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Attosecond and femtosecond forces exerted on gold nanoparticles induced by swift electrons
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We report time-dependent calculations of attosecond and femtosecond forces imposed by a kilovolt swift
electron during passage near a nanometer-sized metal particle. Contrary to expectations based on dielectric theory,
which suggest that the forces should always be attractive, we find that for very close approaches, attosecond
forces are repulsive, and are caused by interaction of the magnetic field of the relativistic electron with currents
within even nominally nonmagnetic nanoparticles. These results suggest an explanation for the observation of
both attractive and repulsive nanoparticle movement during the first use of Ångstrom-sized electron beams in
electron microscopy.
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I. INTRODUCTION

The interaction of light and electrons with nanoscale
structures underpins the fascinating field of plasmonics,
which seeks to understand and engineer useful subwavelength
optical behavior [1,2]. While spectroscopic tools dominate
studies of resonant structure, fast optical pump and electron
probe experiments have revealed rich femtosecond transient
behavior [3,4]. Kilovolt electrons also carry ultrafast elec-
tromagnetic fields which couple strongly to nanostructures,
producing electron energy loss scattering [5–7] and lateral
momentum transfer [8]. We report numerical results for the
spatial and temporal behavior of lateral electromagnetic forces
within a gold nanoparticle, to identify physical mechanisms
for both attractive and repulsive manipulation of nanopar-
ticles, recently observed using Ångstrom-sized electron
beams [8,9].

Characterization of nanostructures using optical and elec-
tron microscopies often creates nanoscale changes, suggesting
methods for deliberate manipulation of very small objects. For
instance, trapping an atom in an ultracold state relies on light-
matter mechanical coupling under laser illumination [10]. Op-
tical tweezers, based on momentum transfer during light scat-
tering, allow the trapping of submicron-sized particles [11].
While these techniques offer a wide range of capabilities
in different size ranges, it is still difficult to deliberately
manipulate objects at the atomic and nanoscale levels [12].
Recently it has been found that an electron beam can be used
to deliberately manipulate metal nanoparticles, even producing
both attractive and repulsive forces [8,9,13–16].

With the development of modern aberration-corrected
scanning transmission electron microscopes we can routinely
make and precisely control atom-sized electron beams [17].
Placement of this probe extremely close to a nanoparticle (NP),
without intersecting the NP boundaries, produces momentum
transfer to the NP by interaction with the electromagnetic fields
associated with the passing electron. This “aloof” scattering
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apparently drives both attractive and repulsive forces between
the electron beam and single NPs depending on details of
the electron passage [8,15]. Attractive forces are easy to
understand in a simple dielectric model, but the remarkable
observation of a transition between pulling and pushing
behavior of single gold NPs, as the electron beam approaches
the NP, has not been understood. Numerical modeling in the
frequency domain has shown the existence of a crossover
between pulling and pushing, as the impact parameter is made
smaller, in carbon fullerenes [18] and gold NPs [9]. However,
the physical origin of repulsive forces driven by the interaction
of a charged particle with a nonmagnetic dielectric object has
not been explained.

For common electron beam currents of a few tens of
picoamperes, in modern electron microscopes, there is essen-
tially a single electron present in the microscope at any one
moment in time. At energies above about 50 keV, electron
de Broglie wavelengths are two orders of magnitude smaller
than the Ångstrom scale. Under these circumstances quantum
corrections (Heisenberg broadening) can be neglected for rela-
tivistic electrons [19–21]. Also, for aloof scattering near a NP,
lateral momentum transfer is small relative to the momentum
carried by the swift electron, so scattering angles are very
small. Thus, in Fig. 1 we used classical electrodynamics to
describe the interaction of a relativistic electron traveling in a
linear trajectory having an impact parameter b away from the
surface of a metal NP.

II. THEORETICAL APPROACH

Forces responsible for the NP movement result from
interactions between the moving charges inside the NP and
external electromagnetic fields associated with the passing
electron. In this section we present the approach used to
calculate the time-dependent electromagnetic forces and fields.

A. Calculation of time-dependent forces and fields

We have followed the method suggested by Barnett and
Loudon [22] to calculate the Lorentz forces acting on a
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FIG. 1. The electromagnetic interaction between a traveling
relativistic electron (red dot) and a spherical nanoparticle (NP)
of radius R in an aloof geometry. Both attractive and repulsive
electromagnetic forces are generated in the NP, illustrated through
the X component of the force density (fx) map plotted over an inner
spherical shell of radius r .

dielectric object, and then use Newton’s second law to
calculate the momentum transfer. The time-dependent Lorentz
force �F (t) can be obtained directly from time-dependent total
fields acting on charges ρ and currents �J within the NP volume
V [23]:

�F (t) = d �Pmech(t)

dt
=

∫
V

(ρ �E + �J × �B)dV, (1)

where �E and �B represent the fundamental time-varying electric
and magnetic fields and dV is a differential volume within the
NP. Using Maxwell’s equations, charge and current densities
can be replaced by electric and magnetic fields, leading to the

following representation [23]:

�F (t) =
∫

V

{
ε0[ �E(∇ · �E) − �E × (∇ × �E)] + 1

μ0
[ �B(∇ · �B)

− �B × (∇ × �B)] − ε0

[
∂

∂t
( �E × �B)

]}
dV, (2)

where ε0 is the vacuum permittivity and μ0 is the vacuum
permeability. The integrand in Eq. (2) is the Lorentz force
density, which we have used to analyze the spatial distribu-
tion of instantaneous forces acting on a nanosized particle
[see for instance Figs. 1, 2(a), and 3]. Details about the
calculations of the electromagnetic fields are presented in the
Appendix.

We studied the electromagnetic interaction between a metal
NP (gold and aluminum) and energetic fast electrons (80 and
120 keV) moving with several impact parameters (between 1
and 50 Å). We present here only the results of the forces and
fields acting on a gold 1 nm radius NP induced by 120 keV
electron to describe our general findings.

B. Dielectric response function

We characterize the gold NP with an experimentally
determined dielectric response which agrees well with the-
ory [24,25]. We have interpolated the experimental data using
a cubic spline in order to produce a uniform grid for Fourier
analysis over 4 keV, enforcing the causality principle through
a Kramers-Kronig analysis. The experimental data for the
dielectric response function includes damping and information
of both low energy surface and bulk plasmons (∼2.5–2.8 eV),

FIG. 2. Temporal dynamics of forces and fields in a nanometer particle. (a) Sequence of three-dimensional images (perspective view) of
the force density during the transit of the aloof electron. The electron position is indicated by a red dot and arrow at different times (t = −3,
0, and 3 as). (b) Sequence of three-dimensional images (perspective view) of the modulus of induced electric (left side) and magnetic (right
side) fields, corresponding to the same events shown in (a). Note that induced fields lag the relativistic electron and exhibit variations within
attosecond times. See text for explanation.
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FIG. 3. Lorentz forces acting on the sphere exhibit a wakelike
structure within attosecond times. The pattern is confined in the
nanoparticle and follows the passing electron. Note that the regions
of finite forces display a conelike pattern spreading over the surface
in the transverse direction to the electron trajectory.

and higher energy instabilities (∼25 eV), associated with
5d → 6f electron transitions, which apparently include strong
collective behavior [24,25]. The presence of a ∼25 eV
collective response is suggested by a narrow minimum in the
real part of the tabulated dielectric constant, accompanied by
a small dissipation.

III. RESULTS

We focus on the transverse X component of the forces to
explore the detailed physics behind the movement of metal
NPs driven by the electron beam [13–16].

A. Temporal evolution of forces and fields

In Fig. 2 we show the instantaneous force density and fields
acting on a spherical shell (r = 0.9 nm) just below the surface
of the NP. The forces and fields in other regions of the NP
volume follow the same trend. The fast electron travels in
an aloof geometry with impact parameter of 5 Å. The aloof
electron positions are indicated by a red dot at different times.

Figures 2(a) and 2(b) show the time evolution of the Lorentz
force density and induced fields, respectively. In Fig. 2(a),
different regions of the NP are subjected to attractive or
repulsive forces, so that the total Lorentz force on the NP
at a particular time results from the competition between
positive and negative contributions. In general, we find that
attractive forces are largely dielectric, while repulsive forces
are strongly associated with the magnetic fields produced by
the keV electron, even for aluminum, a nonmagnetic material.

We notice that the NP response fields increase gradually
during the approach of the fast electron, reflecting the long
range nature of the external fields. During these times [t < 0 as
in Fig. 2(a)] force densities are primarily dielectric, exhibiting
a dipolelike configuration, with an attractive part oriented
towards the fast electron [left side of Fig. 2(b)] and a weaker
repulsive part behind the NP (not seen in this perspective).
The response magnetic fields [right side of Fig. 2(b)] display a
donutlike pattern surrounding the dielectric response, with an
elongated central region of almost-zero field. As the electron
passes (t ∼ 0 as), the patterns of force density exhibit very

strong regions of attractive dielectric forces accompanied by
two lateral lobes of repulsive magnetic forces. Later (t > 0
as), the spatially confined NP charges lag behind the traveling
electron, and a spatial separation of the positive correlation
charge from the accompanying negative charge pileup in front
the correlation hole is produced [21,26,27]. During this time,
positive, attractive forces decrease, while magnetically driven
negative forces become more important. Snapshots at t = 3
as show that these negative magnetic forces become tightly
grouped around the highly localized, attractive dielectric
forces.

As the electron moves away from the NP (t > 5 as), this
interplay of forces creates a pattern that resembles a moving
charge density wake on the NP surface (Fig. 3). It is well
known that two different types of spatial patterns associated
with plasmon excitations can be generated by swift charged
particles: bow and trailing wakes [21,26,27]. Note in Fig. 3
the alternating trail of positive and negative forces with a
wavelength of roughly 1.5 nm, much smaller than the typical
surface or bulk plasmon wavelengths of 20–40 nm when driven
by keV electrons. This suggests that the spatial behavior here
is limited by the NP size. During these very short times,
the interaction between the fast electron and moving charges
results in a broad region of negative forces which opposes the
attractive contribution [see Fig. 4(a), t > 5 as].

Lorentz forces at attosecond times can be treated as gradient
field forces acting on induced charge distributions inside the
NP. The main contribution to the forces can be described,
in a first approximation, by the dipole mode ∇( �E · �p) and
∇( �B · �m), where �p and �m are the instantaneous polarization
and magnetization vectors, respectively [23]. However, at
a very small impact parameter when high field gradients
are present at the NP, strong nondipole response charge
distributions are also excited [28]. We find that these higher
order modes further weaken the dielectric contribution to the
total momentum transfer (see Sec. III C).

As the electron moves well past the NP (t > 50 as) external
fields near the NP become very small, and the response field at
the NP collapses, giving rise to plasmon oscillations within
the NP. At these times, the oscillatory total electric field
strength (∼mV/nm) is about three orders of magnitude smaller
than at the attosecond times (∼V/nm), which consequently
produces plasmon-based electric forces that are at least six
orders magnitude smaller than the attosecond impulse forces
[compare Figs. 4(a) and 4(b)].

B. Attosecond and femtosecond forces acting on nanoparticles

Figure 4 shows the total lateral Lorentz forces integrated
over the volume of the NP for impact parameters 1.5, 5, and
10 Å (black, red, and blue, respectively). In Fig. 4(a) we see
that during the close approach, the total forces are impulselike
with instantaneous peak strengths of a few piconewtons (pN),
lasting about 11 as for this case, controlled by the electron
motion during the close approach. We find that attractive forces
are primarily dielectric and occur during the swift electron
approach for t < 0 as. The total forces become negative as
the electron moves away for t > 0 as, driven by increasing
magnetic contributions.
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FIG. 4. Time-dependent Lorentz forces in the X direction for
impact parameters 1.5 Å (black curve), 5 Å (red curve), and
10 Å (blue curve). The red and blue curves were multiplied by
a constant factor for better visualization. (a) Attosecond impulse
forces during the close passage of the swift electron, showing both
attractive and repulsive behavior as a function of impact parameter. (b)
Oscillatory, subfemtosecond forces at ultraviolet energies. (c) Forces
originating in surface plasmons in the visible range for the 5 Å impact
parameter.

Figures 4(b) and 4(c) show a damped oscillatory behavior
resulting from plasmonic modes at femtosecond times. Within
the first femtosecond [Fig. 4(b)] the oscillatory force has
a period of about 0.17 fs associated with a high-energy

plasmon instability (∼25 eV). This instability has been noted
in theoretical calculations and is likely collective behavior
associated with 5d → 6f electron transitions [25]. Later in
time [Fig. 4(c)] oscillatory forces are dominated by a lower
energy mode (∼2.5 eV) with a 1.7 fs period, corresponding
to the optical surface plasmons for the gold nanosphere.
The ∼25 eV deep ultraviolet modes continue to be visible,
overlapping with the lower energy surface plasmon related
forces. Plasmonic forces are likely to be associated with
photon emission, which would join the electromagnetic fields
surrounding the NP [9,29,30].

C. Total momentum transfer

Integrating the forces over time, we find that total time-
average attractive forces are larger than repulsive forces at
large impact parameter (b > 5 Å), but become comparable
at small impact parameter (b < 5 Å), leading to a crossover
from attractive to repulsive behavior, in agreement with
frequency domain calculations [9,18]. Figure 5(a) shows
our results associated with the transverse component of the
total momentum transfer (TMT) calculated in both time and
frequency domain. From the law of momentum conservation
the time-averaged TMT [blue curve in Fig. 5(b)] can be easily
understood to be the result of the competition between positive
electric [black curve in Fig. 5(b)] and negative magnetic [red
curve in Fig. 5(b)] contributions. The fact that the magnetic
field gives a negative contribution is in agreement with our
description as diamagneticlike repulsive forces. Also, our
analysis of the relative contributions of the impulse attosecond
and oscillatory femtosecond forces to the TMT showed that
most of the significant contribution comes from the impulse
forces acting in the attosecond range. For all of the cases,
plasmonic fields contribute less than ∼7%. This consequently
implies that the impact parameter dependence of the TMT
which causes the transition to repulsive forces is dictated
mainly by the attosecond forces during the close approach
of the swift electron.

To get more insight into the physical origin of the repulsion
at small impact parameters, we analyzed the role of both
dipole and higher mode induced fields to the TMT. Our
result shows that the higher modes (quadrupole, octupole,
etc.) mainly weaken the electric contribution (EC) at short
distances (b < 5 Å), leaving the magnetic contribution largely
unchanged. This behavior agrees with our physical intuition
because the excitation of higher modes spreads regions
of positive response charges away from areas immediately
beneath the swift electron, leading to a weakening of attractive
dielectric forces. For larger impact parameters (b > 5 Å) the
forces are dominated by the excitation of dipole fields, which
produce the expected attractive behavior.

In addition, Fig. 5(c) shows attosecond Lorentz forces
calculated considering a relativistic electron traveling with
impact parameter of 1.5 Å. The orange and black curves
correspond to forces obtained using the dipole mode (l = 1)
and several mode (l = 1–20) contributions, respectively. The
dipolar result includes a strong attractive peak during the
electron approach (t < 1 as) and a small repulsive component
(t > 1 as). From the physical picture of dielectric and dia-
magneticlike forces in the dipole approximation it is expected
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FIG. 5. (a) Transverse component of the total momentum transfer
(TMT) as a function of impact parameter, calculated using both
time-dependent and frequency-dependent fields. (b) The electric (EC)
and magnetic (MC) contributions to the TMT are displayed in black
and red, respectively. The blue curve associated with the TMT was
multiplied by 80 to render a better visualization. (c) Time-dependent
forces calculated considering the dipole mode (orange curve) and
several modes (black curve) of the induced fields, driven by a
passing 120 keV electron with impact parameter of 1.5 Å. Note
that the enhancement of the repulsive behavior (t > 0 as) is caused
by high-order mode contribution in the attosecond range.

that the attractive contributions are mainly dominated by
the dielectric interaction, while the repulsive one is mainly
driven by the diamagnetic interaction. The multipole result
(black curve), in contrast, includes a significant increase of

the repulsion (t > 1 as). This substantial change is caused by
a weakening of the electric contribution to the TMT during
the formation of the complicated wake patterns formed at
attosecond times, discussed with Fig. 3 above.

IV. CONCLUSIONS

Attosecond Lorentz forces are thus an important conse-
quence of a close approach by a relativistic electron, and result
from large gradients of external electric and magnetic fields
across the nanoparticle. While attractive dielectric forces are
expected for slow electrons, repulsive magnetic contributions
can dominate behavior for relativistic electrons. Later at
femtosecond times, oscillatory forces are possible through
plasmon decay by photon emission. The two behaviors are
apparently bridged by a wakelike structure which occurs a
few attoseconds after passage of the electron, and which
later collapses, producing the lower energy surface and bulk
oscillatory plasmon modes. We have noticed an interesting
plasmon instability in gold near 25 eV. These results bring
understanding to the physics of repulsive and attractive force
behavior between nonmagnetic metal NPs and swift electrons.
We also think that this detailed understanding suggests
opportunities for systematic experimental work in the future
towards better understanding of ultrafast behavior of nanoscale
structures.
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APPENDIX: ELECTROMAGNETIC FIELDS

The swift passing electron probes the spherical object in
an aloof geometry as shown in Fig. 1, traveling parallel
to the Z axis. The electron is represented by a red dot
moving with a speed v with an impact parameter of b. In
this spherical geometry, the frequency-dependent response
fields in the sphere can be calculated using a multipolar
expansion, satisfying boundary conditions on the surface of
the spherical NP, and they are presented as follows (where
CGS-atomic units are used). A detailed description of the
derivation of expressions associated with the frequency-
dependent electromagnetic fields is found in Refs. [9,18].
These expressions include retardation and relativistic effects
which allow us to capture the physics of the high-speed
events:
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1. Induced fields outside the spherical particle

�Eind,out(r,ω) = er

2πω

c2γ

∞∑
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m=−l

tE
l

h
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kr
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2. Induced fields inside the spherical particle

�Eind,in(r,ω) = er

−2π iω

c2γ

∞∑
l=1

(
sE
l

jl(kinr)

kinr
− jl(kr)

kr

) l∑
m=−l

Bl,mKm

(
ωξ

vγ

)
Yl,m(θ,φ)

+ eθ

{
4π iωv

c3

∞∑
l=1

[
sM
l jl(kinr) − jl(kr)

] l∑
m=−l

m2

l(l + 1)sinθ
A+

l,mKm

(
ωξ

vγ

)
Yl,m(θ,φ)

+ 2π iω

c2γ

∞∑
l=1

1

l(l + 1)

l∑
m=−l

Bl,mKm

(
ωξ

vγ

)[
sE
l

(
(l + 1)

jl(kinr)

kinr
− jl+1(kinr)

)
−

(
(l + 1)

jl(kr)

kr
− jl+1(kr)

)]

×
[

(l + 1)cosθ

sinθ
Yl,m(θ,φ) − (l − m + 1)

sinθ

αl,m

αl+1,m

Yl+1,m(θ,φ)

]}

+ eφ

{
4πωv

c3

∞∑
l=1

sM
l jl(kinr) − jl(kr)

l(l + 1)

l∑
m=−l

mA+
l,mKm

(
ωξ

vγ

)

205440-6



ATTOSECOND AND FEMTOSECOND FORCES EXERTED ON . . . PHYSICAL REVIEW B 93, 205440 (2016)
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− 4πωv
√

εr

c3

∞∑
l=1

1

l(l + 1)

l∑
m=−l

m2

sinθ
A+

l,mKm

(
ωξ

vγ

)
Yl,m(θ,φ)

×
[
sM
l

(
(l + 1)

jl(kinr)

kinr
− jl+1(kinr)

)
− 1√

εr

(
(l + 1)

jl(kr)

kr
− jl+1(kr)

)]}
, (A4)

where

ξ = R + b, (A5)

where R is the sphere radius and b is the impact parameter.
The Lorentz factor γ is expressed by

γ = 1√
1 − β2

, (A6)

and the β constant defined as

β = v

c
. (A7)

The coefficients A+
l,m are evaluated using

A+
l,m = 1

βl+1

l∑
j=m

il−jαl,m(2l + 1)!!

γ j 2j (l − j )![(j − m)/2]![(j + m)/2]!

× I
l,m
j,l−j , (A8)

where

αl,m =
√

2l + 1

4π

(l − m)!

(l + m)!
(A9)

is associated with the definition of the spherical harmonics
Yl,m(θ,φ), where θ is the azimuthal angle and φ is the polar
angle. The numbers I

l,m
i1,i2

are calculated via the recurrence
relation

(l − m)I l,m
i1,i2

= (2l − 1)I l−1,m
i1,i2+1 − (l + m − 1)I l−2,m

i1,i2
, (A10)

with the starting values

I
m−1,m
i1,i2

= 0, (A11)

I
m−2,m
i1,i2

= 0, (A12)

I
m,m
i1,i2

=
{

(−1)m(2m − 1)!!B
(

i1+m+2
2 , i2+1

2

)
, if i2 is even,

0, if i2 is odd.

(A13)

B(x,y) is the beta function. The coefficients Bl,m are calculated
using A+

l,m:

Bl,m = A+
l,m+1

√
(l + m + 1)(l − m)

−A+
l,m−1

√
(l − m + 1)(l + m). (A14)

The following special functions are used in the calculation
of the induced fields: spherical Bessel function of the first kind
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jl(x), spherical Hankel function of the first kind h
(1)
l (x), and modified Bessel function of the second kind Km(x) of order m.

The scattering coefficients are

tM
l = (−i)

jl(kinR)jl+1(kR) − √
εrjl(kR)jl+1(kinR)

√
εrjl+1(kinR)h(1)

l (kR) − jl(kinR)h(1)
l+1(kR)

, (A15)

tE
l = (−i)

(l+1)(1−εr)√
εr

jl(kR)jl(kinR) − kRjl(kR)jl+1(kinR) + kinRjl(kinR)jl+1(kR)

(l+1)(εr−1)√
εr

jl(kinR)h(1)
l (kR) − kinRjl(kinR)h(1)

l+1(kR) + kRjl+1(kinR)h(1)
l (kR)

, (A16)

sM
l = jl+1(kR)h(1)

l (kR) − jl(kR)h(1)
l+1(kR)

√
εrjl+1(kinR)h(1)

l (kR) − jl(kinR)h(1)
l+1(kR)

, (A17)

sE
l = kRjl+1(kR)h(1)

l (kR) − kRjl(kR)h(1)
l+1(kR)

(l+1)(εr−1)√
εr

jl(kinR)h(1)
l (kR) − kinRjl(kinR)h(1)

l+1(kR) + kRjl+1(kinR)h(1)
l (kR)

, (A18)

where the wave vector is defined as k = ω/c and inside the sphere as kin = √
εrk. εr is the relative dielectric constant of the

sphere.

3. External fields acting on the spherical particle

The external time-dependent electromagnetic fields associated with the relativistic electron are represented in the Cartesian
coordinates (where SI units are used). Those fields can also be represented in the frequency domain, as shown in [9,18]

�Eext(x,y,z,t) = −ex

eγ

4πε0

x − ξ

[(x − ξ )2 + y2 + γ 2(z − vt)2]3/2
− ey

eγ

4πε0

y

[(x − ξ )2 + y2 + γ 2(z − vt)2]3/2

− ez

eγ

4πε0

z − vt

[(x − ξ )2 + y2 + γ 2(z − vt)2]3/2
, (A19)

�Bext(x,y,z,t) = ex

eγ

4πε0

β

c

y

[(x − ξ )2 + y2 + γ 2(z − vt)2]3/2
− ey

eγ

4πε0

β

c

x − ξ

[(x − ξ )2 + y2 + γ 2(z − vt)2]3/2
+ ez0, (A20)

where (x,y,z) represents a position in the Cartesian coordinates and e represents the fast electron charge. These analytical
expressions can be also represented in spherical coordinates through a simple transformation of coordinates.
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