoming electric field E (see Figure 4.1 a)). Figures 4.4 a), b) and

c) correspond to dimers bridged by molecular linkers with radii a = 1

nm, 5 nm and 25 nm at the energies E = 1.88 eV, 1.29 eV and 1.52

eV, respectively. The maps corresponding to peaks BDP+ and BDP−

resemble the dipolar BDP pattern, with the characteristic hot spot in

the gap between both nanoparticles due to the huge field-enhancement.

For peak BDP+ it is more concentrated in the outer part of the PEC,

but for peak BDP− it is more focused in the centre. Furthermore, the

dipolar distributions of the individual particles are oriented in a differ-

ent way, for peak BDP+ it looks more like in the conventional BDP,

but for peak BDP− the individual dipoles are oriented in the transverse

direction (perpendicular to the axis of the linker). This behaviour sug-

gests the interaction with higher order modes, as will be shown later. In

contrast, peak CTP clearly corresponds to a CTP pattern: the field is

homogeneously distributed all around the structure due to the spread of

the surface charge density along the particles, showing that the structure

behaves as a dipole considering the dimer as a whole.

4.2.1.2 Threshold of conductance for the CTP mode in PECs

We have shown in Chapter 3 that, when a dimer is conductively con-

nected there is a threshold of conductance, given byGCTP = ωCTPR
2/4πd

(Eq. 3.23), quantifying the minimum of conductance in the Plasmon

Conductive Cavity (PCC) for the CTP mode to emerge. For the gold
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linker, with R = 50 nm and d = 1 nm, the CTP mode saturates for very

large conductance, around ECTP = 1.49 eV (λCTP = 835 nm), leading

to a threshold value of GCTP ≈ 656G0, in good agreement with our esti-

mations (see the vertical, white, dashed line included in Figure 4.3 b)).

Since the PEC also presents a conductive behaviour, we can apply the

same arguments in the case of dimers connected by molecular linkers.

For the rotaxane-like molecules under consideration in Figure 4.3 a), the

CTP mode saturates around ECTP = 1.52 eV (λCTP = 815 nm), leading

to GCTP ≈ 672G0. This threshold value, indicated by a vertical, white,

dashed line in Figure 4.3 a), is also in good agreement with the emer-

gence of the CTP mode, corroborating that the time-scale considerations

discussed in Chapter 3, which relate the conductance of the junction to

the optical properties, are still valid for molecular linkers.

4.2.2 Optical response of J-aggregate-like molecular

linkers

In order to explore the optical response of other type of molecules and

to establish a comparison with the case of rotaxane molecules, we consider

the parameters characterizing a molecular linker which correspond to J-

aggregate-like molecules. In this case, the transition energy is Eex =

1.79 eV (λex = 693 nm), the damping factor is γ = 0.052 eV, and the

reduced oscillator strength factor is f = 0.02 [66]. Thus, the molecular

transition for J-aggregates presents higher energy than that of rotaxane

molecules, and the values for both the damping and the reduced oscillator

strength are very different in comparison to the values for rotaxanes.

These parameters lead to the behaviour of the conductance shown in

Figure 4.5 a). It is clear, when comparing Figures 4.5 a) and 4.2, that the

conductive capacity of the J-aggregate-like molecules under consideration

is much weaker than for rotaxane. This difference has consequences in

the optical response.

100



CHAPTER 4. OPTICAL AND TRANSPORT PROPERTIES OF
EXCITONIC LINKERS

Figure 4.5 b) shows the calculated normalized optical extinction

cross-section of a gold nanoparticle dimer bridged by a J-aggregate-like

molecular linker as the radius of the linker is varied. As for the rotaxane-

like molecular linker (see Figure 4.3), the BDP mode also splits into two

modes. In this case, the magnitude of the blue-shift is not as large as for

the rotaxane. We also observe that, the CTP mode in-between the two

BDP coupled modes does not emerge, even though we have increased the

radius of the linker up to a = 32 nm. This can be explained as a result

of the low conductivity of the linker, several orders of magnitude below

the conductivity of the rotaxane and gold. We have shown in Chapter

3 that the CTP mode needs really large conductance to be sustained, a

condition which is not fulfilled by the low conductance of the molecule

under consideration in this section.

4.3 Role of the excitonic frequency and con-

ductance of molecular linkers

In order to understand the splitting of the modes, and the differences

in the optical response for different molecular linkers, we explore the ef-

fect of changing the excitonic frequency ωex and the conductance of the

ensemble of molecules connecting both parts of the dimer for a given

size of the linker. We have considered the response of the molecule in

two different ways, which affect the dielectric response of the molecular

linker as shown in Figure 4.6. In the first approach, the energy of the

excitonic transition Eex = h̄ωex describing the molecules is varied, as

well as the reduced oscillator strength f , so that the product fω2
ex in Eq.

(4.1) is constant. In this manner, shown in Figure 4.6 a), as we consider

lower energies of the transition Eex, the oscillator strength increases. The

centre of the lorentzian function describing the conductance in the cav-

ity shifts while its maximum does not vary. In this way, the intensity
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Figure 4.5: a) Resonant behaviour of the conductance G for molecular linkers

of radii a = 4 nm, 8 nm, 16 nm and 32 nm with an excitonic transition of en-

ergy Eex = h̄ωex = 1.79 eV (λex = 693 nm) corresponding to J-aggregates [66].

b) Calculated normalized optical extinction cross-section of a gold nanoparti-

cle dimer bridged by a molecular linker as the radius of the linker is varied.

The rest of the geometrical parameters are the same as in Figure 4.1. The

parameters characterizing the dielectric response of the linker are the same as

in a).
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Figure 4.6: Evolution of conductance of molecular linkers with fixed radii,

a = 10 nm, and varying Eex. a) The reduced oscillator strength is varied so

that fω2
ex =Const. b) The reduced oscillator strength is fixed f = 0.5.

of the maximum of the conductance remains unaltered, so that we ex-

plore situations with large values of G. The second approach consists of

varying the energy of the molecular transition while the reduced oscilla-

tor strength is kept constant. Figure 4.6 b) shows the evolution of the

conductance for different excitonic transition energies Eex and reduced

oscillator strength f = 0.5. In this case, the consideration of molecular

transitions with lower energy, not only implies the shift of the centre

of the lorentzian function describing G, but also the reduction of the

intensity of the maximum of conductance.

4.3.1 Variation of the transition frequency and the

reduced oscillator strength

Figure 4.7 shows the calculated normalized optical extinction cross-

section of a gold nanoparticle dimer bridged by a molecular linker as

the energy and the reduced oscillator strength characterizing the optical

transition in the cavity is varied for a given radius. In this case, four
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radii have been considered, a = 1 nm, 5 nm, 10 nm and 15 nm. Even

for the thinest linker, we observe that the BDP and the BQP resonances

split into two branches, BDP+, BDP−, BQP+ and BQP−, showing an

anti-crossing behaviour centred in the point of intersection of the energy-

line of the exciton and the BDP and BQP energy-lines. The situation is

more clear in the case of the BDP than in the BQP due to the higher

intensity of the peaks of the BDP mode. In Figure 4.7, we can observe

that the energy of one of the branches, E+
BDP , is above the energy of

the plasmon cavity mode, while the energy of the other branch, E−BDP ,

is below the corresponding plasmon energy. Fig. 4.7 also shows that, as

the linker becomes wider (from a) to d), a = 1 nm - a = 15 nm), the

energy splitting between the energies E− and E+ of the coupled modes

becomes larger. This energy splitting between the coupled modes is the

Rabi splitting, h̄ΩR, which governs the coupling of atomic or molecular

excitations in a cavity to the cavity modes and which has been deeply

studied in the field of atomic physics [88, 89]. In the cases under consid-

eration here, the Rabi splitting is of the order of hundreds of meV.

In order to show this behaviour in more detail, we have plotted in

Figure 4.8 a) some particular cases extracted from Figure 4.7, where the

radius of the molecular linker is a = 10 nm. For the case with lowest

transition energy, Eex = 1.24 eV (top panel), the low-energy plexcitons,

BDP− and BQP−, can be appreciated in the lower energy range of the

spectrum, while the high-energy plexciton BDP+ is the main spectral

feature in the higher energy range. As Eex is increased, both the BDP−

and BQP− blue-shift towards higher energies, becoming the BDP− plex-

citon the predominant mode. In parallel, the BDP+ slightly blue-shifts

while loosing intensity. Figure 4.8 b) shows the anti-crossing behaviour

of the high-energy BDP+ and low-energy BDP− plexcitons in Figure 4.8

a).

It is well known that, when an atom or molecule is located in a
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Figure 4.7: Calculated normalized optical extinction cross-section of a gold

nanoparticle dimer bridged by a molecular linker, with length d = 1 nm and

fixed radius a, as the energy and the oscillator strength of the optical transition

in the cavity are varied. a) a = 1 nm, b) a = 5 nm, c) a = 10 nm and d)

a = 15 nm. The white solid lines included indicate the following: Ex is the

exciton energy-line, BDP and BQP are the energy-lines of the dipolar and

quadrupolar bonding plasmon modes when there is no linker; E+
BDP , E−BDP ,

E+
BQP and E−BQP indicate the plexciton modes derived from Eq. (4.4) arising

from the coupling of the exciton to the BDP and BQP modes.
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Figure 4.8: a) Calculated normalized optical extinction cross-section of a

gold nanoparticle dimer bridged by a molecular linker with length d = 1 nm

and fixed radius a = 10 nm, as the energy and the oscillator strength of the

optical transition in the cavity are varied. b) Anti-crossing behaviour of the

BDP+ and BDP− plexciton modes. The red squares indicate the maxima

of the modes in a) and the dashed lines included indicate the energies of the

BDP+ plexciton (E+
BDP ) and the BDP− (E−BDP ) derived from Eq. (4.4).

cavity, the resonances of the cavity split. In this particular system, the

resonances of the plasmon cavity, BDP and BQP, couple to the excitons

characterizing the molecules linking both parts of the dimer. From now

on, we will refer to this coupled modes as plexcitons. E−BDP and E+
BDP

are the lower and higher energy plexcitons arising from the coupling be-

tween the BDP mode and the exciton, and E−BQP and E+
BQP are the lower

and higher energy plexcitons arising from the coupling between the BQP

mode and the exciton. This coupling of the plasmonic cavity modes to

the excitons in the cavity has been interpreted in terms of two coupled
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oscillators [85]. The allowed energy of the coupled mode is given by:

E± =
EP + Eex

2
±
[( h̄ΩR

2

)2
+

1

4
(EP − Eex)2

]1/2
, (4.4)

where EP and Eex are the energies of the plasmonic modes (BDP or

BQP) and the exciton, respectively, and h̄ΩR is the Rabi splitting. A

more detailed derivation of Eq. (4.4) is presented in Appendix B. The

magnitude of the Rabi splitting is obtained from our calculations when

EP = Eex. The results of this approximation presented in Eq. (4.4) are

shown in Figure 4.7 as white lines superimposed on the electrodynamical

calculation, obtaining a good agreement. In addition to the coupling

giving rise to the plexcitons, Figure 4.7 also shows an intense interaction

between the coupled modes of the BDP and the BQP, which increases as

the linker becomes wider.

In Figures 4.7 c) and d), where a = 10 nm and 15 nm, respectively, we

observe the emergence of the CTP mode, in contrast to the cases with a =

1 nm and 5 nm, where the CTP does not appear. In both cases, the CTP

mode interacts with the exciton and the lower energy BDP− and BQP−,

as it emerges. The emergence of the CTP mode can also be understood

once more in terms of the conductance threshold GCTP obtained from

time-scale arguments (see Eq. 3.23). We have described that for very

large conductance, the CTP mode saturates around ECTP = 1.52 eV,

leading to a threshold value of the conductance GCTP ≈ 672G0. For

molecular linkers with radii a = 1 nm, the maximum of conductance,

occurring at ω = ωex, is G(a = 1 nm) ≈ 6G0 << GCTP , therefore a

much lower value than the conductance threshold. For molecular linkers

with radii a = 5 nm, the maximum of conductance is G(a = 5 nm)

≈ 122G0 << GCTP , again below the conductance threshold. In contrast,

when a = 10 nm and a = 15 nm, the maxima of the conductance of

the linker are G(a = 10 nm) ≈ 1000G0 > GCTP and G(a = 15 nm)

≈ 1500G0 > GCTP , respectively. Thus, for the cases with wider linkers,

the conductance of the PEC is large enough for the CTP mode to emerge,
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as corroborated by Figures 4.7 c) and d).

4.3.2 Variation of the transition frequency

As stated in the beginning of this section, the second way of varying

the dielectric response of the molecular linker consists in the variation of

the frequency of the energy of the molecular transition, while the reduced

oscillator strength remains unaltered. The consequences in the values of

conductance of the PEC have been shown in Figure 4.6 b). Figure 4.9

shows the calculated normalized optical extinction cross-section of a gold

nanoparticle dimer bridged by a molecular linker, as the energy of the

optical transition in the cavity Eex is varied for a given radius, and the

reduced oscillator strength is kept constant f = 0.5. As in Figure 4.7,

four radii have been considered, a = 1 nm, 5 nm, 10 nm and 15 nm, in

order to compare exactly both cases.

Figure 4.9 shows that, as expected, the plasmonic cavity modes

split into two plexcitonic branches due to the coupling between the plas-

mon cavity modes and the molecular transitions. As observed in Figure

4.7, the E+
BDP and the E+

BQP are the high energy plexcitons arising from

the coupling of the BDP and BQP modes to the exciton. The E−BDP
and E−BQP are the low energy plexcitons arising from the coupling of

the BDP and BQP modes to the exciton. These coupled modes show

the same anti-crossing behaviour observed in the previous case. In both

cases, the magnitude of the Rabi splitting is also similar. However, there

is a remarkable difference in relation to the emergence of the CTP mode.

For the cases of narrow linkers in Figures 4.9 a) and b), with a = 1

nm and a = 5 nm, respectively, we do not observe the emergence of the

CTP mode. In these cases, the maximum of the conductance takes place

when the energy of the molecular transition is the largest in the range we

have considered, as in Figures 4.7 a) and b). For a = 1 nm and a = 5 nm,

the maxima of the conductance are G = 8G0 and G = 159G0, respec-
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Figure 4.9: Calculated normalized optical extinction cross-section of a gold

nanoparticle dimer bridged by a molecular linker, with length d = 1 nm and

fixed radius a, as the energy of the exciton is varied and the reduced oscillator

strength of the molecular transition is constant f = 0.5. a) a = 1 nm, b) a = 5

nm, c) a = 10 nm and d) a = 15 nm. The white solid lines included indicate

the following: Ex is the exciton energy-line, BDP and BQP are the energy-

lines of the dipolar and quadrupolar bonding plasmon modes when there is no

linker; E+
BDP , E−BDP , E+

BQP and E−BQP indicate the plexciton modes derived

from Eq. (4.4) arising from the coupling of the exciton to the BDP and BQP

modes.

109



4.3. ROLE OF THE EXCITONIC FREQUENCY AND
CONDUCTANCE OF MOLECULAR LINKERS

tively, much lower than the conductance threshold GCTP . In contrast to

Figures 4.7 c) and d), for the cases with wider linkers in Figure 4.9 c)

and d), with a = 10 nm and a = 15 nm, respectively, we do not observe

the emergence of the CTP mode. The conductance is therefore the key

aspect. For a = 10 nm, the maximum of the conductance is G = 429G0

for the largest transition energy. For a = 15 nm, the maximum of the

conductance is G = 663G0 for the largest transition energy. In both

cases, the conductance of the PEC is below the conductance threshold

GCTP , thus explaining why the CTP mode is not present at all in this

description of the molecular response.

4.3.3 Rabi splitting

We finish the study on the optical response of dimers connected by

PECs with an analysis of the Rabi splitting for the gold dimer system.

As already stated, the Rabi splitting is a consequence of the coupling

of the original plasmonic cavity modes modes and the molecular transi-

tion of the linker. The magnitude of the Rabi splitting h̄ΩR is obtained

from the electrodynamical calculations when the energy of the molecular

transition coincides with the energy of the plasmonic cavity mode. Figure

4.10 a) shows the calculated normalized optical extinction cross-section

of a gold nanoparticle dimer bridged by a molecular linker, with length

d = 1 nm and radius a = 5 nm, when Eex = EBDP = 1.85 eV, as the

reduced oscillator strength f is varied. The difference in energy between

the two peaks of the E+
BDP and E−BDP is the Rabi splitting. Figure 4.10

b) shows the evolution of the magnitude of h̄ΩR for the BDP plexciton

as f is varied. In this gold nanoparticle system connected by PEC, the

magnitude of the Rabi splitting is in the range of meV, as for other sim-

ilar systems of plasmonic structures-molecular complexes [85]. The Rabi

splitting increases as f is also increased, showing a trend of saturation

as f ≈ 1. Analogously, Figure 4.10 c) shows the evolution of the Rabi
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Figure 4.10: a) Calcu-

lated normalized optical

extinction cross-section of

a gold nanoparticle dimer

bridged by a molecular

linker, with length d = 1

nm and radius a = 5 nm,

when Eex = EBDP = 1.85

eV, as the reduced oscillator

strength f of the molecular

transition is varied. The

arrow indicate the Rabi

splitting for one of the cases.

b) Evolution of the Rabi

splitting for the BDP plexci-

ton as the reduced oscillator

strength f is varied. The

magnitude is obtained from

the calculations in a). c)

Evolution of the Rabi split-

ting for the BDP plexciton as

the radius of the molecular

linker a is varied, where

fω2
ex =Const., corresponding

to the cases in Figure 4.7.
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splitting for the BDP plexciton as the radius of the molecular linker a is

varied, where fω2
ex =Const., corresponding to the cases in Figure 4.7. In

this case, the Rabi splitting increases rapidly as the radius of the molec-

ular linkers grows, but for wider linkers, with a > 10 nm, a tendency to

saturation is also observed.

4.4 Summary

In this chapter we have studied theoretically the effect of the pres-

ence of a conductive linker with an excitonic transition in the optical

properties of a plasmonic cavity formed by a strongly coupled (non-

touching) nanoparticle dimer. This system can be viewed as a model

of two nanoparticles linked by an ensemble of molecules, all of them with

the same excitonic transition. The transport process through the linker is

more complex than in the case of the conductive linker studied in Chap-

ter 3, due to the resonant behaviour of the conductance derived from the

presence of the exciton.The consideration of a conductive bridge linking

the dimer with a more complex dielectric response changes dramatically

the optical properties of the connected nanostructure. We have shown

that the plasmonic cavity modes, the BDP and BQP, couple to the ex-

citons of the molecular transition giving rise to plasmon-exciton states,

called plexcitons. The coupled plexciton modes exhibit an anticrossing

behaviour with two branches, centred in the intersection between the

plasmonic mode and the exciton energy-lines. A simple model of two

coupled oscillators explains this anti-crossing behaviour. It has also been

shown that the emergence of the CTP mode depends strongly on the

conductance through the PEC and that the threshold value of the con-

ductance derived from the time-scale approach is still valid for dimers

linked by molecular junctions.

112



CHAPTER 5

SENSING IN PLASMONIC CAVITIES

The use of metallic nanoparticles as ultrasensitive sensors has turned

into one of the most promising applications of plasmonics [69, 90, 91, 92].

As already stated in Chapter 1, the spectral position of the Localized Sur-

face Plasmon Resonance (LSPR) of a metallic nanostructure depends on

the size and shape of the plasmonic nanoparticles forming the system,

on the dielectric response of the constituent materials and also on the

dielectric environment. When the dielectric constant characterizing the

embedding medium is varied, the spectral position of the LSPR changes,

fostering studies based on the high sensitivity of the spectral signature

of the LSPR to the environment. In these works [69, 70, 93], a red-shift

of the plasmon resonance was observed as the refractive index n of the

surrounding medium is increased (thus increasing the real part of the

dielectric function), as well as an increase of its intensity. This behaviour

was found to be systematic for different types of nanostructures, such

as nanorods, nanoshells, nanodisks [70] or nanorings [93], with different

degrees of sensitivity depending on the produced shifts.

Lately, the use of Fano resonances has been proposed for LSPR sens-

ing [71, 94, 95]. The Fano interference is a long known phenomenon
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which has been studied in atomic and condensed matter physics [96, 97].

It was introduced in the context of absorption spectra when there is an

interference of a discrete state with a continuum giving rise to a sharp

peak in the excitation spectra [98]. A Fano-like interference is a phe-

nomenon occurring when the energy transition between an initial and a

final state has two paths, and these paths interfere. Classical analogs to

Fano-like interferences have been recently studied [99, 100] in the frame-

work of coupled harmonic oscillators, and, in particular, the Fano-like

phenomenon has attracted much attention in relation with plasmonic

systems [101, 102]. The proposal of the Fano-like plasmonic resonances

for LSPR sensing is mainly based on their characteristic narrow shape,

which makes the relative shift of a resonance with respect to its width

more pronounced.

In this chapter, we conclude our study of conductive linkers connect-

ing plasmonic systems with an analysis of their potential use for LSPR

sensing. We begin exploring the shift-based LSPR sensing. We also

propose a new paradigm for sensing with the use of plasmon-exciton sys-

tems where the LSPR sensing is based on the changes in intensity of the

spectral peaks, rather than on the shifts of the resonances.

5.1 Shift-based sensing

In this section, we analyze the sensitivity of the plasmonic systems

studied along this thesis to the dielectric environment. In order to in-

troduce the shift-based LSPR sensing, we begin exploring the sensitivity

of the LSPR of a gold spherical nanoparticle to changes in the dielec-

tric embedding medium. We continue with the study of LSPR sensing in

dimers connected by Plasmon Conductive Cavities (PCCs) and in dimers

connected by Plasmon Exciton Cavities (PECs).

Figure 5.1 shows the sensitivity of a gold spherical nanoparticle
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Figure 5.1: a) Calculated normalized optical extinction cross-section of

a gold spherical nanoparticle with radius R = 50 nm for embedding media

characterized by different εd. b) Linear plot of the shifts of the LSPRs in a)

vs. the index of refraction of the embedding medium. The FOM value of the

gold nanoparticles is also included.

with radius R = 50 nm to the embedding medium. In Figure 5.1 a) the

calculated normalized optical extinction cross-section is plotted for vary-

ing values of the dielectric constant εd of the medium surrounding the

sphere. The LSPR is red-shifted and its intensity increases as εd = n2 is

increased.

The efficiency of plasmonic systems as sensors is usually estimated by

the Figure Of Merit (FOM). This parameter is defined as [69]:

FOM =
m(eV RIU−1)

fwhm(eV )
, (5.1)

where m is the linear regression slope for the refractive index dependence,

which indicates the ratio of the plasmon energy shift to the change in

refractive index of the embedding medium, and fwhm is the full width at

half maximum of the resonance. Figure 5.1 b) shows the linear plot of the

shifts of the LSPRs for the gold nanoparticle vs the index of refraction
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of the embedding medium, n. The slope given by the linear regression is

m = 0.64 eV/RIU, and the fwhm = 0.39 eV. Thus the FOM parameter

for the LSPR of the gold nanoparticle is FOM= 1.6.

From the definition of the FOM value (see Eq. 5.1), one can deduce its

value is increased due to large shifts of the LSPR, due to narrow LSPR,

or a combination of both effects. For individual nanoparticles, the high-

est value obtained for the FOM so far is 5.4 for a sharply pointed gold

nanostar [3]. A combination of asymmetric particles giving Fano profiles

can improve these figures of merit [94]. As examples of the efficiency as

sensors of Fano resonances, some estimated values for the FOM parame-

ter of Fano resonances are 8.3 in a non-concentric disk-ring nanostructure

[103], and 5.7 in a planar heptamer cluster (six nanoparticles forming a

ring with another nanoparticle in the middle) [71].

5.1.1 Shift-based LSPR sensing in PCCs

In this section we study the sensitivity to the embedding medium of

a nanoparticle dimer connected by a conductive linker, with the same

geometry as the a system analyzed in Chapter 3. In this case, the dimer

consists of two adjacent gold nanoshells, with radii R = 55 nm and sep-

arated by an interparticle distance d = 1 nm, connected by a conductive

linker forming a Plasmon Conductive Cavity (PCC) (see schematics in

Figure 3.1 a)).

Two different PCCs have been considered. Figure 5.2 a) shows the

calculated normalized optical extinction cross-section for a dimer bridged

by a conductive junction, with radius a = 2 nm and conductance G =

527G0, for varying values of the dielectric constant of the embedding

medium εd. In Figure 5.2 b), we plot the analog case for a wider conduc-

tive linker with radius a = 5 nm and conductance G = 352G0. Both sit-

uations are representative of the conductively linked dimer system since

the Bonding Dimer Plasmon (BDP) mode is screened, developing the
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Figure 5.2: Sensitivity of a nanoparticle dimer connected by a conductive

linker to the embedding medium. a) Calculated normalized optical extinction

cross section for a nanoparticle dimer connected by a conductive linker with

radius a = 2 nm and conductance G = 527G0. b) Calculated normalized opti-

cal extinction cross section for a nanoparticle dimer connected by a conductive

linker with radius a = 5 nm and conductance G = 352G0. c) and d) Linear

plots of the BDP shifts vs. refractive index of the embedding medium for the

linker parameters in a) and b), respectively.
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Screened Bonding Dimer Plasmon (SBDP) mode, and the Charge Trans-

fer Plasmon (CTP) mode has also emerged, due to the large conductance

considered. These two different conductive linkers also present different

widths of the SBDP peaks and different values of conductance through

the linker, which affect their sensitivity to the embedding medium, as we

show in the following.

In both cases, the SBDP mode is redshifted with the refractive index n

(εd = n2) and its intensity is increased, as for the case of the isolated gold

naoparticle. In contrast, the CTP mode is just slightly redshifted before

vanishing. Geometry is an important factor since, for wider junctions,

the CTP resonance survives for larger values of the dielectric function.

Figure 5.2 c) and d) show the linear plots of the shifts of the SBDP

mode as a function of the refractive index of the embedding medium, for

a = 2 nm and G = 527G0 in c), and for a = 5 nm and G = 352G0 in

d). In the case of the a = 2 nm conductive linker, the slope given by

the linear regression is m = 0.88 eV/RIU, the fwhm = 0.21 eV and the

resulting FOM parameter for the SBDP resonance is FOM= 4.2. For the

linker with radius a = 5 nm, the slope of the linear regression is m = 0.93

eV/RIU and its fwhm = 0.30eV, resulting in FOM= 3.1.

In spite of the fact that the CTP mode in the cases under consid-

eration is very damped, we have also estimated its FOM value for the

case in Figure 5.2 b). The slope of the linear regression is m = 0.49 and

fwhm = 0.43, thus resulting in FOM = 1.1.

The FOM values for the SBDP resonance of the dimer are significantly

larger than those of the isolated nanoparticle. This is not the case when

we consider the CTP resonance, mainly due to the elevated fwhm value

of the considered case. The FOM values for the SBDP mode also show

that the system with narrower conductive linker but higher conductance

is more sensitive to changes in the embedding medium and, therefore, a

better candidate for applications in LSPR sensing.
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5.1.2 Shift-based LSPR sensing in PECs

Similarly to the case of dimers connected by PCCs, in this section we

analyze the shift-based LSPR sensing for dimers connected by Plasmon-

Exciton Cavities (PECs). In this kind of system, we have already ex-

plained in Chapter 4 that the BDP resonant mode splits into two plasmon-

exciton modes, that we name as plexcitons, due to the coupling between

the plasmon cavity resonances and the excitons. One of the modes, the

E+
BDP presents higher energy than the non-coupled BDP mode, while the

E−BDP presents lower energy. In order to study the properties of this sys-

tem for LSPR sensing we have analyzed the sensitivity to the embedding

medium in a case where both plexciton modes have similar intensity. In

particular, we have considered the case of a molecular linker with radius

a = 5 nm and with an excitonic transition of energy Eex = h̄ωex = 2.07

eV, corresponding to λex = 600 nm (see also Figure 4.7 b)). This case is

representative of a linked dimer, with an excitonic transition in the visi-

ble region of the spectrum, where the plexcitons present similar spectral

weight.

In Figure 5.3 a) we have plotted the evolution of the calculated nor-

malized optical extinction cross section as the dielectric constant εd = n2

of the surrounding medium is varied. The behaviour of the low energy

E−BDP plexciton mode is very similar to the previously studied systems,

the mode red-shifts and its intensity increases. The behaviour of the

high energy E+
BDP plexciton mode is completely analogue. However, the

E+
BDP also couples to the E−BQP , which is the plexciton arising form the

coupling of the quadrupolar plasmon cavity mode and the exciton (see

Figure 4.7 b)). This mixing makes the shift of the modes appear unclear,

therefore we have only considered the case of the E−BDP plexciton for

LSPR sensing.

Figure 5.3 b) shows the linear plot of the E−BDP shifts vs. the refrac-

tive index of the embedding medium. The slope of the linear regression
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Figure 5.3: Sensitivity of a nanoparticle dimer connected by a molecular

linker to the embedding medium. The parameters of the linker are the radius

a = 5 nm and the transition energy Eex = 2.07 eV (λex = 600 nm). a)

Evolution of the calculated normalized optical extinction cross section as the

dielectric constant εd of the surrounding medium is varied. b) Linear plot of

the E−BDP shifts vs. refractive index of the embedding medium.

is m = 0.49 and fwhm = 0.15. With this parameters, the value of the

FOM parameter for the E−BDP mode is FOM = 3.3. This value is in-

between the FOM values that we have estimated for the two considered

cases of the dimer connected by conductive linkers.

5.2 Intensity-based LSPR sensing

In this section, we propose a new concept for LSPR sensing. We in-

troduce a new paradigm, where the tuning of the plasmonic resonances

in terms of their sensitivity to the embedding medium is not based on

shifts, but on changes in the intensity of the resonances. To this end, we

consider the same dimer as previously, connected by a molecular linker

with an excitonic transition in the material forming the junction. In this
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Figure 5.4: Calculated normalized optical extinction cross-section of a gold

nanoparticle dimer with a separation distance d = 1 nm, as the dielectric

embedding constant εd is varied. a) Disconnected dimer and b) Dimer bridged

by a molecular linker with length d = 1 nm and radius a = 3 nm. The energy

of the optical transition of the molecule is Eex = 1.24 eV, corresponding to

λex = 1000 nm.
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system, the plexcitonic resonances present very different intensities de-

pending on the energy of the excitonic transition under consideration,

as we have shown in Chapter 4. As we show in the following, when the

intensity of the plexcitons is very different, the sensitivity to the em-

bedding medium can be exploited in a different way in relation to the

standard shift-based LSPR sensing.

Figure 5.4 shows the calculated normalized optical extinction cross-

section of a gold nanoparticle dimer with a separation distance between

the particles d = 1 nm, as the dielectric embedding medium is changed.

In Fig. 5.4 a) we consider the non-connected situation, while in Figure

5.4 b) the particles are bridged by a molecular linker with radius a = 3

nm, characterized by an excitonic transition with energy Eex = 1.24 eV,

corresponding to λex = 1000 nm. In the disconnected dimer, the BDP

mode, which is the plasmonic resonance governing the optical spectrum,

red-shifts and gains intensity as the dielectric constant of the embedding

medium is increased. This behaviour shown in Figure 5.4 a) coincides

with the behaviour of the isolated nanoparticle and the connected dimers

considered along this chapter, and also with other nanostructures under

similar conditions, and it is the basis of LSPR sensing [69]. Similarly, the

high-energy E+
BDP plexciton in Figure 5.4 b) also blue-shifts and gains

intensity. In contrast, the low-energy E−BDP plexciton hardly red-shifts

as the surrounding dielectric constant εd is increased, indicating that this

is not an adequate resonant mode for shift-based LSPR sensing.

However, when we pay attention to the intensity of the plexcitons we

observe that the intensity of the E−BDP plexciton changes dramatically.

Whereas in the case where the dimer is in vacumm (εd = 1.0) the E−BDP
plexciton is a small spectral feature in comparison to the E+

BDP plexci-

ton, when εd = 3.0 the intensity of the low-energy plexciton has even

exceeded the intensity of the high-energy plexciton. This indicates that

the sensitivity of the E−BDP plexciton can be exploited in an alternative
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CHAPTER 5. SENSING IN PLASMONIC CAVITIES

Figure 5.5: a) Variation of the intensity of the BDP, E+
BDP and E−BDP modes

in Figure 5.4 as a function of the dielectric constant of the embedding medium.

b) Shift of the BDP, E+
BDP and E−BDP modes in Figure 5.4 as a function of

the dielectric constant of the embedding medium.

way.

In order to compare the changes in the intensity and the shifts, in

Figure 5.5 we plot the changes in the intensity (a) and the shift (b) of

the BDP (black), E+
BDP (blue) and E−BDP (red) modes as the dielectric

constant of the embedding medium εd is varied. The low-energy E−BDP
plexciton mode, which is a minor spectral feature when the embedding

medium is vacuum, hardly red-shifts as the surrounding dielectric con-

stant εd is increased. In terms of the definition of the FOM parameter

(Eq. 5.1), this means that the ratio between the shift of the resonance

and its fwhm is very small. In contrast, the other modes in Figure 5.5

b), the BDP and the E+
BDP , present a considerable shift. However, by

increasing εd, the E−BDP plexciton becomes a spectral feature as strong

as the the E+
BDP mode in terms of intensity, as shown in Figure 5.5 a). In

fact, for very large values of εd, the intensity of E−BDP has exceeded the
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intensity of E+
BDP , since the magnitude increases in one order of magni-

tude. The E+
BDP plexciton mode also increases slowly in intensity until

the E−BDP gains enough spectral weight to become more intense than the

E+
BDP . Then, it looses intensity, indicating an inversion of the strongest

mode as a consequence of the variation of the dielectric constant. We

propose that this large increase in the intensity of the resonance can

be used for LSPR sensing based on the variation of the intensity of the

peaks, which is a novel way to probe the environment and thus, a new

sensing scheme.

5.3 Summary

In this chapter we have studied the potential use of dimers con-

nected by conductive and molecular linkers in LSPR sensing. We have

explored the efficiency of these nanostructures as sensors and estimated

the FOM parameters. The largest FOM value we have found is 4.2 for the

SBDP mode in PCCs with large conductance through the linker, which

highly improves the efficiency of the isolated nanoparticle. We have also

exploited the particular behaviour of the plexciton modes of dimers con-

nected by molecular linkers to propose a new paradigm for sensing based

on changes in the intensity and emergence of plexcitonic resonances.
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We have presented in this thesis a set of theoretical contributions to

improve the understanding of the interaction between the optical prop-

erties of plasmonic nanostructures and electronic transport.

In order to explore this relation between the fields of plasmonics and

nanoelectronics, we have studied the optical response of a plasmonic

dimer where both parts of the nanostructure are connected by an ensem-

ble of molecules. Both particles forming the dimer are closely spaced cre-

ating a cavity, so that the nanostructure is highly coupled. The ensemble

of molecules is geometrically modelled as a cylindrical linker connecting

the surfaces of the dimer in the region of maximum proximity. In order

to analyze different approaches to the nature of the molecular linker, the

dielectric response of its constituent material has been characterized us-

ing different models for the dielectric function.

We have shown in Chapter 2 that, when there is a conductive path

connecting a nanostructure, two plasmonic resonances are mainly respon-

sible for the optical response: the Bonding Dimer Plasmon (BDP) mode

and the Charge Transfer Plasmon (CTP) mode. The BDP mode, which

arises from the hybridization of the dipolar (l = 1) modes of the individ-

ual nanoparticles, and which is also present when the nanostructure is dis-
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connected, blue-shifts and looses partially its intensity as the conductive

path becomes wider. The CTP mode, which arises from the hybridiza-

tion of the monopolar (l = 0) modes of the individual nanoparticles, and

which is not present when the nanostructure is disconnected, emerges

in the long-wavelength range of the optical spectrum, blue-shifting and

gaining intensity as the size of the conductive path is increased. This

behaviour confirms that there is a dependance of the optical response

on the electronic transport through the conductive path connecting the

nanostructure.

As a means to explore the relationship between the transport prop-

erties and the spectral behaviour of conductively connected plasmonic

cavities, in Chapter 3 we have modelled the junction as a pure conduc-

tive linker, so that the conductance through the plasmonic cavity can

be tuned. For a linker with fixed size, the BDP mode blue-shifts and

looses intensity as the conductance is increased, becoming an Screened

BDP mode (SBDP). The SBDP is a resonant plasmonic mode where the

electric field, originally highly concentrated in the cavity, is progressively

expelled from the linker, thus reducing its capacitance. The CTP mode

needs very large values of conductance to emerge and, once fully formed,

remains in the same spectral position as the conductance increases. We

have used simple physical models to explain the evolution of the modes,

and we have also considered how the size and morphology of the linker

influences the optical response. Finally, by virtue of a time-scale ap-

proach, we have related the optical cycle of the plasmonic resonances

to the transport time of the electrons at the electric current through the

conductive linker. Thus, we have derived analytical expressions providing

the thresholds of conductance for the transport properties to determine

the optical response, namely, the screening of the BDP into the SBDP

mode, and for the emergence of the CTP mode.

In order to consider a more realistic response of the molecular linker
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connecting the dimer, in Chapter 4 we have considered that the material

of the conductive linker connecting the dimer presents an excitonic tran-

sition. The consideration of a more complex dielectric response of the

linker, where the conductance shows a resonant behaviour, strongly af-

fects the optical response of the connected nanostructure. The plasmon

modes of the cavity, the BDP and the Bonding Quadrupolar Plasmon

(BQP), which arises from the hybridization of the quadrupolar modes

(l = 2) of the individual nanoparticles, couple with the excitons, split-

ting each mode into plasmon-exciton states, named as plexcitons. The

plexcitons present an anti-crossing behaviour centred in the point of in-

tersection of the energy-line of the exciton and the energy-lines of the

cavity modes. The energies of the plexcitons can be derived from a sim-

ple model of two coupled oscillators. The CTP mode emerges when the

molecular linker is conductive enough. The expression for the threshold

of conductance for the CTP mode, derived from time-scale arguments in

Chapter 3, is confirmed to be valid.

Finally, in Chapter 5 we have explored the sensitivity of the nanopar-

ticle dimers connected by conductive and molecular linkers to the em-

bedding medium. This sensitivity has been previously used for Localized

Surface Plasmon Resonance (LSPR) sensing, based on the shifts of the

LSPRs as the dielectric environment is changed. The efficiencies of the

connected dimers are expressed in terms of the Figure Of Merit (FOM)

parameter, which gives the ratio of the spectral shifts per refractive in-

dex unit change. The largest value of the FOM parameter we have found

is 4.2 for Plasmon Conductive Cavities (PCCs), where the conductance

through the junction is very large. Due to the behaviour of plexcitonic

modes when the dielectric constant of the embedding medium varies, a

new paradigm for LSPR sensing is proposed. In this new model, the

sensitivity of the LSPR to the environment is focused on changes in the

intensity of the resonances, rather than in the spectral shifts.
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We believe that this kind of studies contribute to a better understand-

ing of the connection between transport properties and optical properties

of plasmonic nanostructures. These results can improve our basic knowl-

edge about the optics of these nanostructures with potential applications

in active devices, sensors, or to probe molecular conductance and trans-

port at high-frequencies, a regime which is inaccessible through standard

electrical measurements.
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APPENDIX A

BOUNDARY ELEMENT METHOD (BEM)

Maxwell’s and Poisson’s equations can be analytically solved using

different sets of coordinates and expansions for simple geometries such as

spheres, spheroids or infinite cylinders. However, when more complicated

geometries are considered, numerical methods are necessary to determine

the solutions of the equations, matching the boundary conditions over

the interfaces which define the system and separate the different media.

Among the common techniques used to perform the calculations, we

can find the Finite Difference Time Domain method (FDTD) [48], the

Discrete Dipole Approximation (DDA) [49] or the Boundary Element

Method (BEM) [50], which is the numerical technique used along this

thesis.

BEM [50, 104] expresses Maxwell’s equations in terms of induced

surface charge densities and currents. Namely, the three-dimensional

problem consisting of the calculation of the electric and magnetic fields in

the volume, E and H, respectively, becomes a two-dimensional problem

of surface integral equations, where a self-consistent set of induced surface

charges σj and currents hj are determined for every interface. This set

of charges and currents satisfies the boundary conditions and couples to
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the incident field so that the optical response can take place.

More explicitly, if we write the electric and magnetic fields in terms

of the scalar and vector potentials as E = iω
c
A − ∇φ and H = ∇ ×A,

where ε = ε(r, ω) is the dielectric function and Lorentz’s gauge ∇ ·A−
iω
c
εφ = 0 has been considered, then, Maxwell’s equations can be written

in Gaussian units as follows [4]:

(∇2 + k2ε)φ = −4π(ρ/ε+ σs)

(∇2 + k2ε)A = −4π

c
(j + m), (A.1)

where k = ω/c, σs = 1
4π

D ·∇(1
ε
) is the induced charge density on the sur-

face separating the media, m = − iω
4π
φ∇ε is the induced current density

on the same surface and, ρ and j are the external charge density and cur-

rent, respectively. Having written Maxwell’s equations in this manner, it

can be clearly appreciated that the sources of the fields are, on the one

hand, the external perturbations ρ and j, and, on the other hand, the

induced charges and currents on the interface, σs and m. Consequently,

the fields are the result of the propagation of these sources by means

of the corresponding Green function Gj = Gj(r) = exp (ikjr)/r, where

kj = k
√
εj(ω)).

Explicitly, the scalar and vector potentials inside medium j can be

expressed, using matrix notation, as:[
φ(r)

A(r)

]
=

∫
dr′Gj(| r− r′ |)

[
ρ(r′)/ε(r′, ω)

j(r′)/c

]

+

∫
S

dsGj(| r− s |)

[
σj(s)

hj(s)

]
. (A.2)

All the relevant elements involved in the solution of Maxwell’s equa-

tions are depicted in Fig. A.1. For the sake of simplicity, a system with a

single boundary is considered, where the surface separates two different

media characterized by their corresponding dielectric functions εj, where
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APPENDIX A. BOUNDARY ELEMENT METHOD (BEM)

Figure A.1: Schematic representation of the elements involved in the
solution of Maxwell’s equations using BEM method in the presence of
arbitrarily shaped sharp interfaces. In this case, the interface separating
medium 1 and medium 2 is represented by a red line. ns is the normal
vector to the interface at a given point s of the interface, directed towards
medium 2.

the subscripts j = 1, 2 refer to the media 1 and 2, respectively. The

consideration of the ordinary boundary conditions for the electric and

magnetic fields leads to the following set of equations:

G1σ1 −G2σ2 = −(ϕ1 − ϕ2) (A.3)

G1h1 −G2h2 = −(g1 − g2), (A.4)

which refer to the continuity of the parallel component of the electric

field and the normal component of the magnetic field. The continuity of

the parallel component of the magnetic field and the normal component

of the electric displacement lead to the following relations:

H1h1 −H2h2 + pnsG1σ1 = −q1 + q2 − pnsϕ1 (A.5)

1

ik
(ε1H1σ1 − ε2H2σ2)− ε1nsG1 · h1 + ε2nsG2 · h2

= ε1
(
ns · g1 −

f1
ik

)
− ε2

(
ns · g2 −

f2
ik

)
. (A.6)

In these equations[
ϕj(s)

fj(s)

]
=

∫
dr

[
1

ns · ∇s

]
Gj(| s− r |) ρ(r)

ε(r, ω)
, (A.7)
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and [
gj(s)

qj(s)

]
=

1

c

∫
dr

[
1

ns · ∇s

]
Gj(| s− r |)j(r), (A.8)

where Hj(s − s′) = ns · ∇sGj(| s − r |)j(r) ± 2πδ(s − s′), with positive

sign for j = 1 and negative sign for j = 2, p = ik(ε2ε1) and ns is chosen

to be directed towards medium 2.

If the surface integrals are discretised using N points, then, Eq. (A.3)

to (A.6) become a set of 8N linear equations which can be numerically

solved through algebraic matrix inversion techniques. Once the surface

charges σj and currents hj are determined, the scalar and vector potential

can be calculated as well using Eq. (A.2). Finally, the electric and

magnetic fields can be determined from the potentials, as usual:

E =
iω

c
A−∇φ, (A.9)

H = ∇×A. (A.10)

Notice that the consideration of frequency-dependent dielectric func-

tions characterizing the media which define the system and the sharpness

of the boundaries separating the media, are the only assumptions which

have been made.
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APPENDIX B

COUPLING BETWEEN ELECTRONIC

EXCITATIONS AND OPTICAL MODES:

VACUUM RABI SPLITTING

The coupled system consisting of an optical cavity with atoms inside

often presents a more complex behaviour in comparison to the individual

behaviours of either the cavity or the atoms. In particular, it has been

long known that, when a collection of atoms is placed inside a cavity, the

transmission resonances of the cavity split. This energy splitting, usu-

ally named as Rabi splittting, has been considered as the manifestation

of the quantum nature of the electromagnetic field, and it attracted much

attention a few years ago in the field of quantum optics due to its impor-

tance in the understanding of phenomena such as optical bistability and

laser action [89]. However, later studies using classical models showed

that the resonances of an empty-cavity can also split due to the effects of

linear absorption and dispersion, resulting this splitting totally identical

to the vacuum Rabi splitting calculated from a quantum electrodynamics

perspective [105].

Taking into account that the atoms or molecules inside a cavity can
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be viewed as electronic excitations, the physics of this system can be eas-

ily understood in terms of coupled oscillators. In this appendix we use

a quantum oscillator model to derive a mathematical expression for the

vacuum Rabi splitting [106], where we consider a system of N quantum-

mechanical harmonic oscillators representing the electronic excitations

coupled to an optical mode, which is referred to as the zero oscillator,

ignoring dissipation effects in either oscillator.

The hamiltonian of a collection of N harmonic oscillators, each of

them coupled to the oscillator representing the cavity mode, the zero

oscillator, is given by [106]:

H =
p20
2

+
ω2
0

2
x20 +

1

2

N∑
i=1

(p2i + ω2
1x

2
i )− α

N∑
i=1

x0xi, (B.1)

where p0 and x0 are the momentum and the position of the zero oscil-

lator, pi and xi are the momentum and the position of the i oscillator,

and ω0 and ω1 are the frequencies of the cavity mode and the electronic

transitions, respectively. The term proportional to α represents the in-

teraction between the cavity mode and the electronic oscillations. This

Hamiltonian can be expressed in terms of the creation and annihilation

operators, a+ and a, as:

H = h̄ω0a
+
0 a0 +

N∑
i=1

h̄ω1a
+
i ai −

h̄α′

2

N∑
i=1

(a+0 ai + a+i a0) + C0, (B.2)

where α′ = α/
√
ω0ω1, C0 = h̄/2(ω0 +Nω1).

In order to obtain the spectrum, a linear transformation diagonalizing

the Hamiltonian Hosc can be found:

Hosc =
N∑
i=1

h̄Ωib
+
i bi (B.3)

bi =
∑
j

Aijaj (B.4)
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APPENDIX B. COUPLING BETWEEN ELECTRONIC
EXCITATIONS AND OPTICAL MODES: VACUUM RABI

SPLITTING

where the energy is measured relative to C0. Then, using the relation

[b,Hosc] = h̄Ωnbn, it is obtained that there are N −1 degenerate frequen-

cies Ω = ω1 and two non-degenerate frequencies given by:

Ω± =
(ω0 + ω1)

2
± 1

2

√
(ω0 − ω1)2 + α′2N, (B.5)

so that, the Rabi frequency at resonance (ω0 = ω1), is given by:

∆Ω =
√

(α′)2N =
α

ω1

√
N, (B.6)

which is proportional to the number N of oscillators in our system. Thus,

simply by multiplying Eq. (B.5) by h̄, we obtain the equation we use in

Chapter 4 for the splitting of the modes (see Eq. (4.4)):

E± =
ESP + Eex

2
±
[( h̄ΩR

2

)2
+

1

4
(ESP − Eex)2

]1/2
. (B.7)
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ACRONYMS

Acronyms used along this thesis (in order of appearance):

• SPR - Surface Plasmon Resonance

• LSPR - Localized Surface Plasmon Resonance

• NIR - Near-Infra-Red

• EELS - Electron Energy Loss Spectroscopy

• SP - Surface Plasmon

• SPP - Surface Plasmon Polariton

• FDTD - Finite Difference Time Domain

• DDA - Discrete Dipole Approximation

• BEM - Boundary Element Method

• BDP - Bonding Dimer Plasmon

• CTP - Charge Transfer Plasmon

• PC - Plasmonic Cavity
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ACRONYMS

• BQP - Bonding Quadrupolar Plasmon

• SERS - Surface Enhanced Raman Scattering

• PCC - Plasmonic Conductive Cavity

• SBDP - Screened Bonding Dimer Plasmon

• FWHM - Full Width at Half Maximum

• PEC - Plasmon-Exciton Cavity
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