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Abstract. We present a theoretical study of the optical properties of
nanoparticle dimers connected by conductive gap linkers. The geometrical and
conductive properties of the linker modify strongly the optical response of
the linked metallic cavity. Two plasmonic modes are responsible for the main
spectral features of the cavity: a bonding dimer plasmon (BDP) and a charge
transfer plasmon (CTP). We first explore how these two modes are modified as a
function of the geometry and the conductance through the cavity, identifying the
spatial distribution of the linking current densities. Furthermore, we introduce a
resonant feature in the conductivity of the linker, where we observe a complex
splitting of the plasmon modes. We also study the capabilities of the BDP and
CTP modes in localized surface plasmon resonance (LSPR) sensing.
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1. Introduction

The interaction between electromagnetic waves and plasmonic nanostructures has become an
important field of research in nanophotonics. In the last decade, there have been significant
advances in plasmonics [1, 2], resulting in a better understanding of the optical properties of a
variety of metallic nanostructures with extensive applications in spectroscopy, biomedicine, etc,
where plasmons localize and enhance the fields [3–8]. When two nanoparticles are placed next
to each other, they no longer behave individually, but as a new interacting system where the
plasmon modes of the individual nanoparticles interact and result in hybridized dimer plasmon
modes [9–11]. In particular, the dipolar bonding dimer plasmon (BDP), with strongly localized
charge densities of opposite sign and enormously enhanced local electromagnetic fields in the
dimer cavity, has been deeply studied due to its potential applications in surface enhanced
Raman scattering (SERS) [12–15]. When two nanoparticles are closely located establishing a
conductive overlap between them, a charge transfer plasmon (CTP) mode, which allows current
density through the cavity, emerges, involving an oscillating distribution of net charge at every
individual nanoparticle [16–23].

In parallel with the development of plasmonic cavities, electronic transport through
molecules has become a vibrant field in nanoscience due to its potential technological
applications in nanoelectronics, connected to novel nanofabrication and nanomanipulation
methods and improved current detection schemes [24–32]. In recent years, there has been
growing interest in the interaction between the plasmonic modes and molecular excitations,
since the control of the coupling of molecular complexes to metallic structures is very
important for the development of active plasmonics components dealing with optoelectronic
signals [33–36]. Among the broad range of potential applications of these systems we can
find light harvesting structures, molecular switches or modulators. In particular, it has been
shown that in systems composed of metal nanoparticle–molecular complexes, the presence of
molecules shifts the plasmon mode by changing the interaction between the molecular and
plasmonic resonances [37, 38].
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Figure 1. Ratio conductance/conductivity for a perfect conductive cylinder with
planar endings, where G/κ = πa2/d (solid line), and for a conductive linker with
curved endings, where G/κ is given by equation (2) (dashed line). The inset is
a schematic representation of a gold dimer connected by a linker. The linker is
zoomed so that its concave endings and geometrical parameters, radius a and
length d, can be clearly appreciated (d = 1 nm, R = 55 nm).

To account for the merge of plasmonics and electronics, we presented in a recent letter the
connection between the optical properties of the BDP and CTP and the transport properties
of the metallic cavity [39]. Here, we extend our previous results by considering strong
modifications in the geometry of the junction (solid block versus ring-like linker), as well as
by introducing spectral resonant behaviour in the conductivity and analysing its effect in the
optical spectrum. Finally, we also study the potential of the system for localized surface plasmon
resonance (LSPR) sensing applications based on spectral shifts.

In order to analyse the optical response of the system, we solve Maxwell’s equations in
the presence of inhomogeneous media using the boundary element method (BEM) to obtain the
electromagnetic fields and the optical extinction spectrum [40, 41].

2. Bonding dimer plasmon versus charge transfer plasmon in conductive junctions

2.1. Optical response of the conductive junction

The shape and size of the constituents are two key ingredients in the study of plasmonic systems.
We therefore define the geometry of our system in the schematics included in figure 1. We
consider a heterogeneous nanostructure composed of two nanoshells, acting as electrodes, with
silica cores of radius Rint = 45 nm; covered with a gold shell of radius R = 55 nm, namely, the
thickness of the gold shells is 10 nm. The conductive linker connecting the dimer is modelled
as a solid cylinder perfectly matching the spherical shape of the electrodes. The linker is
characterized by two parameters: the radius a and the length d , which is the shortest interparticle
distance between the nanoshells. In our study we consider the interparticle distance to be
d = 1 nm, so that the nanoshells are strongly coupled. The incident light is a plane wave with
linear polarization along the symmetry axis of the system and wave vector k perpendicular to
the same symmetry axis.

The surrounding medium is another key feature influencing the plasmonic properties. In
our case, the dimer is assumed to be suspended in vacuum and the materials composing the
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different parts of the system are characterized by local dielectric functions, ε(ω), taken from the
literature, both for gold [42] and silica [43]. For the sake of simplicity, we have first modelled
the conductive junction as a pure conductor characterized by a dc conductivity κJ, so that its
frequency-dependent dielectric function can be expressed as

ε(ω) = 1 + i
4πκJ

ω
. (1)

The conductivity of the junction κJ is then related to its conductance G through geometric
parameters. In our case, the consideration of the spherical connection between the linker and
the particles leads to a mathematical expression for the ratio G/κJ involving the parameters
a, R and d:

G

κJ
=

G

κJ
(a, R, d) = π

{√
R2 − a2 − R + (d/2 + R) ln

[
1 + 2(R −

√
R2 − a2 )/d

]}
, (2)

where R is the external radius of the nanoshell, a is the radius of the junction and d is the
interparticle distance. In the limit of very thin junctions, a � d, the function G/κJ(a, R, d) (see
equation (2)) behaves as the relation for a conductive cylindrical wire with planar endings, as
expected:

lim
a�d,R

G

κJ
=

πa2

d
. (3)

We note that the real part of ε(ω) is frequency independent (see equation (1)), since we had
assumed the junction to be a pure conductor. In contrast, the imaginary contribution, which
is related to energy losses, is the only part of the dielectric function affected by any possible
change in the parameters. These changes in the imaginary part of ε(ω) can be related to the
variation of dc conductivity κJ, which is governed by variations in the geometry, variations
in the conductance or a combination of both. Whereas in the limit of very thin junctions the
conductance has a quadratic dependence on the radius of the junction, as shown in equation (3),
a nearly linear trend is obtained in equation (1) when thicker junctions are considered. We can
observe in figure 1 that this means that G/κJ is below the parabola given by the function of a
wire, due to the effect of the curvature of the nanoshells. For the interparticle distance considered
in the present work, d = 1 nm, this implies quadratic behaviour of G/κJ up to radius a ' 3 nm,
as appreciated in figure 1. In order to connect with the terminology for molecular conductances,
we will vary κJ so that the total conductance of the molecule is equal to an integer number n of
quantum units of conductance G0, i.e. G = nG0, where G0 = 2e2/h ≈ 77.5 µS. In section 3, we
will consider a more general dielectric response using a Drude–Lorentz model to characterize
the existence of an exciton in the optical response of the linker, and we will have the opportunity
to explore the differences between both situations.

2.2. Spectral behaviour of bonding dimer plasmon and charge transfer plasmon modes

We analyse a gold nanoshell dimer linked by a conductive junction as the conductance of
the junction is varied, finding two main trends: the BDP mode associated with low values of
conductance and the CTP mode in the large conductance regime [39]. As we have already
mentioned, the aim of this study is to find a connection between plasmonics and nanoelectronics
and, to this end, we first study the optical behaviour of the system when the conductance G
through the junction is varied while the size of the linker is fixed. For instance, this situation
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Figure 2. (a) Calculated normalized optical extinction cross-section for a gold
nanoshell dimer with and without a conductive linker of radius a = 4 nm.
We consider two cases with a linker: one with low conductance showing
a blue-shift and broadening of the BDP mode and the other with high
conductance showing the emergence of the CTP mode. (b) Colour map of the
calculated normalized optical extinction cross-section, showing the evolution
of the plasmonic resonances, SBDP and CTP, in a gold nanoshell dimer with
interparticle distance d = 1 nm, linked by a conductive junction with radius
a = 4 nm as the conductance G and thus the conductivity κJ are increased for
different wavelengths λ. The threshold values of conductance GSBDP and GCTP

were obtained from equations (4) and (5), respectively.

corresponds to a system where we change the nature of the junction but the geometry remains
unaltered. For the case of the BDP, we find that this mode is blue-shifted and its intensity
decreases as G is increased, forming a screened BDP mode (SBDP), where the electric field is
progressively expelled from the junction. In the case of the CTP mode, we find that, in contrast
to the BDP, higher values of conductance G are needed for the CTP to emerge. Figure 2(a)
shows a comparison of the calculated normalized optical extinction cross-section for a gold
nanoshell dimer with and without a linker. When there is no junction, we observe the BDP
mode at λ = 840 nm, which can be understood in terms of the hybridization of the dipolar
modes (l = 1) of every individual nanoshell resulting in a dipole–dipole interaction [9] (see
the schematics included in figure 2(a)). A bonding mode coming from the hybridization of
the quadrupolar modes (l = 2) of the individual nanoparticles can also be observed as a small
feature around λ ≈ 600 nm. In contrast, when we consider a junction with a conductance of
about 88G0, the BDP loses intensity, broadens and is blue-shifted as a consequence of the
screening of the interaction at the cavity forming an SBDP. The quadrupolar mode also loses
strength as the conductance increases. For large conductance values of 412G0, the SBDP mode
partially recovers its intensity and a CTP mode emerges at λ = 1750 nm from the coupling of
the monopolar (l = 0) individual nanoshell modes, resulting in a dipolar pattern involving both
particles. This mode implies a net charge transfer between both nanoshells (see the schematics
included in figure 2(a)).

To establish the connection between the electronic transport and optical processes [39],
we relate the time of the optical cycle top, associated with both plasmon resonances ωBDP and
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ωCTP, to the transport time te of the electrons through the cavity related to the conductivity.
Based on this connection, it is possible to obtain mathematical expressions for the conductance
thresholds, GSBDP and GCTP, where the BDP mode becomes the SBDP mode and the CTP
emerges, respectively [39]. Explicitly, the expression providing the conductance threshold for
the modification of the BDP into a screened SBDP mode is

GSBDP =
ωBDP

2π

a2

d
, (4)

whereas the conductance threshold for the CTP to appear is

GCTP =
ωCTP

4π

R2

d
. (5)

While equation (4) indicates that the SBDP mode has a strong dependence on the geometry of
the junction, i.e. on its conductivity, equation (5) shows that the CTP mode is related to the
conductance of the junction rather than its conductivity, requiring larger conductance values
than the SBDP (R2/2d > a2/d).

The evolution of these two modes is observed in figure 2(b), where we display a colour map
of the calculated normalized optical extinction cross-section for a gold nanoshell dimer linked
by a conductive junction with radius a = 4 nm as the conductance G and the conductivity κJ

are varied. We can see in detail how the BDP starts losing intensity and blue-shifts as G is
increased, progressively turning into the SBDP. Then, the blue-shift reaches a saturation point
from which the position of the resonance at λ = 740 nm remains unaltered despite the increase in
conductance, and the mode gains intensity again as G is increased. Quantitatively, equation (4)
predicts that conductance needs to reach values above 8G0 to form the SBDP in this situation,
an estimation that is in good agreement with our simulations.

We can also observe the progressive emergence of the CTP at λ = 1750 nm in the near-
infrared (NIR) part of the spectrum, occurring for large values of the conductance. Equation (5)
predicts a threshold of 370G0, a value that is consistent with our calculations, as observed in
figure 2(b). It should be noted that the SBDP recovers spectral weight, in parallel with the
emergence of the CTP, once the spectral position of the SBDP becomes constant. Thus, we can
understand the relative weight of the resonances in terms of the increase in conductivity, which
leads to a modification of the dielectric function. Note also that the increase of conductance
while the radius of the junction is fixed implies that the number of electrons contributing to the
electric current density is also increased.

So far, we have only considered the variation of conductance through the junction while its
size remains unaltered. We now maintain the conductivity fixed while the radius of the linker is
varied, which corresponds to a physical situation where the material linking the nanoparticles
is maintained while the size is varied, thus producing the variation of the linker’s conductance
G as well. Figure 3 shows the colour maps of the calculated normalized optical extinction
cross-section to observe the evolution of the plasmonic resonances in a linked gold nanoparticle
dimer with interparticle gap d = 1 nm, where the conductivity κJ of the linkers is fixed whereas
its radius a is varied. We observe that, under these conditions, the behaviour of both the BDP
and the CTP modes differs from that previously. For the BDP, it is still possible to observe the
blue-shift of the resonance, but its intensity decreases as the junction becomes wider (without
regaining intensity). In the case of the CTP (in the top part of the maps, for longer wavelength
values), after the emergence of the resonance we observe a considerable blue-shift as the
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Figure 3. Colour maps of the calculated normalized optical extinction cross-
section, showing the evolution of the plasmonic resonances BDP and CTP in
a gold nanoparticle dimer with interparticle gap d = 1 nm linked by conductive
molecular junctions, while the radius a is varied and conductivity κJ is fixed:
(a) κJ = 0.25κAu, (b) κJ = 1.09κAu and (c) κJ = 2κAu.

radius a is increased. However, in contrast to the BDP, this resonance becomes more intense
as the junction becomes wider. We also notice that, while the BDP is present for any considered
value of the conductance and radius, the CTP dies out for situations of low conductance and
small radius. Similar behaviour has been previously reported in the literature for touching
nanoparticle dimers and loaded antennas. Whereas for the touching nanoparticle dimers the
optical response was governed by the interparticle distance [17], when considering loaded
antennas, the size of the load and the free-carrier density at the cavity are the key ingredients
controlling the optical response [21, 46]. In particular, these cases correspond to the colour map
of figure 3(b), where the conductivity κJ of the junction would be equal to the conductivity κAu

of the gold shells acting as electrodes. We can also understand this behaviour in terms of the
excitation of the BDP and CTP modes. The BDP mode, arising from the hybridization of the
dipolar terms of the individual particles (see schematics in figure 2(a)), can exist for any value of
the radius of the linker, losing intensity as the junction becomes wider and wider due to the
increase in conductance. In contrast, the CTP mode, arising from the excitation of the monopolar
(l = 0) individual nanoshell modes (see schematics in figure 2(a)), is not sustained, neither
when there is no physical connection between the particles nor when the conductance is below
GCTP. This mode becomes the prominent resonant mode when conductance is large enough,
satisfying the ordinary sum rules for the mode’s excitation. Figure 3 also shows the threshold
value, GCTP = 468G0, obtained from equation (5) (an arrow in figure 3(a) since the GCTP falls
outside the limits of the graphics). In this case, the threshold value, calculated for the saturated
wavelength of the CTP, around λ = 1390 nm, points out that the higher the conductivity κJ we
consider for the junction, the narrower the junctions that can sustain the CTP resonance. This
relation between the size and conductance of the junction and its conductivity was expected
from equation (2), which also shows that when we increase the conductivity of the material, the
amount of material needed to sustain conductance is reduced. Thus, these results could help us
to establish a connection between the spectral changes in optical measurements and molecular
conductance and/or size of molecular bridges.
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Figure 4. Near-field distribution of the SBDP and CTP modes for a nanoshell
dimer linked by a conductive junction with radius a = 8 nm, conductivity κJ =

5κAu and conductance G = 7229G0. (a) BDP corresponding to λ = 670 nm and
(b) CTP corresponding to λ = 1380 nm.

2.3. Near-field distribution in the screened bonding dimer plasmon and charge transfer
plasmon modes

The nature of the plasmon modes can be understood in an intuitive way by observing the near-
field associated with the resonances. For the nanoparticle dimer linked by a conductive junction,
the electric field is progressively expelled from the junction as the conductance is increased [39].
For low conductance values the junction still acts as a perfect capacitive cavity, whereas for
values larger than the threshold value GSBDP the local field is progressively expelled from the
junction, reducing both the Coulomb attraction between the gold shells and the capacitance of
the cavity.

This situation can be clearly observed in figure 4, where the modulus of the near-field is
represented in the plane defined by the propagating vector k of the incident plane wave and the
axis of polarization of the electric field E (see schematics in figure 4). To observe the different
charge distributions of the SBDP and CTP resonances, we compare the near-field distributions
of these two modes in figure 4, corresponding to a conductive junction with radius a = 8 nm
and conductance G = 7229G0: figure 4(a) corresponds to the SBDP resonance at λ = 670 nm
and figure 4(b) corresponds to the CTP resonance at λ = 1380 nm.

In both cases, the local field is expelled from the junction and the near field takes its highest
values around the molecular junction, but some differences can be observed. For the SBDP
mode, the distribution of the field corresponds to a dipole–dipole pattern, as in the near-field
distribution of the BDP distribution. In this case, the electric charge is highly localized at the
cavity on every nanoparticle, with charge of opposite sign at both sides of the cavity, observing
dipolar electric field distributions and fulfilling charge neutrality in every nanoparticle. In
contrast, for the CTP mode, the near-field distribution has quite a uniform intensity distribution
all around the dimer (see figure 4(b)), in agreement with the near-field patterns obtained by
Romero et al [17]. In this case, the principle of charge neutrality in every nanoparticle is
no longer valid and the whole nanostructure acts as a dipole. Another important feature of
the CTP mode is the considerable penetration of the electric field inside the nanoparticles
through the conductive junction. The parameter describing this ability of the electromagnetic
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Figure 5. (a) Schematic representation of a gold nanoshell dimer linked by a
hollow conductive junction having a ring-like shape. The junction is amplified
so that its concave endings and its geometrical parameters, internal radius a1,
external radius a2 and length d, can be clearly appreciated. (b) Calculated
normalized optical extinction cross-sections for a nanoshell dimer linked by a
cylindrical shell junction as the internal radius is varied from a1 = 0.5 nm to
a1 = 4 nm. The external radius is a2 = 5 nm and the conductivity is κJ = κAu.
The dashed line represents the spectrum corresponding to a dimer connected by
a solid junction with radius a = 5 nm. Nanoshell parameters are Rint = 45 nm
and R = 55 nm. (c) Calculated normalized optical extinction cross-sections for a
nanoshell dimer linked by a conductive ring-like junction as the external radius
is varied from a2 = 2.5 nm to a2 = 10 nm (solid lines). The internal radius is
fixed at a1 = 0.5 nm and the conductivity is κJ = κAu. Dashed lines indicate the
cases with solid junctions of the same external radii and the parameters for the
nanoshells are the same as those in (b).

field to penetrate into a material is the skin depth δ, given in SI units by δ =
√

2/µ0ωκ [44].
If we analyse the skin depth for the cases considered in figure 4, where κ = κJ = 5κAu and its
corresponding conductance G = 7229G0, we obtain values of δSBDP(λ = 670 nm) ≈ 12 nm for
the SBDP mode and δCTP(λ = 1625 nm) ≈ 17 nm for the CTP mode. In most situations, such
as those considered in this work, the conductance at the junction is much smaller; thus the skin
depth is usually even larger. These values of the skin depth are either of the same order as the
dimensions of the nanometric junction or much larger; therefore they allow for field penetration
in most cases. For all the above, one can conclude that it is the intrinsic nature of the behaviour
of conductance for the BDP and CTP modes that is the key aspect determining the spectral
features of the system, rather than the skin depth [39].

2.4. Distribution of the electric current within the linker

In order to explore the properties of the currents through the junction, we study in this section
how the optical response of the dimer is affected by morphological changes in the conductive
junction. To that end, instead of a solid cylinder, we consider a hollow cylindrical shell, as
depicted in figure 5(a). As for the solid case, the junction is characterized by its length d,
corresponding to the interparticle gap. The junction is characterized by two parameters in this
case: the internal and external radii of the conductive junctions a1 and a2, respectively. To
study how these two parameters affect the optical response we explore different situations. For
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example, if the external radius a2 is fixed, we can vary the internal radius a1, or vice versa,
varying the amount of material holding the current density.

In the case of a ring-like junction, conductance and conductivity are related to each other
via the geometric parameters

G

κJ
(a1, a2, R, d) = π

{√
R2 − a2

2 −

√
R2 − a2

1 + (R + d/2) ln

[
(R + d/2) −

√
R2 − a2

2

(R + d/2) −
√

R2 − a2
1

]}
, (6)

which now involve the internal and external radii of the ring junction a1 and a2. It is quite clear
from equation (6) that equation (2) is recovered in the limit a1 → 0, a situation where there is
no hollow cavity in the junction. Thus, in this case, the conductivity of the ring-like junction is
given by

κJ = nG0

{
π

{√
R2 − a2

2 −

√
R2 − a2

1 + (R + d/2) ln

[
(R + d/2) −

√
R2 − a2

2

(R + d/2) −
√

R2 − a2
1

]}}−1

. (7)

In figure 5(b), we represent the calculated normalized optical extinction cross-section for a gold
nanoshell dimer linked by a conductive ring-like junction as the internal radius a1 is increased
while the external radius and conductivity are fixed to a2 = 5 nm and κJ = κAu, respectively.
This situation creates an increasingly thinner ring sustaining smaller conductance. The results
are compared to the case of a solid molecular junction with the same radius and the same
conductivity. For small values of a1, even though we remove the central part of the cylinder, the
spectrum of the solid junction does not vary noticeably. This behaviour suggests that conduction
through the molecular junction takes place mainly in the external region of the junction. This
distribution of the current explains why the results of a solid junction are still reproduced when
we remove wide central parts of the junction. In this case, the BDP mode red-shifts negligibly
as the conductance decreases when considering thinner rings (with larger a1), consistent with
the behaviour of the BDP in solid junctions shown in figure 3. The spectral position of the CTP,
when fully formed (once the conductance value allows for its appearance), remains at the same
spectral position for a fixed external radius as the conductance is increased (decrease of a1),
consistent with the behaviour shown for the CTP in figure 2(b). We also observe in figure 5(b)
that the CTP excitation disappears when we consider a very narrow ring-like junction, an effect
that can be explained as due to the fact that the conductance of a ring-like junction with
a1 = 4 nm and a2 = 5 nm is G = 224G0, below the conductance threshold for the emergence
of the CTP, as derived from equation (5).

In figure 5(c) we represent the calculated normalized optical extinction cross-section for a
nanoshell dimer linked by a conductive ring-like junction as the external radius a2 is increased.
In this case, the internal radius a1 and the conductivity κJ are fixed so that every spectrum is
comparable to the spectrum of a solid junction with the same external radius. If we compare
every ring-like junction spectrum to its solid junction counterpart, we observe that the modes
remain in the same position and the main effect of removing the central part of the junction is an
increase in the intensity of the resonance. Considering the results shown in figure 5(b), which
suggest that conduction between the nanoparticles occurs mainly in the exterior of the junction,
we expect the spectra for thick ring-like junctions to be very similar to their solid counterparts.
A small hollow cavity with a1 = 0.5 nm hardly affects the conduction process through the
junction. This can be observed in figure 5(c), where the intensity of the BDP resonance
decreases when the external radius is increased and the resonance is blue-shifted towards shorter
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wavelength values, exactly as in the case of solid junctions (see figure 3). For the CTP resonance,
its intensity is increased when the external radius is increased from 2.5 to 10 nm, and its peak
position is blue-shifted, again consistent with the behaviour of a solid junction (see figure 3).

3. Excitonic junctions

Despite its simplicity, the pure conductor model for the junction is able to explain the main
features of the optical response of linked plasmonic dimers. Now, we generalize the dielectric
response of the linker by considering the existence of an optical interband transition in the
response of the junction. The Lorentz model, widely used to study the optical properties of
semiconductors, describes the interaction between light and atoms or molecules characterizing
every entity through a resonant frequency ω0 corresponding to the frequency of the molecular
transition. We consider a linker composed of identical molecules with a single molecular
transition of energy h̄ω0 and characterized by the same geometric parameters as those used
in the pure conductor model. According to the Drude–Lorentz model, the dielectric response
function characterizing the junction can be expressed as [45]

ε(ω) = 1 −
f ω2

0

(ω2 − ω2
0) + iωγ

, (8)

where ω0 is the natural oscillator frequency of the molecular transition, γ is the transition
damping and f describes the oscillator strength. This expression is quantitatively and
qualitatively quite different from the expression provided by the previous model (see
equation (1)), affecting the conduction properties. Now, both the real and imaginary parts of the
conductivity κ(ω) contribute to the conduction process and they are also frequency dependent,
in contrast to the pure conductor model. In order to establish a direct comparison with our
previous model, the conductance G associated with this Drude–Lorentz model is related to the
real part of the conductivity κ1(ω) = Re[κ(ω)] as follows:

G = κ1(ω)π
{√

R2 − a2 − R + (d/2 + R) ln
[
1 + 2(R −

√
R2 − a2/d

]}
, (9)

where κ1(ω) can be expressed in terms of ε(ω), according to equation (1). We also observe that
the effect of increasing the size of the linker with the same transition wavelength is to increase
the magnitude of the conductance, which presents resonant behaviour around the transition
frequency ω0.

In order to simplify the simulations, we have considered in this section a dimer of gold
nanoparticles, instead of gold nanoshells, since the most relevant parameter is the external
radius R. Thus, fixing their radius to R = 50 nm and the interparticle gap to d = 1 nm, the
plasmon BDP resonance of the dimer is found at λBDP = 665 nm. As a first step, we have
considered two different molecules from the literature, a rotaxane and a J-aggregate [35, 38].
For the rotaxane, the transition frequency is ω0 = 1.51 eV, which corresponds to λ0 = 821 nm,
the damping factor is γ = 0.1 eV [38] and we have considered f = 1.5 as the oscillator strength
factor. For the J-aggregate, the transition frequency is ω0 = 1.79 eV, which corresponds to λ0 =

693 nm, the damping factor is γ = 0.052 eV and the oscillator strength factor is f = 0.02 [35].
Once the dielectric function is determined with these parameters, we vary the radius of

the junction and explore the evolution of the normalized optical extinction cross-section in
figure 6. For the rotaxane molecule (figure 6(a)) we observe that, as for the pure conductor,
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Figure 6. Calculated normalized optical extinction cross-section of a gold
nanoparticle dimer bridged by a molecular linker as the radius of the linker
a is increased. (a) Rotaxane molecule with molecular transition frequency
ω0 = 1.51 eV (λ0 = 821 nm); (b) J-aggregate molecule with molecular transition
frequency ω0 = 1.79 eV (λ0 = 693 nm).

the BDP mode, arising from the coupling between the dipolar modes of the individual particles
and initially found at λ = 665 nm, is blue-shifted as the radius of the linker is increased,
progressively losing part of its intensity. This behaviour of the BDP mode is as expected, since
the conditions are very similar to the situation depicted for the conductive junction in figure 3,
where the conductivity of the junction is fixed, and the conductance is increased via an increase
of the radius of the junction. Now, equation (9) shows that the increase of the radius of the
molecular linker implies an increase of the conductance G as well. Nevertheless, the situation
is different for longer wavelength values. For the pure conductor model, when the conductance
is large enough a highly red-shifted CTP mode emerges, where a charge transfer between the
particles occurs (see figure 3). However, in this generalized model, we observe in figure 6(a)
the emergence of two red-shifted resonances as the radius of the linker becomes wider. From
the near-field maps associated with the resonances, it can be checked that the most red-shifted
resonance, around λ ≈ 1000 nm, also presents a BDP nature, exactly as the blue-shifted BDP.
In contrast, the resonance in between, around λ ≈ 850 nm, presents a clear CTP nature, even
though it is considerably less red-shifted than the CTP mode in the conductor model. It is clear
from these results that the consideration of a more complex conductive nature characterizing the
linker affects strongly the behaviour of the plasmonic cavity modes. We believe that this mix of
the modes is a consequence of the coupling between the plasmon resonances of the cavity and
the exciton introduced as an optical transition, a situation that could be exploited in new forms
of sensing.

For the J-aggregate, in figure 6(b), the BDP mode also splits into two branches. In this
case, the magnitude of the blue-shift is not as large as for the rotaxane. This can be explained as
due to the low conductivity of the linker, several orders of magnitude below the conductivity of
rotaxane and gold. We also observe that, for the J-aggregate, we do not appreciate the emergence
of the CTP mode in between the two BDP coupled modes, even though we have dramatically
increased the radius of the linker up to a = 32 nm. Following the low conductivity argument,
we know that the CTP mode needs really large conductance to be sustained, a condition that
is not fulfilled by the extremely low conductivity of the molecule under consideration. A more
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Figure 7. Sensitivity of the nanoparticle dimer to the embedding medium in the
optical extinction spectra when (a) a = 2 nm and G = 527G0 and (b) a = 5 nm
and G = 352G0. (c) Linear plot of the BDP shifts versus refractive index of the
embedding medium for the junction parameters in (a).

exhaustive study of this coupling between the plasmon resonances and the excitons is currently
in progress, but we can anticipate that large conductance values at NIR wavelengths are needed
to noticeably modify the CTP.

4. Sensing with the use of bonding dimer plasmons and charge transfer plasmons

The potential use of plasmonic systems as sensors has led to many studies on their sensitivity
to the embedding medium. We have also explored this sensitivity in the linked dimer system. In
previous works, a redshift of the plasmon resonance was observed when the refractive index n
of the surrounding medium is increased (thus increasing the real part of the dielectric function),
in addition to an increase in its intensity [47, 48]. This behaviour was found to be systematic
for different types of nanostructures, such as nanorods, nanoshells or nanodiscs; more recently,
there has been growing interest in this kind of study using Fano resonances [49], because of the
sharp spectral features.

Figure 7 shows the evolution of the normalized optical extinction cross-section of gold
nanoshell dimers bridged by a conductive junction as the dielectric function of the embedding
medium is varied. Two different linkers with high conductance have been considered: a junction
with radius a = 2 nm and conductance G = 527G0 in figure 7(a) and a junction with radius
a = 5 nm and conductance G = 352G0 in figure 7(b). In both cases, the BDP mode is redshifted
and its intensity is increased when the dielectric constant of the surrounding medium is
increased, as expected. In contrast, the CTP mode is just slightly redshifted before vanishing.
Once more, the actual geometry of the cavity plays an important role: for wider junctions the
CTP resonance survives for larger values of the dielectric function. Since narrower spectral
peaks are more appropriate to measure small peak shifts, we focus our attention on the BDP
mode to evaluate its sensitivity to the embedding medium.

The efficiency of plasmonic systems as sensors is usually estimated by its figure of merit
(FOM). This parameter is defined as [48]

FOM =
m (eV RIU−1)

fwhm (eV)
, (10)
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where m is the linear regression slope for the refractive index dependence, which indicates the
ratio of the plasmon energy shift to the change in refractive index of the embedding medium,
and fwhm is the full-width at half-maximum of the mode. Figure 7(c) shows the linear plot of
the shifts of the SBDP mode as a function of the refractive index of the embedding medium for
a = 2 nm and G = 527G0, where the slope given by the linear regression is m = 0.36 eV RIU−1.
In this case, fwhm = 0.21 eV and the FOM parameter for the SBDP resonance is FOM = 1.7.
For a junction with radius a = 5 nm and conductance G = 352G0, m = 0.21 eV RIU−1 and
fwhm = 0.30 eV, resulting in an FOM = 0.7 parameter for the SBDP. These values indicate
that the system with a narrower junction but higher conductance is more sensitive to the
embedding medium. We can also consider the FOM parameter for the CTP mode, even though
its broadening fwhm prevents large values. As an example, for the CTP mode in figure 7(b), we
obtain m = 0.22 eV RIU−1 and fwhm = 0.43 eV, resulting in an FOM parameter of FOM = 0.5,
thus below the values for the BDP peaks.

5. Summary

We have studied theoretically how the optical properties of a nanoparticle dimer with a linker
connecting two nanoparticles are affected by the size, conductivity and shape of the linker.
We have started modelling the linker as a pure conductor with the shape of a cylinder, where
conductivity is related to conductance through geometric parameters, and we have explored the
behaviour of two optical resonances, the BDP and the CTP, sustained by the gap.

We have modelled the linker as a cylindrical shell to explore the spatial distribution of
the conduction across the junction, observing that the electric current mainly takes place in the
external part of the junction.

We have also analysed the effect of changes in the structure of the dielectric function
characterizing the linker on the optical response by considering an optical transition at the linker.
We have found that the coupling between the plasmon cavity modes and the excitons modifies
the optical response considerably.

To complete this general picture, we have studied the sensitivity of the BDP and CTP
plasmons to the surrounding medium as well. The dimers linked by narrower junctions are
more sensitive to the embedding medium as the conductance increases, in comparison to dimers
linked by wider junctions.

We believe that the study of this kind of structure will contribute to the development of
plasmonic nanostructures as active devices, linking optical and transport properties.
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