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Abstract: We present numerical simulations of low aspect ratio gallium
phosphide nanowires under plane wave illumination, which reveal the
interplay between transverse and longitudinal antenna-like resonances. A
comparison to the limiting case of the semiconducting sphere shows a
gradual, continuous transition of resonant electric and magnetic spherical
Mie modes into Fabry-Pérot cavity modes with mixed electric and magnetic
characteristics. As the length of the nanowires further increases, these
finite-wire modes converge towards the leaky-mode resonances of an
infinite cylindrical wire. Furthermore, we report a large and selective
enhancement or suppression of electric and magnetic field in structures
comprising two semiconducting nanowires. For an interparticle separation
of 20 nm, we observe up to 300-fold enhancement in the electric field
intensity and an almost complete quenching of the magnetic field in specific
mode configurations. Angle-dependent extinction spectra highlight the
importance of symmetry and phase matching in the excitation of cavity
modes and show the limited validity of the infinite wire approximation for
describing the response of finite length nanowires toward glancing angles.
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polarized speckle patterns,” Phys. Rev. Lett. 114, 113902 (2015).

33. A. Garcı́a-Etxarri and J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral
nanoantennas,” Phys. Rev. B 87, 235409 (2013).

34. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov,
“Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Letters 12,
3749–3755 (2012).

35. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on
subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).

36. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for
broadband linear polarization conversion and optical vortex generation,” Nano Letters 14, 1394–1399 (2014).

37. C. Wu, N. Arju, G. Kelp, J. A. Fan, J. Dominguez, E. Gonzales, E. Tutuc, I. Brener, and G. Shvets, “Spectrally
selective chiral silicon metasurfaces based on infrared Fano resonances,” Nat. Commun. 5, 3892 (2014).

#245736 Received 9 Jul 2015; revised 9 Aug 2015; accepted 13 Aug 2015; published 20 Aug 2015 
(C) 2015 OSA 24 Aug 2015 | Vol. 23, No. 17 | DOI:10.1364/OE.23.022771 | OPTICS EXPRESS 22772 



38. S.-K. Kim, K.-D. Song, T. J. Kempa, R. W. Day, C. M. Lieber, and H.-G. Park, “Design of nanowire optical
cavities as efficient photon absorbers,” ACS Nano 8, 3707–3714 (2014).

39. G. Grzela, R. Paniagua-Domı́nguez, T. Barten, Y. Fontana, J. A. Sánchez-Gil, and J. Gómez Rivas, “Nanowire
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1. Introduction

Research into nanophotonic devices is thriving, with advances in technology pushing the lim-
its of what we can fabricate. Semiconductor nanowires form an important building block
for nanophotonic devices, as their growth is well controlled using a variety of top-down and
bottom-up techniques [1, 2]. The quasi-one dimensional geometry of a nanowire enables their
use as antennas and cavities for light [3–10], and offers many advantages for applications such
as photodetectors [11–15], solar cells [16–18], and single photon sources [19]. Optimization of
such devices requires knowledge of the nanostructured materials at a more fundamental level.
At length scales of the same order as the wavelength of the incident light, structures take on
a host of new, and sometimes unusual, properties. For nanowires, the presence of guided and
leaky mode resonances has been shown to result in strong light trapping phenomena and scat-
tering of incident light [14,15,20–22]. A resonant nanowire mode can also be designed to form
an effective cavity for spontaneous emission and lasing [1, 19, 23].

In terms of fundamental semiconductor components, there are two limiting cases that are
particularly well understood: the sphere and the infinite cylinder. The surface modes of these
structures are well expressed by analytical models such as those first proposed by Gustav
Mie [24,25], which predict a strong magnetic polarizability of such high-refractive index nanos-
tructures [26, 27]. As a result, recent years have seen a renewed interest in the lowest-order
modes of submicron dielectric resonators for their potential to enhance magneto-electric light-
matter interactions [10,27–31], to induce exotic scattering properties of their solutions [32,33]
or as building blocks for dielectric metasurfaces [34–37].

Much work has also been done on the transverse modes of long (semi-infinite) nanowire
structures. Of particular interest are the nanoantenna properties of these devices for light har-
vesting [15,20,38] and directional emission [39]. The polarization dependence of the scattering
and absorption efficiencies of infinite wires was investigated by Brönstrup et al. [40]. Evidence
of the role of longitudinal cavity modes and optical antenna effects and their relation to photon
confinement within the wire was investigated in several works related to enhancement of Raman
scattering [41, 42] and to realizations of photonic and plasmonic lasing [43, 44]. Recently, the
interplay between Mie resonances and leaky modes was numerically investigated in the limit of
optically thin nanowires [45]. In particular, a distinction was introduced between the cylindrical
Mie resonances, which are poles at given (oblique) angle of incidence in the complex frequency
plane, and leaky modes which are damped wavevector solutions at glancing angles. The formal
equivalence between both descriptions results in a convergence of leaky and Mie modes in the
angular dispersion relation for an infinite nanowire.

In most studies, the nanowire is modeled either as an infinite cylindrical waveguide support-
ing a number of radially guided or leaky modes, or as a one-dimensional Fabry Pérot cavity.
A general classification of radial and longitudinal modes and their interplay in nonspherical
resonant structures was considered based on the ratio of the short to long axes [46]. Resonances
of nanorods which have a length comparable to the diameter have been considered for specific
geometries. Van de Groep et al. [47] studied the effect of the height in cylindrical structures.
They observed a red-shift with longer cylinders for the magnetic dipole, electric dipole and
magnetic quadrupole modes, which saturates as the height exceeds twice the diameter. Cai et
al. [48] established the profile for hybrid electromagnetic modes in nanodisk structures, and
compared these to waveguiding modes. Recently, Ee et al. [49] investigated the dependence of
the TM01 and TM11 waveguiding modes on the length of silicon nanoblocks under normally
incident light. They established that the TM01 mode is widely tuneable via changing the length

#245736 Received 9 Jul 2015; revised 9 Aug 2015; accepted 13 Aug 2015; published 20 Aug 2015 
(C) 2015 OSA 24 Aug 2015 | Vol. 23, No. 17 | DOI:10.1364/OE.23.022771 | OPTICS EXPRESS 22774 



of the nanoblock, whereas the resonant wavelength of the TM11 mode is mostly indepent of the
nanoblock length.

Despite recent efforts, a gap in the knowledge of mode scaling in finite-length nanowires still
exists and a detailed analysis is of substantial interest for optimizing devices and applications
based on semiconductor nanowires. Here, we investigate the underlying symmetries of low as-
pect ratio dielectric nanowires by means of numerical calculations to address the detailed mode
structure that connects the Mie-scattering regime to the leaky mode resonances. Compared to
the case of spherical nanoparticles, finite length nanorods offer additional degrees of freedom
associated with the reduced symmetry and splitting of longitudinal and radial eigenmodes. The
nanowires are described as cylindrical rods with hemispherical end caps. The cylindrical ge-
ometry of a freestanding nanowire is chosen as a simplification of real crystalline nanowire
morphologies and nanowires on a substrate, as it allows great simplification of calculations and
provides an intuitive insight into the general behavior of modes. As an example of a high re-
fractive index dielectric material, we consider gallium phosphide (GaP), although the models
discussed here can be extended to any high-index dielectric such as Si or CdTe. By varying
the length of the cylindrical rod segment, the continuous transition from a sphere towards an
infinite cylindrical nanowire can be traced and addressed. This continuous transition is of par-
ticular interest as it reveals the direct relationship between the different magnetic and electric
modes and their gradual transformation into mixed longitudinal and radial cavity modes. Com-
pared to the relative simplicity of the two limiting cases, the mode structure at the intermediate
regime is highly complex and is shown to consist of hybrid magneto-electric states combin-
ing longitudinal and radial resonant characters. Several features of the intermediate regime are
identified, which are not present in either the spherical or infinite cylindrical case. These hy-
brid resonances of dielectric nanowires may be exploited in the rational design of nanophotonic
devices and metasurfaces.

2. Single nanowire simulations

The interaction of a semiconductor nanorod with an external light source is simulated using
the boundary element method (BEM) [50, 51], allowing us to calculate both its near-field and
far-field response. Both the dielectric nanorods and the surrounding media are assumed to be
homogeneous and the calculations do not take into account nonlinear effects. Figure 1(a) shows
a schematic of the geometry under study: a cylindrical nanowire with hemispherical end caps,
radius r and total length L. For the dielectric material of the nanowire we have chosen the high-
index semiconductor GaP [52], as this material combines a very high refractive index of around
3.4 with a bandgap in the visible at 548 nm wavelength. The surrounding medium is set as air.
Light is incident onto the nanowire as a plane wave polarized with the electric field oscillation
either parallel or perpendicular to the long axis of the rod, denoted as transverse magnetic (TM)
and transverse electric (TE), respectively.

2.1. Scaling of modes with nanowire length

Extinction spectra of the nanowires were generated for a range of lengths from L = 300 nm
to L = 2500 nm. The spectra were combined into the contour maps shown in Fig. 2(a) and
(b) for TM and TE illumination, respectively. A large number of modes are identified and
are labeled on the basis of their near-field profiles, as will be shown below. The near-field
maps allow identification and classification according to the symmetry of the modes (solid
lines of different colours superimposed to the spectra in Fig. 2(a) and (b)). Two main types
of resonances are identified, denoted as an

l and bn
l , depending on the nature of the underlying

electric and magnetic multipoles, in resemblance to the typical labels commonly used in Mie
theory [25]. The spherical Mie modes are denoted as as

l and bs
l respectively in Fig. 2(a) and (b),
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Fig. 1. (a) Schematic of the dielectric nanorod with normally incident TM or TE polarized
illuminations. The nanorod is modeled as a cylinder with hemispherical caps of total length
L and radius r. The endcaps provide a continous distribution of longitudinal wavevectors k‖,
suggesting that the nanorod can be considered as a Fabry-Pérot resonator. (b) Exemplary
schematic of electric (red lines) and magnetic (blue lines) field distribution of the Fabry-
Pérot modes b1

1 and b3
1. See the text for detailed description of the modes.

for the case of L = 300 nm. In Fig. 2(c) and (d) we show the extracted modal structure as a
function of inverse length 1/L and energy ∝ 1/λ . These dispersion plots reveal how the modes
of the dielectric sphere 1/L → (300 nm)−1 ≈ 3.3 μm−1 evolve towards the modes of infinite
cylindrical waveguides 1/L → 0 μm−1. While the exact positions of resonant wavelengths
could only be read out from the poles of the respective amplitude coefficients, we identify them
with the peaks of the far-field spectra. This approximation has been shown to hold well for
narrow resonances in low-loss materials [53].

In order to understand the observed features, we introduce an extended Fabry-Pérot (FP)
model in which the energies of modes are given by a combination of the longitudinal compo-
nents of the wavevector, defined by the dimensions of the one-dimensional FP cavities, and the
transverse components describing the radial and azimuthal excitations. For a one-dimensional
FP cavity of length L, the longitudinal wavevector associated with the nth order resonance
is given by kn

‖ = πn/L with n the mode number (n = 1,2, ... corresponds to the dipolar and
quadrupolar FP modes etc.). The longitudinal wavevector determines the resonant frequency of
such oscillations through the relation En = ckn

‖/m, where m is the relative refractive index of
the waveguide. This longitudinal wavevector component is generally not present in the incident
wave, but is introduced by diffraction of light at the finite wire length, i.e. through scattering of
light at the tips of the nanowire as illustrated in the schematic in Fig. 1(a).

This simple dispersion relation of a one-dimensional FP cavity becomes more complicated
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Fig. 2. (a,b) Maps showing calculated extinction coefficient Qext obtained under TM and
TE polarized light for a nanorod with a constant diameter of 300 nm and a length varied
between 300 nm and 1400 nm. (c - f) Peak positions plotted as energy against reciprocal
wire length 1/L. (c, d) Data points are extracted from simulations. (e, f) Peak positions
calculated by Eq. (1).
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when we consider the optical response of the nanowire of finite width, and the energy density
of the radial and azimuthal components of the electromagnetic field. To address this issue,
we extend our simple one-dimensional model by introducing the multipole order l to label
the transverse multipolar modes. Schematics of exemplary FP modes are shown in Fig. 1(b).
For TE polarization, magnetic dipoles, formed by circulating polarization currents, are aligned
with the axis of the nanowire and form magnetic l=1, n=1,3 FP modes. To find the energy
of these excitations, and see how it modifies the dispersion plots, we consider an infinite wire
illuminated at normal incidence (where the longitudinal wavevector k‖ vanishes), with TE or
TM polarization. The scattering by such a cylinder can be described analytically by a variation
of the Mie theory. The poles of the al II and bl I 2D Mie coefficients (following the notation
of Bohren and Huffman [25, 54]) found at the resonant wavelengths λl yield the transverse
components of the wavevector k⊥,l = 2π/λl for the TE and TM polarizations, respectively.
Combining the ‘binding’ energies associated with the longitudinal and transverse contributions,
we can thus write down the expression for the energy of the nth Fabry-Pérot mode with lth order
transverse multipolar excitations as

En
l

c
=
√

k2
⊥,l +(kn

‖)
2 = 2π

√
1

λ 2
l

+
( n

2Lm

)2
(1)

As illustrated in Fig. 2(e) and (f), this formula predicts correctly the evolution with wire length
of the lowest order modes highlighted in Fig. 2(c) and (d), for the TM and TE polarizations
of incident light, respectively. In particular, in Fig. 2(f) we show how modes b1

1 (the thickest
red line) and b3

1 (the thickest green line), illustrated in Fig. 1(b), converge towards the TE01

waveguiding mode.
Consistent with the labelling adopted in Fig. 1, in the plots of Fig. 2(c - f) we also denote

the modes as an
l and bn

l , respectively. While both l and n are unequivocally defined, the electric
or magnetic nature of the mode needs to be established by one of the following methods: (i)
by examining their near-field distributions (which we illustrate in the following section), (ii)
by identifying that the electric (magnetic) modes in the TE (TM) polarization show weaker
dependence on the nanorod’s length L or (iii) by tracing their evolution to the limiting case of
the spherical scatterers L → 2r = 300 nm.

Starting with the last criterion (iii), in the L→ 2r limit, the modes should converge to the Mie
modes of spherical dielectric nanoparticles: the transverse electric (as

l ) and magnetic (bs
l ) modes

(recalling that the superscript s indicates that these are the spherical modes) [25]. This limit is
not covered exactly by our extended Fabry-Pérot formalism, since the boundary conditions for
the sphere and for a section of a cylindrical waveguide with perfectly reflecting flat endcaps,
are very different. Thus, the numerical calculation deviates from the analytical model for short
wires where the precise endcap morphology plays a role.

Regarding the scaling of mode frequency with wire length and diameter (criterion (ii)), it
is observed that the longitudinally dipolar (n = 1) modes, indicated by the red lines in Fig.
2(e,f), show little dependence on the parameter L. In fact, these modes depend more strongly
on nanowire diameter (results not shown here). In the limit of infinitely long nanowires 1/L→ 0
(and vanishing kn

‖), the longitudinal dipolar (n = 1) modes are seen to converge to the canonical
TEl1 (TE polarization) and TMl1 (TM polarization) modes [54]. As these leaky modes have a
purely transverse character, the dispersion relations of finite nanowire modes become flat for
small 1/L.

For example, for the TM polarization (Fig. 2(c)), the FP modes b1
1, b1

2, b1
3 converge toward the

TM11, TM21 and TM31 waveguiding modes, respectively. On the other hand, they can be traced
back to the magnetic bs

l multipoles of the spherical particle. For the case of TE polarization,
the TEl1 modes of the infinite cylinder also map onto the magnetic multipole derived modes,
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with the b1
1, b1

2, and b1
3 modes matching with the TE01, TE11, and TE21, respectively. A detailed

analysis of this transition based on near-field maps of the corresponding modes (criterion (i))
will be discussed further below.

As we have mentioned earlier, the validity of the FP model is limited by the formulation of
the boundary conditions in the longitudinal direction. This shortcoming becomes particularly
significant for the purely longitudinal electric mode TM01, as we illustrate in Fig. 2(e), where
the grey line (a1∗

1 ) shows a dispersion of the a1
1 mode calculated with Eq. (1); clearly very

different from the respective black line in Fig. 2(c). This problem was previously considered
for the plasmonic nanorods [55] modeled as FP cavities, where TM01 is the dominant mode.
Here we mimic the solution applied to the plasmonic system by considering an arbitrary phase
pickup by the field due to the reflection from either of the ends of the nanorod. The resulting
dispersion relation, shown in Fig 2(f) with the black line (a1

1), was obtained by assuming a π
phase pickup at reflection from each of the endcaps and shows a much better agreement with
the numerical result. We have also found that this arbitrary phase pickup should depend on
the transverse nature of the excitation, with the l = 1 dipolar modes experiencing much larger
phase change on reflection (π) than the higher order modes (l > 1). Therefore we have decided
to include this correction only for the dipolar transverse excitations.

The continuity of the resonant wavelengths against the deformation of the scatterer illus-
trated in Fig. 2 can be inferred from the underlying mathematical framework which states that
the fields inside the system are related to the incident field through a linear operator. Pertur-
bation of this operator due to the continuous deformation of the scatterer will therefore induce
a continuous evolution of its eigenvalues and the resonant wavelengths of the scatterer. Such
behavior was previously reported in the literature, for example by analyzing the deformation of
plasmonic nanodisk into a nanotriangle by Schmidt et al. [56].

2.2. Identification of finite-wire modes from near-field maps

In order to better understand the nature of the different modes and their evolution with the total
length L of the nanorod, we have analyzed the near-field maps of both the E- and H-field for
particular values of the rod length L. Figure 3 and 4 show a selection of these near-field maps
for TM and TE polarized light, respectively, for modes identified with circles in the dispersion
relation of panel (a). The xy and xz maps show the cross-section through the center of the
scatterer. The xy-plane reveals the radial symmetry, which can be directly compared to the
waveguide theory for the infinite wire. The corresponding symmetries are shown in the brackets
for each of the mode families.

For the TM polarization, illustrated in Fig. 3, we have chosen to focus on the dominant
families of modes, which converge in the L → ∞ limit to the TM11 waveguiding mode. In Fig.
3(a) we plot the dispersion relationship of the magnetic dipolar mode, which evolves from the
spherical magnetic dipolar Mie mode bs

1, through the FP b1
1, towards TM11. The near-field maps

of these modes, shown in Fig. 3(b), reveal the dominant magnetic dipole (red solid line) along
the y axis for all the lengths considered. Due to this purely radial character of the mode, the
dispersion relationship shows only a weak dependence on the length of the wire. We further
note that the xy maps match very well the field distributions of the TM11 mode with the electric
field dominated by out-of-plane anti-parallel currents and the magnetic field exhibiting dipolar
polarization along the y axis.

The two remaining green lines shown in Fig. 3(a) correspond to the electric modes, which we
can identify with the FP a3

2 and a5
2 excitations. The former can be traced back to the spherical

quadrupolar electric Mie mode as
2. It is somewhat surprising that the excitations change their

character from the electric al to magnetic TM11, but the near-field maps reveal that as the sphere
is elongated along the z axis, the polarization loops in the xz plane rearrange, inducing clear
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Fig. 3. Evolution of the cylindrical mode b1
1 and the first family of FP modes an

2 under TM
polarization as the length is increased from 300 nm to 1400 nm. The number of nodes of
the E- and H-fields in the z-direction are preserved as the length is increased.
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magnetic dipolar modes along the y axis and forming magnetic FP modes. The respective xy
field maps match field distributions of TM11 modes.

For TE polarization (Fig. 4), we focus on the modes which converge to the TE01 mode in the
limit 1/L → 0. This waveguiding mode is characterized by an electric current loop in the xy
plane, forming a magnetic dipole along the z axis. The xy near-field maps for the three mag-
netic families of modes shown in Fig. 4, allow their identification as Fabry-Pérot modes with
transverse dipolar character with different n numbers: b1

1, b3
1 and b5

1. Similar to the FP modes
for TM polarization, these modes can be traced back to the higher-order spherical magnetic Mie
modes. Note that, similarly as for the TM polarization, we see a contribution from the b1

1 mode
for TE case. The bs

1 mode is identical for both polarizations in a spherical particle except for
the direction of electric and magnetic fields. These field orientations are retained when going
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to elongated nanowires, which eventually results in different field profiles of this mode for TM
and TE (compare Fig. 3(b) and 4(b)). Similar connections are found between all the bs

l and the
b1

l modes for TM and TE polarizations.
In the maps of extinction cross sections shown in Fig. 2(b) we can identify numerous other

modes converging towards higher order TM and TE modes. We provide representative exam-
ples of these modes in Figure 5 for the case n = 5. Careful selection of nanowire lengths was
done to avoid spectral overlap of multiple modes. The higher order modes are characterized by
more complex, multipolar transverse excitations, following the symmetry of the corresponding
infinite-wire leaky mode resonances, TM(l−1)1 and TEl1. The complexity of the mode spectrum
and large spectral shift of these higher order modes with decreasing wire length (see Fig. 2) pre-
vents tracing them back to particular resonances of the Mie sphere, as could be done e.g. for
the a3

2 resonance in Fig. 3(d). Given the strong spectral shift with reducing wire length for these
higher order modes, it is clear that the higher order FP modes do not derive from spherical Mie
modes of the same radial multipole order.

In summary, we have demonstrated a continuous transition from spherical Mie resonances
to Fabry-Pérot modes and to the leaky mode resonances of an infinite cylinder. The FP modes
are defined by a transverse (l) and a longitudinal (n) resonance condition. As the nanorod is
extended, new modes appear with the same l value but with n taking increasing odd values.
Each family of FP modes (l = 1, 2, 3 etc.) converges to a corresponding waveguide mode.
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in the xz plane. The a3

2 mode simultaneously demonstrates electric field enhancement and
significant magnetic field suppression. All results for TM polarized incident light.

2.3. Near-field enhancement

The combination of invidual particles to form more complex assemblies is a common avenue
of investigation in plasmonics and nanophotonics research. Establishing coupling between the
structures is key to making use of these geometries. In plasmonics, the field enhancement from
a single particle can often be further improved by combining it with a complementary reso-
nant structure placed in close proximity (tens of nanometers at most). In the simplest case, this
would be a mirrored version of the same particle placed adjacent to the first. Plasmonic dimers,
for example, are capable of achieving strong near-field enhancement in this way, thus greatly
magnifying the local electric field [57–60]. Metal based structures are inherently lossy. As a
low-loss alternative, we explore the near field enhancement in the center of the gap between
two GaP nanorods of equal length and with a separation distance of 20 nm. The key results are
presented in Fig. 6. In general, the introduction of a second nanorod causes only subtle changes
to the extinction spectra, such as the broadening of some resonances. In fact, the largest effect
of coupling is found in the extinction spectrum of a sphere, where the l = 1 and l = 2 modes
shift significantly, the a1 and b1 modes even appearing to show suppression for TE polarized il-
lumination [5]. Departure from spherical geometry reduces the extent of these coupling effects.

Examination of the near-field reveals more evidence of complex modal interactions. In Fig.
6(a) and (b) we see that, for TM polarization, a large spectral region of electric near field en-
hancement is obtained associated with the a1

1 mode at long wavelengths. Strong enhancement
is also obtained for the an

3 FP modes. These two sets of modes were found to have an E-field

#245736 Received 9 Jul 2015; revised 9 Aug 2015; accepted 13 Aug 2015; published 20 Aug 2015 
(C) 2015 OSA 24 Aug 2015 | Vol. 23, No. 17 | DOI:10.1364/OE.23.022771 | OPTICS EXPRESS 22783 



aligned in the same direction at the top and bottom of the nanorod, resulting in constructive
coupling between the two rods. The an

2 modes, on the other hand, have opposing E-fields at
the nanorod tips, resulting in some, but less strong field enhancement (see Fig. 6(d)). A re-
gion of particularly increased field strength is found in Fig. 6(a) between L = 600− 800 nm
corresponding to the crossing between the a3

3 and a5
2 modes. Thus, it appears that local field

enhancement can be optimized by careful design of overlapping resonances. Comparing the
results for the nanowire dimers with the single nanowire it is found that the electric field in
the center of the dimer shows more than one order of magnitude larger field intensity than for
the single wire, for TM polarization. Thus, similar to plasmonic dimer antennas, semiconduc-
tor antennas have the capacity to concentrate optical fields in a nanoscale gap between closely
spaced elements. Similar large enhancements are found in the case of the magnetic field for
the TE polarization for a range of modes identified as the bn

1 FP modes, as well as for the b1

transverse mode. While most magnetic resonances are strongly contained inside the high-index
semiconductor, evanescent coupling between adjacent wires in this case leads to a significant
additional enhancement [5].

Another remarkable feature of the semiconductor nanowires is a strong suppression of the
magnetic field strength for some resonance conditions. In particular for the TM polarization,
the magnetic field at specific locations in the gap is strongly suppressed for the an

2 modes, as
shown in Fig. 6(c) and (e). The near-field maps of Fig. 3 show that this effect is not due to
a particular radial symmetry point (node) in the mode distribution such as is the case for e.g.
the an

3 modes. The magnetic mode profile for these an
2 modes consists of poles of pronounced

transverse magnetic field components on the nanowire axis. Similar to the case of spherical
particle dimers [5], the magnetic field enhancement for the nanowire dimer is reduced compared
to that of the single rod by the alignment of induced magnetic dipoles parallel and side by side.
In fact, the concentration of magnetic fields inside the nanowire causes a resonant suppression
of field strength at the wire tips below that of the incident light field, with a pronounced dip in
the field strength in a small volume. Such a resonant magnetic field ’void’ may be of interest for
applications in decoupling of magnetic emitters to radiation and thus, suppressing their decay
rates [5, 29].

Next to possible applications in nonlinear optics, tuning of near-field properties is of interest
for optical forces. In related works, Xifré-Pérez et al. [61] showed that the bonding or anti-
bonding of low order Mie resonances allows the control of the particles’ position relative to
each other; the force of the coupling overcoming gravity and van der Waals forces. While we
studied here the effect of end-to-end coupling, other coupling configurations may be of inter-
est. Cao et al. [62] investigated the coupling for adjacent nanowires, placed so that their long
sides were in close proximity. Their work demonstrated how the far-field scattering can be
modified by the coupling of leaky mode resonances for infinite wires. In general, the dielectric
nanoantenna is unlikely to match its metallic counterparts in terms of near-field enhancement,
however, the absence of absorption at wavelengths well into the visible range makes the di-
electric antenna a potential alternative for applications in nonlinear optics and field enhanced
spectroscopies [63, 64].

3. Varying the angle of incidence

The above simulations focused on the special case of normal incidence. It is important for
applications to know how the response changes with the angle of incidence. In Fig. 7, we
compare the angle-dependent spectra of an infinite cylinder (a,b) and a finite length wire of
length L= 1400 nm (c,d) for TM and TE polarizations. The angle φ , measured from the nanorod
axis, is incremented from nearly 0◦ (grazing incidence) to 90◦ (normal incidence). The infinite
wire case shows a pronounced spectral narrowing of the modes as the angle approaches zero,
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Fig. 7. Calculated extinction coefficient Qext against angle of incidence for infinite cylinder
(a,b) and for finite rods with length L = 1400 nm (c,d), for 300 nm diameter. Polarizations
correspond to TM (a,c) and TE (b,d). Stars indicate even-order FP modes excited at oblique
angles of incidence. (e,f) Line graphs showing the angle dependence of Qext (i.e. taken from
maps c and d at selected wavelengths)for modes an

2 and an
3 for TM and bn

1 and bn
2 for TE.

(g,h) Calculated mode profiles (both E and H fields) for selected modes a3
2 for TM and

b9
2 for TE polarizations, for angles of incidence of 10◦ and 90◦. Small shift in resonance

wavelength for a3
2 is attributed to changes in mode distribution for different incident angles.
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which corresponds to the conversion of the (cylindrical) Mie resonances to the weakly damped
leaky modes of a cylindrical waveguide [40, 45]. In addition, the spectral resonance positions
of the modes of an infinite cylinder are a function of the angle of incidence [25], resulting in a
continuous evolution of the mode positions over the spectrum (angular dispersion).

For the finite length rods no spectral narrowing is observed, which is consistent with the ab-
sence of true guided modes in a finite length structure, where all modes have a finite lifetime
due to scattering. A similar deviation toward glancing angles was found by Abujetas et al. for
the absorption cross section of optically thin InP nanowires [45]. Instead of the angular disper-
sion seen in the infinite cylinder, the mode spectrum for a finite wire consists of a well defined
set of localized modes with fixed resonance frequencies. The role of the angle of incidence here
is to select different modes from this set corresponding to their symmetry and phase matching
requirements. Toward grazing angles, the distinction between TE and TM is lost and the excited
mode spectrum consists of a mixture of modes from the original TE and TM spectra found for
perpendicular incidence. For example, grazing incidence results in effective coupling to the a3

2
and b9

2 modes for both TM and TE polarizations (Fig. 7(g,h)). Comparison of both the mode
symmetry and spectral position with the infinite cylinder case [45] shows that the a3

2 mode co-
incides with the first hybrid leaky mode, HE11, which may explain the enhanced excitation of
this particular mode toward glancing angles.

Furthermore the scattering spectrum shows oscillations both in angle and wavelength. Angle-
dependent oscillations of a number of selected modes are shown in the line graphs in Fig. 7(e,f).
High order modes show characteristic oscillations with angle as their excitation depends crit-
ically on phase matching, while low order modes are seen to fade in and out only once over
the angular range. In-between the oscillations of the odd number longitudinal modes, other
modes appear (indicated by stars in Fig. 7(c,d)) that were not addressed in Fig. 2, but which
are attributed to even-order FP modes. These even modes cannot be excited for perpendicular
incidence because of the lack of mirror symmetry in this configuration, but are effectively ex-
cited for certain oblique incidence conditions due to phase retardation, similar to the case of
plasmonic nanorod antennas [65, 66].

4. Conclusions

In conclusion, we have investigated the optical modes of low aspect ratio nanowires in rela-
tion to the fundamental Mie resonances of a sphere and the radial Mie/leaky mode resonances
of an infinite cylindrical wire. The longitudinal-field Mie resonances (a-type for TM and b-
type for TE) are shown to evolve into antenna modes. In addition it is found that, both for
TM and TE polarizations, the magnetic b-type Mie resonances are at the origin of both the
electrical and magnetic radial eigenmodes of the infinite wire. Different families of antenna
modes are identified according to their scaling with antenna length, which are characterized by
a combination of longitudinal antenna resonances and radial eigenmodes. The mode profiles
and resulting electromagnetic field enhancements are found to follow a number of basic rules.
It was demonstrated that, while a single nanorod has limited use as a local field enhancement
device, a dimer structure is capable of producing a notable electric field enhancement in the
gap between adjacent wires when positioned end-to-end. The near-field characteristics make
semiconductor structures a potential alternative to metallic structures in cases where losses due
to absorption are unacceptable or a broad-band device is required. Next to large enhancements
of the electric and magnetic field intensity, the semiconductor nanowires allows for engineer-
ing of vacuum fluctuations through strong suppression of electrical and magnetical modes in
nanoscale volumes. Studies as a function of angle of incidence show, instead of the continuous
angular dispersion of infinite wires, a discrete spectrum with individual modes that are excited
with different efficiencies depending on phase matching with the incident wavefront. The pro-
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nounced differences between the angle-dependent mode structure of infinite wire leaky mode
resonances and finite wire Mie modes emphasizes the need for accurate modelling of nanowire
photonic devices for applications.
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