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Numerical simulation of electron energy loss near inhomogeneous dielectrics
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The nonrelativistic energy loss suffered by fast electrons passing near dielectric interfaces of arbitrary shape
is calculated by solving Poisson’s equation using the boundary-charge method. The potential induced by a
moving electron is expressed in terms of surface-charge distributions placed at the interfaces. These surface
charges, obtained by self-consistently solving the resulting integral equation, act back on the electron produc-
ing a retarding force and hence energy loss. The dielectrics are described by frequency-dependent dielectric
functions. Two particular cases are discussed in further detail: interfaces invariant under translation along one
particular direction and axially symmetric interfaces. Previous results for simple geometries, such as planes,
spheres, and cylinders, based upon analytical solutions, are fully reproduced within this approach. Calculations
are presented for electrons moving near wedges, coupled parallel cylinders, coupled spheres, and toroidal
surfaces.@S0163-1829~97!00848-5#
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I. INTRODUCTION

Sophisticated numerical simulation of the elastic scat
ing contribution to image contrast is routinely employed
conventional high-resolution electron microscopy of inh
mogeneous materials. Inelastic scattering effects are usu
included only via a complex optical potential.1,2 Now that
increasing numbers of high-resolution microscopes are fi
with energy-loss imaging facilities, a much wider interest
inelastic scattering processes, hitherto mainly the preserv
scientists equipped with scanning transmission electron
croscopes, can be anticipated with a consequent require
to be able to interpret loss intensities in terms of local che
cal and electronic structure. For energy-loss events ab
about 50 eV, involving the excitation of characteristic atom
levels, existing theory can broadly satisfy these requireme
even if the computation of the details of edge shapes in
homogeneous regions may still present challenging pr
lems. For the relatively more intense, valence loss region
situation is so far much less satisfactory because the th
has to deal with collective excitations as well as with t
delocalization arising from the larger impact parameters p
missible in low-energy transfers. Fermi’s nonrelativis
theory3 of dielectric excitation by a moving classical electro
has been successfully extended to deal with inhomogen
situations in simple geometries such as planes4–6

cylinders,7–9 parabolic wedges,10 and spheres,11,12 where the
solutions ~essentially of Laplace’s equation! can be calcu-
lated analytically. Approximate solutions that have been
tained for more complex geometries such as hemispher13

coupled sphere and plane,14,15 coupled spheres,16,17 or
coupled cylinders18 are still based on increasingly elabora
analytical analysis. There is an obvious need for direct
merical simulation methods enabling valence losses to
computed in arbitrary geometries using standard packag

A promising basis for such a numerical approach is
boundary-charge method, also known as the bound
560163-1829/97/56~24!/15873~12!/$10.00
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element method,19 whereby a distribution of surface or inte
face charges is generated, interacting self-consistently w
itself as well as with any external field, such as that due t
passing electron. This approach can be traced back
Maxwell,20 who used it to compute capacitances, but it h
been employed much more recently to determine nor
mode frequencies of dielectric excitations by Fuchs21,22 for a
cube and by Ouyang and Isaacson23 for bodies of arbitrary
shape. Ouyang and Isaacson24 have gone on to apply the
boundary method to investigate the effect of the support
fast electron energy losses near small particles, but do
provide many details of their procedures. Other recent ap
cations of this approach include the surface modes of ch
nels cut on planar surfaces26 and those of coupled paralle
wires.27

Frequency-dependent dielectric functions will be used
describe the responses of different media in what follow
Atomic units~a.u.,e5m5\51) will be used from now on,
unless otherwise specified.

Section II will be devoted to the description of th
method. The particular case of cylindrical interfaces~i.e.,
those that are translationally invariant along one particu
direction but otherwise arbitrarily shaped! will be considered
in Sec. III, where calculations of the loss probability of ele
trons passing near wedges and coupled parallel cylinde
offered. Axially symmetric interfaces will be analyzed
Sec. IV, with numerical application to the cases of seve
coupled spheres and toroidal surfaces. Finally, the con
sions will be summarized in Sec. V.

II. BASIC THEORY

A. Boundary-charge method

Within the local response approximation, the Poiss
equation that relates the scalar potentialf(r ,v) to the exter-
nal charge density distributionrext(r ,v) in the presence of
inhomogeneous dielectrics can be written
15 873 © 1997 The American Physical Society
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¹@e~r ,v!¹f~r ,v!#524prext~r ,v!, ~1!

where the dielectric response is described in terms of
arbitrary function of spacer and frequencyv, e(r ,v). Equa-
tion ~1! can be recast

f~r ,v!5f`~r ,v!1fboundary~r ,v!, ~2!

where

f`~r ,v!5E dr 8
rext~r 8,v!

e~r 8,v!ur2r 8u
~3!

and

fboundary~r ,v!5
1

4pE dr 8
¹f~r 8,v!•¹e~r 8,v!

e~r 8,v!ur2r 8u
. ~4!

The first term in Eq.~2! reduces to the bulk screened pote
tial in infinitely extended homogeneous materials. The s
ond term originates in the inhomogeneity of the respo
function; it will reduce to surface integrals in the case
homogeneous dielectrics separated by abrupt interfaces
shall focus on this kind of systems from now on.

The different homogeneous dielectrics will be labeled
an indexm. Denotingem(v) the dielectric function charac
terizing mediumm, the full space- and frequency-depende
dielectric function reads

e~r ,v!5(
m

em~v!um~r !,

whereum(r ) is 1 whenr lies in mediumm, 1/2 on its bound-
ary, and 0 otherwise.

The integrand in Eq.~4! is nonzero only at the interfaces
where the dielectric function suffers a sudden variation, c
veniently described in terms of surfaced functions. One can
write

1

4p

¹f•¹e

e
5

1

4p
D•¹

1

e
5sdS , ~5!

wheredS is the surface delta function that defines the int
faces,

s~s,v!5
1

4p

em1
~v!2em2

~v!

em1
~v!em2

~v!
ns•D~s,v! ~6!

is the induced boundary charge,s is the coordinate vecto
running over the interfaces,ns is the interface normal ats,
and the indicesm1 andm2 refer to the media lying opposit
the interface normal and in the direction of the interface n
mal, respectively~see Fig. 1!. Obviously, those indices ma
depend ons. Notice that in deriving Eq.~6! from Eq.~5!, the
d function in the latter is unambiguously defined thanks
the continuity of the component of the electric displacem
normal to the interfacens•D.

Using Eq.~6!, Eq. ~4! reduces to

fboundary~r ,v!5E ds
s~s,v!

ur2su
. ~7!
n
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If the external chargerext does not present singularities at th
interface, the electric field produced byf` is continuous.
However, this is not the case of the electric field deriv
from fboundary. The analysis of this contribution is mor
subtle. According to the Gauss theorem, fors ands8 lying on
the interface one has

lim
t→01

ns•¹~1/us6tns2s8u!5F~s,s8!72pd~s2s8!,

where

F~s,s8!52
ns•~s2s8!

us2s8u3

and the limit corresponds to approaching the interface fr
mediumm2 andm1 for upper and lower signs, respectivel
F gives rise to a continuous contribution to the electric fie
The normal electric field at a point of mediumm2 infinitesi-
mally close to the interface can then be writte
2ns•¹f(s,v)12ps(s,v) and hence the normal displace
ment reads

ns•D~s,v!5em2
~v!@2ns•¹f~s,v!12ps~s,v!#,

where2¹f(s,v) refers to the continuous part of the electr
field noted above. Combining this expression with Eq.~6!
and using Eqs.~3! and ~7!, one finds

L~v!s~s,v!5ns•¹f`~s,v!1E ds8F~s,s8!s~s8,v!,

~8!

where

L~v!52p
em2

~v!1em1
~v!

em2
~v!2em1

~v!
. ~9!

Equation~8! constitutes a self-consistent relation fors. The
dimension of the problem is reduced from 3 in Eq.~1! to 2 in
Eq. ~8!, with the consequent reduction in the number
points employed to numerically solve it.27 It is the aim of this
work to provide expressions suitable for the numerical eva
ation of integral equation~8!.

B. Solution in terms of interface modes

The self-sustained oscillations of the system are descr
by

FIG. 1. Schematic representation of an interface separating
dia m1 andm2. The normalns at the interface positions has been
chosen to point towards mediumm2 @see Eq.~6!#. The small curved
arrow indicates the sense of increasing parameteru.
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56 15 875NUMERICAL SIMULATION OF ELECTRON ENERGY . . .
2pl is
i~s!5E ds8F~s,s8!s i~s8!, ~10!

where i labels the different modes. The operatorF is not
symmetric in general. Nevertheless, Ouyang and Isaac
have shown that its eigenvaluesl i are real.23 Moreover, the
eigenfunctionss i form a complete basis set that satisfies
orthogonality property

E dsE ds8
s i~s! s j~s8!*

us2s8u
5d i j , ~11!

where the normalization has been conveniently chosen.
Now the inhomogeneous term of Eq.~8! can be expanded

in this basis set as

ns•¹f`~s,v!5(
i ,m

1

em~v!
f im~v!s i~s!,

where

f im~v!5E dsE ds8ns•¹fm
ext~s,v!

s i~s8!*

us2s8u

and

fm
ext~s,v!5E

Vm

dr
rext~r ,v!

us2r u

is the direct potential created by the external charge c
tained in mediumm.

Finally, the solution of Eq.~8! can be written

s~s,v!5(
i ,m

Cim

em~v!
s i~s! ~12!

and the coefficientsCim are determined by solving

(
j ,l

L ls l
i j Cj m5 f im12pl iCim , ~13!

wherel labels different interfaces, so thatL l depends on the
two media that interfacel actually separates@see Eq.~9!# and

s l
i j 5E dsE

Sl

ds8
s i~s!* s j~s8!

us2s8u
,

where the integral ins8 is restricted to interfacel . Notice that
( ls l

i j 5d i j , according to Eq.~11!.
In the particular case where only two different media a

considered,m51,2, the indexl can be disregarded in th
equations written above. Then Eqs.~12! and~13! are readily
solved and the surface charge reduces to

s~s,v!5(
i ,m

f im

em~v!@L~v!22pl i #
s i~s!. ~14!

Notice that the frequency of the self-sustained modes
related to the eigenvaluesl i via the dielectric functions of
the two media according toL(v)52pl i . Apell and
co-workers28 have exploited this relationship to derive su
rules connecting the modes of a system to that obtained
interchanging the dielectric properties of both media, and
on

e

n-

e

re

by
e

modes of interacting subsystems to those of the noninter
ing subsystems. Notice that for certain geometries~e.g., the
dielectric sphere!, F is positively or negatively defined~i.e.,
its eigenvalues are all positive or negative!, leading to natu-
ral oscillation frequencies always below or above the
surface mode, respectively.

C. Electron-energy-loss probability

All of the above can be applied to arbitrary external p
turbations. Let us now focus on a fast electron moving w
constant velocityv along a straight-line trajectory describe
by r5r01vt, wherer0 is the particle position att50. The
rate of energy loss suffered by the electron can be expre
in terms of the induced force acting on it according to

dE

dt
5v•¹f ind~r ,t !ur5r01vt

5
df ind~r01vt,t !

dt
2

]

]t
f ind~r ,t !ur5r01vt . ~15!

The first term on the right-hand side of this equation re
resents a conservative work, which need not be conside
here; it vanishes when integrated over an infinite traject
passing near a finite target and also for an electron be
directed parallel to a cylindrical surface of the sort discus
below. The second term accounts for production of real
citations in the target, that is, the dissipative part of the wo
and thus it will be denoteddEdiss/dt. It can be decomposed
into the contribution of different energy lossesv in the fol-
lowing way:

DEdiss5E dtS dEdiss

dt D5E
0

`

v dv G~v!,

where

G~v!5
1

pE dtIm$2f ind~r01vt,v!e2 ivt% ~16!

is the loss probability per unit energyv. This can in turn be
conveniently separated as

G5G`1Gboundary,

whereG` corresponds to bulk losses@coming from the in-
duced part of Eq.~3!# andGboundaryis related to losses origi
nating in the interface modes@obtained by substituting Eq
~7!# for f ind in Eq. ~16!.

For the fast electron considered above, the external ch
density reads

rext~r ,v!5d~r'2r0
'!

ei ~r i2r 0
i
!v/v

v
,

wherer' andr i represent the components ofr perpendicular
and parallel tov, respectively. The bulk losses are read
found to be

G`~v!5
2

pv(m TmE
v/v

2v dq

q
ImH 21

em
~v!J , ~17!
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where Tm represents the time spent by the electron ins
mediumm and the upper limit of integration is provided b
the cutoff 2v, which accounts for the maximum momentu
that the electron is able to transfer to the target. A m
realistic way of calculating bulk losses consists in introdu
ing a dependence of the dielectric function on momentumq.

The bulk losses offer little information on the geometry
the system. The rich structure of coupled modes with f
quencies well separated from the bulk plasmon frequen
of the different media that form the target is contained in
surface loss term, on which we are going to focus in w
follows. Inserting Eq.~7! into Eq. ~16!, one finds

Gboundary~v!

5
22

pv E ds K0S vur0
'2s'u
v D Im$s~s,v! ei ~r 0

i
2si !v/v%.

~18!

The expression for the loss probability is further simp
fied when only two different materials are considered. Ins
ing Eq. ~14! into Eq. ~18!, one finds

Gboundary~v!5
1

v2(i
(
m51

2

ImH 2Fgi~v!2
1

em~v!GG imJ ,

~19!

where

G im

5
pv f im~v!

2p3~11pl i !
E ds s i~s! ei ~r 0

i
2si !v/v K0S vur0

'2s'u
v D ,

~20!

gi~v!5
2

e1~v!~11l i !1e2~v!~12l i !
,

p521 (p51) for m51 (m52), andi labels the different
oscillation modes derived from Eq.~10!.

An interesting property of Eq.~19! is that it separates th
dependence on the dielectric functions from that on the
ometry of the system. Actually, the coefficientsG im are in-
dependent of the dielectric functions. So, provided o
knows these coefficients, it is easy to obtain the loss pr
ability for an arbitrary choice of the response function
Moreover, (v/v) G im depends on the distancesd that char-
acterize the geometry of the trajectory and the geometry
the target only viavd/v. This scaling property permits on
to apply the results of a single calculation to various geo
etries that differ just in a scaling of distances by a const
factor.

Equation~19! takes a particularly simple form when th
electron trajectory is fully contained in one of the mediam0,
in which case the coefficientsG im0

[G i are real and the res

of the coefficientsG im are zero.23 One obtains

Gboundary~v!5
1

v2(i
G i ImH 2Fgi~v!2

1

em0
~v!G J ,

~21!
e
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whereG i is independent of the choice of dielectric functio
but depends on the position of the electron beamr0

' via
vr0

'/v and also on the geometry of the interface. The te
21/em0

(v) inside the square brackets of Eq.~21! lowers the
loss probability; it represents the begrenzung effect, tha
the fact that the strength of the bulk modes given by Eq.~17!
is reduced as some interface modei is activated. Rather than
using Eq.~20! to calculateG i , we will obtain it directly from
Eqs.~8! and~18! by using a Drude dielectric function with
damping sufficiently small to ensure that the loss probabi
at the energy of resonancev i comes almost exclusively from
modei . Then, dividing bygi(v) one readily obtainsG i .

The following sections will be devoted to showing th
range of applicability of the present formalism to actual g
ometries. Different selected cases will be studied.

III. TRANSLATIONALLY INVARIANT INTERFACES

Let us consider an arbitrarily shaped cylindrical interfa
parallel to thez direction, described in terms of the parame
ric curveRs(u)5„xs(u),ys(u)… @i.e., s(u,z)5(xs ,ys ,z) and
ds5dzduAxs8

21ys8
2, where the prime denotes differentia

tion with respect to the parameteru#. The interface normal
ns5(ys8,2xs8,0)/Axs8

21ys8
2 points towards the medium o

the right-hand side when one runs along the interface in
sense of increasingu, as shown in Fig. 1.

The translational invariance along thez direction makes it
natural to work in Fourier space with respect to that dire
tion,

s~u,z,v!5E dq

2p
sq~u,v!eiqz.

This permits one to solve Eq.~8! separately for eachq com-
ponent. In particular, Eq.~3! becomes

fq
`~R,v!52E dR8K0~ uquuR2R8u!

rq
ext~R8,v!

e~R8,v!
, ~22!

where the spatial dependence of the dielectric funct
e(R,v) is now limited to the directions perpendicular to th
z axis, R5(x,y). Large-q components are associated wi
rapidly oscillating eigenfunctionssqeiqz, which cannot
‘‘feel’’ the curvature of the surface and hence their eigenf
quencies pile up near the flat surface frequency (l i50).29

Using Eq. ~22!, the inhomogeneous term of Eq.~8! be-
comes

f q~u,v!5ns~u!•¹fq
`
„Rs~u!,v…

5E dR

e~R,v!
Hq~R,u!rq

ext~R,v!, ~23!

where

Hq~R,u!52uquK1@ uquuR2Rs~u!u#ns~u!•
R2Rs~u!

uR2Rs~u!u
.

Finally, Eq. ~8! reduces to

L~v!sq~u,v!5 f q~u,v!1E du8Fq~u,u8!sq~u8,v!,

~24!
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where

Fq~u,u8!5Axs8~u8!21ys8~u8!2 Hq„Rs~u8!,u….

Now s(u,v) can be obtained numerically from Eq.~24!.
One possibility consists in projecting it onto a suitable
thogonal basis set~e.g., spherical harmonics for sphere!,
keeping enough terms to reach the required accuracy.25,24We
will work rather in real space. Following Lu an
Maradudin,26 this integral equation will be solved by dis
cretizing the parameteru. Rather than a continuous variabl
we will consider a convenient partition of the range ofu, that
is, a finite set ofN intervals, labeledi 512N. The length of
interval i will be denotedDu i andu i will be a representative
value of u inside it. Now the integral in Eq.~24! can be
approximated by a sum; one comes to

L~v!@sq# i5@ f q# i1(
j

@Fq# i , j@sq# j ,

where @sq# i5sq(u i ,v), @Fq# i , j5Fq(u i ,u j )Du j , and the
dependence ofs and f on frequencyv is understood.

Using matrix notation, the solution of Eq.~24! reads

s~u i ,z,v!5E dq

2p
eiqz(

j
F 1

L~v!2Fq
G u i , j@ f q# j , ~25!

where@1/(L2Fq)#u i , j is the (i , j ) element of the inverse o
matrix L2Fq . Notice thatL(v) is a diagonal matrix tha
may depend ons via the different kind of media that th
interface separates at each particular point, according to
~9!.

The discretization procedure relies on the assumption
the quantitiessq , f g , and Fq vary very little inside each
interval. The dominant contribution to the loss probability
fast electrons comes from the lowest-order modes der
from Eq. ~10!, modes that do not display rapid oscillation
along the interface; hence one expects thatsq be a smooth
function ofu. In addition,f q can show strong variations nea
the electron beam when this passes very close to some i
face, so that the size of the intervals has to be small in
region. Finally, Fq(u,u8) is finite when u8→u and more
precisely

lim
u8→u

Fq~u,u8!5
ys8xs92xs8ys9

xs8
21ys8

2
, ~26!

provided the interface does not have sharp edges; otherw
Fq presents integrable divergences, which can be han
with using an open formula for the numerical integration30 in
the discretization of Eq.~24!.

An adaptative choice ofDu i is crucial in limiting the total
number of intervalsN to a minimum. Indeed, more pointsu i
are necessary near regions where two interfaces are c
together or where their curvature radius is small. For
stance, in a wedge, it is essential to accumulate many l
intervals near its corner and not so critical to cover the si
in detail. We have quantified this effect with good conve
gent results by making the length of each interval invers
proportional to the normal component of the electric fie
that the whole set of interfaces would create on the inte
under consideration if they were uniformly charged@i.e.,Du i
-

q.
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is chosen to be inversely proportional to the average
Fq(u i ,u8) overu8#. In the particular cases considered belo
convergence has been achieved usingN51002200.

The second term on the right-hand side of Eq.~8! van-
ishes for an isolated flat surface@see Eq.~26!# and the bound-
ary charge method trivially produces the well-known resu
for this case.5 In thin films, where the two surfaces ar
coupled, full numerical agreement has been found with p
vious results.31 Let us now discuss other more complicat
geometries.

A. Energy loss for electrons traveling parallel to the interface

For a unit charge moving along the direction of trans
tional invariance of the cylindrical interface with velocityv
and two-dimensional impact parameterR05(x0 ,y0), one has

rq
ext~R,v!52pd~R2R0!d~v2qv !e2 ivz0 /v,

and hence there is only one momentum component con
uting to the energy loss, namelyq5v/v. Moreover, the total
loss probabilityG is infinite and it only makes sense to ta
about loss probability per unit time~i.e., loss rateP). Insert-
ing rq

ext(R,v) into Eq. ~23!, using Eqs.~18! and ~25!, and
dividing by the interaction time, one finds

Pboundary~v!5
2

pv(i , j Du iAxs8~u i !
21ys8~u i !

2

3K0S vuR02Rs~u i !u
v D ImH 21

em0
~v!

3F 1

L~v!2Fv/v
GU

i , j

Hv/v~R0 ,u j !J , ~27!

wherem0 refers to the medium inside of which the charge
moving.

As a first example of application, let us consider a hyp
bolic wedge surface described byxsys5b2/2 with xs ,ys,0,
so thatb is the distance from its corner to the origin and
asymptotes coincide with thex andy axes. The wedge will
be assumed to be surrounded by vacuum and made
metal of plasma frequencyvp , characterized by the
frequency-dependent Drude dielectric function

e~v!512
vp

2

v~v1 ig!
.

For an electron beam directed parallel to the wedge, Eq.~27!
provides the loss rate due to the creation of surface exc
tions. Some particular spectra have been represented in
2 and 3 for 100-keV electrons. The plasma frequency
been taken to bevp515.8 eV and the dampingg50.5 eV,
values appropriate for Al.

The dependence onb is illustrated in Fig. 2 when the
electron beam moves in the vacuum side and passes
distance of 30 a.u. from the origin~i.e., x05y0521.2 a.u.!.
Dobrzynski and Maradudin32 pointed out that the spectrum
of a sharp wedge (b50) must be a continuum. Later
Davis29 showed that hyperbolic wedges are characterized
a discrete spectrum formed by even and odd modes, w
are symmetric and antisymmetric with respect to the bise
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of the wedge, respectively. The dominant feature observe
Fig. 2, hereafter denoted corner peak, corresponds to an
ergy loss of'vp/2 for small values ofb and shifts towards
higher energies for increasingb, in agreement with the firs
of the even modes obtained by Davis.29 When b→0, the
lowest-order even modes pile up nearvp/2 and the odd
modes near 0.85vp ; higher-order modes of frequencies ve

FIG. 2. Loss rate spectra for a 100-keV electron moving para
to a hyperbolic wedge as a function ofb, the distance from its
corner to the origin. The asymptotes of the wedge are taken to f
an angle of 90°. The electron beam is located on the bisector o
wedge and in the vacuum side at a distance of 30 a.u. from
origin in all cases, as shown in the inset. The values ofb are 0.001,
0.01, 0.1, 1, 10, 30, and 50 a.u.~every curve has been shifte
upward 0.005 a.u. with respect to the previous one for clarity!. The
wedge is described by the Drude dielectric function withvp515.8
eV and dampingg50.5 eV.

FIG. 3. Dependence of the loss rateP(v) on the position of the
electron beam under the same conditions as in Fig. 2 forb50.01
a.u. Different spectra correspond to equally separated position
the beam along lines parallel to one of the wedge asymptotes
shown in the insets. The spectra evolve smoothly between
ends of those lines, designatedA and B, respectively, and whose
coordinates are~in a.u.! ~a! ~50,2200) and ~50,50! and ~b!
(220,2200) and (220,50) respectively. The electron travels
the vacuum side for all cases in~a! and inside the wedge for som
trajectories in~b!.
in
n-

different from these values cannot be efficiently excited
the electron beam since they correspond to very rapidly
cillating sq eigenfunctions.

Figures 3~a! and 3~b! represent the evolution of the los
spectra as the ion beam sweeps a line parallel to thex axis
~see the insets!. We have takenvb/v50.01. The intensity of
the corner peak, relevant near the corner of the wedge,
creases when the beam is near one of the sides, where
classical surface plasmon of a flat surface,vs5vp /A2, be-
comes the dominant frequency. Inside the material@Fig.
3~b!#, the surface contributionPboundaryhas a negative value
nearvp , due to the begrenzung effect. Of course, when
bulk losses are added, the total loss probability is posit
Notice the emergence of a small peak atv'0.83vp when
the beam is close to the surface; this comes from the exc
tion of the first odd mode.

The allowed momentum transferq is fixed in the parallel
trajectories:q5v/v. This permits one to tune modes corr
sponding to a given choice ofq by varying the electron
velocity. It is interesting to stress that the above results
the same for other combinations ofv andb such thatvb/v
remains constant, due to the scaling property discusse
Sec. II C. In addition, the wedge replicates itself under tra
formation of distance scaling ifb50, and the results ob
tained forb,1 for the impact parameter under considerati
in Fig. 2 can be applied to that case since no variation witb
is observed below that value.

The contribution to the total loss probability coming fro
each surface mode can be used in combination with the s
ing property just noted to obtain loss probabilities for ar
trary choices of dielectric functions and absolute scales
cording to Eq. ~21!. As discussed above, the total lo
probability diverges for the geometries under considerati
so that Eq.~21! has to be replaced by the loss rate

Pboundary~v!5
1

v(i
Pi ImH 2Fgi~v!2

1

em0
~v!G J

~notice the different scaling withv). Figure 4–6 offer some
examples ofPi for different modes of various targets, ob
tained from Eq.~10!. They should be understood as ener
filtered images in the case of small dampingg.

The contour plots shown in Figs. 4 and 5 correspond
the same geometry as in Fig. 2 forvb/v50.1 and
vb/v50.001, respectively. The weight of different modes
the loss ratePi is represented for the first two symmetr
modes in~a! and~c! (n50 and 2, respectively! and the first
two antisymmetric modes in~b! and~d! (n51 and 3, respec-
tively!. The accompanying plots show the mode eigenfu
tions sq

i directly over the surface profile. The number
changes of sign ofsq

i is given byn. Notice that the mode
n50 ~corner mode! acts preferentially near the wedge co
ner, in agreement with the spectra discussed above.

The smooth curvature of the corner in the wedge stud
in Fig. 4 is clearly observable both insq

i and in the contour
plots. Notice, for instance, how the corner spot in Fig. 4~c! is
displaced towards the actual corner from the origin, wh
the bright regions in Fig. 4~b! point at.

For the small value ofb considered in Fig. 5, the surfac
charge of the first modes accumulates close to the co
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FIG. 4. The weightPi that multiplies the contribution of the first two symmetric modes@~a! and ~c!, respectively# and the first two
antisymmetric modes@~b! and~d!, respectively# to the total loss rate of an electron traveling parallel to a wedge surface is represente
as a function ofxv/v and yv/v. They correspond tol i520.371, 0.190,20.101, and 0.053 for~a!-~d!, respectively. The contour line
limiting white areas stand forPi51.13, 0.27, 0.17, and 0.27, respectively. The darker the region, the smaller the value ofPi . The distance
between consecutive contour lines corresponds to a factor of 2/3. The wedge is contained in thex,y,0 region and its asymptotes are ma
to coincide with thex andy axes. The distance from the corner to the origin is set equal tobv/v50.1. The inset accompanying each conto
plot shows the density associated with the mode under considerationsq

i , with q5v/v, represented directly on the surface profile.
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FIG. 5. Same as Fig. 4 forbv/v50.001. The values ofl i are now20.451, 0.409,20.324, and 0.257, respectively, and those ofPi in
the contour lines limiting white regions are 1.33, 0.12, 0.36, and 0.12, respectively.
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FIG. 6. Same as Fig. 4 for two parallel cylinders of radiusRv/v50.3 whose centers are separated by a distanceav/v50.8. The values
of l i are~a! 20.830,~b! 20.938,~c! 20.242, and~d! 20.225. The values ofPi in the contour lines limiting white areas are 0.42, 0.20, 0.
and 0.15, respectively. The insets representsq

i directly on the surface profiles for each mode.
on
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this
~compare the plots ofsq
i with those of Fig. 4! and the con-

tour plot of the corner peak is nearly circular@Fig. 5~a!#. An
obvious spatial correlation between bright regions in the c
tour plots on the one hand and the peaks ofsq

i in the accom-
panying insets on the other can be clearly observed, exce
the peaks near the corner of the wedge in Figs. 5~c! and 5~d!,
too narrow to contribute to efficiently excite their respecti
modes.

Figure 6 illustrates the case of two neighboring circu
cylinders, whose surfaces are described
(xs6a/2)21ys

25R2. The symmetric mode shown in Fig
6~a! gives the largest contribution to the loss, though
image coming out of it does not permit one to establish
-

in

r
y

e
e

geometry of the object. The image corresponding to the fi
antisymmetric mode@Fig. 6~b!# clearly reflects the shape o
the two cylinders. Unlike these two modes, higher ord
modes can only be excited efficiently near the cylinder s
faces, as can be seen in Figs. 6~c! and 6~d!.

B. Energy loss for electrons traveling perpendicularly
to the interface

Next we shall examine the case of perpendicular moti
Let us consider a fast electron moving with velocityv par-
allel to thex direction along the straight line defined byz50
and y5a. The external charge density that represents
electron is given by
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rq
ext~R,v!5

1

v
eivx/vd~y2a!.

Assuming for simplicity that the particle moves fully insid
mediumm0 without crossing any interface, Eq.~23! reduces
to

f q
'~u,v!5

2p

vQ

eivxs /v

em0
~v!

e2Qua2ysu

Axs8~u!21ys8~u!2

3F iv

v
ys82Qxs8sgn~a2ys!G , ~28!

whereQ5Aq21w2/v2.
The first term on the right-hand side of Eq.~15!, which

represents a conservative work, vanishes after integra
along the whole trajectory. Thus the total loss probability p
unit v is found to be

G~v!5
1

pE dt Im$2f ind~vt,a,0,v!e2 ivt%.

Finally, using Eqs.~18!, ~25!, and~28!, one obtains

Gboundary~v!5
2

pvE0

`dq

Q (
i , j

Du i

3Axs8~u i !
21ys8~u i !

2e2Qua2ys~u i !u

3ImH e2 ivxs~u i !/vF 21

L~v!2Fq
GU

i , j

@ f q
'# j J .

~29!

Figure 7 shows spectra corresponding to trajectories
rected perpendicularly to the wedge, as shown in the in

FIG. 7. Loss probability for a 100-keV electron traveling pe
pendicularly to a hyperbolic wedge as depicted in the inset. Dif
ent impact parameters have been considered with respect to
wedge corner, ranging from 10 a.u. to 190 a.u. in steps of 20
~the larger the distance to the wedge, the lower the probability!. The
distance from the corner to the origin has been taken to bea50.01
a.u. The wedge is described by the Drude dielectric function w
vp515.8 eV and dampingg50.5 eV.
on
r

i-
t.

They have been obtained from Eq.~29!. The corner peak is
again the dominant feature. Smaller peaks can be seen
v'0.56vp , 0.61vp , and 0.65vp . These roughly agree with
the position of the modes found for the wedge from Eq.~10!,
though these results cannot be ascribed to a single valueq,
as in the case of parallel trajectories, since the electron d
not conserve its momentum along the direction of mot
@see the integral overq in Eq. ~29!#. However, the dominan
value ofq is still given byv/v ~compare the position of the
corner peak with the case of parallel trajectories in Fig. 2
b50.01 a.u.!.

IV. AXIALLY SYMMETRIC INTERFACES

Interfaces characterized by axial symmetry are con
niently described in cylindrical coordinates, so th
s(u,f)5„rs(u)cosf,rs(u)sinf,zs(u)…, where rs is the dis-
tance to thez axis andu is a parameter.

Using Fourier series to represent the dependence on
azimuthal anglef, the surface charge can be expressed

s~s,v!5
1

2p(
m

sm~u,v!eimf, ~30!

wherem labels different Fourier components. Moreover, t
integral equation~8! becomes totally identical to Eq.~24!,
except that the momentumq has to be replaced by the inte
ger m. The kernel of the integral is found to be

Fm~u,u8!5rs~u8!Axs8~u8!21ys8~u8!2

3E dw
A2Ccosw

~B2Dcosw!3/2
,

where

A5nrrs~u!2nz@zs~u!2zs~u8!#,

B5rs~u!21rs~u8!21@zs~u!2zs~u8!#2,

C5nrrs~u8!, D52rs~u!rs~u8!,

and (nr ,nz)5„zs8(u),2rs8(u)…/Ars8(u)21zs8(u)2 stands for
the radial andz components of the interface normal.

For simplicity, we will consider electron trajectories pa
allel to the axis of symmetry and fully contained inside o
of the dielectricsm0. In that case, the inhomogeneous term
Eq. ~24! is found to be

f m~u,v!5
24pv

v2em0
~v!

eivz/vXI mH va

v FnrKm8 S vrs~u!

v D
3 inzKmS vrs~u!

v D Gu„rs~u!2a…J
1KmH va

v FnrI m8 S vrs~u!

v D inzI mS vrs~u!

v D G
3u„a2rs~u!…J C,

wherea is the distance from the trajectory to thez axis.
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The differentm components of the surface charge~30! are
decoupled and their contribution to the loss can be calcula
separately. High-order terms decrease rapidly withm and
their oscillation frequencies go tovs . It has been found tha
the contribution ofm.6 is negligible in the cases considere
below.

Figure 8 shows the loss probability experienced by
electron passing close to coupled Al spheres. The loss
sphere has been calculated for systems of spheres ali
along the direction of motion of the electron~see the insets
for a schematic description of the geometry!. The position of
the energy-loss peaks agrees well with previous calculat
for the two-sphere system.33,16 The results for the loss nea
isolated spheres11 and recent calculations based on analyti
expansion in terms of bispherical coordinates for the tw
sphere system16,17 are reproduced within the present a
proach. The low-energy peak at around 6 eV, which emer
in that case, is split into two peaks when one passes to
three-sphere system. The small bump at around 7.5 eV
mains the same and the peak near 9 eV is enhanced.

As a final example, motivated by the increasing num
of nanostructures that are becoming experimentally av
able, we have explored the loss near a Al torus. Figure~a!
shows the results for different impact parameters. When
electron passes near the center of the torus, the main co
bution to the energy loss comes fromv'0.84vp , which is
related to the excitation of them50 component in Eq.~30!.
A richer structure is obtained in external trajectories,
which the loss probability due to differentm components has
been analyzed in Fig. 9~b!. Notice that the contribution o
each component cannot be assigned to a single frequenc
particular, the excitation of them50 component induces
losses aroundv'0.67vp , in contrast to what happens wit
trajectories passing near the center. This is similar to the c

FIG. 8. Loss probability suffered by 100-keV electrons movi
parallel to systems of one to three spheres aligned along the d
tion of motion of the electrons. The spheres are surrounded
vacuum and assumed to be made of Al, described via the D
dielectric function forvp515.8 eV and dampingg50.5 eV. The
radii of the spheres are all equal to 10 nm. The electron passes
distance of 1 nm from the sphere surfaces. Neighboring sphere
separated 0.833 nm. The probability has been divided by the n
ber of spheres under consideration. The insets represent the g
etry of the target, including arrows that show the electron traject
ed
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of the sphere, where for a certainm the allowed modes are
those corresponding tol>umu, l being the angular momen
tum number.

V. CONCLUSIONS

The boundary-charge method has been applied to the
culation of low-energy losses of electrons passing near a
trarily shaped dielectric interfaces. The cases of interfa
characterized by translational invariance along one partic
direction and axially symmetric interfaces have been stud
in more detail. This increases considerably the number
geometries for which electron-energy-loss calculations
available and at the same time offers the possibility of fitti
the shape of objects observed with electron microscopes
respect to the direction of the electron beam. Examples h
been offered for wedges, coupled cylinders, coupled sphe
and toroidal surfaces.

Two customary approximations have been adopted. F
the dielectric properties of the different media under cons

c-
y

de

t a
are

-
m-

y.

FIG. 9. ~a! Loss probability suffered by 100-keV electrons pas
ing near a torus made of Al (vp515.8 eV and dampingg50.5 eV!
following trajectories parallel to the axis of rotational symmetr
The internal and external radii of the toroidal surface are 170
and 250 a.u., respectively. The impact parameters with respe
the axis of symmetry are 0, 40, and 460 a.u.~see the inset!. ~b!
Contribution of the firstm components for the largest impact p
rameter under consideration.
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eration have been described in terms of frequency-depen
dielectric functions, appropriate for the large electron velo
ties of common use in electron microscopy. Furthermore,
dielectrics are assumed to terminate suddenly, defin
abrupt interfaces. Concerning this latter point, consecu
layers of increasingly lower electron density are a good c
didate to simulate smooth profiles.34 Further research on thi
point is in progress.

Convergence in the number of pointsN has been achieve
with '100 points per surface~wedge, cylinder, etc.!. Com-
putation times forN5100 are in the range of seconds for o
value ofv on a Pentium 133 computer. The most time d
manding part of the calculation is the inversion of the se
consistent equation~8!, which scales asN3. The calculation
of energy filtered images presents the advantage that it
requires one to solve Eq.~8! once to obtain the boundar
d

.

. B

et
nt
i-
e
g
e
-

-
-

ly

charge, out of which the whole image can be constructed
a time proportional toN2 times the number of points in th
image.

Finally, the loss probability has been expressed in ter
of separate contributions, ascribed to the excitation of diff
ent oscillation modes. This permits one to obtain a wei
function for each of the modes that is independent of
actual choice of dielectric functions.
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