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Bâtiment 351, 91405 Orsay Cedex, France
3Materials Physics Center CSIC-UPV/EHU and Donostia International Physics Center DIPC,

Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
4andrei.borissov@u-psud.fr

∗aizpurua@ehu.es

Abstract: Electron tunneling through narrow gaps between metal
nanoparticles can strongly affect the plasmonic response of the hybrid
nanostructure. Although quantum mechanical in nature, this effect can
be properly taken into account within a classical framework of Maxwell
equations using the so-called Quantum Corrected Model (QCM). We extend
previous studies on spherical cluster and cylindrical nanowire dimers where
the tunneling current occurs in the extremely localized gap regions, and
perform quantum mechanical time dependent density functional theory
(TDDFT) calculations of the plasmonic response of cylindrical core-shell
nanoparticles (nanomatryushkas). In this axially symmetric situation, the
tunneling region extends over the entire gap between the metal core and
the metallic shell. For core-shell separations below 0.5 nm, the standard
classical calculations fail to describe the plasmonic response of the cylin-
drical nanomatryushka, while the QCM can reproduce the quantum results.
Using the QCM we also retrieve the quantum results for the absorption
cross section of the spherical nanomatryushka calculated by V. Kulkarni et
al. [Nano Lett. 13, 5873 (2013)]. The comparison between the model and
the full quantum calculations establishes the applicability of the QCM for a
wider range of geometries that hold tunneling gaps.
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with Ångstrom length resolution,” ACS Nano 6, 9237–9246 (2012).

#233291 - $15.00 USD Received 27 Jan 2015; revised 27 Feb 2015; accepted 3 Mar 2015; published 20 Mar 2015 
© 2015 OSA 23 Mar 2015 | Vol. 23, No. 6 | DOI:10.1364/OE.23.008134 | OPTICS EXPRESS 8135 



31. X. Ben and H. S. Park, “Size-dependent validity bounds on the universal plasmon ruler for metal nanostructure
dimers,” J. Phys. Chem. C 116, 18944–18951 (2012).

32. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science
332, 1407–1410 (2011).

33. A. Stolz, J. Berthelot, M-M Mennemanteuil, G. Colas des Francs, L. Markey, V. Meunier, and A. Bouhelier,
“Nonlinear photon-assisted tunneling transport in optical gap antennas,” Nano Lett. 14, 2330–2338, (2014).

34. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A Dereux, and A. Bouhelier, “Silencing and
enhancement of second-harmonic generation in optical gap antennas,” Opt. Express 20, 10498–10508 (2012).
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78. Th. Fennel, K.-H. Meiwes-Broer, J. Tiggesbäumker, P.-G. Reinhard, P. M. Dinh, and E. Suraud, “Laser-driven
nonlinear cluster dynamics,” Rev. Mod. Phys. 82, 1793–1842 (2010).

79. E. Prodan, P. Nordlander, and N. J. Halas, “Electronic structure and optical properties of gold nanoshells,” Nano
Lett. 3, 1411–1415 (2003).

80. E. Prodan, P. Nordlander, and N. J. Halas, “Effects of dielectric screening on the optical properties of metallic
nanoshells,” Chem. Phys. Lett. 368, 94–101 (2003).

81. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Theory of surface plasmons and surface-plasmon
polaritons,” Rep. Prog. Phys. 70, 1–87 (2007).

82. A. Liebsch, “Surface-plasmon dispersion and size dependence of Mie resonance: silver versus simple metals,”
Phys. Rev. B 48, 11317–11328 (1993).

83. M. A. L. Marques, and E. K. U. Gross, “Time-dependent density functional theory,” Annu. Rev. Phys. Chem. 55,
427–455 (2004).

84. O. Gunnarson and B. I. Lundqvist, “Exchange and correlation in atoms, molecules, and solids by the spin-density-
functional formalism,” Phys. Rev. B 13, 4274–4298 (1976).
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1. Introduction

Modern technology allows for fabrication of metallic nanoparticles and nanoparticle assemblies
of different geometry, structure, and composition [1–13]. This, in turn, opens a possibility to
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engineer the plasmonic modes of these artificial nanostructures and thus the way they interact
with light [14–20]. In this context much of the interest has been devoted to the nanostruc-
tures that form narrow plasmonic gaps between their constituent metallic surfaces [17]. The
strong interaction of the plasmon-induced charge density across the gap results in the manyfold
enhancement of the confined fields and in the hybridization of the plasmonic modes of the in-
dividual nanoparticles [21–23]. The field enhancement and the geometrical tunability provided
by plasmon resonances find many practical applications including sensing [1, 24–27], plasmon
rulers [2, 17, 28–32], and non linear optics [8, 11, 33–39], among others.

So far, the classical electrodynamics framework based on the local description of the metal
dielectric function appeared adequate to describe optical properties of strongly coupled plas-
monic nanoparticles separated by narrow gaps. However, recent experimental [4, 9–11, 40–42]
and theoretical [9, 43–51] studies have demonstrated the importance of quantum mechanical
effects when particle-to-particle separations are reduced below the nanometer. In this case, the
non-local screening and the electron tunneling across the gap can reduce (and even quench)
the field enhancement, and alter the optical response of the system. Because of the tunneling, a
conductive contact between the nanoparticles can be established, prior to the direct geometrical
overlap. As a consequence, the extinction resonances arising from the hybridization of the plas-
monic modes of the individual nanoparticles disappear from the spectrum. At the same time, a
set of charge transfer plasmon modes emerge as a consequence of the electron flow between the
nanoparticles [52–57]. The use of nonlocal dielectric functions [15, 47, 58–61] captures part of
the quantum behavior of such systems introducing a smooth variation of the screening electron
density at the metal surface rather than one infinitely sharp, as assumed in the classical local ap-
proach. This solves the problem of the divergence of the electric fields and energy shifts of the
plasmon resonances with decreasing junction width, as obtained in local classical theories [62].
The latest developments of the non-local hydrodynamic descriptions allow to introduce the re-
alistic electron density profile at the surface so that full quantum results can be retrieved for
individual nanoparticles [63] albeit at the price of growing the numerical complexity. However,
to account for tunneling across narrow interparticle junctions requires a special treatment that
goes beyond classical local or non-local hydrodynamic approaches.

Quantum tunneling thus imposes a real challenge to any theoretical description. Indeed, the
simplest strategy to tackle the effect of tunneling would consist in performing full quantum cal-
culations of the plasmonic response, as recently reported, within an atomistic ab initio or free
electron description of the metal nanoparticles [9, 43–48, 50, 64]. However, because of numer-
ical constraints, quantum calculations can only address systems which are much smaller than
those of practical interest in plasmonics. A possible solution to this constraint consists in using
model local dielectric functions that account for the quantum tunneling, in a way similar to the
derivation of the macroscopic permittivity of a system from the microscopic quantum polariz-
abilities of the constituent atoms or molecules [65]. This can be achieved with the Quantum
Corrected Model (QCM) [45,66] that treats the junction between the nanoparticles as an effec-
tive medium mimicking quantum tunneling within the classical local dielectric theory. So far,
the QCM has been shown to correctly reproduce the full quantum results in plasmonic dimer
structures with a localized contact region supporting the tunneling current [9,40–42,48,49]. In
this work we study a very different system formed by a cylindrical metallic core and a cylindri-
cal metallic shell, thus separated by a much more extended tunneling contact region between
the core and shell metal surfaces, so-called cylindrical nanomatryushka (NM).

We first perform the quantum mechanical time dependent density functional theory (TDDFT)
calculations of the optical absorption cross section of the cylindrical nanomatryushka. Owing
to the large tunability of their plasmonic response and to the possibility of fabrication of these
structures in small size with very narrow gaps between the core and the shell [12,13], NM-like
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Fig. 1. Sketch of the geometry of the cylindrical nanomatryushka. The coaxial cylindrical
core and cylindrical shell are infinite along the z-axis. The core has the radius R1; the
internal radius of the shell is R2, and the external radius of the shell is R3. The core and the
shell are separated by the vacuum gap. The incident field with amplitude Eo, and angular
frequency ω is polarized perpendicular to the axis of the NM.

nanostructures are of considerable practical and fundamental interest. The optical properties of
NMs have been addressed within the classical electromagnetic theory framework in a number
of publications [67–75]. It is only recently that the full quantum results have been reported for
the spherical NM [76] showing the importance of tunneling between the core and the shell.
The aim of the present study is twofold: (i) to follow the detailed evolution of the plasmonic
resonances of the cylindrical NM upon variation of the size of the gap between the core and
the shell, and (ii) to use the full quantum study as a benchmark for the QCM calculations. We
focus on the quantum effects in this system because the standard classical calculation fails to
describe the plasmonic response of the cylindrical NM for core-shell separations below 0.5 nm,
while the QCM can reproduce well the quantum results. In addition to the previous studies of
plasmonic dimer structures showing with tunneling regions localized around the contact point,
our results for NMs extend the validity of the QCM to other geometries with more extended
tunneling regions. Indeed, in the present case the tunneling current flows transversally through
the entire core-shell gap. Along this lines, we also demonstrate that the QCM reproduces the
quantum results obtained previously for the spherical NM [76], thus offering an efficient way
to address tunneling effects in core-shell nanoparticles.

2. Model and computational aspects

The sketch of the cylindrical nanomatryushka in vacuum considered in this work is shown
in Fig. 1. The infinite metallic cylindrical core and the metallic cylindrical shell are coaxial
with the geometry set by the radius of the core R1, the internal radius of the shell R2, and the
external radius of the shell is R3. Following the widely used notation, we will adopt the set
(R1,R2,R3) to characterize the NM structure [76]. The incident light is polarized perpendicular
to the symmetry axis. To focus the discussion on the main subject of our interest – the role of
the tunneling effect in the plasmonic response – and to facilitate the comparison with earlier
published work on spherical nanomatryushkas, the region between the core and the shell is
chosen to be vacuum. The results below are obtained for a fixed R2 = 90 a0 (48 Å), and R3 =
115 a0 (61 Å), while the radius of the core R1 is varied. Here a0 (0.53 Å) stands for the Bohr
radius. The range of values considered for R1 corresponds to the progressive reduction of the
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width of the vacuum gap between the core and the shell, S = R2−R1, from 20 Å down to
the touching geometry (S = 0). This allows an analysis of the progressive emergence of the
tunneling across the gap, and of its role in the evolution of the NM plasmonic modes into those
of the uniform cylindrical nanowire.

In our quantum calculations the metallic core and the shell are described within the cylin-
drical jellium model (JM) as detailed previously [48, 49]. The valence electrons are bound by
the uniform positive background charge representing the ionic cores. This background charge
density is given by n0 =

(
4π r3

s /3
)−1, where rs is the Wigner-Seitz radius. R1 defines the po-

sition of the boundary of the positive background charge, the jellium edge, of the core. R2 and
R3 define the inner and the outer jellium edges of the shell, respectively. Despite its simplicity,
the JM correctly captures the collective plasmonic behavior of the conduction electrons, and
it has demonstrated a good predictive power in the description of quantum effects in nanopar-
ticle dimers, as follows from the comparison with experiments [9, 10] and with advanced full
atomistic ab initio calculations [64]. We use the Wigner-Seitz radius rs equal to 4 a0 (2.12 Å)
corresponding to Na metal. In this case the JM performs particularly well in the description of
the interaction of the optical pulse with nanosized objects [77–80]. For noble metals, such as
silver and gold, the contribution of the localized d-electrons to the screening [81, 82] imposes
the introduction of a polarizable background [43] which would complicate the interpretation of
the results, and obscure the comparison with the classical Drude and QCM model calculations.
We emphasize that the qualitative conclusions drawn in this work are robust and independent
of the particular choice of the density parameter.

The quantum calculations of the absorption cross-section are based on the the Kohn-Sham
(KS) scheme of the density functional theory (DFT) [83]. We use the adiabatic local density
approximation with the exchange-correlation functional of Gunnarson and Lundqvist [84]. A
detailed description of the numerical technique can be found in [44] by Marinica et al., and
in [49] by Teperik et al. First, the ground state electron density and Kohn-Sham orbitals are
obtained in standard static DFT calculations. Using the axial symmetry allows to address the
system with up to 290 electrons per 1 Å length. The structures are characterized by an overall
work function of 2.9 eV, where the exact value depends on the core radius R1. At a second stage,
the frequency ω-dependent absorption cross-section per unit length, σ(ω), is calculated from
the electron density dynamics induced by an impulsive perturbation, within the time-domain
time dependent density functional theory (TDDFT) approach.

σ(ω) =
4πω

c
Im{α(ω)} . (1)

In Eq. (1), α(ω) is the dipolar polarizability (per unit length) of the system, and c is the speed
of light in vacuum. Because of the small transverse size of the system, retardation effects are
neglected for the present choice of the polarization of the incident electromagnetic wave.

Consistent with TDDFT, the classical electromagnetic calculations of the absorption cross-
section have been performed within the quasistatic approximation [74] (see also [75] by H.
Xu) using the local classical and the QCM approaches. Within the local classical approach the
dielectric constant of the metal is described with the Drude model:

ε(ω) = 1−
ω2

p

ω(ω + iγ)
, (2)

where ωp is the bulk plasma frequency of the metal and γ accounts for the damping. We use
ωp = 5.68 eV and γ = 0.218 eV as obtained from the fit of classical results to TDDFT cal-
culations for the isolated cylindrical nanowire of radius R = 115 a0 (61 Å). These dimensions
correspond to the geometry of the system with a fully closed gap between the core and the
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shell. Note that the value of ωp = 5.68 eV is lower than the nominal plasma frequency for the
bulk Na given by ωb =

√
4πn0/me = 5.89 eV, with me the electron mass, and reflects the red

shift of the dipolar plasmon from the classical ωb/
√

2 prediction. This red shift is the finite size
effect resulting from the spill out of the electron density outside the metal boundaries, as has
been thoroughly studied in the context of surface physics [77, 82, 85–89].

The QCM model [45, 66] describes the electron tunneling between the core and the shell by
filling the core-shell gap with an effective dielectric medium described by a Drude model that
depends on the gap separation distance S, similar to that in Eq. (2), as:

εeff(S,ω) = 1−
ω2

p

ω(ω + iγeff(S))
. (3)

The effective damping γeff models the transition from a resistive to a conductive nature of the
junction as a function of the gap separation S. Consistently with the dependence of the electron
tunneling probability on the size of the gap, γeff is given by

γeff = γ0 e[S/∆]. (4)

For the tunneling contact between Na metal surfaces we use ε∞ = 1 in Eq. (3), and in Eq. (4) we
use γ0 = 0.218 eV and ∆ = 0.75 Å [45, 66]. For sufficiently large separation distances, S→ ∞,
the effective damping γeff→ ∞, and the QCM becomes exactly equivalent to the local classical
approach. In this situation, no tunneling is possible and the vacuum gap limit is retrieved with
εeff(S,ω) = 1. For S→ 0, the junction becomes metallic with permittivity equivalent to that of
the bulk metal so that the NM responds as an homogeneous metallic cylinder.

3. Results and discussion

3.1. Plasmon modes of a cylindrical nanomatryushka

We first characterize the linear optical response of the cylindrical NM with particular emphasis
on the assignment of the plasmonic modes. To this end we base our discussion on the classical
quasistatic results which provide a good reference for the full quantum calculations of the NM
with large gap, and thus no tunneling. The classical results have also the advantage of featuring
well defined many-body plasmonic modes, not affected by the interaction with single-particle
electron-hole pair excitations which are typical for the quantum TDDFT calculations in systems
of small size like this [47, 79, 80]. In Fig. 2(a) we show the absorption cross section per unit
length of an individual cylindrical nanowire with external radius R = 61 Å (black dashed line).
This would correspond to the limiting case of a NM with zero width gap S = 0. Our calculations
also show the results for a cylindrical shell with internal radius R2 = 47.7 Å, and external radius
R3 = 61 Å, (blue line), and finally, the case of a cylindrical NM with the same shell as in the
previous case, and a core of radius R1 = 37 Å, i.e. a cylindrical (37,47.7,61) Å NM (red line).
The dimensions of the system in units of the Bohr radius are (70, 90, 115) a0. In practice,
atomic units are the natural choice for quantum studies, and while in most of the cases we give
dimensions in Å for convenience of the broad audience, our TDDFT calculations use atomic
units. For the individual nanowire, the TDDFT data is also presented (green line) along with the
classical results to validate the quality of the classical Drude modeling of the optical response
in this case.

The absorption cross section of the individual cylindrical nanowire representative for the
core of the nanomatryushka is dominated by the single plasmon resonance at surface plasmon
frequency ω− = ωp/

√
2, where ωp is the bulk plasma frequency in the Drude model of the

dielectric function given by Eq. (2). As already pointed out, because of the nonlocal screening
and the small radius of the nanowire, in our calculations ω− = 4.02 eV is red shifted with
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Fig. 2. (a) Absorption cross section per unit length. The green line shows the TDDFT
result for an individual nanowire with radius R = 61 Å. The rest of the results are obtained
using classical electromagnetic theory within a nonretarded approximation. Black dashed
line: individual nanowire with radius R = 61 Å. Blue line: cylindrical shell with internal
radius R2 = 47.7 Å, and external radius R3 = 61 Å. Red line: cylindrical (37.1,47.7,61) Å
nanomatryushka. The inserts show the direction of the radial electric fields associated to the
ω
−
− , ω

+
− , and ω+

c modes of the core-shell structure. The arrows indicate the corresponding
absorption resonances. (b) Schematic charge distribution for the different plasmonic modes
identified in a).

respect to the corresponding surface plasmon frequency of the Na metal, 4.16 eV [47, 77, 82,
85–89]. The distribution of the plasmon-induced charges of this mode is schematically shown
in Fig. 2(b). The optical absorption of the cylindrical shell is characterized by a low frequency
bonding resonance ω−, and a high frequency antibonding resonance ω+ [79,80] with plasmon
charges separated, respectively, over the entire shell or across each shell boundary, as shown
in Fig. 2(b). In the NM, the ω− dipole mode of the core nanowire hybridizes with the ω− and
ω+ dipole modes of the nanoshell giving rise to the ω

−
− , ω

+
− , and ω+

c resonances. The lowest
energy bonding hybridized resonance ω

−
− at 1.1 eV is formed by the bonding shell mode ω−

with an admixture of the core ω− resonance. The most prominent ω
+
− absorption resonance

of the nanomatryushka at 4 eV is formed primarily by the symmetric coupling of the ω− core
mode with the ω+ shell resonance. Finally, the antisymmetric coupling of the ω− core mode
with the ω+ shell resonance forms the anti-bonding resonance of the NM, ω+

c (here we use the
terminology from [76] by Kulkarni et al.). As follows from Fig. 2(b), the charge distribution
of the ω

+
− mode corresponds to the parallel core and shell dipoles so that this mode strongly

interacts with the incident electromagnetic wave. The ω
−
− and ω+

c modes are characterized by
antiparallel core and shell dipoles, therefore the corresponding absorption resonances are weak
in this case.

The near-field distribution of the plasmon resonances is shown in the inserts of Fig. 2(a).
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Owing to the opposite sign of the plasmon induced charges at the surface of the core and
inner surfaces of the shell, the lowest energy bonding hybridized mode ω

−
− is characterized

by a strong field enhancement inside the core-shell gap. On the other hand, because the core
and shell dipoles are antiparallel, the fields are weak outside the structure. Similar to ω

−
− , and

because of the induced charge configuration, for the ω
+
− resonance the fields in the gap are also

strongly enhanced. For this mode the core and shell dipoles are aligned. This leads to strong
induced fields outside the structure consistent with the most intense peak in the absorption
cross section at ω

+
− . The core character of the ω

+
− resonance clearly appears in the structure of

the corresponding induced fields showing a bright core region. The ω+
c mode is characterized

by the opposite sign of the core and shell dipoles and by the same sign of plasmon-induced
charges across the gap. The fields are thus low in the gap, core and vacuum regions. Strong
plasmon-induced fields are only calculated inside the shell consistent with the shell character
of this plasmon mode. It should be noted that the character of the modes and their near field
distribution is analogous to that of a spherical NM [68–73, 76]. The resonance energies are
however different because of the different dimensionality of the problem. Indeed, for a Drude
metal, the quasistatic cylindrical core plasmon is at ω− = ωp/

√
2, while the spherical core

plasmon is at ω− = ωp/
√

3.
From a qualitative analysis of the induced charge distributions and near fields of the modes, it

is possible to presume that quantum effects might be relevant when the gap separation between
the core and the shell in the NM decreases. This situation can occur by means of an increase
of the core radius R1. Analogous to the spherical NM case [76], because of electron tunneling
between the core and the shell, the gap becomes conductive for small S (narrow gaps). In the
touching limit (S→ 0), a situation analogue to that of the continuous metallic cylinder can
be reached even prior to the direct geometrical contact at R1 = R2. In such a situation, the
modes ω

−
− and ω+

c would disappear and the mode ω
+
− would evolve into that of the metallic

cylinder with a radius given by the external radius of the shell R3 = 61 Å. Since the ω
−
− and ω

+
−

resonances are characterized by a distribution of opposite charges across the gap, the effect of
tunneling in these modes can be expected to be stronger than for the ω+

c resonance. The above
discussion is fully confirmed by the quantum TDDFT results presented in the next section.

3.2. Role of quantum tunneling across the gap

In the left columns of Fig. 3 we show the waterfall plots of the absorption cross section of a NM
per unit length. The results are shown as a function of the frequency ω of the incident radiation
polarized perpendicular to the symmetry axis of the system. The calculations were performed
over a wide frequency range, and for various gap sizes, from well separated core and shell, down
to the situation of conductive contact at S = 0. Different panels of the figure correspond to the
results obtained within classical calculations using the Drude model of the metal permittivity
(top), within the full quantum TDDFT (center), and with the quantum corrected model (QCM)
(bottom). The system geometry is defined by (R1,47.7,61) Å, where the core radius has been
varied within the limits 26.5 Å ≤ R1 ≤ 47.7 Å consequently, allowing to vary the size of the
vacuum gap according to S = 47.7 Å−R1. The gross features of the results are similar for the
classical, quantum and QCM descriptions of the system. These results resemble those reported
in the literature for similar core-shell systems [67–73,76]. With an increasing value of the core
radius, R1 (smaller S), the interaction between the induced charges across the gap increases, and
the pair of hybridized plasmons with shell character display a red-shift (ω−− ), and a blue-shift
(ω+

c ), respectively. Because of the mutual compensation between the core and the shell dipoles
for these modes [see Fig. 2(c)], their spectral features progressively loose their intensity in the
absorption spectrum. For R1→ R2, the ω

−
− and ω+

c resonances can be hardly distinguished in
the spectrum. The differences between the quantum and the classical calculations, particularly
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Fig. 3. Waterfall plot of the absorption cross section per unit length, σ , of a cylindrical
nanomatryushka defined by (R1,47.7,61) Å, or equivalently (R1,90,115) a0, where the
Bohr radius a0 = 0.53 Å, calculated using classical electromagnetic theory (top), TDDFT
(center) and the Quantum Corrected Model (QCM) (bottom). Results are given as a func-
tion of the frequency ω of the incident radiation for different core radii R1. The left panels
show the results within a large ω range showing all the resonances described in Fig. 2. R1
varies within the limits 50 a0 ≤ R1 ≤ 90 a0 (26.5 Å≤ R1 ≤ 47.7 Å), corresponding to gap
separation distances, S, from 40 a0 down to 0, as indicated by the blue arrows on the spec-
tra. For clarity, a vertical shift is introduced to each absorption spectrum. The curves are
displayed in red every 10 a0 ≈ 5.3 Å of R1-change. The lowest absorption spectrum in each
panel corresponds to R1 = 50 a0 (S = 40 a0), and the red dashed curve on top (S = 0) is
used as a reference for the absorption spectrum of the solid metallic cylinder with external
radius R = 115 a0 (61 Å). The plasmonic modes responsible for the peaks in the absorption
cross-section are labeled in each panel. ω

−
− stands for the bonding hybridized resonance,

ω
+
− for the hybridized resonance with a dominantly core character, and ω+

c for the anti-
bonding resonance of the nanomatryushka. The right panels focus on results for core radii
R1 in the range of 78 a0 ≤ R1 ≤ 84 a0 (41.3 Å ≤ R1 ≤ 44.5 Å) at the frequency range of
the ω

−
− plasmon of 0.4 eV≤ ω ≤ 1.4 eV. These are the conditions where the effect of the

resonant electron transfer on the bonding hybridized plasmon ω
−
− is most prominent. The

correspondence between the color used for the absorption spectra and the value of the core
radius R1 is given at the lower right panel of the figure. R1 is indicated in units of a0 and the
number in parenthesis gives the corresponding size of the gap, S, between the core surface
and the inner surface of the outer shell.
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for the ω
−
− mode, cannot be observed in the left-hand side spectra of Fig. 3, since their scale is

set by the main peak in the absorption cross section (the core resonance ω
+
− ). For a vanishing

gap, this prominent resonance evolves into the dipolar resonance of the full metallic cylinder
with radius R3 = 61 Å. It is worth mentioning that for a small R1 (large S), the results within
the TDDFT for the core ω

+
− plasmon show a red shift because of the electron spill-out effect

and the nonlocal screening, [77, 82, 85–89] as well as additional broadening because of the
increased Landau damping. It is also possible to notice some additional structures in the TDDFT
absorption cross-section due to the presence of electron-hole pair excitations [47, 79, 80]. The
left-lower panel of Fig. 3 shows that the QCM reproduces well the details of the spectra. For
example, it captures the abrupt change of the main absorption peak at small gap separation
distances (spectra on the top), similarly to that present in the TDDFT calculations, whereas the
classical calculations show a smoother evolution. This abrupt change at S ≈ 1 Å is linked with
the lowering of the potential barrier separating the core and the shell below the Fermi level.
Under these conditions, the electrons flow through the gap quasi-freely forming a continuous
metallic connection.

As we discussed in the previous section, the effect of electron tunneling is expected to be the
strongest for the ω

−
− resonance, since it is characterized by induced plasmon charges of opposite

sign across the gap, capable of supporting a strong tunneling current. To reveal the role of
quantum tunneling in the NM gap, in the right panels of Fig. 3 we zoom into the spectral range
of frequencies of the ω

−
− resonance, showing the evolution of this lowest energy mode as the

gap becomes smaller. We compare results within the Classical Drude (top), TDDFT (center) and
QCM (bottom) for values of core radius R1 in the range of 78 a0 ≤ R1 ≤ 84 a0 (41.3 Å≤ R1 ≤
44.5 Å), corresponding to gap sizes in the range of 6 a0 ≤ S ≤ 12 a0 (3.2 Å ≤ S ≤ 6.4 Å). As
found in previous calculations of the plasmonic dimer structures [43–45, 47, 48, 64], tunneling
effects progressively appear for narrow gaps. In the classical calculations, the ω

−
− resonance

is always present albeit being attenuated and red-shifted with increasing R1 (decreasing gap
distance S). The quantum TDDFT results show a distinct qualitative behavior. For the smallest
value of the core radius considered (large S) in Fig. 3, R1 = 78 a0, the ω

−
− resonance is in

agreement with the classical prediction. However, the resonance is fully quenched for R1 =
82 a0. For this very narrow gap of S = 8 a0, electron tunneling across the gap neutralizes the
induced plasmonic charges of opposite sign at the facing surfaces of the core and the shell,
leading to the disappearance of this bonding hybridized plasmon. This is in contrast to the
classical calculations where this gap mode is always present for any S 6= 0. In the lower panels
of Fig. 3, we can observe that the TDDFT results are well reproduced by the QCM calculations,
including the progressive broadening and final quenching of the ω

−
− resonance for narrowing

gaps due to the increasing resistive tunneling losses. The full quenching of the gap plasmon due
to tunneling is not considered in the classical calculations (top right panel), but it is captured
by the QCM. This effect can be clearly appreciated, for instance by comparing the spectra in
red lines on the three right hand side panels of Fig. 3. Finally, the high energy antibonding
mode ω+

c is not so affected by quantum tunneling due to the symmetric distribution of charges
at both sides of the gap [see Fig. 2(c)]. Classical and TDDFT calculations give practically the
same results in this case for all separation distances (including the narrowest ones), therefore
the QCM does not bring any essential improvement for this mode.

In Fig. 4 we show the enhancement F of the field in the middle of the gap, as obtained
with the classical Drude, QCM and full quantum TDDFT approaches. The enhancement is de-
fined as the ratio of the total Et and incident Ein fields, F = |Et/Ein|, measured at position
R = (R1 +R2)/2 along the axis defined by the electric field polarization vector of the incident
plane wave. The field enhancement has been calculated for the incident electromagnetic wave,
resonant with the energy of the hybridized ω

−
− mode and with the ω

+
− mode. For a size of the
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Fig. 4. Resonant field enhancement F in the middle of the gap between the core and the
shell of a NM, defined as the ratio of the total Et and the incident Ein fields, F = |Et/Ein|,
measured in the middle of the gap at R = (R1 +R2)/2 in the axis defined by the polariza-
tion of the incident field. Dots represent the TDDFT results, dashed lines represent results
obtained using classical Drude calculations, and solid lines represent the QCM results. Red
color is used for the data at the frequency of the lowest energy bonding hybridized reso-
nance ω

−
− , and blue color for the data at the frequency of the main absorption peak labeled

as the ω
+
− resonance. The shaded background separates the region where tunneling occurs

from the classical region.

gap, S, below 6 Å (core radius above 78 a0) the quantum TDDFT results show distinct dif-
ferences with respect to the classical predictions (area marked with a shaded background in
Fig. 4). The onset of the electron tunneling between the core and the shell comes along with the
disappearance of the ω

−
− resonance, and thus with a pronounced decrease of the field enhance-

ment. Eventually F is zero for small gap sizes where the limit of the homogeneous metallic
cylinder is reached prior to direct physical contact between the core and the shell at R1 = R2.
The QCM correctly reproduces the results of the quantum TDDFT, including a decrease of
the field enhancement at the ω

+
− resonance for intermediate tunneling distances. Indeed, the

resistive tunneling losses lead to a certain broadening of the plasmon peak which results in a
moderate decrease of the corresponding field enhancement. For vanishing separation, S→ 0,
the junction becomes conductive and F tends to the characteristic value of a homogeneous
metallic cylinder of radius R3.

The ability of QCM to describe the quantum results has been reported in previous calcula-
tions for spherical and cylindrical dimer structures with gaps characterized by narrow contact
regions which allow for the presence of tunneling current. In these systems the progressive
disappearance of the bonding dipole plasmon mode and the appearance of the charge transfer
plasmon mode prior to direct contact between the nanoparticles has been addressed within the
quantum TDDFT calculations. These features are correctly reproduced with the QCM, while
classical theories fail to address the spectral behavior, even qualitatively. Already at finite junc-
tion sizes the particles forming the dimer are conductively connected showing the characteristic
charge transfer plasmon modes [22, 52–54, 56, 57]. In the present work we observe the same
physics, with the core and the shell of the nanomatryushka being conductively connected prior
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to the direct contact between their surfaces, and thus effectively forming the uniform metal-
lic cylinder. However, differently to plasmonic dimer structures, the tunneling current in the
case of a cylindrical NM flows over the whole extended gap region, a substantial dimensional
difference that makes the NM an appropriate system to test quantum effects in plasmonics.

3.3. Spherical gold nanomatryushka

The quantum effects described here for the cylindrical core-shell NM structure are similar to
those found in the TDDFT study of the spherical gold NM [76]. Therefore, we also analyze
now the performance of the QCM model in the spherical case. We use the QCM to calculate
the absorption cross section of a gold NM within the non-retarded quasistatic approximation.
This choice is justified considering the size of the studied system (external radius below 8 nm),

QCM 

TDDFT 
w 

+ 
- 

w 
- 
- 

1           1.5           2           2.5           3           3.5           4 

w (eV) 

s
a

b
s
 (

a
rb

. 
u
n
it
s
) 

s
a

b
s
 (

a
rb

. 
u
n
it
s
) 

1.5   1.6   1.7   1.8   1.9   2.0   2.1 

          w (eV) 

1.5   1.6   1.7   1.8   1.9   2.0   2.1 

          w (eV) 

1 

0 

0 

1 

0.06 

0.1 

Fig. 5. Absorption cross section, σabs, for a spherical gold nanomatryushka as a function
of frequency ω . The results are normalized to the absorption maximum. Different NMs are
considered whose dimensions are defined by λ × (R1 = 8.5,R2 = 9.5,R3 = 15.9) Å where
the values of λ ranges from 1 to 5, as displayed in the inset. R1 is the core radius. R2, and
R3 stand respectively for the internal and external radius of the shell. Upper panel: quantum
results from TDDFT calculations from [76] by Kulkarni et al. Lower panel: current results
based on the QCM. The bonding hybridized resonance ω

−
− , and the main absorption peak

of the core resonance ω
+
− are indicated in the upper panel. The graphs in the insets show

the respective zooms into the low-energy bonding hybridized resonance.
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and it is consistent with non-retarded calculation of the potentials within TDDFT [76]. For the
sake of comparison, we use the Drude-like model for the dielectric permittivity of the classical
metal as proposed by Kulkarni et al. [76], based on the jellium model of gold used in their
quantum calculations of the optical absorption:

ε(ω) = ε∞−
ω2

p

ω(ω + iγ)
, (5)

with ε∞ = 8, ωp = 9.07 eV, and γ = 0.27 eV.
Within the QCM model, the effective dielectric medium in the gap, εeff, is defined by the

frequency, and separation dependent dielectric constant,

εeff(S,ω) = ε∞−
ω2

p

ω(ω + iγeff(S))
, (6)

where γeff(S) is given by Eq. (4) with ∆ = 0.4 Å [45, 66].
Figure 5 presents the frequency dependent optical absorption cross section, σabs(ω), for five

spherical NM geometries defined by the scaling of a basic (8.5,9.5,15.9) Å NM structure,
following the form λ×(8.5,9.5,15.9) Å, with λ = 1,2,3,4,5. This scaling [76] is implemented
to rely on the invariance of the optical properties that classical electromagnetic calculations
performed within a non-retarded approximation yield. The absorption cross section should be
identical for scalable systems with scale factor λ 3. Thus, any departure from the universal
behavior can be associated with a signature of a quantum effect. The upper panel of Fig. 5
reproduces the quantum results of Kulkarni et al. [76], and the lower panel of Fig. 5 shows the
absorption spectra obtained within our QCM calculation. For large gap sizes (4 Å and 5 Å),
tunneling across the gap is not efficient and the results show the universal behavior pointed out
above. When the gap size is reduced to 3 Å, the electron tunneling through the gap increases
enough to lead to a visible attenuation of the ω

−
− resonance. Finally, similar to the cylindrical

NM case, when the gap size is reduced below 2 Å (4 a0), the tunneling current across the
gap becomes large so that the lowest energy bonding hybridized resonance is quenched. This
change of the absorption spectra exceeds the capabilities of the classical theory to treat such
extreme gaps, as pointed out in [76] by Kulkarni et al. However the TDDFT results are well
reproduced with the QCM, fully confirming the good performance of the latter to also address
the optical properties of a spherical geometry with an extended tunneling contact.

4. Summary and conclusions

In conclusion, we tested the applicability of the quantum corrected model in systems which
show an extended tunneling contact region between metallic surfaces. To this end we compared
the results of the optical response calculated with the QCM and with full quantum Time Depen-
dent Density Functional Theory for the case of a cylindrical nanomatryushka: the cylindrical
core-shell structure, where the metallic core and metallic shell are separated by a vacuum gap.
We considered a metallic system made of Na because the free-electron character of the Na va-
lence electrons allows for a jellium model description. Reasonably large-size system with well
developed plasmonic modes can be addressed in this way at the fully quantum level. Moreover,
in this case the material permittivity can be well described with the Drude model which eases
the comparison between quantum, classical electromagnetic, and QCM results.

We obtained that when the core-shell gap is reduced below 5 Å, the optical response is deter-
mined by the quantum tunneling of conduction electrons across the potential barrier separating
the core and the shell. Our results agree with earlier calculations on plasmonic dimer struc-
tures. Specifically, a decreasing junction separation leads to the disappearance of the lowest
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energy bonding hybridized plasmon mode and a quenching of the field enhancement at the cor-
responding frequency. The limit of the continuous and homogeneous cylinder is reached prior
to the direct contact between the core and the shell. The classical local Drude description fails
to reproduce the observed effects since it does not account for tunneling. In contrast, the QCM
results are found to be in good agreement with the full quantum calculations.

For large gap sizes, electron tunneling is negligible and there is an overall agreement between
TDDFT, classical Drude, and QCM calculations. Therefore, as a whole, the QCM performs
very well over the entire range of core-shell gap sizes S studied here. We note however that
the TDDFT results show some features that are not reproduced with classical models: the size-
dependent frequency shifts of the plasmonic modes due to the nonlocal screening, the size-
dependent broadening because of the Landau damping and, finally, additional spectral features
because of electron-hole pair excitations.

We have also performed the QCM calculations of the spherical gold NM, where previous re-
sults of quantum calculations were available [76]. The spectral trends are similar to those found
for the cylindrical sodium NM. The QCM and the quantum absorption spectra are in very good
agreement which fully validate the applicability of the QCM to general systems characterized
by extended tunneling contact regions between metallic surfaces. Together with the earlier stud-
ies in plasmonic dimers that showed narrow tunneling contacts, our results extend the range of
applicability of the QCM. Elucidating the main physics in tunneling plasmonic gaps shows
enormous potential with important consequences in the accurate description of far- and near-
fields in extreme morphologies, as well as in the control of non-linear effects associated to
ultranarrow gaps such as in rectification.
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