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Abstract

In the framework of the classical dielectric theory, the role of the image potential in
electron energy loss spectroscopy (EELS) of fast electrons commonly used in scanning

transmission electron microscopy travelling near a surface is studied. Relativistic and
dispersive corrections are evaluated to establish the range of validity of this theory. The
spatial resolution of the EELS technique is discussed for valence and core electron

excitations. The e�ect of the quantal nature of the probe is also discussed. Finally, several
problems involving planar surfaces, small particles, cylinders and truncated targets of
interest in nanotechnology are studied. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Charged particles have been used, since the ®rst years of this century, to obtain
information on the nature and properties of matter. Since Rutherford used a
particles to study the nature of the atomic structure in 1911, many other testing
probes have been used to obtain valuable information. Pioneering experiments at
the beginning of the last century as Davisson and Germer or Franck±Hertz
experiments led to the use of the electron as a testing probe, now widely extended
in many techniques in condensed matter physics.

In 1948, Rutherman [1] had already used electrons in transmission mode and
obtained electron energy loss spectra in the energy range of a few eV.
Transmission electron microscopy (TEM) with use of very high energy electrons
(100 keV) yields a contrast image when analyzing the electrons transmitted
through the sample. Furthermore, the short wave length associated with high
energy electrons in scanning electron microscopy (SEM) (00.1 nm for 100 keV
electrons) gives high resolution images by scanning the sample with an extremely
well focused electron probe and by analysing the back-scattered and secondary
emission electrons. The recent development of the scanning transmission electron
microscope (STEM) has increased the interest in the study of the processes which
occur when the scanning electrons are spatially focused and transmitted through
the target providing information on a small area of the sample. Sophisticated
numerical simulation of the elastic scattering contribution to image contrast is
routinely employed in conventional high-resolution electron microscopy of
inhomogeneous materials. On the other hand, inelastic scattering processes are a
dominant feature in the sample±probe interaction.

Now, when an increasing number of high-resolution microscopes are ®tted with
energy-loss imaging facilities, a much wider interest in inelastic scattering
processes has emerged, with the consequent requirement of theoretical
development to interpret them. Spatially resolved electron energy loss spectroscopy
(EELS) is a powerful tool to study the characteristics and nature of electron
excitations in a solid. In this operation mode, the electron beam is extremely well-
focused (00.2 nm) and the energy and weight of the excitations produced in the
sample can be studied as a function of the testing position. If, on the other hand,
a pre-determined energy loss is selected and the sample is scanned with the
focused beam, it is possible to obtain energy ®ltered maps, which provide
information on the area around the sample, where the electron is able to produce
excitations of that energy [2±5]. The aim of the theoretical approaches is to relate
this information to the composition and microstructure of the sample.

EELS of fast electrons in STEM shows two types of losses, depending on the
nature of the initial electron states, which are excited [6] in the sample: core
electron excitations that occur at atomically de®ned energies (o > 100 eV) and
valence electron collective excitations (up to 50 eV). These last excitations were
already theoretically explained by Bohm and Pines [7] in the 1950s. In free
electron metals, their typical energy, the so-called bulk plasmon, op, is directly
related to the electronic charge density n, op �

������������������
4pne2=m

p
where e and m are the
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electron charge and mass, respectively. Together with this charge density
oscillation in the bulk, Ritchie [8] later predicted the existence of collective
excitations associated to electronic charge density oscillations at the surface, which
fall below op, and are known as surface plasmons.

Both spectra have been widely used to investigate the nature and details of the
target. The core electron excitations occur when the probe crosses through the
target, and provide chemical information about a region of the target of almost
atomic size [9]. On the other hand, the valence excitations provide information
about surface structures and details with a resolution of the order of several nm.
One advantage of valence excitation spectroscopy is that it provides a much
strong signal, even for non-penetrating trajectories (the so-called aloof beam
energy loss spectroscopy ) and, therefore, generates less specimen damage [10]. The
fact that the time to collect data is small, permits study of chemical changes at the
surface in real time [11].

An extensive review of EELS have been provided by Raether [13,14] and
Egerton [12]. Raether's book puts emphasis on surface plasmon excitations, while
Egerton's pays more attention to the inner-shell excitations for micro-analysis.
Both books stress the experimental aspects of EELS. After these classical texts,
more recent books by Schattschneider [15,16] have been published. The thirst one
gives a general overview of the inelastic processes, introducing the theoretical
formulation to describe them.

The aim of the present work is to shed light on the role of the image potential
in the inelastic processes, which take place in STEM. We give a theoretical
overview of the di�erent models that have been developed in the last two decades
to describe the electron energy losses in STEM. We start with the description of
the image potential in a planar interface to give account of the surface and bulk
contributions to the loss spectra. This simple approach leads to an understanding
of the limitations of this model. Then we analyze the quantal e�ects derived from
the spatial width of the beam, and discuss the spatial resolution provided by
EELS. After establishing this basis, we describe the techniques used to account for
energy losses in targets of increasing complexity. Details on these formalisms are
contained in two appendices.

Atomic units (hÿ=e 2=m = 1) are used throughout in expressions, with hÿ the
Planck constant and m and e the electron mass and charge, respectively. In
these units, the length unit is the Bohr's radius (a0=0.529 AÊ ), the velocity
unit is the Bohr velocity (v0=2.19 � 108) cm sÿ1, the velocity of light is c = 137
and the energy unit is the Hartree (1 Hartree=27.2 eV). In results, we use mainly
eV for energy and nm for distance. In electrodynamical equations, the Gaussian
system will be used, where the dielectric function and magnetic susceptibility in
vacuum are considered E0=m0=1. In the study of the relativistic corrections, we
have always considered non-ferromagnetic media and assume m=1. In several
parts, we use the sign vtraj to indicate that the corresponding magnitude is
evaluated along the trajectory and that it depends only on the variable used to
parametrise the probe trajectory. In the case of probes travelling through a
medium, we use the notation Psurf(o ) for the total contribution of the surface to
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the magnitude P; note that both surface and bulk excitations are contained in this
term.

Most of the theory we present is valid for any local dielectric function and the
experimental one should be used to compare the theoretical poredictions to the
experimental results. Nevertheless, in the theoretical development, we favour the
use of the Drude dielectric function; the fact that it involves just one single
parameter Ð the bulk plasmon energy op Ð and leads to sharp and well-de®ned
surface plasmons, makes more direct the interpretation of the theoretical results.
Sometimes we refer to these media just as metallic.

2. Probe±surface interaction: image potential

Let us consider the interaction between a fast probe and a semi-in®nite medium
bounded by a planar surface. In the frame of classical electrodynamics, the
interaction of a fast charge moving near a planar interface is given by the induced
potential, i.e., the so-called image potential, which problem was ®rst studied by
Ritchie [8] and Takimoto [17]. Now we consider the simplest approach to this
problem, where a probe of charge Z is travelling parallel to the surface at a
constant distance b and with constant velocity v. Because the momentum transfer,
associated with the o-component of the induced potential, is of the order of ovÿ1,
a very small magnitude in the range where collective excitations occur (typically
smaller than 10ÿ2 a.u.), in many situations we can neglect the dispersion e�ects in
the dielectric response function and describe the response of the medium by means
of a local dielectric function E(o )=E(q= 0, o ). Neglecting retardation e�ects, the
total potential is the solution of Poisson equation

r 2f�r, o� � ÿ 4p
E�o�r�r, o�, �2:1�

where r(r, o ) stands for the o-component of the charge density. The convention
followed for the Fourier transform is in Appendix B. Assuming that the probe is
moving along the x-axis, the charge density is given by:

r�r, o� � Z
1

v
ei

ox
v d� y�d�zÿ b�: �2:2�

The solution of (2.1) can be obtained by the standard electrodynamical techniques
(see Appendix B). Then, in the region where the charge is travelling (z > 0), the
potential can be written as:

f�r, o� �

ÿ 2
Z

v
K0

� j o j
v

���������������������������
y2 � �zÿ b�2

q �
ei

ox
v ÿ 2

Z

v
x�o�K0

� j o j
v

���������������������������
y2 � �z� b� 2

q �
ei

ox
v ,

�2:3�
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where x, y and z are the cartesian coordinates of r, K0(x ) stands for the modi®ed
Bessel function and x(o ) is the planar surface response function de®ned as:

x�o� � E�o� ÿ 1

E�o� � 1
: �2:4�

The ®rst term in (2.3) is the o-component of the Coulomb potential, while the
second one is the surface induced potential. This last term can be understood as
the o-component of the image potential; the potential created outside the medium
by the dynamic image charge, i.e., a charge qimage(o )=ÿZx(o ) placed in front of
the probe and inside the medium at a distance b from the surface. Then, the
induced potential is:

find�r, t� � ÿ
Z

pv

�1
ÿ1

dox�o�K0

� j o j
v

���������������������������
y2 � �z� b�2

q �
ei

ox
v �xÿvt�: �2:5�

Because of the analytic properties of the dielectric function E(o ) [18], the response
function satis®es x(ÿo )=x�(o ), where z� stands for the complex conjugate of z.
Therefore, one can write the former expression as an integral over positive values
of o:

find�r, t� � ÿ
2Z

pv

�1
0

doK0

�
o
v

���������������������������
y2 � �z� b�2

q �
Refx�o�eioxv �xÿvt�g, �2:6�

where Re{z } stands for the real part of the complex argument z. Although (2.6)
explicitly exhibits the fact that the ®eld find(r, t ) is real, in many cases it is
preferable to handle (2.5).

The Bessel function K0 is a monotonous decreasing function, with the following
limiting values [19]:

K0�x�0

8>>>><>>>>:

�������
x

2x

r
eÿx

�
1ÿ 1

8x
� � � �

�
x� 1

ÿln

�
x

2

�
ÿ 0:5772 . . . x� 1

: �2:7�

Therefore, in the limit when the argument of the Bessel function is very large, i.e.,
low velocities or large distances, the main contribution to this integral comes from
the low o region. Then, the induced potential can be written as:

find�r� � ÿx�o � 0� Z���������������������������������������������������
�xÿ vt�2 � y2 � �z� b�2

q , �2:8�

where we have made use of the fact that the response function x(o ) is real at
o=0. Expression (2.8) is the well-known electrostatic limit of the image potential.

In this approach, (2.5) fully describes the interaction between the probe and the
interface. From this expression, one can evaluate the stopping power dE/dx; i.e.,
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the energy loss dE experienced by the probe, when it travels along a path of
length dx. The probe is stopped by the component of the electric force along the
motion direction; the stopping power is just this component of the force evaluated
at the probe position; i.e., x=vt, y=0 and z=b:

dE

dx
� ÿZ@find

@x

����
traj

� ÿ2Z
2

pv2

�1
0

o do Imfx�o�gK0

�
2ob
v

�
, �2:9�

where Im(z ) stands for the imaginary part of the complex argument z. The total
energy loss given by (2.9) can be interpreted as the result of the excitation of
di�erent inelastic processes of energy o, each of them excited with a probability
per unit length dP(o )/dx, i.e.,

dE

dx
�
�1
0

o do
dP�o�

dx
, �2:10�

where:

dP�o�
dx
� 2

Z 2

pv2
Imfx�o�gK0

�
2ob
v

�
, �2:11�

which was ®rst obtained by Echenique and Pendry [20], although it can be derived
from a previous work by Takimoto [17].

From (2.9), it is clear that only the imaginary part of the response function
x(o ) is responsible for the inelastic scattering, which is a general feature of this
approach. In a metal, the collective surface excitations take place for those values
of o for which Re{E(o )} 0 ÿ1. For a Drude-like metal, E�o� � 1ÿ o2

p =o
2

(Appendix A), the imaginary part of the response function x(o ) can be simply
expressed in terms of a single excitation, the so-called planar surface plasmon:

Imfx�o�g � pos

2
d�oÿ os�, os � op���

2
p : �2:12�

Here, os is the well-known energy of the surface plasmon which was ®rst
introduced by Ritchie [8]. This prediction was con®rmed by Powell and Swan [21]
in Al and Mg ®lms. Then, the energy loss probability per unit length is:

dP�o�
dx
� Z 2

v2
K0

�
2ob
v

�
osd�oÿ os�: �2:13�

In other metallic surfaces, the energy of their surface plasmons (the so-called
modes ) are given by the poles of their corresponding response functions. The
modes are the values of o for which the Laplace equation presents non-trivial
solutions.

When the probe moves parallel to the surface, but through the medium, the
potential can be calculated in a similar way. Then, the induced potential is given
by:
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find�r, o� �

2
Z

v

�
1

E�o� ÿ 1

�
K0

� j o j
v

���������������������������
y 2 � �zÿ b� 2

q �
ei

ox
v ÿ 2

Z

v
z�o�K0

� j o j
v

���������������������������
y 2 � �z� b� 2

q �
ei

ox
v ,

�2:14�

where the surface response function z(o ) is:

z�o� � ÿ 1

E�o�
E�o� ÿ 1

E�o� � 1
� 1

E�o� � x�o� ÿ 1: �2:15�

In (2.14), the ®rst term is the same as the induced potential created by a probe
moving through an unbounded medium of dielectric function E(o ), while the
second one is the contribution of the surface to the induced potential. Proceeding
as before, one can calculate from (2.14) the total energy loss probability per unit
length [22,23]. It is given by:

dP�o�
dx
� 2

Z 2

pv2
Im

� ÿ1
E�o�

�
ln

�
kcv

o

�
� 2

Z 2

pv2
Im

�
1

E�o� � x�o�
�
K0

�
2ob
v

�
: �2:16�

The ®rst term in (2.16) is the well-known expression for a charge moving in a
non-bounded medium; in a metal, it describes the excitations of bulk plasmons.
To calculate this bulk contribution, a cut-o� kc has been used to avoid the
contribution of large values of the momentum, which lead to a logarithmic
divergence, when a local dielectric response is used [24]. Bulk plasmons are excited
Ð at least in the local dielectric approach Ð only by probes travelling through
the medium. The second term of (2.16) is the surface contribution to the energy
loss probability. This contribution is twofold: the term in x(o ) describes the
excitations of surface plasmons, while the term containing Eÿ1 is a negative
correction to the bulk plasmon excitation probability due to the presence of the
interface; this term reduces the bulk losses in relation to the case when the probe
travels through an unbounded medium, and is the so-called begrenzung or
boundary-e�ect, ®rst described in ®lms by Ritchie [8] and which appears in other
targets for penetrating trajectories of the probe [25]. This e�ect means that the
excitation of surface modes is made at the expense of the bulk modes. For a
Drude-like metal, the surface contribution to (2.16) can be written as:

dPsurf�o�
dx

� Z 2

v2
K0

�
2ob
v

�
fosd�oÿ os� ÿ opd�oÿ op�g, �2:17�

which establishes that the reduction of the bulk plasmon excitation probability has
exactly the same analytic form, but opposite sign, as that corresponding to surface
plasmons. Note that os<op, therefore, the begrenzung does not imply that there
is a balance in terms of the energy loss; it means that the total energy loss is
smaller than that corresponding to an in®nite medium. The negative bulk
correction is to be balanced by the in®nite bulk term, so that the total bulk
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plasmon excitation probability is positive. This fact provides a limit to the
usefulness of the local dielectric response approach: at impact parameter b small
enough, as to apply the limiting expression (2.7), the bulk plasmon term behaves
as:

dPbulk�o�
dx

02
Z 2

v2
Im

� ÿ1
E�o�

�(
ln

�
ob
v

�
� ln

�
kcv

o

�)
, �2:18�

therefore, (2.16) is only valid for impact parameters b > 1/kc, a result implicitly
imposed by the cut-o� used in the direct bulk term.

In the same way, from (2.5) one can calculate F_, the component of the force
normal to the probe trajectory. This force is responsible for the de¯ection of the
trajectory towards the surface:

F?�b� � ÿZ@find

@z

����
traj

� ÿ2Z
2

pv2

�1
0

o do Refx�o�gK1

�
2ob
v

�
, �2:19�

which is valid for any dielectric function and was ®rst obtained by Howie [26]. Eq.
(2.19) states that only the real part of the response function is involved in the
elastic scattering. The fact that real and imaginary parts of the response function
are related to the elastic and inelastic interactions, respectively, is a general result
of the non-relativistic theory, valid for any situation, so long as the energy loss is
evaluated between probe positions for which the initial and ®nal states of the
target are the same, as we will prove in Section 5.2. For a free-electron gas metal,
it is possible to integrate (2.19) over o by using the integral representation of the
Bessel function [19]. In this way, the normal force can be written in terms of the
surface plasmon frequency os [27]:

F?�b� � Z 2o2
s

v2

�1
0

dt�������������
1� t2
p cos

�
2osb

v
t

�

� Z 2o2
s

v2
p
2

�
I1

�
2osb

v

�
ÿ L1

�
2osb

v

�
ÿ 2

p

�
, �2:20�

where I1 and L1 are the modi®ed ®rst-order Bessel and Struve functions
respectively [19]. The limit of this expression for a small impact parameter is:

F?�b� � ÿZ 2o
2
s

v2

(
1� 0

�
osb

v

�2

� � � �
)
, b� v

os

, �2:21�

which indicates that near the interface the normal force remains always ®nite.
Roughly, this ®nite value is due to the fact that the induced charge density needs
a time of about oÿ1s to be established and then the image charge is delayed a
distance 0voÿ1s in relation to the actual probe position. This ®nite result is also
valid for more complicated response functions; then the delay should be an
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average value of the di�erent excitations, which contribute to the dielectric
response function.

For large values of the parameter bosv
ÿ1, (2.20) leads to the well-known

electrostatic limit:

F?�b� � ÿZ 2 1

4b2

(
1� 0

�
v

osb

�2

� � � �
)
, b� v

os

: �2:22�

The fact that the force is negative in these expressions means that it is always
directed towards the surface when the charge is travelling in vacuum.

Eqs. (2.11), (2.16) and (2.19) exhibit the main features of the inelastic and
elastic interactions between probes and surfaces. The expressions for the stopping
power have been widely used to study the inelastic interaction of swift charges
with large planar surfaces. Many authors have proved that the optical dielectric
functions E(o ) explain, in qualitative detail, the surface loss spectra for di�erent
materials [28±30,10]. Additionally, the impact parameter dependence given by
(2.9) is in good agreement with the experimental results [4,23,31].

An alternative way of tackling the probe±target interaction is through the
charge density induced in the target. The polarisation of the medium P generates
both volume and surface densities. The induced volume density is ÿHP and,
consequently, it is proportional to the external charge density in the medium; this
charge density takes place only when the probe is moving through a polarisable
medium. In this case, the volume charge density leads to the bulk screening factor
Eÿ1. When the probe travels outside the target, the interaction between probe and
target is due only to the potential created by the surface charge density sind. The
induced charge density on the surface is the normal component of the polarisation
and can be straightforwardly derived from (2.3). It is given by:

sind�x, y, o� � ÿZ j o jpv2
x�o� b����������������

y2 � b2
p K1

� j o j
v

����������������
y2 � b2

p �
ei

ox
v , �2:23�

where K1�x� � ÿ�d=dx�K0�x� is the modi®ed Bessel function of ®rst-order. Its
limiting values are given by:

K1�x�0

8><>:
�������
p
2x

r
eÿx, x� 1

x ÿ1, x� 1

, �2:24�

which means that the induced charge density is spread in the plane over a region
of size voÿ1 in the direction transverse to v, while in the direction of v it oscillates
with a wavelength 2pvoÿ1.

Taking into account the behaviour of the Bessel function K0, the surface
contribution to the energy loss probability in (2.9) diverges as ln{bovÿ1} for small
values of b. This e�ect has not been found experimentally. It is a consequence of
the simple local approach used here; this model does not impose any spatial
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correlation in the induced charge density, so, at small impact parameters, it tends
to pile up an unphysical induced charge density on the interface (2.23).

In a more realistic approach, one should consider that, for small values of b,
large values of the momentum transfer contribute to the dielectric response, hence,
one cannot properly neglect the momentum dependence in the dielectric function
E(k, o ). The e�ect of the dispersion in the stopping power near a surface has been
evaluated for the fast electrons [32±35] and for the general case [36] as well.

Following [35], we study the energy loss experienced by the probe near a
dispersive medium in the same situation as above. Now the medium response is
described by the Mermin dielectric function [37] (see Appendix A) and the
specular re¯ection model [38] is used to impose the boundary conditions at the
interface. In Fig. 1(a), we plot the imaginary part of the surface response function
derived for Al as a function of both k and o, which decreases for values of the
momentum transfer larger than 0.5kF. This attenuation of the surface response
works as an e�ective cut-o� in momentum space and leads to ®nite values of the
surface stopping power, when the impact parameter tends to zero, as shown in
Fig. 1(b), which compares both local and dispersive approaches; it proves that the
dispersion is only relevant at very small impact parameters b� voÿ1s : For larger
impact parameters, the main contribution to the potential arises from small
momentum transfer, so that both local and non-local descriptions lead to the
same results. This conclusion can be generalised for other situations, by stating
that local e�ects are relevant only in situations, where the electron spends most of
its ¯ight time at very small distances from the surface. In particular, for
penetrating trajectories, the logarithmic divergence of the find near the surface
leads to ®nite values of the energy loss probability, when integrating over the
whole trajectory.

A rough evaluation of the error provided by the local approximation for
trajectories crossing the interface can be obtained by using the interface
parallel path method, which leads to the conclusion that the local approach
overestimates the surface plasmon loss in about 5% with respect to the non-
local calculation. Even though, in most materials, the description of the
excitation spectra provided by the experimental optical function E(o ) is more
realistic than that obtained from any theoretical response functions. Several
methods to extend the experimental dielectric function E(o ) for large values of
q have been proposed [39±41]. Some of them are brie¯y introduced in
Appendix A.

Fig. 1 is quite important for discussing the spatial resolution available in
valence EELS. Without dispersion, the dependence on K0(2osb/v ) shows that v/os

appears as a scaling factor, but does not really tell much about the resolution,
since the Bessel function has a long tail and a very steeply varying part at small b.
With dispersion, as shown by the surface plasmon excitation in Fig. 1, we obtain
a clearer picture. Higher spatial resolution can be obtained by selecting only large
values of the momentum [35].

The bulk loss probability of Fig. 1(b) presents a similar behaviour; for
trajectories inside the metal, the total probability and the surface correction to this
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term remain ®nite near the surface. The small step in the bulk loss probability

near the surface has been found experimentally [42,43,5]. Another relevant feature

of the non-local approach is that the bulk plasmon ®eld slightly extends outside

the medium, whence bulk plasmons can be weakly excited by electrons moving

Fig. 1. (a) Imaginary part of surface response function as a function of o (in units of os) and parallel

momentum q (in units of Fermi momentum kF). (b) Comparison of surface and total bulk loss

probability as a function of the impact parameter b, for local (dashed line) and non-local (continuous

line) dielectric function (a Mermin dielectric function with rs=2 and g=1 eV). Geometry is sketched in

inset of ®gure (b). Negative values of b indicate inner trajectories.

A. Rivacoba et al. / Progress in Surface Science 65 (2000) 1±6412



outside the surface, at very small impact parameters. The small tail outside the
surface in the local plot is not properly a bulk term: it really comes from the local
surface response function x(o ) when a damped dielectric function is used (A3).

Expression (2.21) has been used by Echenique and Howie [44] to evaluate the
de¯ection angle experienced by the STEM beam passing near a 100 nm long MgO
planar surface [29] or Au particles [45], leading to a value which is three orders-of-
magnitude smaller than the measured one. Further sophistications of this
calculation, taking into account the shape of the target, led to similar values
[46,47]. Surface charging has been suggested as a possible reason for the MgO
observation, but this is unlikely to be a realistic explanation in the case of the
gold particles. More conclusive experiments need to be performed in order to
clarify this point.

Another obvious shortcoming of the simple approach presented here derives
from neglecting the relativistic e�ects, which require Maxwell's equations to be
solved. The simple fact that the induced charge density and currents are now
coupled through a retarded ®eld can change the electromagnetic modes of the
target. This e�ect is independent of the probe velocity and will be studied in the
case of spherical particles. Other relativistic e�ects are related to the velocity of
the probe, typically, one half of the velocity of light c in STEM. In addition to the
retardation e�ect, due to the time the signal takes to reach the surface and to turn
back to the probe, some new e�ects appear: Cherenkov emission becomes possible
when the real part of E(o ) becomes large enough: RefE�o�g > �c=v�2 and the
induced charge density can radiate.

One simple system for studying the retardation e�ect is that of a planar
interface or ®lm [48±51]. Following this last work, we study the case of an
electron moving parallel and outside a planar surface at impact parameter b. This
problem provides a simple basis for understanding how the retardation a�ects the
EELS impact parameter dependence. Maxwell's equations can be solved in terms
of the Hertz vector [53]. The energy loss probability per unit length is given by:

dP�o�
dx
� 2

Z 2

pv2

�1
0

dqy
eÿ2m0b

m0
Imflc�o, q�g, �2:25�

where qy is the component of the momentum in the plane of the surface, normal
to the trajectory, q2 � q2

y � o2=v2 and the retarded loss function lc(o, q ) is given
by:

lc�o, q� � 1

m� m0

(
2m2

0 �Eÿ 1�
Em0 � m

ÿ �1ÿ b2��m0 ÿ m�
)
, �2:26�

where b=vcÿ1 and

m �
�
q2
y �

o 2

v2
�1ÿ Eb2�

�1=2
, m0 �

�
q2
y �

o2

v2
�1ÿ b2�

�1=2
: �2:27�
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In the limit b 4 0, (2.25) yields (2.11). For a metal, the energies of the surface
plasmons o are given by the equation Em0 ÿ m � 0, which leads to:

f2ÿ b2g
� o
op

�4

�
(
2

�
qv

op

�2

ÿ1� b2

)� o
op

�2

ÿ
�
qv

op

�2

� 0, �2:28�

therefore, the velocity of the probe introduces a dispersion of the surface plasmon
energy, which is signi®cant for high values of b. Fig. 2 shows the modes for
di�erent values of the energy. The limiting values of the function o(qy) are given
by:

o20

8>>>>>><>>>>>>:

o2
p

2

1ÿ b2

1ÿ 1

2
b2

, qy � op

v
,

o2
p

2
, qy � op

v
:

�2:29�

The dispersion is re¯ected in the energy loss spectra shown in Fig. 3. For small
impact parameters, the main contribution to the integral arises from large values
of q, so the main loss peak occurs near os. There is another small peak

Fig. 2. Retarded dispersion relation in planar interface for three di�erent probe energies.

Corresponding b values are 0.41, 0.55 and 0.70, respectively.
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corresponding to the low q contribution, but its intensity is much smaller. The
comparison with the non-retarded spectrum shows a reduction in the intensity of
the os peak, as well as a small red shift of this peak, due to the plasmon
dispersion. For a large impact parameter (curve b), the main contribution to the
energy loss probability comes from the low q region, whereby the loss peak is
centred at the limit values of o(qy) for q4 0 in (2.29). All the relativistic e�ects in
these spectra derive from just the retardation in the interaction, because in this
case there is no Cherenkov emission (E(o ) < 0) and surface plasmons cannot
radiate, since the dispersion curves for both surface plasmons and photons do not

Fig. 3. Retarded (solid line) and non-retarded (dashed line) energy loss probability per unit length for

electron moving parallel to metallic surface (op=15.1 eV, g=0.027 eV). Corresponding impact

parameters are: (a) b=0.1 nm; and (b) b=5 nm. Beam energy is 100 keV (v00.55c ).
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allow plasmons to decay into photons [52]. The larger the retardation time b/c is,
the larger this e�ect becomes.

In insulators, besides the retardation e�ect, Cherenkov emission becomes
possible. In Fig. 4, we plot the spectra corresponding to an Al2O3 surface, for two
di�erent impact parameters. In both plots, there are energy losses in the region of
the gap (0±7 eV), which are due to the Cherenkov emission. Such losses are not
present in the spectra corresponding to a 100 keV beam, because then the velocity
is below the threshold of the Cherenkov radiation [E(o )03 in this region]. This
e�ect is relatively more strong as b becomes large, because it comes from the
contribution of the term

����������������
1ÿ Eb2

p
to the imaginary part of m in (2.27), so it is

only relevant for small values of qy. This observation indicates that, for non-
penetrating trajectories of the probe, Cherenkov emission is relevant only in large
targets.

Fig. 4. Retarded (solid line) and non-retarded (dashed line) energy loss probability per unit length for

electron moving parallel to Al2O3 surface. Corresponding impact parameters are: (a) b = 0.1 nm; and

(b) b = 5 nm. Beam energy is 200 keV (v00.70c ). Experimental dielectric functions have been used

[106].
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For large impact parameters, the retarded expression leads to a signi®cantly
better agreement with experimental intensity of surface loss peaks than the non-
retarded one [31]. The importance of taking into account the relativistic
corrections, to interpret with full particulars the experimental spectra, has been
emphasised by Moreau et al. [54].

In addition to the planar geometry, relativistic corrections have been evaluated
for other simple geometries such as spheres [55,56] and cylindrical cavities [57,58].
Recently, GarcõÂ a de Abajo and Howie [59] have developed a numerical procedure,
which allows the calculation of the retarded energy loss probability, in targets of
general geometry.

As a ®nishing remark, we notice that we have used the force as a magnitude to
represent the interaction. Nevertheless, many problems involving the charge±
surface interaction are usually tackled through a Hamiltonian approach, where the
interaction is derived from the static potential energy. The potential energy V(z ) is
then the electrostatic energy stored by the probe±surface system, when the probe
is at a distance z from the surface, and is given by [18]:

V�z� � 1

2
Zfind�o � 0, r� jtraj� ÿx�o � 0�Z

2

4z
, �2:30�

where we have used (2.8). Note that although V(z ) di�ers by a factor 1
2 from the

product Zfind, this expression leads to the right asymptotic value of the force, as
given by (2.22).

3. Excitation of electronic states by extended beam

The understanding and interpretation of energy ®ltered images in STEM poses
the basic problem of spatial resolution, i.e., the distance at which the probe can
signi®cantly produce on given excitation.

From a theoretical point of view, neglecting the technical limitations of the
instruments, there are three lengths relevant to this analysis: the spatial extension
of the excited states of the target; the range of the Coulomb potential; and, ®nally,
the beam spatial spread. Now, we concentrate on this last parameter, although in
current microscopes the width is as small as 0.2 nm, a length which poses an
obvious limit to the resolution, it raises the question of what is the error made
when one considers the beam as a fast classical electron moving with a ®xed
impact parameter, neglecting the wave nature of the beam electrons.

Following [60], we consider the excitations of core electrons by a broad
coherent electron beam. The electronic states of the target are represented by a
complete set of eigenstates vn> of energy on, while the beam is described by a
plane wage Oÿ1=2 eipr, where O is the normalisation volume. In the framework of
the time-dependent perturbation theory, the cross-section sn0 for the transition
from the target ground state v0> to a ®nal excited state vn> is given by:
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sn0 � 4

vO

�
dq

q4
j rn0 j2 d

�
vqÿ q2

2
ÿ on0

�
, �3:1�

where on0=o0ÿon is the energy of the transition, v=p is the velocity or initial
momentum of the electrons of the beam and q is the momentum transfer. The
matrix elements of the density operator are given by:

rn0 � hn j S eiqr j 0i, �3:2�
where the sum extends to all the atoms of the target. In (3.1), the delta function
arises from energy conservation, and the term 1

2q
2 is the incident electron recoil.

For STEM electrons and small scattering angles, this term is very small in
comparison to vq and can be neglected. Then, one can write (3.1) as follows:

sn0 �
�

db j an0�b� j2 , �3:3�

where b is the spatial variable conjugate to the component of the momentum
transfer and an0(b) is given by:

an0�b� � 1

i

�1
ÿ1

dt eion0t

�
n

����S 1

j b� vtÿ r j
����0�, �3:4�

which can be regarded as the probability amplitude that the system experiences a
transition v0 > 4 vn > , due to the interaction with an electron moving in a
classical trajectory at impact parameter b. Eq. (3.3) states that the probability of
inducing an atomic transition by a broad beam can be evaluated as the incoherent
sum of probabilities for di�erent impact parameters. All the quantal e�ects arise
from the recoil term in (3.1), which has been calculated by Ritchie and found to
be negligible for STEM electrons [60]. As Ritchie stated, the higher the velocity of
the incident electron, the more classical is its behaviour with respect to energy
transfer to matter.

The impact parameter dependence of the probability amplitude can be better
studied by writing (3.4) as:

an0�b� � ÿ2i
v

*
n

�����S ei
wn0x
v K0

� ������������������������������������������
�by ÿ y� 2 � �bz ÿ z�2

q on0

v

������0
+
, �3:5�

where we have assumed that the beam is oriented in the direction of the x-axis.
The operator in the matrix element of (3.5) is basically the o-component of the
Coulomb potential created by the particle, and falls o� outside a region of size
voÿ1n0 around the microprobe (01 nm for 100 keV electrons and 100 eV
excitations). Nevertheless, due to the orthogonality of the wave functions, the
matrix element in (3.5) takes relevant values only when the operator varies very
quickly in the region where the overlap of the wave functions occurs. Taking into
account the behaviour of the Bessel function, one concludes that the impact
parameter relative to the atom should be smaller than the spatial extension of the
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electronic states. Consequently, these inelastic processes e�ectively take place,
when the beam impinges directly on the atom. Since these excitation energies do
not depend on the target shape, this technique has been commonly used to
identify single atoms in thin crystals [61] and to establish chemical information of
selected parts of the sample [9,62].

Ritchie and Howie have generalised the analysis for collective excitations of the
target [63]. Let us suppose a microprobe moving along the x-axis, centred at a
position given by b in the yz-plane. Its wave function can be represented as:

c�r� � 1����
O
p D�r? ÿ b�eik0x, �3:6�

where r_ stands for the projection of r in the yz-plane. The function j D�r? ÿ b� j2
describes the transverse shape of the wave packet. To calculate the probability of
exciting plasmons of energy o, when the beam crosses near a target, we proceed
as above. Again, the electron recoil is neglected and we assume that all the
inelastically scattered electrons are collected, then the probability of losing energy
o can be written as:

P�o� �
�

dr? j D�r? ÿ b� j2 Pclass�o, r?�, �3:7�

where Pclass(o, b) stands for the energy loss probability corresponding to a
classical electron moving at the impact parameter b. Eq. (3.7) states that in
valence EELS the beam can be considered as an incoherent sum of classical
electrons. The condition of collecting all the electrons implies that the momentum
transfer must be small enough, so that all the electrons emerge with a scattering
angle smaller than the spectrometer aperture. In the usual experimental set up, the
spectrometer aperture is Wm 0 8.10ÿ3 rad, a value large enough, so that the
condition of collecting most of the scattered electrons is reasonably ful®lled.

Batson [64] discussed the e�ect of the real limited spectrometer aperture as an
e�ective cut-o� to the momentum transfer, qmax, which imposes on the spatial
resolution a limit of about qÿ1max 0fvWmgÿ1, a length of the order of 0.1 nm. The
author concluded that, in real STEM situations, this classical approach provides a
good description of the inelastic scattering.

4. Spatial resolution in valence EELS

Valence loss spectroscopy bene®ts from the relative high intensity, which allows
energy selected images to be obtained without strong damage of the sample.
Experimental observations by Batson [2,3], Wang and Cowley [65,168±170], Walsh
[57], Howie and Walsh [66] and Ugarte et al. [5] have shown the ability of this
technique to reveal surface or bulk structures of microsamples. Nevertheless, the
interpretation of the loss spectra and ®ltered images is much more complicated.
First of all, the energy of these excitations depends, not only on the composition
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of the sample region under study, but also strongly on the surface shape, on the
neighbouring media and on the coupling with other parts of the sample. In
addition, the collective excitations of the valence electrons (plasmons) are not
spatially localised, so one cannot expect the same high resolution obtained for
core electron excitations.

Let us study the energy deposited by a fast electron in a small volume dV of the
sample. We assume that the electron is moving with constant velocity v and
impact parameter b far away from the sample, so we can assume that the electric
®eld created by the probe is at each time uniform around the sample. Then the
energy loss rate in this volume is given by:

dW�t�
dV

� E�t�P�t�
dt

, �4:1�

where E and P are the electric ®eld and the polarisation, respectively. Neglecting
the momentum dependence of the dielectric response function, one gets
E(o )=z(o )P(o ), where z(o ) is a response function, which depends on the
dielectric nature and shape of the whole sample. The total energy loss deposited in
this volume is obtained by integrating (4.1) along the trajectory. Then, the energy
loss density can be easily written in terms of the o-component of the electric ®eld:

dEloss

dV
� 1

p

�1
0

o do Imfz�o�g j E�o� j2 , �4:2�

which can be interpreted in terms of the probability P(o ) of producing inelastic
excitations of energy o. Neglecting the relativistic corrections, the electric ®eld can
be obtained from (B7):

j E�o� j2� 4o2
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�
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��
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where K0,1 are the modi®ed Bessel functions. For large values of b, one can use
the asymptotic expansion of these functions and the loss probability per unit
volume,

dP�o�
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Imfz�o�g
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1

�
ob
v

��
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behaves as exp[ÿ(2ob/v )]. Eq. (4.4) features the impact parameter dependence of
the energy loss probability ruled by the scale factor 0voÿ1. For a 10 eV loss and
a beam energy of 100 keV, this leads to a distance of about 10 nm. This length
determines the size of the target region around the trajectory, in which the probe
can excite e�ciently inelastic processes of energy o, so it provides the spatial
resolution in valence EELS experiments, as discussed in connection with Fig. 1(b).

This result can be obtained in a simple way by means of a simple ¯ight time
argument [18]: the duration of the electric pulse t created by the probe is t0bvÿ1,
which leads to the cut-o� impact parameters bc0voÿ1.
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Such an exponential dependence, derived from (4.4), has been found in many
experiments with di�erent surface shapes, as shown in Fig. 5.

Note that this argument is valid for surface excitations: bulk plasmons can be
excited only when the probe moves through Ð or very near to Ð the medium.
This approach is valid when the probe moves far away from the target, so the
response function z(o ) has no bulk contribution. This fact can be seen in energy-
selected images [2,5]; in general, the images corresponding to bulk losses are clear
and the shape of the sample is sharply de®ned, while those corresponding to
surface losses are much more di�use. In the last case, the size of the illuminated
area does not provide straight information about the thickness or size of the
specimen, but is given basically by the length voÿ1.

On the other hand, the coupling between di�erent parts of the specimen also
occurs through the Coulomb potential, therefore, this coupling will be ruled by
the same typical interaction length. This length imposes, at any beam position, a
limit to the size of the region around the sample, which is e�ectively coupled to it
and is, therefore, relevant to understanding the loss spectra. This means that
targets, which locally do not di�er signi®cantly in a range of about voÿ1, will lead
to similar loss spectra. As a consequence, in targets with smooth surfaces (spheres,

Fig. 5. Excitation probabilities for three di�erent surface modes of system of two interpenetrating Si

spheres. Experimental data have been taken from [5]. Continuous lines show asymptotic behaviour

derived from (4.4). Pre-exponential factors in theoretical plots have been chosen to ®t experimental

curves.
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cylinders, etc.), the planar spectrum is always recovered in the limit of a small
curvature.

As we have pointed out before, retardation e�ects can be relevant at large
impact parameters. Nevertheless, as shown in experiments (see for instance Fig. 5),
it provides just a correction to the asymptotic exponential decay.

5. Theoretical approaches to surface±probe interaction

Although many quantal models have been developed to describe the interaction
of fast electrons with matter, most of them used simple theoretical approaches to
the excitation of the target. Here, we present a quantal model which allows the
use of any dielectric function. Such a general formulation of the problem of the
interaction of a quantal probe with a dielectric target can be used with any
dielectric function, leading to an expression suitable for EELS in electron
microscopy. This expression can be recovered by considering the electron as a
classical particle. The equivalence between both descriptions con®rms the
suitability of (3.7).

5.1. Quantal model: self-energy formalism

The interaction between an external charged particle and a polarisable medium
is described in the quantal description through a complex function S � SR ÿ iSI

called self-energy [67±69]. A detailed description of the formulation and di�erent
points of views and approaches can be found in Refs. [70,71]. Here, we apply the
self-energy formulation to the problem of the energy loss in STEM [72,73].

In the self-energy treatment of scattering experiments, the probe is represented
by a wave function that polarises the target, which reacts back on the probe
changing its quantum state. The real part of the self-energy SR is the image
potential, giving the energy shift DE of the incoming particle, due to virtual
excitations of the medium. The imaginary part SI is directly related to the energy
loss, experienced by the probe charge, due to real excitations produced in the
target.

Let us consider the electron probe in an initial state F0 with energy E0. The
mean energy of the incoming electron, due to the non-local interaction with the
medium, is written as the average of an e�ective potential operator Ve�(r)

S0 �
�

drF�0�r�Veff�r�F0�r�, �5:1�

which, in fact, can be expressed in terms of the non-local self-energy as:

Veff�r�F0�r� �
�

drS�r, r 0, E0�F0�r 0 �: �5:2�

The self-energy can be written within the pair approximation [67,74] in terms of
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the Green's functionr (GF) G(r, r ', o+E0) and the causal screened interaction
W(r, r ', o ),

S�r, r 0, E0� � i

2p

�
doW�r, r 0, o�G�r, r 0, o� E0�eido: �5:3�

d being a positive in®nitesimal quantity, indicating that the integration in o must
be taken in the upper sub-plane, Im(o ) > 0. The causal screened interaction is the
same function de®ned in Appendix B. The GF can be written as the following
summation over a complete set of the ®nal states Ff (r) with energy Ef :

G�r, r 0, o� E0� �
X
f

F�f �r 0 �Ff�r�
o� E0 ÿ Ef

: �5:4�

Then, by replacing (5.2)±(5.4) in (5.1), we have:

S0 � 1

p

X
f

�
do dr dr 0

F�f �r 0 �F0�r 0 �Ff�r�F�0�r�
o� DE� id

ImfW�r, r 0, o�g, �5:5�

where DE � Ef ÿ E0:
Eq. (5.5) is of general validity; in addition to EELS in STEM, it has been used

in other problems involving probes and surfaces, such as image states [75].
As we have already pointed out, the real part of the self-energy SR is related to

the dynamic image potential and can be interpreted as the energy needed for the
probe to approach the target ([18]). To deal with the energy losses in inelastic
scattering processes, the calculation of the imaginary part of the self-energy SI is
of special interest, since it is related to the energy-loss rate g experienced by the
incoming particle. The e�ect of inelastic scattering can be represented by
introducing an imaginary optical potential in the one-particle SchroÈ dinger equation
[76], which leads to a time-dependence in the probability of the incident particle as
e 2SIt, from where we can de®ne the imaginary part of the self-energy,

ÿSI � 1

2t
� G

2
, �5:6�

where t is a mean inelastic collision time, the lifetime of a coherent fast particle
wave function, and G is the energy width of the level.

Descriptions of energy loss experiments are performed mostly in terms of the
probability per unit length P(o ) of losing energy o or the inverse mean free path
Lÿ1, magnitudes that are both related to the imaginary part of the self-energy.
For a probe moving with velocity v, these relations are

ÿSI � vLÿ1

2
� v

2

�1
0

doP�o�: �5:7�

Expressions (5.5) and (5.7) have been used to study the energy loss experienced by
a broad beam, when interacting with spherical and cylindrical targets [72,77]. For
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a spherical target, the classical expression obtained by Penn and Apell [78] is
recovered.

The above formalism can be applied to the case of well-focused STEM beams.
In this case, the incoming electron wave function is approximated as in (3.6),
where j D�r? ÿ b� j2 0d�r? ÿ b�: Then, neglecting the recoil term in DE and
transforming the summation over ®nal states into an integral over momentum
transfer, we ®nally obtain the following expression for the energy loss probability
[73]:

P�o� � 1

pv2

�1
ÿ1

dx 0
�1
ÿ1

dx ImfW�r, r 0, o�eioxv �xÿx 0 �g jtraj , �5:8�

where both r and r ' are evaluated along the trajectory. Eq. (5.8) accounts for the
total energy loss probability, containing bulk and surface contributions.

The main advantage of this method, in relation to other quantal methods, is
that it allows the use of any dielectric function. In addition, (5.8) is easily
computable, since it only involves a double integral. The connection between this
quantal formalism and the classical approaches is presented in the next section.

5.2. Classical approach

Expression (5.8), although obtained in a quantal context, can also be derived
from a classical point of view. In the classical framework, the interaction is given
by the induced potential, which in turn can be expressed in terms of the screened
interaction and the charge density (see Appendix B). The charge density is given
by (2.2). So, the induced potential is given by:

f�r, t� � ÿ 1

2pv

�1
ÿ1

do
�1
ÿ1

dx 0 ei
ox
v �x 0ÿvt�W�r, r 0, o� jtraj : �5:9�

The total energy loss DE can be calculated as the work developed against the
electric ®eld acting on the electron along the whole trajectory:

DE �
�1
ÿ1

@F
@x

����
traj

dx �
�1
ÿ1

dF jtraj ÿ
�1
ÿ1

@F
@ t

����
traj

dt: �5:10�

In most cases of interest, the potential is the same at both ends of the trajectory,
i.e., F�x � ÿ1� � F�x � 1�, therefore, the integration in F on the right-hand-
side of (5.10) vanishes, whence,

DE � ÿ1
v

�1
ÿ1

@F
@ t

����
traj

dx: �5:11�

By taking into account that W(r, r ', ÿo )=W�(r, r ', o ), one can write (5.11) as an
integral over the positive values of o and (5.8) is straightforwardly recovered.

In the classical formalism, the condition that W(r, r ', o ) is evaluated along the
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trajectory can be explicitly incorporated by writing it in terms of the charge
density, so that the probability is written as:

P�o� � 1

p

�1
ÿ1

dr 0
�1
ÿ1

dr Imfr��r, o�W�r, r 0, o�r�r 0, o�g: �5:12�

In this way, the energy loss probability can be understood as the average value of
the imaginary part of the screened interaction over the whole trajectory.

Furthermore, (5.12) has a wider range of applicability, it is not just restricted to
the special trajectory considered in our problem, as was the case in (5.8). Note
that the validity of both (5.8) and (5.12) is restricted to those situations, when the
previously mentioned condition on the potential is applicable. That condition can
be better understood within the framework of the time-dependent perturbation
theory [79]. Thus, one avoids the elastic contributions to the energy loss, which
vanish when considering the whole trajectory. Such a condition is trivially ful®lled
in the cases of ®nite targets, re¯ection at planar surfaces or an electron crossing a
®lm or cylinder, since the potential then vanishes at both extremes of the
trajectory.

These expressions allow us to calculate the energy loss, due to the whole
trajectory (which is just the magnitude measured in the EELS analyser), and do
not give the stopping power at di�erent trajectory points. Nevertheless, in the case
of an electron moving parallel to an interface, which exhibits translational
invariance in the probe direction (planes, cylinders, ®lms, etc.), the former
condition is ful®lled at any point of the trajectory, so one can obtain in the same
way the expression for the energy loss probability per unit length:

P�o�
dx
� 1

pv2

�1
ÿ1

dx ImfWind�r, r 0, o� jtraj eiox=vg: �5:13�

The fact that (5.12) can be obtained from both quantal and classical descriptions
of the beam is a strong corroboration of Ritchie and Howie's statement given by
(3.7), in an extreme case, where all the values of the transverse momentum are
present in the quantal wave function.

Recently, Cohen et al. [80] have studied the quantal e�ects derived from the
spatial extension of the beam. They write the wave function as in (3.6) and then
expand the lateral function D in the basis of eigenfunctions of a box. Their results
do not basically contradict those of the classical theory, though Echenique et al.
[81] have criticised the suitability of their basis to describe the ®nal states.

6. EELS in planar surfaces

The planar surface provides a simple geometric model to study the basic
features of the interaction between the probe and a surface, as mentioned in
Section 2. Here, we study this basic geometry, in order to understand many
di�erent aspects of interest. First, we study EELS of an electron interacting with a
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thin ®lm, which allows the study of two relevant problems: the sensitivity of the
EELS technique to sub-surface structures, and the energy loss experienced when
the probe penetrates the specimen. Finally, the re¯ection on a planar surface is
studied.

6.1. Sub-surface sensitivity

To study the ®rst problem, we consider a sample formed by a semi-in®nite
medium characterised by its dielectric function E2(o ), covered by a layer of
dielectric function E1(o ) and thickness a. We assume that the outer medium is a
vacuum. In a situation where the electron is moving outside and parallel to the
surfaces at impact parameter b (see inset in Fig. 6), one may wonder about the
ability of the EELS technique to detect the inner medium, and how it appears in
the loss spectrum.

Takimoto [17] investigated the energy loss experienced by a fast electron moving
parallel to a metallic ®lm. For the more general case, the screened interaction can
be easily calculated by Fourier-transforming (B2) in the surface plane (we take the
z-axis in the direction normal to the surface, with the origin on the external
interface):

Fig. 6. Energy loss spectra corresponding to clean Al surface (dotted line) and Al surface coated with

Al2O3 layer, for di�erent values of oxide thickness. Impact parameter relative to outer surface of layer

has been kept to 1 nm. Dependence of surface plasmon peak with oxide thickness is shown in inset

®gure. Experimental data of dielectric functions have been used [105].
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W�r?, r 0?, z, z
0, o� � 1

�2p�2
�
d 2q eiq�r?ÿr 0?�W�q, z, z 0, o�, �6:1�

where the vector q is the projection of the momentum in the xy-plane and r=(r_,
z ). For the case when both r and r ' are in the outer medium, the induced screened
function is given by:

W�q, z, z 0, o� � 2p
q

eÿq�z�z
0 � x21 � x10 e2qa

x21x10 � e2qa
, �6:2�

where q stands for vqv and a is the layer thickness. The x-functions are the planar
response functions of both interfaces; i.e.:

x10 �
E1 ÿ 1

E1 � 1
, x21 �

E2 ÿ E1
E2 � E1

: �6:3�

From (5.13) one can obtain, in a straightforward way, the energy loss probability
per unit length:

dP�o�
dx
� 2

pv2

�1
1

dt�������������
t2 ÿ 1
p e

ÿ2ob
v t Im

8<:x21 � x10 e
2oa
v t

x21x10 � e
2oa
v t

9=;, �6:4�

where b is the impact parameter (relative to the external surface).
Not that, in the limit of large thickness, a>>voÿ1, the function to be integrated

in (6.4) becomes the integral representation of the Bessel function K0, thus, one
recovers (2.11) corresponding to a semi-in®nite medium of dielectric response E1.
On the other hand, the limit of a semi-in®nite medium of dielectric response E2
could be formally recovered, when a is strictly zero; nevertheless, even for very
small values of a (a<<voÿ1), the coupling between both surfaces, given by the
term e2oa=v in (6.4), is strong enough so that the loss spectrum di�ers very much
from that corresponding to the clean surface. Eq. (6.4) states that EELS is
sensitive to large sub-surface structures up to a depth of the order of voÿ1.

In Fig. 6, we illustrate this point by plotting the loss spectra obtained from (6.4)
corresponding to an Al surface, covered by an Al2O3 layer, for di�erent values of
the layer thickness. The main feature is the dramatic change in the Al surface
peak at 10.7 eV, which su�ers a red shift, even for a thin covering of oxide, as
shown in the inset. Note that the sensitivity of EELS is not uniform over all the
spectrum range; in the region of the Al2O3 broad surface peak, there is no trace of
the Al medium, even for a 3 nm thick layer, while the sharp loss peak, which is
due to the coupling between both surfaces, can be detected at much thicker
covering. The di�erent sensitivity derives from the range of the o-component of
the Coulomb potential: the smaller the excitation energy, the deeper the EELS
detection ability. The behaviour shown is in agreement with experiments
performed by Batson [4], who also observed it on Al particles, where a very thin
oxide layer provoked large changes in the loss peaks [2].
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6.2. EELS in thin ®lms

The inelastic interaction between a normally incident-fast electron and a ®lm
was ®rst studied by Ritchie [8], using the Bloch hydrodynamic model. The energy
loss probability P(o ) was written as a sum of the contributions of excitations of
di�erent momentum transfer q: P�o� � �10 2pq dqP�q, o ), where the surface
contribution to the excitation probability P(q, o ) is given by:

Psurf�q, o� �

1

p2v2
2q�

q2 � o2

v2

�2
Im

8<:1ÿ E
E

2�Eÿ 1� cos
oa
v
� �Eÿ 1�2 eÿqa � �1ÿ E2�e qa

�Eÿ 1� 2 eÿqa ÿ �E� 1�2 e qa

9=;:
�6:5�

In addition to the surface contribution, one has to consider the bulk losses
corresponding to a path of length a inside the medium. For a ®lm characterised
by a Drude function, the energies of the excitations are determined by the zeros of
the denominator, i.e., solutions of the equations E=0 and �Eÿ 1�2 eÿqa ÿ �E�
1� 2 e qa � 0, which correspond to the excitation of bulk and surface plasmons,
respectively. For a metal, the energy of the surface plasmons o2 is given by the
dispersion relation:

o2 � op

�������������������
12eÿ2qa

2

s
: �6:6�

The splitting of the surface modes is due to the coupling between both interfaces.
The low mode, oÿ, corresponds to a symmetric distribution of charge density at
both faces of the ®lm [82]. The energy of this symmetric mode is lowered with
respect to os, because of the screening [E(o ) is negative in this frequency range].
The high mode, o+, corresponds to the antisymmetric charge distribution. For a
given thickness, the probability of exciting one of these modes depends on
whether the probe ®nds both surface charge densities in phase or not, i.e., it is
basically ruled by the rate between the time spent to go across the ®lm, avÿ1, and
the plasmon period 2poÿ1. This rule can be visualised in Fig. 7, where we display
the contribution of symmetric and antisymmetric modes to the total surface
plasmon excitation probability. The maxima of the symmetric modes oÿ are given
by the quantisation relation: aovÿ1=2pn (n integer), while that corresponding to
oÿ satis®es: aovÿ1=pn (n odd). The frequency involved in this expression is os,
because, in the range of values of a where this condition is ful®lled a > voÿ1s , the
main contribution to the surface losses in (6.5) arises from q0os/v=aÿ1, so the
energy of the corresponding excitations, given by (6.6), are very close to os. For
very thick ®lms, both interfaces become uncoupled and the total probability tends
to pvÿ1; then both modes have the same energy os, and the excitation of each

A. Rivacoba et al. / Progress in Surface Science 65 (2000) 1±6428



interface can be regarded as an independent process. For very thin ®lms, although
the energy loss probability also tends to the value pvÿ1, the energy of the excited
mode oÿ tends to zero, hence, there is no energy loss.

In (6.5) the bulk contribution is a negative correction to the bulk losses, i.e., it
determines the begrenzung e�ect found in Section 2 for trajectories inside the
metal (2.16) and (2.17). In Fig. 7, the bulk correction has been plotted as a
function of the ®lm thickness. For a thickness larger than voÿ1p , this term
becomes constant, ÿ(p/2v ). For very small values of the parameter t � aopv

ÿ1,
this term goes to zero as 0�t=v� ln�t�, i.e., slower than the direct bulk term, which
is proportional to the ®lm thickness t.

This work has been generalised to include arbitrary inclined trajectories and
relativistic corrections [49,82].

6.3. Re¯ection in planar surface

A simple and useful model of inelastic scattering under glancing angle
conditions and based on the classical dielectric excitation theory, has been used in

Fig. 7. Probability of exciting surface plasmons and surface bulk correction in ®lm vs reduced thickness

ao0v
ÿ1: In surface plots o0 is os and op in bulk correction. Drude dielectric function has been used.

Sign of bulk corrections has been changed to ®t it into plot. Loss probability corresponding to a path

length in the bulk medium (P1) has also been plotted.
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re¯ection high energy electron di�raction (RHEED) and re¯ection electron
microscopy (REM) [30]. A detailed study of energy loss spectra under these
conditions yields useful experimental information about the e�ective penetration
depths [83,84]. For such trajectories, the probe experiences the inelastic interaction
in a region very close to the surface, so the surface correction to the bulk peak is
relevant to the calculation of the path length inside the medium. For a small
enough incidence angle W, i.e., when the momentum transfer 0vW<<1, the local
dielectric approach is valid, and (5.12) can be used. In this case, the problem can
be tackled by neglecting the de¯ection experienced by the probe near the surface
and assuming that it re¯ects in the medium at a depth d from the surface, as
shown in the inset of Fig. 8. The charge density can then be realistically described
as:

r�r, t� � d�xÿ v t sin W�d� y�

fd�z� v t cos W�Y�ÿx� � d�zÿ v t cos W�Y�x�g, �6:7�

Fig. 8. Bulk correction to loss probability as a function of angle W for electron penetrating into metallic

surface. Factor sin W has been introduced to normalise plot to path length inside medium. Sign of this

plot has been changed. Solid line corresponds to the results obtained through (6.8). Dotted line

corresponds to Howie's parallel segment approximation. Penetration depth is d=0.5voÿ1p : Inset shows
Howie's model.

A. Rivacoba et al. / Progress in Surface Science 65 (2000) 1±6430



where v is the velocity of the probe and Y(x ) stands for the Heaviside function.
In conjunction with (5.12), and using the planar screened function (B4), Eq. (6.7)
straightforwardly results in the total loss probability. The surface contribution is
given by:

Psurf�o� � 2

pvo
Imfx�o�g

("�t0
0

dt

�t0
0

dt 0 �
�1
t0

dt

�1
t0

dt 0
#
g�t, t 0, W�

� 2

�t0
0

dt

�1
t0

dt 0f�t, t 0, W�

ÿ 2

�t0
0

dtCi�t�
)
ÿ 2

pvo
Im

�
1

E�o�
���t0

0

dt

�t0
0

dt 0�g�t, t 0, W� ÿ f �t, t 0, W��

ÿ 2

�t0
0

dtCi�t�
�
,

�6:8�

where x(o ) is the planar surface response function, t0=od{v sin W }ÿ1 is a
dimensionless parameter and Ci(x ) is the cosine integral function [19]. The
functions f and g are given by:

g�t, t 0, W� �

cos�tÿ t 0 ����������������������������������������������������������������������������������
�tÿ t 0 �2 cos 2 � �2t0 ÿ tÿ t 0 �2 sin 2 W

q
� cos�t� t 0 ��������������������������������������������������������������������������������������
�t� t 0 �2 cos 2 W� �2t0 ÿ tÿ t 0 �2 sin 2 W

q

f�t, t 0, W� � cos�t� t 0 �������������������������������������������������������������������������
�t� t 0 �2 cos 2W� �tÿ t 0 � 2 sin 2 W

q : �6:9�

Eq. (6.8) presents both surface and bulk terms. The ®rst, containing the response
function x(o ), describes the excitation of surface plasmons, while the second is the
negative bulk correction (begrenzung) to be added to the bulk term corresponding
to a path length, 2 d(sin W )ÿ1, inside the medium.

In the case of non-penetrating trajectories d = 0, t0=0, the bulk correction
vanishes and the surface excitation probability is given by:

P�o� � Imfx�o�g 1

vo sin W
, �6:10�

which for a metal leads to the known value P(os)=p(2v sin W )ÿ1 [85,86].
Fig. 8 shows the bulk correction versus the incidence angle W for a Drude metal.
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Note that, for this dielectric function, the magnitude vP(o ) only depends on the
parameter t0. Here, we see that for small values of W this correction goes as
(sin y )ÿ1, a law similar to that found for the surface excitations in the non-
penetrating case. For W > 1, this correction increases and becomes positive.
Nevertheless, in this region, the main contribution to the loss probability comes
from the vertex of the trajectory, i.e., it strongly depends on the momentum
transfer through the dielectric response, and results derived from a local approach
are not reliable.

Howie proposed a method to tackle the problem of the interaction of a fast
electron with a smooth surface by approaching the electron trajectories via a set
of di�erential paths parallel to the surface, at instantaneous impact parameter
b(x ) (see inset in Fig. 8). The total loss probability is then obtained by integrating
the component of the force normal to velocity, over the whole trajectory [87,88].
In Fig. 8, we see the results of this approach; for W < 0.2, both plots are almost
identical, while for normal incidence, the surface contribution obtained through
the simple model tends to zero, because of the projection used to calculate the
force.

The agreement between both methods, for small values of W, con®rms the
applicability of the parallel segment approximation, which has been rigorously
stated for electrons travelling at a grazing incidence near very large spheres [89] or
cylinders [58]. It seems reasonable to think that this procedure is valid for
studying the impact parameter dependence near any large interface, under grazing-
incidence conditions.

7. EELS in small particles

Valence energy loss spectroscopy has been extensively used to study di�erent
structures of a nanometre scale. Fujimoto and coworkers [90,91] studied the
energy loss of a broad beam interacting with a sphere of free electron gas.

Petersen [11] and Batson [92,2,3] proved the ability of this technique to reveal
structural details in small particles, as well as the di�culty of interpreting the loss
spectra. Further experimental works by AcheÁ che et al. [93], Wang and Cowley
[65,168±170], Howie and Walsh [66], Ugarte et al. [5] and Ouyang et al. [94]
revealed the strong e�ects of the target shape, and coupling with other
surrounding surfaces in the loss spectra. Here, we review the simplest model, that
of an isolated sphere, and then study the coupling with the supporting surface and
the e�ect of the shape of the particle. Next, we present a short discussion about
retardation e�ects in these targets. Finally, we give an introduction to the problem
of a target consisting of many small particles.

7.1. Isolated sphere

By applying the self-energy formalism, the energy loss probability corresponding
to an electron interacting with an isolated sphere of dielectric function E(o ) can be
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easily obtained (see Appendix B):

P�o� � 4a

pv2
X
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Xl
m�0

2ÿ dm0

�l�m�!�lÿm�! Imfg1�o�g
�
oa
v

�2l

K 2
m

�
ob
v

�
, �7:1�

where Km (x ) stand for the modi®ed Bessel functions. gl (o ) are the sphere surface
response functions de®ned as:

gl�o� �
l�1ÿ E�
lE� l� 1

: �7:2�

Eq. (7.1) was ®rst obtained by Ferrell and Echenique [95], and takes into account
the contribution of all the multipolar terms of the induced potential. The dipolar
(l= 1) and quadrupolar (l= 2) contributions agree with the expressions obtained
by Schmeits [25] and Kohl [96].

Note that the dipolar term of (7.1) exhibits the same asymptotic form of (4.4),
which suggests that the dipolar contribution is relevant only when the electric ®eld
E(o ) is almost uniform around the target, i.e., when the sphere radius is much
smaller than the range of variation of the ®eld, a<<voÿ1, or when the probe
travels far away from the target, b>>a. To illustrate this point, Fig. 9(a) shows the
dependence of the weight of the contribution of the ®rst modes to the total energy
loss, at a grazing incidence, for metallic spheres of a di�erent size. The dipolar
contribution is only dominant for spheres much smaller than voÿ1s : For particles
of radius a0voÿ1s , many l-terms contribute with similar weight and, for very large
spheres, the dipolar term becomes negligible. In this case, the probe seems an
almost ¯at surface, so the loss spectra should not di�er very much from that of
the planar interface. For these spheres, the main contribution to the loss spectra
arises from the high multipolar terms of (7.1). An intuitive picture is provided by
considering the image charge, when the electron is close to a large sphere; the
induced charge density piles up in a small region of the sphere near the probe;
thus, many multipolar terms are needed to describe such a localised charge
density. Furthermore, the frequency ol of the lth mode is determined by the zeros
of the denominator of the gl functions. For a metal they are given by:

ol � op

�������������
l

2l� 1

r
, �7:3�

therefore, for large values of l, ol 4 os, so the shape of the loss spectra di�ers
slightly from that corresponding to a planar surface.

Fig. 9(b) represents the contribution of the ®rst multipolar excitations to the
loss probability at grazing incidence (b=a ). Here, for small spheres, the lth mode
is mostly excited, when the parameter obeys the quantisation rule: aolv

ÿ10l, i.e.,
when the sphere contains l times the plasmon wave length 2poÿ1l , as required to
form the charge density pattern corresponding to this mode, which presents l
nodes.

The asymptotic behaviour of (7.1) is given by that of the Bessel functions:
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Km�x�0eÿx [19], when x>>1 and then, at the large impact parameter, P(o )0
exp{ÿ(2ob/v )}; a dependence found in the experiments [89,5]. Note that, although
all the multipolar terms present the same asymptotic behaviour, the dipolar
excitation becomes the dominant one at the large impact parameter (its frequency
o1 is the lowest one), as expected.

In the case of penetrating trajectories (b<a ), the loss probability can be
calculated as in the previous case. The surface contribution to the total energy loss
probability is then [97]:

Fig. 9. (a) Relative weight of lth mode contribution to total energy loss probability experienced by

electron at grazing incidence (b=a ) on Drude-like metallic sphere, for three di�erent values of radii.

(b) Contribution of ®rst lth multipolar terms to loss probability as a function of reduced radius.
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where c �
����������������
a2 ÿ b2
p

, Pm
l �x� stands for Legendre functions and glm (x )=cos(x ), if

(l+m ) is even, or sin(x ), if (l+m ) is odd.
Eq. (7.4) presents both terms: the surface term given by the surface response

function gl (o ) and the negative correction to the bulk loss given by the term in
Eÿ1. In Fig. 10, the dependence of both terms is represented as a function of the
diameter for an electron crossing axially (b = 0) through a metallic sphere. The
bulk correction is very similar to that corresponding to a ®lm of the same
thickness; both plots present the same limiting behaviours: for thick targets they
both tend to the value P�op�4 ÿ p=2v, whereas for a 4 0 they both behave as t
ln(t ), where t � 2aopv

ÿ1: From this plot, it is possible to conclude that the bulk
correction is not very sensitive to the surface shape or details; it is determined
basically by the thickness of the specimen. This conclusion is supported by the
results obtained in re¯ection at the grazing incidence.

The surface loss probability is more sensitive to the surface shape; for small
particles, it sends to zero, since the target vanishes in this case. In the limit of
large spheres, the limit corresponding to a thick ®lm P�os�4p=v is recovered.
Fig. 10 also represents the contribution of even and odd multipolar terms to the
surface energy loss, where the quantisation rule, found in ®lms (Fig. 7), is again
approximately ful®lled. For the axial trajectories used in this plot, only the m= 0
terms contribute, then each multipolar term l generates an induced charge density
proportional to the corresponding Legendre polynomial; even (odd) modes
produce a symmetric (asymmetric) surface charge distribution. This argument
explains why, for very small particles (a 4 0), the dipolar term is not the
dominant one; then the time avÿ1 4 0 and, as a consequence, both poles of the
sphere should be symmetrically polarised, so the dipolar contribution is zero.

In Fig. 10, the maxima and minima of both surface branches do not lie exactly
at multiples of p, because the frequencies of the modes di�er noticeably from os.
The maxima and minima of each multipolar contribution satis®es exactly the
condition 2aolv

ÿ1 � np (n having the same parity of l ), but since the frequency of
the modes is di�erent, the sum of all the terms shows the nodes shifted.
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This study has been extended to deal with voids [98], spheroids [99] and coated
spheres [89,100]. The above features of the impact parameter dependence remain
valid, although the modes for these geometries are modi®ed in value, depending
on the parameters characterising each particular geometry.

7.2. Supported particles

From the pioneering experiments of Batson [2,3], it became evident that the
theoretical model of an isolated sphere did not fully explain the experimental
results. First, the energy loss peak at Al spheres appeared at lower energies than
the theoretical value, and this energy shift could not be explained by the presence
of an oxide coating. On the other hand, the energy loss spectra depended strongly
on the supporting surface and on the beam position relative to the support.

Fig. 10. Surface energy loss probability and correction to bulk energy loss probability as a function of

reduced diameter 2ao0v
ÿ1, for electron crossing axially through metallic sphere. Curves (1) and (2)

correspond to surface loss probability and bulk correction, respectively. Surface contributions of even

and odd multipolar terms are labelled as oeven and oodd. Plot for a ®lm of the same thickness has been

included for comparison [curves (3) and (4)]. The energy o0 is os and op in surface and bulk plots,

respectively. Drude dielectric function has been used. Sign of bulk corrections have been changed to ®t

it into plot.
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Following [101], we present a simple theoretical approach to this problem; the
supported particle is modelled as a metallic sphere of radius a half-embedded in a
planar surface. We assume both particle and support to have the same dielectric
response, and the electron to move parallel to the plane at impact parameter b>
a. Applying the self-energy formalism, the screened interaction is written as that
of the planar interface, plus the contribution of the sphere, which is expanded in
terms of the spherical harmonics. The boundary conditions of Poisson's equation
then lead to a set (one for each value of the azimuthal number m ) of algebraic
linear systems coupling all the expansion coe�cients with the same value of m.
These systems are numerically solved and, once the screened interaction is
obtained, the contribution of the particle to the energy loss probability can be
computed by means of (5.8).

We focus on the impact parameter dependence of the loss spectra, for an Al
particle, supported by an Al surface. Fig. 11 depicts the spectra calculated for two
di�erent positions of the beam. Above 9 eV, the spectrum of Fig. 11(a) is rather
similar to that of an isolated sphere. The main di�erence between both spectra is
that, in the case of the supported particle, the dipolar peak is shifted down. The
new peak at 6.8 eV presents the same shape and intensity as the dipolar one, but
due to the coupling with the support it has now a monopolar character, i.e., the
surface of the particle is charged with a charge density of the same sign. The
extinction of the dipolar peak is a consequence of the coupling. In a sphere, the
dipolar mode piles up surface charge asymmetrically placed at opposite sides of
the sphere, therefore, when the particle is embedded in a metal this mode is not
allowed, and the energy of the corresponding mode is now because the charge
density in the hemisphere only couples with a charge of the same sign. The
monopolar character of this loss peak is experimentally con®rmed by its absence,
when the supporting medium is an insulator.

When the electron travels near a corner, the main feature of the spectra
(Fig. 11(b)) consists of some broad resonances above the planar surface plasmons
os, which is consistent with the modes of an edge [102]. The charge density
corresponding to these modes consists of charges of the same sign on both
surfaces, the particle and the plane, near the edge. Because there is no screening,
the coupling between the charge density at both sides of the edge now raises the
energy of these modes in relation to os. In the spectra corresponding to the
embedded particle in Fig. 11, the energy loss probability becomes negative in the
neighbourhood of 10.7 eV (os). The negative value arises from the fact that we
are just considering the particle contribution to the energy loss probability. We
then have to add the contribution from the plane (dashed line in Fig. 11(a)) which
has a loss peak at os that balances the negative contribution of the particle.

Fig. 12 shows the dependence of the coupling between the particle and planar
surfaces on the radius of the sphere, by looking at the intensity of the peak at
6.8 eV. This coupling is a maximum when 0.5pa0 voÿ1, i.e., when the distance
between the probe and the edge along the surface is of the order of the adiabatic
length voÿ1. For larger values, the edge, and, therefore, the coupling, is outside
the range of the potential, and its in¯uence is negligible.

A. Rivacoba et al. / Progress in Surface Science 65 (2000) 1±64 37



Experimental observations by Batson [2,3] on Al particles con®rm qualitatively
the validity of these results. He found an anomalous low-energy peak (around
4 eV) was present (absent) when the particles were supported in another larger Al
particle (insulator, AlF3). On the other hand, the dependence of this peak on the
impact parameter is similar to that theoretically found.

Fig. 11. Particle contribution to loss spectra corresponding to Al sphere half-embedded in Al support

for two di�erent beam positions (solid lines). Radius is 10 nm. (a) Beam is at position labelled A and

distance from top of the sphere to beam is 1 nm. Spectra corresponding to same beam position near

isolated sphere (dotted line) and planar interface of length 2a (dashed line). (b) Beam at position B.

Distance between beam and both surfaces is 1 nm. Drude dielectric function with small damping has

been used (op=15.1 eV, g=0.27 eV).
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A better quantitative agreement requires a more realistic geometric model of the
target, by taking into account the oxide coating present in experimental situations
[101], as well as a better modelling of the supporting surface.

7.3. Hemispherical particles

In many experimental situations, small particles are supported on a substrate,
when performing experiments. Due to the presence of the support, the particles
often show di�erent geometric shape, such as the hemispherical one. Ouyang et al.
[94] have reported very accurate experimental data for the size dependence of the
surface loss peak energy of STEM electrons interacting with nearly hemispherical
Ag particles lying on a C surface. The high energy resolution of these data (about
0.1 eV), and the fact that the silver surface is clean and oxide-free, make a good
test from this experiment of the applicability of the classical dielectric theory to
describe the surface excitations. The authors found that the energy of the loss
peak shifts down from the expected small particle value, as the radius of the
particles decreases in the range of 4±10 nm, presenting a minimum value o 0
3.2 eV for particles of about 4 nm. For smaller particles, the energy of the peak
then grows to reach the value 3.8 eV, but for such small particles, the dielectric
theory is no longer suitable. The loss peak energies, found in this region, agree
with the data obtained from optical absorption measurements, which have been
theoretically explained by the quantum many-body theory [103,104]. On the other
hand, in the range of 4±10 nm, the dielectric theory is supposed to provide a good
description of the particle excitations. Nevertheless, by using optical values of the
dielectric function [105], it is easy to prove that the behaviour of the EELS for

Fig. 12. Dependence of height of the 6.8 eV peak with reduced radius of particle. The beam is at

position labelled A and distance from top of sphere to the beam is 1 nm.
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particles of this size cannot be explained in terms of the excitations of a sphere,
since the Ag surface plasmon energies move from the dipolar value o1=3.5 eV to
the planar one os=3.65 eV, values well above the experimentally found energies.
Relativistic corrections are expected to be negligible for such small particles, since
the parameter aocÿ1 is too small (05.10ÿ2).

A theoretical study of these results has been reported [107]. The particles are
considered as hemispheres, and the problem is handled as discussed in the
previous section, using experimental values of the dielectric function. Fig. 13(a)
and (b) shows the theoretical energy loss spectra corresponding to an Ag
hemisphere of a di�erent radius; a=5 and 40 nm, respectively, for di�erent beam
positions. It can be seen that two dominant loss peaks appear around 3.2 and
3.6 eV. The former is a characteristic resonance of the hemispherical geometry.
The charge density corresponding to this resonance basically depends on the
azimuthal angle f as cos f, i.e., near the edge, charges of the same sign are piled
in front on both the hemispherical and planar surfaces, in a con®guration
somewhat similar to that of the ®lm symmetric model o+. Its corresponding
charge density presents a strong dipolar pattern which is responsible for the
predominance of this mode, when the STEM beam travels far away from the
hemisphere. On the other hand, in the 3.6 eV mode, the coupling between both
surfaces is not so strong and its corresponding charge density is similar to that of
a plane or large sphere. This charge density distribution explains the fact that,
when the probe travels close to the top of the particle (position A), the 3.6 eV is
the dominant excitation, while the low energy peak at 3.2 eV is more relevant for
electron trajectories close to the corner (position C). For intermediate beam
positions (B), the 3.6 eV peak is the dominant contribution to the spectrum
corresponding to the large particle, since, at this position, the probe sees an
almost planar surface (voÿ10a ), while in the spectrum of the small particle the
dominant feature is the 3.2 eV peak. This observation explains the experimental
results, the low energy peak is the dominant one in the case of small particles,
while for the large particles its contribution is very small and the spectrum is
centred at 3.6 eV. Note that the 3.2 eV peak is also present in the experimental
data corresponding to large particles.

Wang and Cowley [65,168±170] have presented experiments with Al
hemispherical particles lying in AlF3. Their EELS also presented two peaks, which
can be explained as above. The impact parameter dependence agrees qualitatively
with the former discussion.

7.4. Relativistic e�ects in small particles

The problem of the relativistic energy loss, experienced by a fast electron
passing near or across a small particle, is much more complex than that of the
case of a planar target. The radius a introduces a new length scale in the retarded
interaction. Furthermore, radiative losses become possible [108].

The standard way to ®nd the solution for an electron impinging on a target
consists of writing the electric and magnetic ®elds in terms of the dyadic GF of
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the Helmholtz equation. For a sphere, the GF is written as an expansion in a
proper basis, which in the case of a spherical surface, is found to be products of
Bessel functions and spherical harmonics. The coe�cients of this expansion are
calculated to ful®l the boundary conditions of the electric and magnetic ®elds at
the interface [109,171,53]. The electromagnetic modes correspond to the

Fig. 13. Energy loss spectra for Ag hemispheres and di�erent electron trajectories, labelled A, B, C. In

(a) hemisphere radius a=5 nm, and in (b) a=40 nm.
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frequencies for which Maxwell equations present non-trivial solutions, when there
is no external current. For a sphere, the electromagnetic modes were studied by
Fuchs and Kliewer (polariton modes) [55] and by Ruppin (plasmonic modes) [56].
The frequency of these modes depends only on the parameter aop/c, a fact that
con®rms that the e�ect of the retardation derives from the coupling of the charge
density; the interaction time is of the order of acÿ1 (for the dipolar term), a time
to compare with the plasmon period.

Fig. 14(a) shows the modes of a metallic sphere as a function of the
dimensionless parameter aop/c. The frequency of the dipolar mode is severely
shifted down, even for particles of the order a0coÿ1p : For high multipolar
excitations, this e�ect is weaker because their corresponding charge density
presents more nodes and the charge density coupling occurs at shorter distances.
Note that the non-retarded values given by (7.3) are recovered as aop/c4 0.

For an electron travelling close to a particle, once the electric ®eld is obtained,
the electron energy loss probability can be calculated, as in the non-retarded case,
as the work done by the induced electric ®eld acting back all along the probe
trajectory r=vt. To evaluate this e�ect, we present the energy loss spectra
corresponding to a fast electron travelling close to a dielectric sphere of radius, a,
for non-penetrating trajectories (b > a ). In Fig. 14(b), we compare retarded and
non-retarded EELS, for two spheres of a di�erent radius, a=5 nm (aopv

ÿ100.4)
and a= 10 nm. As expected, the relativistic e�ects become more important as the
particle radius grows; the dipolar excitation presents a red shift for both radii,
whereas the high multipolar contribution is almost unchanged. On the other hand,
in the retarded spectra, the dipolar peak intensity is slightly lower, as found for
the planar interface (see Fig. 3). The shifting in the dipolar peak corresponds to
that shown in Fig. 14(a). The broadening of the dipolar peak is connected with an
additional channel of radiative decay of the surface plasmons [59,132]. One can
conclude that near the surface, the non-retarded approximation is accurate for
particles of the order of a00.5c/op (a07 nm in the case of an Al particle with
op=15.8 eV).

7.5. Many-particle systems

EELS has been applied to the study of inhomogeneous media, such as colloids
and zeolites. In these problems, the emphasis focused on the general properties of
the composite, rather than in particular details of its constituents. One way of
gaining insight into such a complex geometry is to concentrate on the system
formed by just two coupled particles. Di�erent theoretical works have attempted
to explain such results, by considering simple models to compute the energy losses
corresponding to complex targets, as a couple of spherical particles [110] or two
cylinders [111]. Recently, several sum rules relating the modes of two non-
touching coupled surfaces to those of the decoupled ones have appeared [112], in
order to provide a general insight into the collective excitations in coupled
surfaces. In general, as the geometry of the target shows a more detailed structure,
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Fig. 14. (a) Frequency of retarded modes corresponding to metallic sphere in units of plasma frequency

op. (b) Electron energy loss probability (normalised to size of the particle a ) for 100 keV electron

travelling close to particles of radius a= 5 and 10 nm. Retarded case (solid lines) is compared to non-

retarded case (dashed lines). Probabilities have been shifted 10 units, in order to clarify the plot. Impact

parameter is b=a+1 nm. Drude dielectric function has been used (op=15.8 eV, g=0.53 eV).
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it becomes considerably more di�cult to obtain analytical expressions and more
computation time is usually required to ®nd the energy loss probability.

The ®rst treatments of collective excitations in systems of two spheres
[113,114,110] only considered the contribution of the ®rst multipolar terms. A
more general solution, valid for any dielectric function and any trajectory, has
been recently reported [115], computing the energy loss probability in the
framework of the self-energy formalism. The screened interaction is written in
bispherical coordinates, so that the excitations produced by di�erent electron
trajectories around and between the spheres can be studied, as well as their
dependence on the particle size and on the distance between spheres. In general,
many multipolar terms are needed to secure good convergence.

In Fig. 15, calculated loss spectra for Al particles in an AlF3 matrix are shown.
For trajectories labelled C and F, the polarisation pattern of both spheres can
roughly be described as that corresponding to two parallel dipoles. As discussed
before, the coupling of both dipoles in an insulating medium tends to lower the
energy of the system in relation to that of the uncoupled spheres. When the probe
travels at the position D, it induces a symmetric charge density in both spheres, so
the energy of the system increases. This last case is similar to that of a particle
moving between two semi-in®nite metallic media. These arguments also explain
the dependence of the energy of these modes on the parameter x=a/d, where a
and d are the particle radius and interparticle distance: the larger the ratio x, the
more e�ective the coupling between charge density and, therefore, the larger the
shifting of the energy.

Fig. 15. Calculated EELS spectra for electrons travelling near two close Al spheres of radius r=10 nm

and ratio x=a/d=0.48 immersed in AlF3. Experimental dielectric functions have been used [106].

A. Rivacoba et al. / Progress in Surface Science 65 (2000) 1±6444



The di�erent resonances appearing in the spectra are related to the structure
and intensity of the induced electric ®eld around the particles. Even for less close
particles, the ®eld is shown to be very localised in the space between the particles
(x=a/d 2 0.4), which is in agreement with the predictions of Pendry's theory,
where the energy-loss calculation near a semi-in®nite colloidal medium, modelled
as a cubic lattice of spherical particles, showed that the loss spectrum was not
signi®cantly modi®ed by including more than two particle arrays [117].

The application of the boundary charge method (BCM) (Appendix B) enables
more than two spheres, constituting an array, to be considered. Comparison
between EELS in the two and in®nite arrays has also been performed. Fig. 16
provides the calculated EELS spectra for a three Al particle array in an AlF3 host.
The probability per sphere, in a system of three spheres, has been considered by
varying the distance in between, d, i.e., the ®lling fraction of the system x=a/d.
The main contribution to the losses is due to the particle±host interaction (dipolar
peak ) and the sphere±sphere interaction (coupling peak ).

For high ®lling fractions (x = 0.48A 46%), the coupling peak is shifted down
to 4.5 eV, which is lower than that of the vacuum (06 eV). As the ®lling fraction
of the system decreases, the high energy peaks are maintained and even enhanced

Fig. 16. Energy loss probability su�ered by 100 keV electrons moving parallel to the system of three Al

spheres aligned along direction of motion of electrons. Di�erence distance between sphere d

corresponds to di�erent ®lling fractions in colloidal situation (x=a/d ). Al spheres are surrounded by

AlF3. Spheres are 10 nm radius and electron trajectory is parallel to the arrow axis, at distance of 1 nm

from spherical surfaces. Experimental values of dielectric function of AlF3 have been used [116].
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(dipolar peak at least) and the low energy peak disappears, recovering the
spectrum features of an Al isolated sphere embedded in AlF3.

Coupled spheres are of interest, both in their own right and in the context of a
many-sphere medium, as a correction to e�ective medium theories, in which the
inverse of the dielectric function of the system is calculated as an average related
to the microstructure and properties of its constituents [118,117,119]. In most
experiments in inhomogeneous media, the situation is di�cult to undertake, since
the beam crosses particles of di�erent sizes in an irregular distribution. Kaiser et
al. [120] investigated a system consisting of small Au particles in an SiO2 matrix,
and concluded that the Maxwell±Garnett theory (MGT) [121] is only valid for
very dilute media. Howie and Walsh [66], by studying Al colloidals in AlF3,
concluded that classical e�ective medium theories of this kind are not completely
successful in explaining the energy loss spectra observed, but much better results
are obtained with a dielectric excitation model, making an average over the
possible electron trajectories in the composite medium. The main point is that the
MGT only includes the dipolar surface loss and the bulk loss of the surrounding
medium. It does not include the bulk loss of the spheres, which is considerable for
ao/v >1. The chief drawback of the e�ective medium theories arises from
replacing an inhomogeneous medium by an equivalent homogeneous one, with the
resulting risk of losing e�ects related to very local excitations around the
inhomogeneities of the material, which can give important contributions to the
EELS spectra.

Two recent papers have tackled these problems from di�erent points of view.
Pendry and Martin-Morena [117] developed a formulation, very well suited for
numerical calculation, which consists of calculating the energy loss rate by
integration of the Poynting vector, corresponding to the re¯ected ®eld in systems
constituted by arrays of spheres. They calculated the energy loss for an electron
moving past a surface, considering the medium below the surface as
inhomogeneous, but ordered (arrays of metal spheres or cylinders), so that a
transfer-matrix method [118] could be used to obtain the Poynting vector from the
re¯ectance amplitude. Barrera and Fuchs [119] considered a random system of
spherical particles in a host, characterising both media by their local dielectric
functions and calculating the energy loss spectrum from the e�ective inverse
longitudinal dielectric response obtained as an average over particle positions.
They recover the MG dielectric function as the q=0 limit of that function.

8. Cylindrical surfaces

The pioneering investigation of plasmon excitations in cylindrical surfaces were
motivated by light re¯ection experiments [122] in the early 1970s. Ashley and
Emerson [123] and Pfei�er et al. [124] then obtained the dispersion relations for
surface plasmons on cylindrical surfaces by considering the retarding e�ects of the
electromagnetic ®elds. Martinos and Economou [125] studied the plasmon
excitations in cylindrical surfaces by electrons describing circular orbits around
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cylinders, moved by axial magnetic ®elds. Warmack et al. [126] obtained the ®rst
energy loss spectrum in microchannels of 20±200 nm drilled in metallic ®lms and
Chu et al. [127] provided the estimate of the energy loss probability of electrons
moving in cylindrical channels in the non-relativistic approximation, to account
for the energy loss su�ered by electrons in particle accelerators. Interest in the
cylindrical geometry increased in the 1980s, due to the ability shown by the STEM
electron beam to drill holes and lines of nanometre size in ®lms of about 100 nm
thick of inorganic materials [128±130], such as alumina or aluminium ¯uoride.
These experiments opened great expectations for the use of a STEM beam as a
nanometre scale pen, of great interest in microelectronics and nanolithography.
The EELS technique permits the study of chemical changes that take place during
the drilling process. It was also pointed out [130,129,9] that a metallisation process
can occur during the drilling process.

Expressions for the energy loss in clean and metal-coated holes have been
reported by Walsh [57] and Sabala et al. [58] to study the damage process. But the
colloidal nature of the metallic inclusions seems to be better described through an
e�ective medium theory as proposed by Howie and Walsh [66]. De Zutter and De
Vleeschauwer [131] studied the retarded expression in the axial trajectory of the
electron, which has also been generalised for a general impact parameter [58]. In
the previous works, local dielectric functions have been used to describe the
medium. A general calculation, including the momentum dependence of the
dielectric function that describes the medium surrounding the cylindrical cavity,
has also appeared [132]. A general formulation of the energy loss probability in
cylindrical surfaces, valid for any electron trajectory, has also been reported [133],
within the framework of the quantal self-energy formalism. The begrenzung
features for di�erent penetrating trajectories were also analysed. The e�ects of the
coupling between micropores in the loss spectra were analysed by Schmeits [111].

Earlier treatments considered probes of electrons travelling on a de®nite
trajectory, and only very recently a broad-beam con®guration has been used to
study the energy loss probability in cylindrical surfaces [77], so as to give account
of STEM experiments in nanotubes where the size of the beam is comparable to
the beam width. In this decade, the discovery of tubular fullerenes [134] gave rise
to a new and very promising ®eld of application of these theories. The research on
the properties of these new nanostructures were pursued by e�orts from di�erent
experimental techniques [135], including EELS. Spatially resolved EELS was
performed on individual single wall [136] and multiwall carbon nanotubes [137±
139]. Pichler's recent EELS experiment proved the metallic character of potassium
intercalated carbon nanotubes. The collective excitations in carbon nanotubes
have also been studied theoretically [140±144]. Recently, Reed at al. [145] applied
the EELS technique to the study of Si tips and ®laments.

An e�ective dielectric function, for systems of cylinders, has been obtained in
order to investigate the valence loss spectra in zeolites [146]. Very recently,
nanoscale-size ®bres have been studied by EELS with non-penetrating electrons
[147], as well.

The expression for the energy loss probability of an electron travelling in a
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cavity of radius a in a material characterised by its local dielectric function at an
impact parameter b related to the axis of the hole is

P�o� � 2
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m�0
�2ÿ dm0�I 2

m�B �Im
�
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with xm� Im�A�K 0m�A�E�o� ÿ I 0m�A�Km�A�: Im (x ) and Km (x ) are the modi®ed Bessel
functions with arguments A=oa/v and B=ob/v. Note that for axial trajectories
(B = 0) the probability is due exclusively to the m = 0 mode. The probabilities
corresponding to a wire of the same radius are obtained by interchanging E by Eÿ1

in (8.1) and (8.2).
Fig. 17 shows dispersion curves of the ®rst modes of a hole (a) and a wire (b),

where q is the component of the momentum parallel to the cylinder axis. For
parallel trajectories, q=o/v. The energies of all the modes are quite close to the
planar surface plasmon energy, os, except for m = 0. This di�erence can be
explained by looking at the induced charge density. The contribution of the m-
mode to the induced charge density depends on the azimuthal angle f as cos(mf ),
so the m=0 mode corresponds to a homogeneous charge distribution around the
cylindrical surface. For the wire, the m = 0 mode shifts downwards from the
planar surface plasmon energy as the radius is decreased. In this case, the charge
density coupling is similar to that found for the symmetric mode oÿ in ®lms. For
the hole, its energy shifts from the bulk plasmon energy op, for a small hole
radius towards the planar surface plasmon, for a large radius. In this case, the
induced charge coupling is through a vacuum, leading to this blue shift. For large
values of the radius (qa > 1), all the modes tend to the same energy and at an
impact parameter close to the interface, the planar limit is obtained [58].
Expressions for coated cylinders have also appeared in the literature to simulate
the damage during the drilling process [57,58]. Retarded expressions have been
evaluated and proved to be considerable for wide holes and energies, such that
Re�E�o�� > c2=v2:

9. EELS in complex con®gurations: truncated nanostructures

Edged structures, such as MgO cubes, have been widely used to study the
probe±surface interaction. Nevertheless, most of the experiments were performed
at the grazing incidence and the samples were large enough to justify the neglect
of the edge e�ects [28,29,31]. The use of EELS, as a technique to investigate
nanostructures of interest in microelectronics, has attracted increasing attention to
the speci®c features of this geometry in edged samples, such as ®lms and interface
junctions.
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Theoretical studies of modes and plasmon frequencies in cubes, rectangular
particles and wedges have been reported [148±151]. Recently, the energy of the
loss peak in an Si±SiO2 interface, has been studied [152]. Deducing the loss
spectrum for such complex geometries requires the calculation of the induced
potential; it poses a challenging computational problem which has been

Fig. 17. Energy of ®rst surface plasmon modes in (a) cylindrical cavity in aluminium and (b) aluminium

wire, as a function of its reduced radius qa.
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successfully tackled via the BCM (see Appendix B). The results of this section
prove the power of this approach [153].

To work out the geometry in the case of a 908 wedge, the target is modelled as
a surface of a hyperbolic cross section in the xy-plane normal to the edge, i.e.,
y=p 2/(2x ), so that p is the distance from the surface vertex to the origin and the
asymptotes of the hyperbola coincide with the x- and y-axes, as in Fig. 18.

Fig. 18(a) and (b) represents the evolution of the loss of spectra (normalised to
the path length) as the electron beam sweeps a line parallel to a very sharp edge.
For trajectories near to position A, the spectra are similar to that of the in®nite
plane; they basically present the surface peak at os (plus the negative begrenzung
term at op, in the case of inner trajectories). They also feature some very weak
peaks at energies below and above os, which constitute the edge e�ect. The
intensity of these peaks increases as the trajectory moves closer to the edge;
becoming the dominant feature in the spectra for trajectories close to the edge.

The BCM provides a simple way to evaluate the o-component of the induced
charge density. In Fig. 19, we plot the charge density corresponding to the ®rst
pair of symmetric and antisymmetric modes. The modes with an energy smaller

Fig. 18. Dependence of energy loss per unit path length P(o ) on beam position for trajectories parallel

to edge. Di�erent spectra correspond to equally separated positions of beam, as in inset. Spectra are

scanned between both ends of those lines designated A and B, respectively, and whose coordinates

(relative to the vertex) are (in a.u.) (50, ÿ200) and (50, 50) in (a) and (ÿ20, ÿ200) and (ÿ20, 50) in (b),

respectively. Electron travels in vacuum in (a) and inside wedge for some trajectories in (b). Edge is

very sharp p = 0.01 a.u.<<voÿ1. Energy of beam is 100 keV and Drude dielectric function has been

used (op=15.8 eV, g=0.5 eV).
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(larger) than os correspond to a symmetric (antisymmetric) charge density
distribution on both faces of the edge. As discussed, in the case of the thin ®lm,
this shift results from the coupling between the charge distribution of both faces,
which are screened by a dielectric function that is negative in this energy range.
Therefore, in the case of symmetric mode, it tends to lower the energy.

As a test of this theory, we calculate the edge e�ect in an MgO cube so as to
compare with observed spectra. The cube in the experiment is 100 nm large, a
length that makes the coupling between edges (100 nm 0 10voÿ1) negligible,
therefore, the previous calculation can be realistic. Experimental values of the
dielectric function are used. In Fig. 20, we present both the STEM observed
energy loss spectrum and the total calculated energy loss probability P(o ), for
two di�erent positions of the beam. Both plots agree, in absolute terms, to a
factor of about 0.7. Since the exact position of the edge is uncertain in all
experimental situations, there can be a bulk contribution at 22 eV, due to some
beam penetration of the cube. The simulation does not reproduce the excitations
experimentally observed in the band gap region (below 7 eV), which must arise,
either from defects, or from relativistic e�ects. In this case, the beam is travelling
1 nm just inside the edge and the contribution of the 22 eV bulk loss appears

Fig. 19. Charge densities corresponding to the ®rst two edge modes below and above os. The ®rst pair

(a) and (b) correspond to the corner peaks at o00.52op and o00.58op and the second pair (c) and

(d) correspond to the energy loss peaks at o00.84op and o00.79op. To make the plot clearer, the

parameter p has been taken as p 0 0.1v=oÿ1p ; this change produces a small shift of the energies in

relation to those of the spectra in Fig. 18.
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together with the other excitations from the top and bottom surfaces, as well as
from the edge.

This study has been extended to deal with many other problems frequently
encountered in experiments, such as that of a thin slab containing two di�erent
dielectric regions separated by a boundary running normal to the slab surfaces,
and other di�erent junctions, where the e�ect of sharp boundaries is a dominant
feature [132,154].

10. Conclusions

In this work, the image potential has been proved to provide an accurate
description of the inelastic scattering of fast electrons with surfaces. The excitation
of bulk and surface plasmons, due to the target±probe interaction, has been
analysed. In most experimental STEM situations, classical and quantal
descriptions of the beam electrons lead to the same result for the energy loss
probability. The energies of surface plasmons are basically determined by the
target geometry. The spatial resolution of EELS experiments is given by the
length scale voÿ1, which provides the spatial extension of the region, where the
coupling between surfaces takes place. The relativistic corrections have been
evaluated for planes and spherical particles and have proved to be crucial for

Fig. 20. Energy loss probability P(o ) for 100 keV electron impinging on MgO cube as in inset. Plots

labelled as ``correction'' and ``bulk'' are total surface contribution, and bulk direct term. Impact

parameter relative to the vertex is 1 nm.
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large targets of large impact parameters. On the other hand, for very small impact
parameters, a momentum-dependent dielectric function is needed to provide a
good description of EELS spectra. Methods developed to account for the energy
loss in nanostructures of increasing complexity have been described as well.
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Appendix A

Dielectric response function

In the dielectric formalism all the information about the target excited by an
external probe is contained in the dielectric function, which, in principle, depends
on both momentum q and energy o. For a homogeneous electron gas, E(q, o ) can
be obtained from the time-dependent perturbation theory [155]. Knowledge of this
function provides a great deal of information. In fact, it gives directly the response
of the system to weak external time and space varying longitudinal ®elds, the
density ¯uctuation excitation spectrum, both single-particle and collective
excitations, etc. In 1954, Lindhard [156] obtained an explicit expression for this
response function using the so-called random phase approximation (RPA)
approximation in which the electrons are supposed to respond independently to
the external ®elds, i.e., exchange and correlation e�ects between electrons are not
included. In the RPA, the response function is related to the free-electron
polarisability a0(q, o ) as

E�q, o� � 1� 4pa0�q, o�: �A1�
This dielectric function describes both the collective and individual properties of
the electron gas by avoiding the damping g of the electronic oscillations. In 1970,
Mermin [37] modi®ed this function to account for the damping. Approximations
of these expressions have proved to describe the properties of the electron gas
quite well. One of the most commonly used is the plasmon-pole approximation
[157,67,158], in which

E�q, o� � 1� o2
p

b2q2 � q4

4
ÿ o�o� ig�

, �A2�
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where b2 � 3
5v

2
F and vF is the Fermi velocity. In the null-damping limit, g4 0, this

function gives the plasmon dispersion relation for small q, and for large q, it tends
to the one electron energy-momentum relation o=q 2/2. In the loss function, it
gives a sharp peak corresponding to the bulk-plasmon energy that moves slightly
towards higher energies with increasing momentum. Besides this, there is a broad
structure corresponding to the electron±hole pair excitations. For high momenta,
the plasmon oscillations are damped, since one plasmon can transfer its energy to
an electron, producing an electron±hole pair. From energy conservation con-
siderations, the critical q to produce such pairs is quoted [155] as qc 0 (op/vF).
When one is only interested in the collective excitations of the electron gas, the
momentum dependence of the dielectric response function can often be avoided,
and reduced to the optical approximation E(q=0, o ). The simplest model of di-
electric response, which accounts for the behaviour of a metal, is the well-known
Drude dielectric function that considers free electrons with a damping constant g, so

E�o� � 1ÿ o2
p

o�o� ig� : �A3�

For this dielectric function, the loss function is a Lorenzian, centred at op and with
a width given by the damping,

Im

� ÿ1
E�o�

�
� o2

pog

�o2 ÿ o2
p �2 � o2g2

, �A4�

which, in the undamped limit, yields the simple expression

lim g40Im

� ÿ1
E�o�

�
� p

2
opd�oÿ op�: �A5�

The above theoretical dielectric functions are simple models describing an electron
gas or ideal metal. The experimental dielectric function E(o ) provides more detailed
information about the response of the medium, and compares much better to the
experimental results. This function is usually obtained from optical data, by
measuring the re¯ectance in a large range of frequencies [105]. Another way of
obtaining it is by means of the EELS in transmission experiments. Making the
acceptance angle very small, one can obtain the energy-loss spectra corresponding
to q = 0. These spectra are proportional to the loss function Im{ÿE(o )ÿ1}.
Provided the loss function is known over a wide interval, from the Kramers±
Kronig relations, it is possible to obtain the real and imaginary parts of the
dielectric function [12,159].

Appendix B

Methods of solving the Poisson equation

Here we consider the following Fourier transform convention:
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f�k, o� �
�1
ÿ1

dr

�1
ÿ1

dt eÿi�krÿot�f �r, t�,

f�r, t� � 1

�2p�4
�1
ÿ1

dk

�1
ÿ1

do ei�krÿot�f�k, o�: �B1�

A useful approach to calculate the energy loss of a probe near a surface is
through the so-called screened interaction, or GF of the Poisson equation (2.1),
i.e., it is the solution of the equation:

r 2W�r, r 0, o� � ÿ4p
E�o�d�rÿ r 0 �, �B2�

which veri®es the same boundary conditions as the solution of (2.1), i.e., the
screened interaction W(r, r ', o ) and E @W(r, r ', o )/@n, where @/@n stands for the
normal derivative, should be continuous on the interfaces. The solution of (2.1)
can be straightforwardly written in terms of W(r, r ', o ) as:

f�r, o� �
�1
ÿ1

dr 0W�r, r 0, o�r�r 0, o�: �B3�

In situations where the surface presents a simple geometric shape, a simple way to
calculate W(r, r ', o ) is to interpret it formally as the Poisson equation
corresponding to a point charge at rest at r ', and then solve it by the standard
techniques of the electrodynamics.

As an example of this method, we obtain the potential created by an electron
moving with constant velocity parallel to a planar interface, as discussed in
Section 2. The standard way of tackling problems involving planar interfaces
(planes, ®lms, multilayers) is by means of a Fourier transformation of (B2) and
solving it in the k-space. Nevertheless, for a simple planar interface, the solution
can be easily obtained by noticing that the solution of (B2) is formally the same as
that of the static image potential in a medium of dielectric ``constant'' E(o ) [18].
The screened interaction is then given by:

W�r, r 0, o�

� 1

j rÿ r 0 j ÿ
x�o�����������������������������������������������������������������������

�xÿ x 0 �2 � � yÿ y 0 � 2 � �z� z 0 �2
q , z, z 0 > 0

� 1

E�o�
1

j rÿ r 0 j ÿ
z�o�����������������������������������������������������������������������

�xÿ x 0 �2 � � yÿ y 0 � 2 � �z� z 0 �2
q , z, z 0 < 0

� ÿ x�o� ÿ 1����������������������������������������������������������������������
�xÿ x 0 � 2 � � yÿ y 0 � 2 � �zÿ z 0 �2

q , z, z 0 < 0,

�B4�
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where x, x ', etc. . . . are the cartesian coordinates of r and r ', respectively. The
functions x(o ) and z(o ) are given by (2.4) and (2.15), respectively. These terms
contain the surface contribution to the screened interaction.

For trajectories outside and parallel to the surface, the charge density is given
by (2.2); combining this expression with (B3) one can write the induced potential
as:

find�r, o� �
x�o�
v

�1
ÿ1

dx 0
ei

ox
v x 0�����������������������������������������������������

�xÿ x 0 �2 � y2 � �z� b�2
q �B5�

and then, by using the integral representation of the Bessel function K0(x ) [19]:

K0�j x j� �
�1
0

cos�xt��������������
1� t2
p dt, �B6�

we have the induced term of (2.3).
The ®rst terms in the screened interaction (when both z and z '> 0) lead to the

direct Coulomb potential f1, which corresponds to the solution of Poisson
equation in a non-bounded medium. Applying (B3) to this term, we ®nd:

f1�r, o� � ÿ2
Z

v
K0

� j o j
v

���������������������������
y2 � �zÿ b�2

q �
ei

ox
v , �B7�

which can be generalised for the bulk term (when both z and z ' < 0); the
corresponding expression just di�ers in the Eÿ1 factor. Returning to (B7), we see it
is o-independent, so can be straightforwardly a Fourier transform to obtain

f1�r, t� �
ÿ1���������������������������������������������������

�xÿ vt�2 � y2 � �zÿ b�2
q , �B8�

where we have used the following result [19]:�1
0

dx cos�bx�K0�x� � p
2

1��������������
1� b2
p : �B9�

Eq. (B8) states an obvious result: it is the Coulomb potential created by a charge
moving in a vacuum.

In many problems, the energy loss probability can be directly obtained from the
screened interactions via (5.8), without obtaining the induced potential. As an
example, we apply this method to obtain the EELS for an electron travelling
outside a dielectric sphere. We expand the induced part of the screened interaction
Wind(r, r ', o ) as a regular solution of the Laplace equation in each region of the
space, the coe�cients of this expansion are then calculated by imposing the
boundary conditions. The screened interaction can be written as [72]:
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W�r, r 0, o�

�
X
l, m

4p
2l� 1

gl�o�
a2l�1

�r, r 0 �l�1Y
�
lm�O 0 �Ylm�O� � 1

j rÿ r 0 j r, r 0 > a

�
X
l, m

4p
2l� 1

fgl�o� � 1g r
l
<

rl�1>

Y �lm�O 0 �Ylm�O� r<ha, r>ia

�
X
l, m

4p
2l� 1

�
gl�o� � 1ÿ 1

E�o�
� �r, r 0 �l

a2l�1 Y �lm�O 0 �Ylm�O�

� 1

E�o�
1

j rÿ r 0 j r, r 0 < a,

�B10�

where r< (r>) is the smallest (greatest) of r, and r ' and Ylm (O) are their
corresponding spherical harmonic functions. The response functions gl (o ) are
given by (7.2). Note that the Coulomb terms in these expressions can be expanded
as [18]:

1

j rÿ r 0 j �
X
l, m

4p
2l� 1

rl<
rl�1>

Y �lm�O 0 �Ylm�O�: �B11�

Once the screened interaction is known, the energy loss probability can be
calculated from (5.8). For non-penetrating electron trajectories, we recover (7.1)
easily. In this step, the following non-trivial result is needed [160]:

�1
ÿ1

dx

Pm
l

�
x�����������������

b2 � x 2
p

�
� �����������������

b2 � x 2
p �l�1 eikx � 2

�
ik

j k j
�lÿm j k jl
�lÿm�!Km�j k j b�: �B12�

For penetrating trajectories, b < a, one can proceed as above. In this case, one
has to be aware of the fact that the direct bulk term Eÿ1= j rÿ r 0 j (for r, r ' < a )
is boundary dependent, since it is only de®ned inside the sphere. This term then
provides not only the non-bounded medium bulk term, but also part of the
begrenzung contribution. This term has to be obtained by writing it as the
contribution of an in®nite medium, proportional to the path length inside the
sphere, plus a surface correction to the bulk term.

This is a simple application of the standard method of solving Poisson's
equation; it consists, basically, of writing the induced potential or the screened
interaction W(r, r ', o ) as a linear combination of the solutions to the
Laplace equation. The problem then reduces to ®nding the complex
coe�cients of this combination: the application of the boundary conditions
leads to a set of algebraic linear equations involving these coe�cients. Planes,
®lms, spheres, cylinders and spheroids have been solved in a simple way. In
the most complicated cases Ð two spheres or two cylinders, particle coupled
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to a plane Ð all the coe�cients are coupled, so, a cut-o� in the number of
functions used in the expansion has to be imposed, which leads to
complicated computational problems. In these last problems, (5.8) has been
proved to be computationally advantageous, because it simply reduces the
problem to solving a double integral.

The existence of such a basis implies high symmetry in the target geometry;
as the target geometry complicates, this method becomes unsuitable, since it is
not possible to choose a single basis of functions, where the boundary
conditions can be analytically handled. At this stage, direct computation is
required. The BCM has been proposed to deal with this problem [153]. This
approach can be traced back to Maxwell, who used it to compute
capacitances [161]. It has been employed much more recently, to determine
the normal-mode frequencies of dielectric excitations of a cube by Fuchs
[162,163] and by Ouyang and Isaacson for bodies of arbitrary shape [164].
Ouyang and Isaacson [165] proceeded to apply the boundary method to
investigate the e�ect of the support on fast electron energy losses near small
particles. Other recent applications of this approach include the surface modes
of channels cut on planar surfaces [166] and those of coupled parallel wires
[167]. Although the previous works are not referenced, this method has been
used very recently by Reed et al. [145]. A generalisation of this procedure,
including relativistic corrections, has also been presented [59].

We are again faced with solving the Poission equation (2.1) in the local
approach for a given external charge density r(r, o ) and given boundary
conditions. However, instead of solving it directly in terms of a ®eld de®ned in a
three-dimensional space (the induced potential), the BCM reduces the problem to
®nding the surface charge density s(s, o ) induced by the external charge density,
and writing the induced ®eld in terms of this magnitude. This unknown ®eld s(s,
o ) is now de®ned on a two-dimensional support. In addition, the boundary
conditions are implemented in the equation for the charge density.

This method is of general use in problems involving probes and surfaces, as far
as the local dielectric response approach is valid. It has been successfully used in
EELS in electron microscopy. Here, for simple targets (plane, sphere, cylinder,
etc.), when it is possible to handle analytically the charge density, the well-known
formulae are recovered. Semi-analytical computation for systems consisting of
many ordered spheres have been developed, where the charge density of each
sphere is written in terms of its spherical harmonics, and the coe�cients then
numerically computed.

Nevertheless, the main interest of this technique is its ability of dealing with
very complex boundaries. The fact that the charge density is de®ned just on the
surfaces, allows one to deal numerically with it by de®ning its values at the
discrete points of a grid.

We now describe brie¯y the theoretical basis of this method. A detailed
exposition can be found in [153]. In an inhomogeneous system, where the
dielectric function changes abruptly at the interfaces, the Poisson equation enables
the total charge density on the interface, s(s, o ), to be related to the normal
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component of the electric ®eld:

s�s, o� � 1

4p
�Eout�s, o� ÿ Ein�s, o��ns, �B13�

where s is the coordinate vector running over the interfaces, Eout(s, o ) and Ein(s,
o ) are the electric ®eld inside and outside the surface and ns is the interface
normal at s pointing towards the outer medium. Note that, in the general case,
the distinction between the inner and outer medium is arbitrary, and the
convention used here has to be followed throughout. When there is no free charge
on the interface, the normal component of the electric displacement is continuous
on the interface and the function s(s, o ) is now the induced charge density. It is
then possible to write the charge density as a function of the normal component
of the electric ®eld:

s�s, o� � 1

4p
Ein ÿ Eout

Ein

Eout�s, o�ns, �B14�

where Eout and Ein are the dielectric functions of both media. From the Gauss
theorem, the normal component of the electric ®eld near the surface can be written
as the sum of the contribution of the ®eld Eext created by all the external charges,
plus the contribution of the charge density: nsEout(s, o )=nsEext(s, o )+2ps(s, o ).
Eq. (B14) then becomes

L�o�s�s, o� � nsEext�s, o� � nsEprobe�s, o�ns �
�

ds 0F�s, s 0 �s�s 0, o�, �B15�

where

L�o� � 2p
Eout�o� � Ein�o�
Eout�o� ÿ Ein�o� : �B16�

In (B15), the external ®eld at the surface, Eext, has been written as the sum of the
®eld created by the external probe (whatever it is) Eprobe, plus that created by the
surface density. This last contribution is given by the integral over the surface in
(B15), where

F�s, s 0 � � ÿns�sÿ s 0 �
j sÿ s 0 j3 �B17�

is the electric ®eld created by the unit charge at s ' in the point s. Note that,
although this term diverges as s 4 s ', its contribution remains ®nite, since the
electric ®eld becomes normal to the surface, so ns(sÿs ')4 0. This requires that the
surface is smooth; nevertheless, it is possible to use this model with edged surfaces
by smoothing out the corner up to a distance much smaller than the length
involved in the problem [153].

Expression (B15) is an integral equation, which relates the values of the induced
surface density to the ®eld created by the external probes. When the surface is
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simple enough to allow an analytical expansion of the charge density, this
equation reduces to a set of linear equations relating the coe�cients of this
expansion. In more complex geometries, the charge density has to be de®ned by
means of its values at discrete points si of a grid over the surface, and then, this
equation leads to a system of linear equations coupling all the values of s(si, o ).

Once the charge density is known, we can derive from it any physical
magnitude; for instance, the induced potential can be straightforwardly obtained
as:

find�r, o� �
�

ds
s�s, o�
j rÿ s j : �B18�

The contribution of the surface terms to the energy loss probability Psurface(o ) can
be expressed in terms of the induced potential, when this is evaluated at the
electron position, in the standard way:

Psurf�o� � ÿ2pv
�

dsK0

�
o j r?0 ÿ s? j

v

�
Imfs�s, o�ei�rk0ÿsk�o=vg: �B19�

When there is no external probe, (B15) becomes a useful way of obtaining the
modes of complex surfaces, characterised by a Drude dielectric function. The
energies of the modes are given by

L�o�s�s, o� ÿ
�

ds 0F�s, s 0 �s�s 0, o� � 0: �B20�

If one transforms (B20) into a linear system, the modes are the values of o for
which the matrix of the system is singular. Note that this fact implies that this
method is no longer valid to deal with such a dielectric function. The use of a
small damping in E(o ) theoretically avoids this problem, but one has to be aware
of the computational di�culties, when inverting a near singular matrix.
Nevertheless, this problem does not occur, when using experimental dielectric
functions.
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