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Abstract: Using a fully quantum mechanical approach we study the
optical response of a strongly coupled metallic nanowire dimer for variable
separation widths of the junction between the nanowires. The translational
invariance of the system allows to apply the time–dependent density func-
tional theory (TDDFT) for nanowires of diameters up to 10 nm which is the
largest size considered so far in quantum modeling of plasmonic dimers.
By performing a detailed analysis of the optical extinction, induced charge
densities, and near fields, we reveal the major nonlocal quantum effects
determining the plasmonic modes and field enhancement in the system.
These effects consist mainly of electron tunneling between the nanowires
at small junction widths and dynamical screening. The TDDFT results are
compared with results from classical electromagnetic calculations based on
the local Drude and non-local hydrodynamic descriptions of the nanowire
permittivity, as well as with results from a recently developed quantum
corrected model. The latter provides a way to include quantum mechanical
effects such as electron tunneling in standard classical electromagnetic
simulations. We show that the TDDFT results can be thus retrieved
semi-quantitatively within a classical framework. We also discuss the
shortcomings of classical non-local hydrodynamic approaches. Finally, the
implications of the actual position of the screening charge density at the
gap interfaces are discussed in connection with plasmon ruler applications
at subnanometric distances.
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1. Introduction

In metal nanoparticles, collective excitation of the valence electrons induced by an incident
electromagnetic field, the localized plasmon, leads to a plethora of optical phenomena of sig-
nificant current interest. Strong plasmonic enhancement of the local fields [1–5] opens a route
to numerous practical applications such as surface enhanced Raman scattering (SERS) [6–9],
and optical nano-antennas [10–13]. In nanoparticle assemblies, the hybridization of plasmonic
modes can serve for guiding of the propagating fields [14, 15], as well as offering a path for
rational engineering of a desired optical response and local field profile [4]. Not only can light
harvesting and sensing properties thus be greatly improved, but the strong geometry depen-
dence of the optical response can also be used as a plasmon ruler to determine the arrangement
and nanoscale distances within chemical or biological species [4, 16–21].

Significant advances in fabrication and manipulation techniques nowadays allow for precise
control of the geometry of the structure [21–29]. In particular, for nanoparticle assemblies,
the width of the gap between adjacent nanoparticles can be brought below one nanometer so
that electron tunneling across the junction becomes possible. Thus, plasmonic devices progres-
sively face a quantum regime which represents a significant challenge for current theoretical
approaches. Indeed, most of the descriptions of the optical response of metallic nanosystems
so far are based on the solution of the classical Maxwell equations where the nanoparticles are
modeled with sharp surfaces and the quantum nature of electrons forming the screening charge
is neglected. Effects such as the experimentally observed appearance of the charge transfer
plasmon for conductively coupled particles prior to direct contact [28, 29], or optical rectifica-
tion [23, 30] cannot be addressed within a classical framework. As shown in recent quantum
mechanical calculations [28, 31–37] the main ingredients missing in classical models are the
spill out of conduction electrons outside the nanoparticle surfaces, and the finite spatial profile
of the plasmon-induced screening charge. The use of nonlocal dielectric functions [2,35,38–46]
can somehow account for the latter effect, introducing a smooth variation of the electron density
rather than one infinitely sharp, as assumed in the classical local approach. However, the spill
out of electrons outside the nanoparticle surfaces and the associated tunneling across narrow
interparticle junctions requires a special treatment that fully accounts for quantum effects.

In this respect, the data available on the coupled nanoparticle dimer are quite revealing. A
dimer is a prototypical system for plasmonic nanoparticle coupling, which has been extensively
studied [4,47–49]. Theoretical studies based on the solution of the classical Maxwell equations
predict a discontinuous transition from the capacitively to conductively coupled particles. For
vanishing junction width, the fields in the junction diverge and the plasmon modes experience
diverging red shifts as a result of the interaction between the high charge densities induced at
the opposite sides of the junction [3–8, 47–49]. The charge transfer plasmon appears abruptly
after the conductive contact [48,50]. In an attempt to raise this nonphysical result, nonlocal cal-
culations based on the hydrodynamic model (NLHD) [2,38,39,43–45] have shown that because
of the finite spatial profile of the plasmon-induced screening charge, the fields in the junction
stay finite albeit large. The number of plasmon resonances and their frequency shift is much
reduced compared to local classical predictions. On the other hand, it follows from the quantum
treatments [28,31–33,35–37] that for narrow junctions, electron tunneling can short circuit the
junction and quench the plasmon-induced field enhancement. The nanoparticles thus appear
conductively connected prior to direct contact, and the transition between the non-touching and
conductive contact regimes is continuous. In particular, the charge transfer plasmon associated
with interparticle charge transfer [51–57] progressively emerges in the optical response of the
system, as has been fully confirmed in recent experiments [28, 29]. These quantum effects can
be reproduced with the Quantum Corrected Model (QCM) [33] that treats the junction between
the nanoparticles as an effective medium mimicking quantum effects within the classical local
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Maxwell theory [28, 29].
While quantum calculations provide an a priori exact answer to the problem of the optical

response of a large amount of interacting electrons, they are extremely heavy numerically, so
that to date their application has been limited to rather small coupled plasmonic systems. It
is thus of considerable interest to have bench mark quantum results for a plasmonic dimer as
large as possible allowing a detailed comparison with the macroscopic theory derived from
Maxwell’s equations. This would provide the assessment of the role of quantum mechanical
effects and of the possibility to account for these effects within classical theory. In this article,
which concerns the optical response of a strongly coupled metallic nanowire dimer, we offer
such a comparison between full quantum and classical calculations of the optical response. We
show that the quantum mechanical results can be quantitatively reproduced with simple models
allowing a local classical description of quantum mechanical effects such as electron tunneling
across narrow plasmonic gaps and dynamical screening.

2. Model and computational aspects

The advantage of the choice of the plasmonic nanowire dimer for the bench mark calculations
is that this system is well characterized both from the experimental and theoretical point of
view [3, 4]. Full numerical studies based on the solution of the classical Maxwell’s equations
have been performed [24,50,58–62], as well as semi-analytical studies based on transformation
optics are available [43, 44, 63]. The system has also been investigated using non-local hydro-
dynamic descriptions [35, 43–46], and recently the full quantum studies using time dependent
density functional theory (TDDFT) have been reported [35–37].

The present work continues our earlier study [36] of the energetics and scaling properties
of the plasmon resonances in the coupled nanowire dimer illustrated in Fig. 1. Two identical
nanowires in vacuum are separated by a junction of variable separation width S, as measured be-
tween their surfaces. The nanowires are infinitely extended along the z-axis and each nanowire
has a circular cross-section of diameter D. The incident light is polarized along the inter-particle
axis x.

We focus here on the detailed comparison between full quantum and classical descriptions
of the optical response. The extinction cross-section and near field enhancement are calculated
within TDDFT, classical Drude, NLHD, and QCM approaches for variable width of the junction
S. The range of considered S extends from large separations down to overlapping nanowires
(negative S) where conductive contact is established. This allows an analysis of the progressive
emergence of the interparticle tunneling, and of its role in the evolution of the plasmonic modes
of the system upon reduction of the width of the junction between the nanowires.

For the nanowires we adopt the cylindrical jellium model (JM). Despite its simplicity, this
model captures the collective plasmonic modes of the conduction electrons and has demon-
strated its predictive power for quantum effects in nanoparticle dimers [28,29]. While obviously
not providing chemical accuracy, the JM is well suited for the description of nonlocal effects
derived from the conduction electrons such as dynamical screening of the external field and
tunneling as we discuss below. Along with the possibility to treat relatively large systems on a
full quantum level, the JM model allows for direct comparison between results from quantum
and classical approaches. Indeed, the physics underlying the Drude model for the metal re-
sponse as well as the refinement of the Drude model introduced by the nonlocal hydrodynamic
model corresponds best to free electron metals. For noble metals, such as silver and gold, the
contribution of the localised d-electrons to the screening would obscure the comparison. The
high symmetry of the nanowire dimer with its translational invariance along the z-axis allows
us to address at the full quantum level cylinders with diameters D = 6.2 nm, and D = 9.8 nm
showing fully developed plasmonic modes. To our knowledge this is the largest size of a plas-
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Fig. 1. Sketch of the geometry of the nanowire dimer. Two identical cylindrical nanowires
are infinite along the z-axis and have a diameter D of the circular cross-section in the (x,y)-
plane. The nanowires are separated by a junction of separation width S. The incident radi-
ation is linearly polarised with the electric field along the x-axis.

monic dimer described so far within a quantum framework. As a matter of comparison, similar
TDDFT studies of jellium nanowire dimers have been performed with D = 0.5 nm [37], and
D = 4 nm [35] nanowires.

Within the JM, the ionic cores of the nanowire atoms are represented by a uniform back-
ground charge density n0 =

(
4π r3

s /3
)−1. The Wigner-Seitz radius rs is set equal to 4 a0 (Bohr

radius a0=0.053 nm) corresponding to Na metal. Sodium is a prototype system for which the
JM performs particularly well in the description of the finite size non-local effects on optical
properties [64]. It should be emphasized that the qualitative conclusions drawn in this work are
robust and independent of the particular choice of density parameter. Each nanowire is charac-
terised by the number of electrons Ne per unit length. From the charge neutrality the nanowire
diameter is then D = 2

√
4Ner3

s /3. The circle of diameter D provides the position of the jellium
edge separating uniform positive background from the vacuum. The jellium edge is located at
half a lattice constant a (a = 4.23 Å for Na) in front of the last atomic plane at the surface. We
have performed calculations for Ne = 40 and Ne = 100 with D40 = 6.2 nm and D100 = 9.8 nm
respectively. The Fermi energy in both cases is at 2.9 eV below the vacuum level.

The quantum calculations of the absorption cross-section are based on the Kohn-Sham
(KS) scheme of the TDDFT [65]. We use the adiabatic local density approximation with the
exchange-correlation functional of Gunnarson and Lundqvist [66]. Retardation effects can be
neglected for the present polarization due to the small transverse extent of the system. A detailed
description of the present numerical implementation can be found in [32]. Here we only dis-
cuss specific aspects linked with the present work on interacting nanowires. In brief, the Kohn-
Sham orbitals of the ground state of the interacting dimer ψ j(x,y) are obtained from those
of non-interacting distant cylinders by adiabatically reducing the separation S. The ψ j(x,y)-
orbitals are discretized on the equidistant mesh in cartesian coordinates as well as the solutions
Ψ j(x,y, t) of the time-dependent Kohn-Sham equations:

i
∂Ψ j(x,y, t)

∂ t
=

(
− ∆

2m
+Veff(x,y, t; [n])

)
Ψ j(x,y, t), (1)
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which are solved with initial conditions Ψ j(x,y, t = 0) = ψ j(x,y). In Eq. (1) m is the free
electron mass, and ∆ = ∂ 2/∂x2 +∂ 2/∂y2. The effective potential of the system Veff depends on
the electron density n(x,y, t) given by:

n(x,y, t) = 2 ∑
j∈occ.

χ j
∣∣Ψ j(x,y, t)

∣∣2 . (2)

The sum runs over the occupied states, the factor 2 is the spin degeneracy, and χ j is the number
of electronic states associated with the z-motion along the nanowire.

χ j =
1
π

√
2(EF −E j) , (3)

where EF is the Fermi energy, and E j is the energy of the ψ j(x,y) orbital.
The absorption cross-section per unit length is calculated from the electron density dynam-

ics induced by an impulsive perturbation as: σabs(ω) = 4πω

c Im{α(ω)}, with α(ω) being the
dipolar polarizability (per unit length) of the system, and c the speed of light in vacuum. Note
that because of the small transverse size of the dimer, the absorption cross-section calculated
with TDDFT can be considered equal to the extinction cross-section. In order to analyse the
temporal evolution of the induced charges, currents, and fields resulting from the excitation of
specific plasmonic resonances, we perform the TDDFT calculations for the nanowire dimer
subjected to an incident x-polarized laser pulse. The electric field of the pulse is given by
EL(t) = E0 exp

[
−(t−T )2/τ2

]
cosΩt, where we use τ = 0.2T . The frequency of the pulse Ω

is set resonant with the studied plasmonic mode. The duration of the pulse τ (typically 10 fs)
allows for the narrow enough spectral width. The amplitude E0 is sufficiently small for the sys-
tem to be in the linear response regime [32]. The snapshots of the induced densities, currents,
and fields presented in this paper are extracted at t ∼ T/2.

The classical electromagnetic calculations of the absorption cross-section have been per-
formed with the Comsol Multiphysics package, (version 4.2a, www.comsol.com). Local Drude,
nonlocal hydrodynamic (NLHD), and quantum corrected model (QCM) descriptions of the di-
electric properties of the system were used. Within the local classical approach the dielectric
constant of the nanowires is described with the Drude model, which is a good approximation
for a free electron metal such as sodium considered in this work.

ε(ω) = 1−
ω2

p

ω(ω + iγ)
, (4)

where ωp is the bulk plasma frequency given by ωp =
√

4πn0/m = 5.89 eV, and γ (typically
of the order of 0.2 eV) accounts for the damping.

Within the NLHD description, the transverse component of the permittivity tensor is given
by Eq. (4), and the longitudinal component acquires the wave vector k dependence:

εL(ω) = 1−
ω2

p

ω(ω + iγ)−β 2k2 . (5)

The β parameter is given by β =
√

3/5vF [2,38,39,43–45]. In the present case, the Fermi veloc-
ity of conduction electrons is vF = 3

√
3π2n0/m = 1.05×106 m/s, resulting in β = 0.81×106

m/s. With the transverse and longitudinal components of the permittivity tensor as described
above, the absorption cross-section is calculated with the numerical approach as recently im-
plemented by G. Toscano and coworkers within the Comsol Multiphysics package [45].

The recently developed QCM [33] allows for the incorporation of the tunneling effect into
the classical Maxwell’s equations. We use the local approach where the nanowires are described
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with the Drude model given by Eq. (4), and the tunneling across the vacuum gap between the
nanowires is accounted for by filling the junction with an effective inhomogeneous dielectric
medium. This effective medium is described with the Drude model, similar to Eq. (4), as:

εeff(x,y,S,ω) = 1−
ω2

p

ω(ω + iγeff(x,y,S))
. (6)

The effective damping γeff models the transition from resistive (large S) to conductive (small S)
character of the junction. Thus, it acquires a dependence on the junction width S and on the x-,
and y-coordinate. For S→ ∞ the effective damping γeff → ∞, and the QCM becomes exactly
equivalent to the local classical approach. No tunneling is possible and the vacuum gap limit is
retrieved with εeff(x,y,S,ω) = 1. For the overlapping geometry S < 0 the junction is metallic
and γeff(x,y,S) = γ within the corresponding (x,y) range. In this work we use exactly the same
parametrization of εeff as in the earlier publication, where the QCM is introduced and described
in great detail [33].

3. Results and discussion

3.1. Individual nanowire

We first characterize the linear optical response of an individual nanowire. In Fig. 2 we show
the extinction coefficient defined as σ/D where σ is the extinction cross section per unit length
calculated with the full quantum TDDFT method and with the classical local Drude and NLHD
approaches. The classical local approach with the Drude model given by Eq. (4) for the per-
mittivity of the nanowire leads to the dipole resonance located at a surface plasmon frequency
ωsp =ωp/

√
2= 4.16 eV irrespectively of the nanowire diameter. We find that the absolute value

of σ and the width of the resonance as calculated with TDDFT is best reproduced with damp-
ing parameter γ = 0.2 eV for the D = 6.2 nm nanowire, and γ = 0.16 eV for the D = 9.8 nm
nanowire. These parameters will be used in all the classical calculations shown in this paper.
The smaller damping obtained for the larger nanowire indicates a smaller decay due to sur-
face scattering. Indeed, the surface scattering contribution to the damping can be expressed as
γS = AvF/Rcl [67], where Rcl = D/2 is the cylinder radius, and A is the system-dependent pa-
rameter. The calculated change of the damping is consistent with A = 0.5 in agreement with
available experimental and theoretical results for alkali clusters [68, 69].

The dipole resonance calculated with TDDFT is red shifted from the classical ωsp value but
approaches ωsp for increasing diameter of the nanowire. For the D = 6.2 nm nanowire, the
resonance is at ωres = 4.027 eV, and it is at ωres = 4.072 eV for the D = 9.8 nm nanowire.
Thus, the present results are in agreement with TDDFT studies of jellium nanowires [35, 36],
and show the same trends as those studied in detail for spherical alkali metal clusters [64, 70–
72]. The nonlocal effect at the origin of the red shift of the plasmon resonance is linked with
the dynamical screening of the fields produced by conduction electrons. The dipole resonance
frequency ωres of the spherical jellium cluster of radius Rcl obtained within TDDFT can be
related to the classical resonance ωsp from [71–74]:

ωres/ωsp = 1−Re[d(ωsp)]/Rcl +O(R−2
cl ). (7)

The real part Re[d(ω)] of the Feibelman’s parameter d(ω) gives the position of the centroid
of the induced charge density [75–78] at the interface and determines finite size effects in metal
clusters as well as the dispersion of surface plasmons at flat surfaces. When measured from the
jellium edge, Re[d(ωsp)] is positive for alkali metals, i.e. the screening charge is shifted into the
vacuum because of the spill out of the conduction electrons outside the metal. Following the
derivation in [74], Eq. (7) holds for the jellium cylinder and can thus be applied to analyse the
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D = 6.2 nm D = 9.8 nm

Fig. 2. Extinction coefficient for the single jellium nanowire of diameter D = 6.2 nm (left)
and D = 9.8 nm (right). Results are shown as function of the frequency ω of the incident
radiation. The incoming field is the x-polarised plane wave. The TDDFT calculations are
compared with results of the classical electromagnetic calculations using local (Drude) and
NLHD. See the legend for definition of the different symbols used in the Fig.

present TDDFT results. From the calculated resonance frequency we obtain Re[d(ωsp)] = 1 Å in
agreement with earlier calculations and experiments [72, 75, 76]. Importantly, for noble metals
such as Au and Ag, finite size effects and surface screening lead to a blue shift of the dipole
plasmon resonance [29,78,79]. The difference between alkali and noble metals can be explained
as due to the contribution of the localised d-electrons to the total screening in noble metals
[74, 77, 79–81]. When the d-electron contribution is accounted for, Re[d(ω)] turns negative
indicating that the screening charge is predominantly induced inside the metal [74, 79, 80].

For the small diameter nanowire D= 6.2 nm, the finite size effects manifest themselves in the
TDDFT calculations not only in the form of red shifts and line width changes, but also as clearly
observable features in the frequency dependent extinction coefficient. These features arise from
the strong coupling of collective plasmon- and single electron-hole excitations [35,82,83]. For
large diameter nanowires, finite size effects become smaller and the plasmon resonance is much
better defined. The TDDFT results also show a shallow resonance in the extinction coefficient
at ωmp = 4.6 eV associated with a multipole plasmon (MP) [84–86]. For the jellium nanowire
this mode is discussed in great detail in [35]. The resonant frequency of the MP obtained here
with TDDFT is in good agreement with experimental data [84, 86]. The density oscillations of
the MP proceed within the layer of the spilled out charge and obviously can not be captured
within the local classical theory.

Finally, the green dotted lines in Fig. 2 show the extinction coefficient calculated with the
NLHD model [45]. In contrast to the TDDFT result and experimental data on alkali clusters
[71, 72], the NLHD model predicts a blue shift of the dipole plasmon frequency from the ωsp
value. The reason for this is that independently of the metal, the plasmon-induced charges in
NLHD are localized within a layer of thickness β/ωp below the metal surface [35,36,44]. Thus,
the effective Re[dNLHD(ω)] is always negative leading to the blue shift of the localised plasmon
[77] in contradiction with the spill out effect known for alkali metals. It is worth mentioning
that the negative Re[dNLHD(ω)] inherent to the NLHD description of conduction electrons and
so the blue shift of the localised plasmon qualitatively coincides with experimental data of
noble metal clusters. However, the agreement in this case is fortuitous as it is not based on solid
physical grounds. Indeed, the NLHD ascribes the effect to conduction electrons only, while
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Fig. 3. Waterfall plot of the extinction cross section per length for a nanowire dimer in vac-
uum. The dimer consists of two Na nanowires of diameter D = 6.2 nm (left) and D = 9.8
nm (right) separated by a junction of variable width S. The incoming field is an x-polarised
plane wave. The centers of the wires are at x =±(D+S)/2), and S is negative for overlap-
ping cylinders. S =−D would correspond to the limit of a single cylinder. TDDFT results
are given as function of the frequency ω of the incident radiation for different separations
S between the nanowires. For clarity a vertical shift proportional to the separation distance
is introduced for each absorption spectrum. The red curves are used each 5 a0 ≈ 2.65 Å of
S-change. These are labeled with corresponding S-values each 10 a0 ≈ 5.3 Å of S-change.
The plasmonic modes responsible for the peaks in the absorption cross-section are labelled.
These are: Bonding Dipole Plasmon (DP), Bonding Quadrupole Plasmon (QP), high order
hybridised mode close to ωsp (HM), the lowest (dipole) Charge Transfer Plasmon (C1), and
the higher energy Charge Transfer Plasmon (C2). On the right panel the blue dotted curve
at S = 26.5 Å shows results of the classical Drude calculation with adjusted parameters and
the green dotted curve represents results of the NLHD model. Further details are give in
the main text.

full quantum calculations show that the blue shift of the plasmon resonance in noble metals
is due to the contribution of the localised d-electrons to the dynamical screening of external
fields [74–77, 79–81, 84].

3.2. Coupled nanowires

In Fig. 3 we show the TDDFT results for the response of a pair of identical parallel nanowires
of the D = 6.2 nm and D = 9.8 nm diameters. The waterfall plots of the extinction cross section
are presented as a function of the frequency of the incident radiation for different widths S of
the junction. The calculations have been performed for both positive and negative S, where the
latter means a geometrical overlap of the nanowires. The S = 0 case corresponds to the kissing
cylinders [43, 44] with touching jellium edges where the distance between the topmost atomic
planes equals to the interlayer spacing, i.e. a continuous solid is formed at the contact point.
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For large positive separations the non-local effects including electron tunneling across the
junction are small, and the TDDFT results agree with earlier classical calculations [44, 50, 58,
59]. At S = 26.5 Å the absorption spectrum is dominated by two resonant structures. First, the
bonding dipole plasmon (DP) indicated with the blue dotted line in Fig. 3 is formed from the
hybridization of the dipole plasmon modes of the individual nanowires. The second resonance
indicated with a black dotted line is formed by degenerated higher order modes (HM). This
resonance is slightly red shifted with respect to the surface plasmon frequency ωsp. At S→ ∞,
the DP merges into the HM mode and the spectrum evolves into that of the individual nanowire.
As the junction width S decreases, the DP shifts to lower frequencies because of the attractive
interaction between the charges of opposite sign across the junction. Along with the red shift of
the DP, the quadrupolar plasmon (QP indicated in Fig. 3 with an orange dotted line) splits from
the degenerate HM mode, and shows a red shift with decreasing S.

Despite the overall similarity of the results obtained with smaller and larger diameter
nanowires there are some remarkable differences primarily caused by the finite size effect.
The resonances are much better defined for the larger D = 9.8 nm nanowire. In this case the
width of the resonances is smaller and the spectral features due to the interaction between the
plasmon and electron-hole pair excitations disappear. For D = 6.2 nm nanowire, this interac-
tion can even split the single plasmon peak into several spectral lines. The red shift of the DP
and QP modes with decreasing S is also more pronounced for the D = 9.8 nm nanowire dimer.
This is because of the scale (S/D) invariance of the plasmonic properties of nanostructures in
the quasistatic limit. In contrast to the results presented in [35] and [37], we do not observe
any noticeable contribution from the bulk plasmons, probably because of the larger nanowire
diameters analysed in the present study.

For junction widths below ∼ 7 Å, electron tunneling across the junction becomes important.
The results obtained here for the nanowire dimer agree with those reported earlier [35,36], and
have much in common with the quantum results for touching nanospheres [31–33], and with
recent experimental data [28, 29]. The DP resonance progressively disappears and the charge
transfer plasmon mode (C1) emerges prior to the direct contact between the nanoparticles. C1
appears as a broad shallow low-frequency peak at positive S ' 1.5 Å, and evolves into a well–
defined resonance at S < 0. Similarly, because of electron tunneling, the QP mode continuously
evolves into a higher order charge transfer plasmon mode C2 before direct contact between the
nanowires. Thus, already at positive S the nanowires are conductively connected showing char-
acteristic charge transfer plasmon modes [48,51–53,55,56]. For a dimer with a well established
conductive contact at negative S, the C1 and C2 modes experience a blue shift with increasing
overlap as also found in classical calculations [48, 63].

To obtain further insights into the effect of electron tunneling across the junction we have
calculated the electron density dynamics in the plasmonic dimer subjected to an incident x-
polarized laser pulse resonant with the lowest (DP or C1) plasmonic modes. The intensity of
the pulse is slowly raised and maintained sufficiently small that nonlinear effects [32] can be
neglected. Figs. 4(a)-4(j) show snapshots of the induced charge density ∆n, the x-component
of the current density Jx, and the electric field Ex for different junction widths S. Results are
presented for the case of D = 9.8 nm nanowires. The induced densities are shown at the instant
of time corresponding to the maximum dipole moment of the dimer. The currents and fields are
shown at the instant of time corresponding to the maximum induced field in the junction.

For large separation S = 7.95 Å the maximum induced dipole corresponds to the in–phase
dipole polarisation of each nanocylinder as expected for the DP mode. High charge densi-
ties are induced at the surfaces facing the junction resulting in large electric field enhancement
|E0/Ein| ∼ 80. Here, Ein is the amplitude of the incident field and E0 is the amplitude of the field
measured at the x-axis in the middle of the junction. The structure of the induced charges and
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Fig. 4. Panels (a)-(k) Detailed analysis of the plasmon dynamics in the D = 9.8 nm
nanowire dimer system. The incident x-polarised laser pulse is at resonance with the low-
est (DP at S > 0 or C1 at S ≤ 0) plasmon mode. Panels (a)-(j) present snapshots of the
induced charge density ∆n, current density Jx, and electric field Ex for different junction
widths S as indicated to the left of each row. The induced currents and fields are measured
along the interparticle x-axis. Positive (negative) values correspond to the red (blue) color
code. The induced densities are shown at the instant of time corresponding to the maximum
dipole moment of the dimer. The induced currents and fields are shown at the instants of
time when the induced fields in the junction reach the maximum. Panel (k): Conductivity
analysis. The current Jx measured on the x-axis in the middle of the junction is plotted as
a function of the normalized electric field at the same position. Different colors correspond
to different junction widths S as labeled in the insert.

fields is similar to previous classical results for coupled cylinders [44, 50, 58, 59] and it is also
similar to the case of metal sphere dimers [48]. The probability of tunneling between nanowires
is negligible and no current flows across the junction. Note that the maximum dipole polarisa-
tion corresponds to the instant of time when the maximum charge separation has occurred and
the currents inside nanoparticles are minimal. For the reduced junction width S = 2.65 Å, basi-
cally the same profiles for induced densities and fields are obtained. Therefore, we do not show
Ex but rather focus on the induced current. The junction width is now sufficiently small to allow
weak electron tunneling between the nanoparticles. The large optical field in the junction acts
as a large BIAS in the scanning tunneling microscope causing tunneling current [33]. Thus, the
junction shows a resistive character with the maximum current between nanowires reached at
the maximum field and consequently at the maximum induced dipole.

Further reduction of the junction width S increases the tunneling probability and short circuits
the junction. When conductive contact is formed, the DP mode disappears and the C1 mode
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emerges in the absorption spectrum. Figs. 4(e) and 4(h) show the induced charges for S = 0 and
S =−2.65 Å, respectively. The results are very similar, i.e. already for the S = 0 case of kissing
cylinders the charge transfer plasmon mode is well developed (see also Fig. 3, and Fig. 5).
The maximum dipole moment of the dimer now corresponds to oppositely charged nanowires.
Maximum currents and fields [Figs. 4(f), 4(g), 4(i) and 4(j)] are reached when the total dipole
moment of the system is minimum (compare with the S = 2.65 Å case). Precisely, it is this
large current flowing trough the entire system that builds the dipole polarisation with opposite
charges at the left and right nanowires consistent with the resonant excitation of the C1 mode.
The field enhancement is about 30 for both S = 0 and S = −2.65 Å separations. However,
the fields are screened at the center of the junction, and the maximum fields are located at its
sides [35]. This is similar to the classical result for overlapping cylinders [63].

Figure 4(k) provides further analysis of the evolution from resistive to conductive character
of the junction with decreasing S. The current Jx(t) on the x-axis at the middle of the junction
between the nanowires is shown as a function of the field Ex(t) at the same location. At large
separations, the linear relation Jx(t) = gEx(t) between the current and the local field shows that
the junction is resistive. The increase of the slope g (smaller resistance) when S is reduced from
S = 5.3 Å to S = 2.65 Å is because of the increase of the tunneling probability. For S = 1.06 Å
and S = 0 Å the Ex(t) and Jx(t) acquire a relative phase. Since the field envelope of the incident
pulse grows in time for the time interval shown in Fig. 4(k), the anti–clock–wise rotation of the
Jx(t)[Ex(t)] curve implies that the current is delayed with respect to the field. The junction thus
becomes conductive which is particularly apparent for S = 0.

The TDDFT results show that for small junction widths the optical response is determined
by electron tunneling which would be absent in a standard classical description. For a large
width of the junction the tunneling is negligible, however the effect of nonlocal screening dis-
cussed for the single cylinder should a priori influence the optical response of the dimer. The
question is then how do quantum results compare to classical Drude, NLHD, and QCM models
for different S- ranges corresponding to conductively coupled or separated nanowires. The re-
maining part of the paper is devoted to a comparison of the quantum and classical results with
a particular focus on the possibility to account for quantum effects within a classical approach.

3.3. Quantum vs classical approaches

Figure 5 shows the comparison between present TDDFT, QCM, local Drude and NLHD results
for the optical response of the dimer system as a function of the junction width S. Since for the
individual nanowire TDDFT gives a red shift of the dipole plasmon resonance with respect to
the classical ωsp position, while NLHD leads to a blue shift (Fig. 2), we adjust the ωp parameter
of the classical models to obtain an agreement with TDDFT at large separation S = 26.5 Å
(see Fig. 3). This allows us to remove the differences due to the different descriptions of the
isolated nanowire, and thus focus exclusively on the effects of coupling. Specifically, for the
D = 9.8 nm nanowire dimer we have used a plasma frequency ωp = 5.74 eV in the QCM and
classical Drude calculations (5.7 eV for the D = 6.2 nm nanowire dimer), and ωp = 5.5 eV in
the NLHD model. The relatively large correction to the nominal value of 5.89 eV arises in the
NLHD case because of the blue shift inherent to this treatment. Adjustment of the nonlocality
parameter β is also possible, but then the NLHD model loses its predictive power. Indeed, as
far as the adjustment is limited to the ωp parameter, the finite size effects and also the need for
the ωp correction disappears with increasing size of the nanoparticles as follows from Eq. (7).

The main features of the quantum results have been discussed in connection with Fig. 3 so
here we will focus on the comparison between different model approaches. As follows from
Fig. 5, the QCM does an excellent job in describing the TDDFT results over the entire range of
separations S addressed here. The important features such as the number of resonances, their
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Fig. 5. Extinction cross section per length of a nanowire dimer as obtained with the full
TDDFT calculations, with the quantum corrected model (QCM), with classical Drude elec-
tromagnetic calculations (Drude), and with calculations based on the nonlocal hydrody-
namic model (NLHD). The dimer consists of two D = 9.8 nm Na nanowires in vacuum.
The incoming plane wave is polarized along the dimer axis x. Upper panels: Waterfall plots
of the dipole absorption cross-section as a function of the width of the junction S. Red
curves correspond to S = −5.3 Å, −2.65 Å, 0 Å, 2.65 Å, 5.3 Å, 7.95 Å, and 10.6 Å. For
further details see the caption of Fig. 3. Lower panels: Color plots of the local field en-
hancement at the center of the junction for positive separations. Results are shown as a
function of the frequency ω of the incident radiation and junction width S. The color code
is displayed at the bottom of the corresponding panels. In the Drude case, because of the di-
vergence of the fields, the color scale has been saturated (enhancement > 200) for junction
widths below 1.25 Å.

distance dependence and the transition from the separated to conductively coupled regime are
well reproduced. In particular, in sheer contrast with local classical theories [44, 48, 50, 58, 59]
the change of the spectrum at the moment of contact is progressive. Large charges of opposite
sign accumulated at the nanowire surfaces across the junction in the classical model are neu-
tralised by the tunneling current. Thus, the fields at the middle of the junction are quenched in
TDDFT and QCM, not diverging with decreasing junction width as in local classical calcula-
tions. Besides qualitative aspects, we find that the TDDFT and QCM agree semi-quantitatively
as is further stressed in Fig. 6. This Fig. zooms into the most delicate interaction regime corre-
sponding to the transition from the separate to overlapping nanowires.

By construction, the QCM is equivalent to the classical local Drude description for large
positive S where tunneling is negligible. The good agreement with TDDFT data suggests that
the pure local classical description is reasonable for large S. At the same time the local classical
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Fig. 6. Detailed comparison between TDDFT and QCM calculations. The extinction cross-
section per length of the D = 9.8 nm Na nanowire dimer is shown for small separations S.
This S-range corresponds to the strong tunneling regime and the transition from separated
to conductively coupled nanowires. The frequency range is zoomed at the transition from
the bonding dipole (DP) to the lowest charge transfer (C1) plasmon. Waterfall plots of
the optical absorption cross-section are shown for the junction widths changing from S =
−2.65 Å (lowest blue line) to S = 4.77 Å (upper black line) in steps of 1 a0 (0.53 Å). For
further details see the caption of Fig. 3.

theory fails at small S ∼ 5 Å, i.e. typically at two lattice constants between surface atomic
planes that define the junction [29]. The accumulation of charges at the opposite sides of the
junction in the classical description leads to exaggerated coupling between nanowires resulting
in diverging fields and too large number of resonances. Similarly, for negative S, the sharp
edges of the junction, which are otherwise smeared out by the electron tunneling also result in
too many hybridized resonances [33].

Overall, for large junction width S, the NLHD description does not perform better than the
local Drude approach. The comparison with the TDDFT result is even worse for NLHD regard-
ing the relative intensities of the modes (in particular HM). This lack of accuracy of the NLHD
treatment has been already pointed out by Stella et al [35]. For small S, the NLHD description
avoids the S = 0 divergence problem [43,44] inherent to the local Drude model. The number of
resonances remains limited and the fields in the middle of the junction stay finite albeit too large
as compared to TDDFT. These results for the narrow junction can be easily understood thanks
to the elegant transformation optics approach developed for interacting cylinders by Fernández-
Domı́nguez and coworkers [44]. At positive S an analytic solution is found which depends on
the effective junction width S̃ given by S̃ ' S+2δ , where δ ' β/ωp (1 Å in the present case).
The renormalisation of the width of the junction is because in the NLHD approach the plasmon
induced screening charges are located inside the geometrical surface of the nanowires. Indeed,
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the induced charges across the junction determine the coupling between plasmonic modes lo-
calised on each nanowire and thus the energies of the hybridized plasmonic modes of the entire
system as well as the plasmon induced field enhancement. As discussed above for the isolated
cylinder, in terms of the dynamical screening theory, δ can be associated with an effective
Feibelman parameter δ = −Re[dNLHD(ω)]. Thus, even for S = 0, the induced charges at the
opposite sides of the junction are actually separated by a finite distance 2δ so that the interac-
tion between them does not diverge. However, the improvement as compared to the local Drude
approach is only superficial because the model does not reflect the actual physical situation in
the junction. From the analysis of the TDDFT result, the tunneling current through the narrow
junction neutralises the screening charges at its opposite sides, thus removing divergences, and
determining the optical response of the dimer. The tunneling effect is not accounted for in the
NLHD approach. As a consequence the NLHD treatment maintains finite screening charges at
S→ 0, and therefore fails to reproduce the quenching of the field enhancement at the middle
of the junction for small positive S. The NLHD also fails to smoothen out the transition from
separated to overlapping regimes and gives an abrupt nonphysical transition between both situ-
ations. The number of modes is smaller than in the classical Drude description, but still larger
than what is obtained in TDDFT or QCM calculations.

Our final remark concerns the QP plasmon that evolves into the C2 charge transfer mode for
negative S. The associated resonances are much less pronounced in the TDDFT cross section as
compared to model approaches. One possible reason is the finite size effect: the system size is
not large enough for the corresponding density oscillations to be completely formed. However,
the similarity between the TDDFT results for D = 6.2 nm and D = 9.8 nm nanowire dimers as
shown in Fig. 3 suggests that quantum size effects play only a minor role. We thus tentatively
attribute the weaker high order resonances as obtained in TDDFT to the nonlocal effect of the
smearing of the induced surface charge densities. This a priori reduces the coupling between
the dipolar and higher order modes and so the intensity of the QP resonance.

3.4. Dynamic screening

From the results presented in the previous subsection, we can conclude that tunneling deter-
mines the optical properties of the system at small junction widths. For large widths S > 7 Å
tunneling is absent and nonlocal dynamic screening influences the optical properties. While all
calculations agree on the overall red shift of the modes with decreasing S because of the interac-
tion between the screening charges across the junction, the detailed analysis presented in Fig. 7
shows systematic differences between the different approaches. For a fixed S, similar to the case
of the individual nanowire, the frequency of the DP obtained with TDDFT appears red shifted
with respect to the classical prediction given by the Drude model. The NLHD gives a blue
shifted DP. This difference is increasing with decreasing S. Since we have applied a frequency
correction so that the plasmon modes for infinite separations are the same, it is clear that the
interaction between the screening charges across the junction is underestimated in the classical
Drude calculations and this underestimate is even more pronounced in the NLHD treatment.

Figure 7 presents the analysis of the role of the dynamic screening in determining the fre-
quency of the bonding dipole plasmon. The nature of the dynamic screening effect is illustrated
in Fig. 7(a). The time dependent charge density ∆n induced at the surface of the left nanowire
by the x-polarised plane wave is shown as a function of the x-coordinate along the axis of the
D = 9.8 nm dimer. The junction width is S = 13.25 Å, and x = 0 corresponds to the center of
the junction. For the right cylinder ∆n is antisymmetric with respect to x = 0. The vertical solid
line at x = −6.625 Å marks the jellium edge of the metallic cylinder and the metal extends in
negative x-direction. Different curves correspond to instants of time spanning 1/2 optical pe-
riod starting from t0 (black line). The frequency of the incoming radiation ω = 3.16 eV is in
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Fig. 7. Dynamic screening. (a) Time evolution of the density ∆n induced by the ω = 3.16 eV
laser pulse at the surface of the left cylinder facing the S = 13.25 Å wide junction. The data
is shown as a function of the x-coordinate along the dimer axis for the D = 9.8 nm dimer.
x = 0 corresponds to the center of the junction. Different curves correspond to instants
of time spanning 1/2 optical period starting from t0. For further details see the text. (b)
Schematic representation of the location of the plasmon induced screening charges in the
junction. Within the local classical approach the screening charges are at the geometrical
surfaces of the cylinders (here equivalent to the jellium edges) separated by the junction of
width S. Within the TDDFT, the centroids of the screening charges (red areas) are located
at Re[d(ω)] in front of the jellium edges so that the effective separation is S−2Re[d(ω)]. In
the NLHD approach the centroids of the screening charges (blue areas) are located at a dis-
tance δ below the geometrical surface so that the effective separation is S+2δ . (c) Energy
of the dipole plasmon resonance as function of the junction width S. Dots: TDDFT results
obtained for the D = 9.8 nm nanowire dimer. Dashed red (gray) lines show results of clas-
sical Drude (NLHD) calculations where the separation S is measured between the jellium
edges. The solid red line shows the results of the classical Drude calculations performed
for an effective separation S− 2Re[d(ω)]. The dotted gray line shows the results of the
NLHD calculations performed for an effective separation S−2Re[d(ω)]−2δ . (d) Energy
of the dipole plasmon resonance as function of the junction width S. Dots: TDDFT results
obtained for nanowire dimers formed by D = 6.2 nm and D = 9.8 nm nanowires (see the
legend). Solid and dashed lines show results of classical Drude calculations for D = 6.2 nm
(blue) and D = 9.8 nm (red) dimers. Dashed lines: calculations performed for the junc-
tion width S measured between the jellium edges. Solid lines: calculations performed for a
corrected effective separation S−2Re[d(ω)].
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resonance with the DP. As follows from the Fig., not only the induced density strongly spills
out into the vacuum part of the junction, but its spatial profile shows a pronounced time de-
pendence. It has been shown that in this case the screening is characterized by the centroid
of the induced charge density d(ω). In particular, Re[d(ω)] shows the average position of the
induced charge with respect to the jellium edge [74–77, 80, 84]. For the density parameter of
Na (rs = 4 a0), Re[d(ω)]≈ 0.9 Å in the frequency range of interest [76], which means that the
screening charge is shifted by ≈ 0.9 Å into the vacuum.

The schematic representation of the location of the plasmon induced screening charges in
the junction of width S is shown in Fig. 7(b). Within the local classical approach, the screening
charges are localised at geometrical surfaces of the cylinders separated by S. We recall that we
use the definition of the geometrical surface such that it coincides with the jellium edge. Within
TDDFT, the screening charge is shifted by 0.9 Å into the vacuum and located at ≈ 3 Å outside
the surface atomic plane of the nanoparticle. The separation between the centroids of plasmon
induced screening charge densities across the junction is thus STDDFT = S−2Re[d(ω)]. For the
NLHD approach, with the present choice of the non–locality parameter β , the screening charges
are induced at δ = 1 Å inside the geometrical surface. Thus, within the NLHD approach the
centroids of the screening charges are separated by a larger distance SNLHD = S + 2δ . This
insight provides an explanation for the junction width dependence of the dispersion of the DP
modes shown in Figs. 7(c) and 7(d) for two different nanowire dimers. The effective junction
width is smaller in the TDDFT calculations and larger in the NLHD approach explains the
corresponding red and blue shift of the DP energy with respect to the classical Drude value.

In our previous work we have shown that a physically sound definition of the junction width
can be based on the separation between the centroids of screening charge densities induced
at the facing surfaces across the junction [36]. This provides a universal model–independent
dispersion of the DP energy as follows from the results presented in Figs. 7(c) and 7(d) which
show an excellent agreement between corresponding TDDFT, classical Drude and NLHD cal-
culations: ωTDDFT(S)≈ ωDrude(S−2Re[d(ω)])≈ ωNLHD(S−2Re[d(ω)]−2δ ). For Na metal,
the NLHD approach requires the largest redefinition of the junction width.

Thus, the TDDFT dispersion of the DP can be fully retrieved with local classical calculations.
The main issue here is the size of the junction for which the calculations have to be performed.
Given geometry of our nanostructure, it seems convenient to define the surfaces of the objects
as given by the jellium edges. In this case the width S = 0 of the junction would correspond to
a continuous solid formed at the contact point. On the other hand, classical calculations have to
be performed for the effective junction width given by the actual separation between centroids
of the screening charge. Several remarks are necessary with respect to the universal charac-
ter of the junction width scaling. First, once the curvature radii of the typical nanoplasmonic
structures is provided, the position of the centroid of the screening charge is simply a material
dependent quantity. It does not depend on the geometry therefore it has to be defined only once
for the frequency range of interest using e.g. Eq. (7) and the data on plasmon resonances in
small clusters, or, alternatively the plasmon dispersion on flat metal surfaces [71–77]. Second,
the rescaling of the junction width is only valid for large enough S, where electron tunneling can
be neglected. When electron tunneling is efficient the electron densities of the nanoobjects start
to overlap in the junction, and the centroids of the screening charges at opposite surfaces be-
come ill defined. Third, at present we deliberately limit the discussion to the DP mode. Higher
order modes exhibit a nontrivial nodal structure along the nanowire surface [35,37] which may
alter the simple physical picture proposed above. Further investigations of these effects are in
progress.
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4. Summary and conclusions

In conclusion, we have presented a fully quantum mechanical study of the optical response of
a plasmonic dimer formed by parallel cylindrical Sodium nanowires in vacuum. This system is
also representative of interacting nanorods and is of relevance for SERS, plasmon rulers, and
plasmon transport applications. The translational invariance of this system makes it possible to
apply the time–dependent density functional theory to structures of the largest size attained so
far in quantum calculations.

The free-electron character of the Na valence electrons implies that the material permittivity
can be well described with the Drude model, as well as it is consistent with approximations
behind the hydrodynamic approach to model the nonlocal character of the dielectric function.
Thus, this is the system of choice where we could set the full quantum TDDFT benchmark
results. We then used these results to test different theoretical approaches addressing the plas-
monic response of strongly coupled objects. This was one of the central goals of the present
work.

We have found that for small junction widths, the optical response is determined by quan-
tum tunneling of conduction electrons across the potential barrier separating the nanowires. A
decreasing junction width leads to progressive attenuation of the plasmon modes of separated
nanowires and the emergence of charge transfer plasmon modes of the conductively coupled
dimer. As this happens, the fields in the middle of the junction are screened. The maximal field
enhancement moves from the middle to the external regions of the junction. In this junction
widths range the classical local Drude and NLHD model descriptions fail since they do not
account for tunneling. In contrast, the QCM results are found to be in excellent agreement with
the full quantum calculations.

For large junction widths, electron tunneling is negligible and the overall agreement between
TDDFT, classical Drude, and the QCM results is good. Thus, the QCM performs well over
the entire range of separations studied here. The agreement between the classical and TDDFT
results can be further improved by taking into account the shift of the plasmon-induced charge
density with respect to the geometrical surface of the nanoparticle. The latter can be defined as
the jellium edge as in the present work, or as a last atomic layer at the surface. The effective
junction width is then given by the separation of centroids of plasmon induced charges at the
opposite sides of the junction. Introducing a simple distance correction into the classical Drude
calculations allows for fully accounting of this non-local effect so that the quantum TDDFT
results are retrieved. This finding has implications in the concept of plasmon ruler [20,21], and
it shows that care should be taken with respect to the definition of the separation in gaps which
is commonly measured by matching calculated and experimental results of the optical response.

Finally, we hope that results presented here contribute to the understanding of the role of
quantum nonlocal effects in strongly coupled plasmonic systems, and help in elaborating effi-
cient theoretical approaches with value for prediction.
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