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ABSTRACT: Using the time-dependent density functional theory, we perform
quantum calculations of the electron dynamics in small charged metallic
nanoparticles (clusters) of spherical geometry. We show that the excess charge
is accumulated at the surface of the nanoparticle within a narrow layer given by
the typical screening distance of the electronic system. As a consequence, for
nanoparticles in vacuum, the dipolar plasmon mode displays only a small
frequency shift upon charging. We obtain a blue shift for positively charged
clusters and a red shift for negatively charged clusters, consistent with the
change of the electron spill-out from the nanoparticle boundaries. For negatively
charged clusters, the Fermi level is eventually promoted above the vacuum level
leading to the decay of the excess charge via resonant electron transfer into the
continuum. We show that, depending on the charge, the process of electron loss
can be very fast, on the femtosecond time scale. Our results are of great
relevance to correctly interpret the optical response of the nanoparticles obtained in electrochemistry, and demonstrate that the
measured shift of the plasmon resonances upon charging of nanoparticles cannot be explained without account for the surface
chemistry and the dielectric environment.

■ INTRODUCTION

In metal nanoparticles, coupling of light with collective electron
excitations (plasmons) strongly impacts the optical properties
of the system. Along with the far-field response, plasmon
resonances allow one to strongly enhance optical near-fields
and to obtain hot spots of dimensions well below that of the
wavelength of the incident radiation. Light manipulation at
subwavelength scales as offered by plasmonics1−4 finds
numerous practical applications. To cite a few, plasmonic
action is relevant in optical nanoantennas,5,6 surface enhanced
spectroscopies and sensing,7−11 information transfer,12,13

photochemistry,14,15 amplification of nonlinear effects,16,17

and plasmon rulers.18 The design and engineering of the
corresponding nanostructures with sought optical properties is
a subject of continuous effort in the plasmonic commun-
ity.19−24 In this respect, the possibility to actively modify the
plasmon modes of a nanosystem would allow fabrication of
tunable devices and it is thus of paramount importance.
The strategies for active control proposed in recent works

consist in acting on different parameters that determine the
plasmon response.25 The sensitivity of the plasmon properties
to the screening at the metal/dielectric interface can be
exploited using liquid crystal environment,26−28 tunable
molecular layers,29−31 or electrically induced thermal heating.32

The plasmon response of a composite nanoparticle system can

be also modified by directly affecting the strength or nature of
the coupling between the plasmon modes of the constituents.
Thus, the capacitive coupling between nanoparticles can be
changed by using flexible substrates33−36 or by changing the
geometry due to the applied electromagnetic fields.37 Recently,
electrochemical modulation as well as the applied bias has been
used in nanoparticle dimers to switch between capacitive and
conductive coupling and thus to affect the plasmon modes.38,39

Optical excitation of free carriers in the metal allows one to
modify the dielectric properties of the later and thus influence
the plasmon propagation length at ultrafast fs (10−15 s) time
scales;40 however, a pump laser of sufficient power is required
to produce appreciable effects.
The modulation of the frequencies of plasmon resonances

has been also achieved in electrochemistry by applying a bias
between the nanoparticles and electrolyte or by adding
chemical reductants to a colloidal nanoparticle solution.41−51

In some cases a plasmon wavelength shift of 10 nm per eV of
applied potential has been reported.47 Similar to the 2D planar
systems such as graphene,52−55 the observed shift of the
plasmon frequency has been often interpreted as a result of the
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charge doping of the nanoparticles.41−48 The reasoning is as
follows, let n, e, and m to be the electron density, electron
charge, and electron mass, respectively. The energy of the
localized dipolar plasmon (DP) resonance of a small spherical
nanoparticle is given by the classical Mie value ωDP = ωp/√3,

where the bulk plasmon frequency is ω = πne
mp

4 2
. One would

expect that the change in the conduction electron density Δn
would lead to the frequency shift of the localized plasmon
resonance ΔωDP/ωDP ∼ Δn/2n. However, such an explanation
raises several issues, which we point out in the following:

• The bias-induced control of the optical response in 2D
materials is limited to date to the THz or mid-IR range
because of the low doping concentrations that can be
achieved electrically. In metals, the plasmon resonances
are in the visible frequency range because of the high
density of conduction electrons. For this reason, Δn
should also be large to produce a noticeable change,
which implies strong charging of the system resulting in
high electrostatic potentials.55

• Large negative charge Q can render small nanoparticles
to be unstable against electron loss as we discuss later in
this work. Similarly, large positive charge can lead to, e.g.,
Coulomb explosion.56−58 However, in electrochemical
solution, the charged nanoparticle can be stabilized by a
dipole layer created by the negative or positive ions
around it. This dipole layer should alter the screening
and thus the energy of the plasmon mode.

• In virtue of Gauss theorem, in the 3D metallic objects,
the volume stays neutral. The screening charges reside at
the surface within a narrow layer of width given by the
screening length rs (Wigner-Seitz radius of the metal). It
is not obvious that such a narrow layer of surface charge
might lead to a noticeable shift in the plasmon frequency.

The main goal of this paper is to study the electron dynamics
and plasmon modes of small charged metallic clusters in
vacuum. Performing density functional theory (DFT) and time-
dependent density functional theory (TDDFT) calculations of
the electronic structure and dynamics for these well-defined
systems allows one to isolate the effects of pure charging with
respect to any other external polarization or chemical effects in
the optical response of charged metallic nanostructures. In
particular, we show that the frequency shift of the plasmon
mode is small and has an opposite sign to that expected from
the arguments based on the change of electron density. These
results can be well understood from the theory of dynamical
screening developed in the past to describe the dependence of
the dipolar plasmon resonance on the nanoparticle size. We
also demonstrate that for negatively charged clusters, as soon as
the Fermi level is promoted above the vacuum level, the extra
charge decays on femtosecond (fs) time scales. Despite the
small size of the systems considered in our model calculations
(∼5 nm in diameter), our results can be generalized to the case
of larger nanoparticles as those commonly treated in electro-
chemistry. These results reveal that the plasmon energy shifts
observed in electrochemical solutions cannot be explained
without considering the effect of the dipole layer formed by the
ions that screen the nanoparticle charge, and the eventual
modification of the surface electronic structure of the metal
nanoobject by the chemisorbed species.
The paper is organized as follows. In the Model and

Computational Aspects section , we describe the jellium model

used in this study for spherical sodium and silver clusters, and
we present the ground state properties of the neutral and
charged clusters as obtained in DFT calculations. The static
DFT results provide an input for the TDDFT study of the
electron dynamics and the optical response as a function of the
cluster charge, which is detailed in Ground State Properties
section. In Absorption Cross Section section we use the
TDDFT to address the electron loss by the negatively charged
clusters. In the Electron Population Decay in Negatively
Charged Clusters section we address the issue of electron
losses. Finally, we conclude underlying the consequences that
our results might have for the interpretation of electrochemical
experiments. Unless otherwise stated, atomic units are used
throughout the paper.

■ MODEL AND COMPUTATIONAL ASPECTS

The sodium and silver spherical nanoparticles studied here are
described using the jellium metal (JM) approximation. The
positive ion cores are not treated explicitly, but are represented
by a uniform positive background charge of density n+ = (4πrs

3/
3)−1. The Wigner-Seitz radius (or the screening length of the
free electron gas) rs equals to 4 a0 for sodium, and 3.02 a0 for
silver (the Bohr radius a0 = 0.053 nm). In the ground state
(neutral system) both clusters have a closed shell electronic
structure and contain Ne = 2018 valence electrons, so that the
positive background charge is also Q+ = 2018, which results in a
cluster radius Rcl = rs Q+

1/3 = 50.6 a0 (2.67 nm) for sodium, and
Rcl = 38.2 a0 (2.06 nm) for silver. Rcl defines the jellium edge
separating the positive background charge from vacuum. For
sodium, which can be considered as a prototype of the free
electron metal, the JM performs particularly well to describe the
interaction of the optical pulse with nanosized objects. For
silver, the contribution of the localized d-electrons to the
screening has to be taken into account in order to correctly
reproduce the frequencies of the localized plasmon
mode(s).59−62 This is achieved by introducing inside the Ag
nanoparticle a polarizable background62,63 characterized by a
nondispersive dielectric constant ε∞ = 4.58. For the neutral
sodium cluster we obtained the work function ΦNa = 3 eV in
good agreement with earlier studies on such systems.64−66 For
the silver cluster, an additional attractive potential of 3.27 eV is
used inside the cluster (the so-called stabilized jellium
model67,68), to impose the experimentally measured value of
the work function of silver ΦAg = 4.65 eV.69

Despite its simplicity, the JM correctly captures the collective
behavior of conduction electrons and allows one to describe
many physical properties of metallic nanoparticles including
their optical response.65,66,70 Since relatively large systems with
well-developed plasmon modes can be addressed within the
JM, a variety of interesting nanostructures in plasmonics has
been treated following this model.63,68,70−74 In this context, the
studies of plasmonic dimers with narrow gaps63,73 have been
particularly interesting, leading to the quantitative prediction of
quantum tunneling effects. These effects have been exper-
imentally confirmed,75−80 and further addressed with the use of
full atomistic ab initio quantum calculations.81−85

Prior to the TDDFT studies of the electron dynamics in
neutral and charged clusters, their ground state properties are
determined with static density functional theory DFT
calculations. The Kohn−Sham (KS) scheme of the DFT is
used,86 where the electron density is given by that of the
noninteracting system n(r)⃗ = ∑j |ψj(r)⃗|

2. The summation runs
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over all occupied KS orbitals ψj(r)⃗ obtained from the solution
of the stationary Schrödinger equations

ψ ψ+ ⃗ + ⃗ + ⃗ ⃗ = ⃗T V n r V n r V r r E r( [ ]( ) [ ]( ) ( )) ( ) ( )j j jxc H st

(1)

In eq 1, T is the kinetic energy operator, Vxc[n](r)⃗ is the
exchange-correlation potential derived within the local density
approximation (LDA) from the exchange-correlation functional
of Gunnarson and Lundqvist,87 and VH[n](r)⃗ is the Hartree
potential. Finally, Vst(r)⃗ is the stabilizing potential used only in
case of Ag clusters.
The ψj(r)⃗ orbitals obtained in the ground state DFT

calculations are used as initial states for the description of the
electron density dynamics in the clusters. We use the KS
formulation of the TDDFT,88,89 where the time-dependent
electron density is given by n(r,⃗t) = ∑j |Ψj(r,⃗t)|

2, and the time-

evolution of the Ψj(r,⃗t) orbitals is determined by the time-
dependent KS equations

∂Ψ ⃗
∂

= + ⃗ + ⃗

+ ⃗ Ψ ⃗

i
r t

t
T V n r t V n r t

V r t r t

( , )
( [ ]( , ) [ ]( , )

( , )) ( , )

j

j

xc H

ext (2)

Provided the initial conditions Ψj(r,⃗t = 0) = ψj(r)⃗, eq 2 is solved
on a grid in spherical coordinates using short-time propagation
with split-operator technique.90 We use the adiabatic local
density approximation (ALDA) so that the exchange-
correlation potential Vxc[n] has the same functional depend-
ence on the local electron density as in the DFT study. The
Hartree potential VH[n] is calculated from n(r,⃗t) using the
nonretarded approximation well suited here because of the
small size of the system. Finally, Vext(r,⃗t) is the external optical
perturbation allowing to “probe” the system. Thus, for the

Figure 1. DFT results for the ground state electronic density of neutral and charged sodium (a) and silver (b) clusters. The electronic density (in
units of the positive background charge density n+) is shown as a function of the radial coordinate measured from the center of the cluster. The
dashed vertical line indicates the cluster boundary (jellium edge) located at Rcl = 50.6 a0 for sodium and Rcl = 38.9 a0 for silver cluster. Different
colors are used to distinguish the results obtained for different charge of the cluster, Q, as displayed in the code at the top of the figure. Charge values
are given in units of the elementary charge.

Figure 2. Electron density change induced by charging is analyzed in panels a and c for sodium, and in panels b and d for silver clusters. Results of
the DFT calculations for charged clusters are presented as a function of the radial coordinate r measured from the center of the cluster. Panels a and
b: change of the number of electrons, 4πr2Δn(r), at the surface of the sphere of radius r. Panels c and d: change of the number of electrons inside the
sphere of radius r given by ΔNe(r) = ∫ 0

r 4πr′2Δn(r′)dr′. Dashed blue vertical lines represent the cluster boundaries. Different colors are used to
distinguish the results obtained for different charge of the cluster Q as explained in the inset of panel c, which is common to all the panels.
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impulsive perturbation polarized along the x-axis Vext = ϵ x δ(t)
(ϵ is a small constant), the frequency-resolved absorption cross-
section σ(ω) is obtained from the dynamics of the induced
dipole P(t) using the time-to-energy Fourier transform:

σ ω πω α ω=
c

( )
4

Im{ ( )}
(3)

where ∫α ω = ω
ϵ

∞
P t e t( ) ( ) di t1

0
is the dipolar polarizability of

the cluster, and c is the speed of light in vacuum.

■ GROUND STATE PROPERTIES
In Figure 1 we show the ground state electronic density
calculated with DFT for the charged Na and Ag clusters. The
results are presented for different values of the cluster charge Q.
It is expressed in units of elementary charge so that the change
of the number of electrons in the cluster upon charging is ΔNe
= −Q. Within the range of Q displayed in the figure (a
maximum of 2% charge variation compared to the total number
of electrons in the nanoparticle, Ne), the valence electron
density n(r) is not strongly affected by the charging. Generally
n(r) is close to the background positive charge density n+, and
features Friedel oscillations with radial coordinate r because of
the reflection of the electron wave at the nanoparticle
boundary. The spill out of the electron density outside the
cluster boundary can be also clearly observed in Figure 1. The
spatial extension of this effect is slightly larger for Na because of
the lower work function and smaller electron confinement in
the potential well of the nanoparticle for that case. The spill out
effect is also stronger for negatively charged clusters because of
the decrease in the electron binding energies (see below).
To reveal the actual distribution of the extra charges within

the cluster we analyze in Figure 2, the DFT results for the
change of the ground-state electron density Δn(r) = nQ(r) −
n0(r) induced by the charge Q added to the Na and Ag clusters.
Here nQ(r) is the ground-state electron density of the cluster
with charge Q, n0(r) is the ground-state electron density of the
neutral cluster, and r is the radial coordinate. In panels a and b
of the change of the number of electrons 4πr2Δn(r) induced at
the surface of the sphere of radius r is shown as a function of r.
In panels c and d of the same figure, we show the change of the
total number of electrons ΔNe(r) inside the sphere of radius r
defined as ΔNe(r) = ∫ 0

r 4πr′2Δn(r′)dr′. Provided that an
electron charge is e ̅ = −1 (in atomic units), − ΔNe(r) gives the
change of the charge inside the sphere of radius r. The analysis
of the induced density clearly demonstrates that the extra
charge added to the cluster mainly resides in the surface layer of
width given by the screening radius rs. Indeed, the charge inside
the sphere of radius r is almost zero for r < Rcl, and it quickly
reaches the nominal value of Q for r ≃ Rcl + rs.
This result can be easily understood with the use of the

Gauss theorem of electrostatics. If the excess charge were
located in some volume inside the bulk of the cluster, this
would lead to the presence of electric field across the surface
enclosing this volume. In response to such an electric field, the
conduction electrons would move until the field is screened, or
equivalently until the excess charge is compensated and
neutrality is restored. Thus, except for the influence of finite
size effects, the electron density in the bulk stays largely
unaffected by charging of the cluster and all the excess charge is
accumulated in the thin surface layer.
A charge Q located at the surface of the cluster of radius Rcl,

creates an additional constant potential VQ = −Q/Rcl for the

electrons inside the cluster. Thus, adding 20 electrons to the Ag
cluster already containing 2018 electrons (1% variation of the
total number of electrons), leads to VQ = 14 eV. Based on this
simple consideration, we can estimate the energy of the Fermi
level EF of the charged cluster as

= −Φ −E Q R/Q
F cl (4)

where Φ is the work function of the neutral cluster. As follows
from eq 4, the negative charge rises the energy of the Fermi
level and decreases the work function of the nanoparticle.
Alternatively, positively charged clusters bind valence electrons
more strongly.64−66 To illustrate the effect of the cluster charge
on the electron binding, we show in Figure 3 the Fermi

energies of the charged Na and Ag clusters, obtained in DFT
ground state calculations. Equation 4 nicely describes the DFT
data, thus allowing for an extrapolation of the same
considerations to larger systems, as well as for an analytical
description of the population decay in negatively charged
clusters, as presented below. It is worth noting that the self-
interaction correction (SIC)91−93 has not been implemented
within the present DFT and TDDFT approaches. Thus, an
electron outside of the cluster is subjected to the − Q/r
Coulomb potential created by the entire system including self-
interaction. This is while the correct asymptote of the potential
at large r should be −(Q+1)/r. As a result, the Fermi energy
shift and of the potential barrier confining electrons in the
negatively charged clusters are overestimated. However, the
corresponding relative error is of the order of 1/Q, so that it is
small for large cluster charges, which are of interest here. For
the sake of consistency with local density approximation and
the choice of the exchange-correlation potential used in our
DFT and TDDFT approaches, we have neglected the SIC in
deriving equations in this paper.
From the dependence of the Fermi energy on the cluster

charge given by eq 4, it follows that negatively charged clusters
become unstable for the charge Q < Q̃, where the threshold
negative charge is given by

̃ = −ΦQ Rcl (5)

that corresponds to EF
Q̃ = 0. When the cluster charge is Q = Q̃ +

q (q < 0), the Fermi level is promoted above the vacuum level,
as shown in Figure 3, and Figure 4. The radial dependence of
the effective one-electron potential Veff[n](r)⃗ = Vxc[n](r)⃗ +

Figure 3. Energy of the Fermi level EF (eV) as a function of the cluster
charge. The DFT ground state calculations have been performed for
Na (red circles) and Ag (black circles) clusters a explained in the text.
Straight lines of the corresponding color show the analytical
dependence given by eq 4. Zero energy corresponds to the vacuum
level.
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VH[n](r)⃗ + Vst(r)⃗ is presented in Figure 4 for the ground-state
of the neutral Ag cluster (black lines) and of the Ag clusters
charged by adding 10 (Q = −10, red lines) and 20 (Q = −20,
blue lines) electrons. In each case, the horizontal dashed lines
indicate the corresponding position of the Fermi level. While
for the neutral cluster all the electrons are bound in the cluster
potential well, for the cluster with charge Q= −10 the Fermi
level is promoted above vacuum level along with the entire
energy band of the cluster states (originating at the bottom of
Veff). For the cluster with charge Q= −20 two potential wells
can be observed within the radial distance range covered by the
figure. The potential well at small r corresponds to the
electrons confined inside the cluster, and the potential well at
large r corresponds to the vacuum region. The electron density
of the cluster can thus decay via energy-conserving resonant
electron transfer into the continuum of vacuum states through
the potential barrier located at Rext ≤ r ≤ Rcl. This barrier
separates the two classically allowed regions of motion, i.e.,
inside the cluster r ≤ Rcl, and in vacuum Rext ≤ r. Here we
define Rext as the radial distance where the effective one-
electron potential is equal to Fermi energy.
Assuming that an electron far enough from the charged

cluster experiences the Coulomb potential − Q/r, and using eq
4, one can obtain Rext as

=
Φ +

R
Q
Q R/ext

cl (6)

Obviously, for a cluster charge approaching the critical value Q̃,
Rext → ∞ so that the potential barrier does not allow electron
tunneling and the negative charge is stabilized. On the other
hand, for large negative charges, Rext → Rcl. In this situation, the
potential barrier which separates the potential well of the
cluster and the vacuum region vanishes. The valence electrons
can easily escape from the cluster.
As a result of the population decay, the cluster charge would

relax to Q̃, where the Fermi level is brought to the vacuum level
and the system becomes stable. Taking into account that the

number of electrons already present in the surface layer of
width rs in the neutral cluster is given by Ns = 3 [Rcl/rs]

2, the
relative variation of the charge allowed before the onset of the
electron population decay is given by

| ̃ | = ΦQ N r R/ /3s s
2

cl (7)

Thus, the relative number of electrons that can be added to the
surface layer of the neutral cluster before the onset of the
electron population decay, decreases as 1/Rcl (note that with
respect to the total number of electrons in the cluster |Q̃|/Ne ∝
1/Rcl

2 ). The larger the cluster is, the less electrons it can admit
in relative terms. For the 2018 electron clusters considered
here, Q̃ is −5.6 for Na and −6.5 for Ag. This implies that the
system becomes unstable simply with an addition of 6 (7)
electrons to the Na(Ag) cluster, which represents less than a
0.4% variation of the total number of electrons Ne, and 1%
variation of the number of electrons in the surface layer of
width rs.
While we consider in this work charged clusters in vacuum,

the situation might be different in electrochemical solution if a
dipole layer is formed around the cluster by the positive ions
placed at a distance Rcl + d from the cluster center, which has
the effect of screening the cluster charge.47 In this case, and
assuming d ≪ Rcl, the change of the energy of the Fermi level
can be estimated as

= −Φ −E Qd R/Q
F cl

2
(8)

Comparing with eq 4, here the charge Q is replaced by Qd/Rcl
so that a much larger electron doping is allowed before the
Fermi level is promoted to sufficiently high energies producing
the population decay. In this case one would expect |Q̃|/Ns= Φ
rs
2/3d, i.e., a charge variation nearly independent of cluster size.
Assuming a realistic effective position of such a dipole layer at a
distance d ≃ 3 Å, then a silver cluster would be able to admit
∼10% variation of the number of electron in the surface layer
(∼0.2% of the total number of electrons).
It is worth mentioning that, for positively charged clusters,

the accumulation of nonscreened ions at the cluster surface
leads to the so-called Coulomb explosion where the ions are
ejected from the crystal lattice sites into the vacuum.56−58 A
description of this process would require to consider the
dynamics of the heavy particles, which is not the focus of our
attention here.
Since only a limited number of electrons can be added to the

cluster before the electron population starts to decay, some
approximations have to be done to compute the ground state
properties and the electron dynamics of the“overcharged”
clusters. To be able to address the properties of the clusters
with Q < Q̃ we performed the DFT ground-state calculations
using restricted geometry. The zero boundary conditions have
been used for the electron orbitals ψj, and the size of the
computational mesh has been set such that the covered range
of radial coordinates is r < Rext. These constraints are equivalent
to the confinement of the system into the box with infinite
repulsive potential wells, where the vacuum region available for
the electron escape has been removed from the calculations.
The electrons are restrained to remain inside the cluster which
allows to converge the ground-state calculations even for the
negative charges exceeding the threshold value. However, the
results have to be considered with caution for Q such that the
electron density starts to be non-negligible at Rext. In our

Figure 4. Effective one-electron potentials (continuous lines) and
Fermi level energies (dashed lines) calculated with DFT for the neutral
and charged Ag clusters. Zero energy corresponds to the vacuum level.
Results are shown as a function of the radial coordinate measured from
the center of the cluster. The data for the neutral cluster (Q = 0) is
shown with black lines, Q = −10: red lines, and Q = −20: blue lines.
The black vertical line indicates the cluster boundary Rcl. The blue
vertical arrow shows the classical turning point of the trajectory of an
electron with Fermi energy approaching the Q = −20 cluster from the
vacuum. The tunneling barrier separating the cluster potential well
from the vacuum region extends along a range of radial coordinates r
given by Rcl ≲ r ≤ Rext.
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systems this would typically correspond to charges Q < − 60
which we do not address here.

■ ABSORPTION CROSS SECTION
After addressing the electronic structure of charged clusters in
the previous section, we now turn to the TDDFT studies of
their optical response. In Figure 5 we present the absorption

spectra calculated for positively and negatively charged Ag
(panel a) and Na (panel b) clusters. For clusters with negative
charge, Q < Q̃, the computational mesh has been restricted to r
< Rext, as in the ground-state DFT calculations. This allows to
avoid the decay of the electron population.
The results in Figure 5 point out that the charging of the

cluster affects both the energy and the width of the plasmon
resonance, albeit in a very moderate way, as has been also
reported in ref.55 A more pronounced modification of the
optical response is produced for the Na cluster as compared to
Ag, due to lower work function and thus larger electron density
spill out into the vacuum. As well, stronger effects are
noticeable for negatively charged clusters in both cases. In
general, the removal of electrons from the cluster (positively
charged clusters) leads to the blue shift of the plasmon
resonance frequency, with the resonance becoming narrower
and better defined. Adding electrons to the cluster (negatively
charged clusters) leads to the red shift of the plasmon
resonance. These findings are in full agreement with earlier
experimental and theoretical data reported in cluster
physics,91,94−100 and can be explained within the theory of
dynamical screening at surfaces. Neglecting retardation effects,

the dipolar plasmon frequency of the nanoparticle is given by

ω δ= −
ω

R[1 / ]DP 3 cl
p , where δ is the position of the

dynamically induced screening charges measured with respect
to the jellium edge.101−103 For positively charged clusters, the
electrons are tighter bound in the strong attractive potential
well. The spill out of the electron density outside the cluster
boundaries decreases leading to a smaller δ and thus to the blue
shift of the dipolar plasmon frequency, as compared to that of
the neutral cluster. On the contrary, for the negatively charged
clusters, the electron density protrudes further away from the
cluster boundaries because of the reduced binding so that δ
increases and the dipolar plasmon redshifts.95,96,99

Our results show that charged cluster with excess of electron
density located in the surface layer cannot be modeled
assuming a bimetallic core−shell nanoparticle with different
electron densities and thus different optical response of the core
and of the shell. Indeed, in the case of core−shell bimetallic
structures, the plasmon modes of the system result from the
coupling between the core-localized and shell-localized
plasmons.104−109 These plasmon modes of individual core
and shell nanoparticles correspond to an electron cloud
oscillation around its own ionic background of the correspond-
ing density. In the case of the negatively charged cluster the
electron density oscillates around a unique positive background
corresponding to the cluster ions as a whole.
It is worth stressing that the frequency shifts of the dipolar

plasmon resonance with the cluster charge, as calculated here
and also measured for clusters in gas phase show the behavior
that is opposite to the experimental data obtained in
electrochemistry.41−51 In electrochemical experiments, the
blue/red shift of the localized plasmon resonance has been
measured for negative/positive charging of nanoparticles.
Those results have been often interpreted in terms of the
corresponding change of the valence electron density.
However, the situation of the individual nanoparticle in
vacuum, as considered in our study, accounts for all charging
effects evoked so far in explanation of electrochemical data.
Since our TDDFT study shows opposite frequency shifts, we
conjecture that additional screening effects due to the
electrochemical environment (in particular the dipole layer
formed around the nanoparticle), and the eventual modification
of the surface electronic structure due to chemisorption must
be responsible for the plasmon energy shifts measured with
electrochemical charge doping.
The broadening of the resonance for the negatively charged

clusters as seen in the optical absorption cross section in Figure
5a,b reflects a faster decay of the underlying plasmon mode.
The increase of the decay rate is associated with an increased
coupling between the collective plasmon and the continuum of
the single particle electron−hole excitations, where the hot
electron produced by the plasmon decay can be emitted from
the cluster.91,94,100,110 In this context, we ascribe the features in
the absorption spectra for Q = −20 and Q = −30 Na clusters to
this coupling as has been observed in TDDFT calculations on
various systems.111,112 Considering the work function of silver
(ΦAg = 4.65 eV) and sodium (ΦNa = 3 eV) clusters addressed
in this work, the decay of the dipolar plasmon with electron
emission is impossible for the silver cluster, and concerns only
the electrons within an energy range of ∼0.2 eV from the Fermi
level for the sodium cluster. However, the Fermi level EF

Q of the
negatively charged cluster (Q < 0) approaches the vacuum
level, as expressed with eq 4. For Q < Q̃, EF is promoted above

Figure 5. TDDFT results of the absorption spectra of charged clusters.
Panels a and b show the absorption cross section as a function of the
frequency of the incoming plane wave calculated for Ag and Na
clusters, respectively. Different colors are used for the results obtained
with different cluster charges as indicated in the insets.
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the vacuum level and the height of the potential barrier that
confines the electrons inside the cluster decreases (see Figure
4). As a result, the probability of the plasmon decay with
electron emission increases. Alternatively, for positively charged
clusters (Q > 0), the overall binding energy of the electrons in
the cluster increases and the confining potential becomes
sharper, leading to a smaller plasmon damping.113

■ ELECTRON POPULATION DECAY IN NEGATIVELY
CHARGED CLUSTERS

Analytical Expressions. As discussed in connection with
the shift of the Fermi level, when the cluster charge is Q =
−ΦRcl + q, with q < 0, the Fermi level of the cluster is
promoted above the vacuum level. The electron population of
the cluster associated with the extra charge, q, above the
threshold value, Q̃ = −Φ Rcl, decays because of the electron
escape into the continuum. Prior to the discussion of the results
obtained in the TDDFT study of this effect, let us outline some
simple theoretical considerations, which facilitates under-
standing of the numerical data. Within the Wentzel−
Kramers−Brillouin (WKB) approximation, the decay rate, Γ,
of the excess of electron population is given by

γΓ = Γ −exp( 2 )0 (9)

where Γ0 ∝ vF/Rcl is a parameter proportional to the frequency
at which the Fermi electron with speed vF collides with cluster
boundary, and exp(−2γ) is the probability of electron tunneling
through the potential barrier, with

∫γ = | | −
⎡
⎣⎢

⎤
⎦⎥

Q
r

E r2 d
R

R
Q
F

cl

ext

(10)

Eq 10 corresponds to an electron at the Fermi energy EF
Q = |Q|/

Rext that tunnels through the potential barrier located at Rcl ≤ r
≤ Rext, as shown in Figure 4. The effective one-electron
potential is approximated by the − Q/r dependence, so that the
theory of alpha-decay114 can be used, resulting in

γ = | | −

−

Q R R R

R R R R

2 [arccos( / )

/ 1 / ]

ext cl ext

cl ext cl ext (11)

It is convenient to rewrite eq 11 in terms of the cluster charge.

Using =R RQ
qext cl, which can be obtained from eq 6, leads to

γ = | | | | − −Q R q q Q q Q q Q2 / [arccos( / ) / 1 / ]cl

(12)

The analytical expression given by eq 12 allows the
discussion of the threshold behavior of the population decay
for EF

Q → 0+, where the decay rate is small and can not be
calculated with TDDFT. In this case, the cluster charge is given
by Q = Q̃ + q (q→ 0−), and Rcl/Rext ≪ 1. Using the asymptotic
expansion we obtain for γ:

γ π= | ̃ | | |Q R q
2

2 /cl (13)

Therefore, the decay rate of the excess of electron population
(excess-charge q) is given by

πΓ = Γ − Φ | |R qexp[ 2 / ]0 cl
3

(14)

With these analytical results at hand, we now turn to the
numerical TDDFT study of the electron escape from the
negatively charged clusters.

TDDFT Results. In the TDDFT study of the electron
population decay in negatively charged clusters, the ψj(r)⃗

Figure 6. TDDFT results for the electron population decay in small sodium (panels a and c) and silver (panels b and d) negatively charged clusters.
Panels a and b: time-evolution of the number of excess electrons in the cluster, ΔNe(t) = −Q(t), where Q(t) is the time-dependent cluster charge.
Different colors are used to display the results obtained with different initial charge Q(t = 0), as explained in the insets. t = 0 is the instant of time
when the computational constraints are released and the system is allowed to decay. Panels c and d: time-dependence of the population decay rates
as extracted from the data presented in panels a and b of this figure. For further details, see the main text.
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orbitals obtained in the DFT ground-state calculations on a
restricted-size mesh are used as initial states for the time
propagation. However, different from the calculation of the
absorption cross-section, the confinement constraint has been
lifted off at an instant of time t = 0. This is achieved by
providing the radial mesh that extends to r≫ Rext. The negative
charge of the cluster can then decay via electron escape into the
vacuum.
In Figure 6a,b, we show the time evolution of the number of

excess electrons in Na and Ag clusters, ΔNe(t) = −Q(t),
calculated with TDDFT for different initial cluster charges Q(t
= 0) . For highly charged clusters (Q ∼ −40, − 50), about 10 to
20 electrons are lost in less than 2000 au of time (50 fs). The
cluster charge drops, and the electron population decay slows
down approaching time constants characteristic of low initial
charges. Indeed, the smaller is the cluster charge Q(t), the
higher is the potential barrier separating the potential well
inside the cluster from the vacuum region. This results in a
lower population decay rate Γ. We can introduce the
instantaneous decay rate Γ(t) via the equation:

= −Γ − ̃ = −ΓQ t
t

t Q t Q t q
d ( )

d
( )( ( ) ) ( )

(15)

which describes the relaxation of the cluster charge toward the
threshold value Q̃. In panels c and d of Figure 6, we display the
decay rate Γ(t) obtained from the charge dynamics shown in
panels a and b of the same figure, with use of eq 15. Overall, the
decay rate is smaller for low initial charges, and it decreases at
longer times as soon as the cluster becomes less charged.
According to the analytical approach (see eq 9 and eq 12)

the potential barrier for electron tunneling and therefore the
decay rate is determined by the cluster charge Q(t). Indeed, as
shown in panels a and b of Figure 7, when the decay rate Γ is
displayed as a function of the instantaneous charge, the results
obtained for different initial cluster charges Q(t = 0) fall into a

universal curve. The features at short propagation times arise
because the exponential decay needs some time to set in as
known from the studies of the decay of quasi-stationary
states.115

The TDDFT results can be used to further test the analytical
approach for the negative cluster population decay. In Figure
7c,d, the logarithm of the instantaneous decay rate ln(Γ) is
shown as a function of parameter γ given by eq 12. Note that γ
is time-dependent through the time-dependence of the cluster
charge. We observe that the same linear dependence with a
slope close to −2 (see eq 9) is obtained irrespective from the
initial cluster charge. With the validity of the semiclassical
approach established by this comparison with the TDDFT
results, we can use eq 14 to analyze the evolution of the
population decay rates for clusters of varying size. The
population decay rate can be expected to be similar for charged
clusters with |q| ∝ Rcl

3 . Since the number of electrons in the
cluster, Ne, is also proportional to the cluster volume, we obtain
that clusters characterized by the condition q/Ne = const
should have similar time scales for the population relaxation.
Using the results shown in Figure 6a,b, we conclude that half of
the excess-charge, representing 2% of the total number of
electrons, will be lost in 50 fs following the charging event.
Thus, the addition of small amount of electrons representing
some percents of the total amount of the valence electrons can
only lead to a transitory negative charge, unless the metal/
vacuum interface is replaced by the a dipole layer as for instance
in an electrochemical solution.

■ SUMMARY AND CONCLUSSIONS
Using TDDFT calculations for Na and Ag clusters, we have
demonstrated that the surface plasmon modes of small
spherical clusters in vacuum are only mildly sensitive to the
positive/negative charging and do not present significant
resonance frequency shifts. We show that the negative charging

Figure 7. Analysis of the decay of the negative charge in small sodium (panels a and c) and silver (panels b and d) clusters, based on the TDDFT
results. Different colors represent the results obtained with different initial cluster charges, as defined in the insets of panels c and d. Panels a and b:
electron population decay rates Γ(t) extracted from the TDDFT calculations using eq 15. Results are shown as a function of the instantaneous
negative charge Q(t). Panels c and d: validity check of the analytical approach given by eq 12. The logarithm of the instantaneous decay rate ln(Γ) is
shown as a function of charge-varying parameter γ.
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leads to a red shift of the plasmon frequency and the positive
charging leads to a blue shift of the plasmon frequency. This
behavior is opposite to the one reported in electrochemical
experiments. Present TDDFT results can be understood within
the theory of dynamical screening considering that (i) the
electron density in the cluster volume cannot be modified,
which means that the excess charge is accumulated at the
surface of the cluster in a thin layer of width given by the
screening radius of the corresponding metal, and (ii) the
electron density spill-out from the cluster boundaries is larger
for negative clusters and smaller for positive clusters.
We have also shown that even small (relative to the total

number of electrons in the system) negative charge might raise
the Fermi level of the cluster above the vacuum level, which
renders the system unstable. In such a case, an electron
population (or, equivalently, the cluster charge) decays via
resonant energy-conserving electron tunneling into the free-
electron continuum of propagating states above the vacuum
level. The characteristic time scales for the decay of the cluster
charge are of the order of some tens of femtoseconds that can
be fully understood using an analytical study based on the WKB
method. This limits the possibility to charge the system. The
larger the cluster is, the smaller the amount of negative charge
Q it can admit relative to the number of electrons present in the
surface layer, or, equivalently, relative to the total number of
electrons in the cluster Ne. Our results indicate that |Q|/Ne <
1%.
While present calculations have been performed for spherical

clusters, the results obtained in this study stem from robust
physical phenomena such as nonlocal screening in metal
nanoparticles and rise of the repulsive electrostatic potential
upon negative charging. We thus expect that the qualitative
conclusions obtained in this work apply for nanoparticles of
other 3D geometries.
Our findings for the charged clusters in vacuum shed light on

the relevant role played by the chemisorbed species and by the
dipole layer formed around charged nanoparticles as the actual
sources for the frequency shift of plasmon resonances obtained
in electrochemical experiments. Indeed, we show that the
electron density in the volume of the nanoparticle is not
affected by charging effects, and that the change of the free-
electron density at the surface leads to a plasmon frequency
shift opposite to that observed with electrochemical charge
doping.41−51

The calculations presented in this work do not account for
the effects of screening and chemisorption at the nanoparticle
surface, but rather serve to explicitly point out their relevance
by noting the difference in the optical response between the
“charged” metal/vacuum interface considered here and the
surfaces of metal nanoparticles in electrochemical solution. The
importance of the screening due to the electrochemical
environment and the change of the surface electronic structure
by chemisorbed species has been indeed pointed out in works
such as those in refs.49−51 At this point, it is worth stressing that
a large electron donation to a metallic nanoparticle necessarily
requires a screening charge around it in order to avoid the
decay of the electron population. The resulting dipole layer
created around the nanoparticle would affect the screening of
electromagnetic fields and thus the frequency of the localized
plasmon modes. Thus, a consistent explanation of the
experimental data in electrochemistry should evoke these
effects, which paves a way for further theoretical studies.
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M.; Peŕez-Juste, J.; Pastoriza-Santos, I. Size tunable Au@Ag core-shell
nanoparticles: synthesis and surface-enhanced Raman scattering
properties. Langmuir 2013, 29 (48), 15076−15082.
(106) Cortie, M. B.; McDonagh, A. M. Synthesis and optical
properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev.
2011, 111, 3713−3735.

Langmuir Article

DOI: 10.1021/acs.langmuir.6b00112
Langmuir 2016, 32, 2829−2840

2839

http://dx.doi.org/10.1021/acs.langmuir.6b00112


(107) Arnold, M.; Blaber, M.; Ford, M. Local plasmon resonances of
metal-in-metal core-shells. Opt. Express 2014, 22, 3186−3198.
(108) Yannouleas, C.; Jena, P.; Khanna, S. N. Optical resonances in
bimetallic clusters and their relation to the electronic structure. Phys.
Rev. B: Condens. Matter Mater. Phys. 1992, 46, 9751−9760.
(109) Bruzzone, S.; Arrighini, G. P.; Guidotti, C. Theoretical study of
the optical absorption behavior of Au/Ag core-shell nanoparticles.
Mater. Sci. Eng., C 2003, 23, 965−970.
(110) Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P.
Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano
2014, 8, 7630−7638.
(111) Prodan, E.; Nordlander, P.; Halas, N. J. Effects of dielectric
screening on the optical properties of metallic nanoshells. Chem. Phys.
Lett. 2003, 368, 94−101.
(112) Stella, L.; Zhang, P.; García-Vidal, F. J.; Rubio, A.; García-
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