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Abstract: Self-assembly fabrication methods can produce aggregates of metallic nanoparticles
separated by nanometer distances which act as versatile platforms for field-enhanced spectroscopy
due to the strong fields induced at the interparticle gaps. In this letter we show the advantages of
using particles with large flat facets at the gap as the building elements of the aggregates. For
this purpose, we analyze theoretically the plasmonic response of chains of metallic particles
of increasing length. These chains may be a direct product of the chemical synthesis and can
be seen as the key structural unit behind the plasmonic response of two and three dimensional
self-assembled aggregates. The longitudinal chain plasmon that dominates the optical response
redshifts following an exponential dependence on the number of particles in the chain for all
facets studied, with a saturation wavelength and a characteristic decay length depending linearly
on the diameter of the facet. According to our calculations, for small Au particles of 50 nm
size separated by a 1 nanometer gap, the saturation wavelength for the largest facets considered
correspond to a wavelength shift of ≈ 1200 nm with respect to the single particle resonance,
compared to shifts of only ≈ 200 nm for the equivalent configuration of perfectly spherical
particles. The corresponding decay lengths are 11.8 particles for the faceted nanoparticles and
3.5 particles for the spherical ones. Thus, large flat facets lead to an excellent tunability of the
longitudinal chain plasmon, covering the whole biological window and beyond. Furthermore,
the maximum near-field at the gap is only moderately weaker for faceted gaps than for spherical
particles, while the region of strong local field enhancement extends over a considerably larger
volume, allowing to accommodate more target molecules. Our results indicate that flat facets
introduce significant advantages for spectroscopic and sensing applications using self-assembled
aggregates.
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1. Introduction

The ability of metallic nanoparticles to capture optical electromagnetic fields thanks to the
excitation of localized surface plasmons has attracted much attention during the last years. The
plasmonic response of a nanoparticle strongly depends on the material properties, size and shape
of the particles as well as on the surrounding medium [1, 2]. Additionally, coupling between
particles introduces versatile ways to tune the resonance wavelength as well as to obtain strong
near field localization and enhancement in the gap region formed between particles [3, 4]. These
strong near fields can be used in a variety of experimental set-ups in optics such as in field-
enhanced spectroscopies [5,6], high harmonic generation [7,8], strong coupling [9] or sensing of
minute amounts of analyte [10] to cite some applications.

Among all the possible plasmonic substrates, self-assembled aggregates composed by small
nanoparticles emerge as versatile structures that do not require complex fabrication set-ups [11],
with molecular linkers allowing to achieve consistent gap separations down to ≈ 1 nm [12]. The
particles can self-assemble to form chain-like structures [13] or more complex 3-dimensional
aggregates, where the position of each particle is essentially stochastic [12, 14]. Crucially, it is
possible to obtain a reproducible overall plasmonic response even for quite complex aggregates,
and to control it to a considerable extent by changing the size and shape of the particles and
the conditions of aggregation [11, 15]. Nonetheless, engineering the properties of the plasmon
resonances remains in general less flexible than for top-down fabrication.

Figure 1(a) sketches a typical situation of self-assembled spherical particles aggregated in
the Diffusion-Limited Regime. We consider that a small molecular linker fixes the interparticle
distance. The optical response of such an aggregate can be tuned by modifying the self-assembly
conditions (particle size, material, linker, concentrations,...). The resulting aggregate presents
a branched configuration of particles separated by well defined nanometer gaps [12, 14]. We
have argued in previous work [14, 16] that much of the resulting plasmonic response can be
understood by modelling the system as an ensemble of chains of adequate lengths (Fig. 1). Thus,
understanding the case of straight chains [17, 18] is a critical step to optimize these complex
systems, as also to predict the optical response when independent chains are directly synthesized.

Chains of spherical particles interacting across nanometer gaps have received considerable
attention [4, 14, 19–25]. The optical response of these chains (blue line in Fig. 1(e)) present
a strong dipolar longitudinal chain plasmon (LCP) mode, which redshifts as the number of
particles in the chain increases and which is characterized by the generation of very strong and
localized near fields in the gap regions, thus making them interesting for spectroscopic studies.

Nonetheless, the redshift of the LCP saturates for chains formed by ∼ 10 spherical particles
[20, 26–29]. The saturation limits the tunability of the system, making it necessary to use
relatively large spheres and very narrow gaps when resonances in the infrared are sought [30–32],
as for example when working in the biological window [33, 34]. To increase the tunability, a
straightforward possibility is to change the morphology of the particles. However, the results on
chains of rods suggest that, as far as the terminations remain spherical, the redshift can be larger
than for spheres but the response still saturates with the number of particles [35]. Furthermore,
the self-assembly process may become challenging for elongated or very complex particles.

On the other hand, chemically-synthesized particles in self-assembled aggregates present flat
facets either by design or due to unavoidable reconfiguration processes inherent to the chemical
synthesis [36–38] (see also refs. [39,40] and references therein for a discussion on growth of gold
nanoparticles). Thus addressing theoretically the effects that facets have in the plasmonic response
of self-assembled aggregates can have direct implications in the interpretation of experimental
results. We showed recently very distinct optical behaviour for rod dimers terminated by a flat
surface, compared to spherically capped rods [41]. We argue below that such flat facets can
be advantageous for applications based on self-assembled systems, notably by improving the
tunability of the optical response of the system. Large facets are able to accommodate a larger

                                                                                                 Vol. 25, No. 12 | 12 Jun 2017 | OPTICS EXPRESS 13763 



number of molecules in the gap, a situation beneficial for applications that do not require to work
at the single molecule level [42]. Figure 1 sketches the main idea for the analysis in this paper
in the absence (Figs. 1(a) or 1(b)) or presence (Figs. 1(c) and 1(d)) of faceting in the particle
units. Branched aggregates (Figs. 1(a) and 1(c)) are considered to behave as an ensemble of
non-interacting straight chains (Figs. 1(b) and 1(d)), an approach substantiated by a previous
study using experimental particles that showed how chain calculations can be enough to nicely
and effectively reproduce the optical response of the full aggregate [14]. For linearly polarized
light, the polarization of the external field selects the excitation of chain modes parallel to the
incident field (Figs. 1(a) and 1(c)). On the other hand, if unpolarized light is used, plasmonic
modes can be efficiently excited in all chains that are oriented in any direction perpendicular to
the propagation direction of the excitation beam.

The faceting at each particle unit within a straight chain strongly affects the optical response
(Fig. 1(e)). For the same number and size of particles, the resulting resonances are found at
larger wavelengths for chains of particles with large facets than for chains of spheres (red line
for flat-faceted particles chain vs. blue line for spheres in Fig. 1(e)). In the following theoretical
work, we analyze in a systematic way the behaviour of chains of different length and facet size.
In particular, we focus on the influence of the size of the facets on the tunability and the field
enhancement in the gap regions, with direct implications for spectroscopy and sensing at infrared
frequencies.

2. Model

We simulate 1-dimensional chains (Figs. 1(b) and 1(d)) composed by cylindrical gold nanopar-
ticles described by the experimental permittivity of gold [43] and surrounded by vacuum. For
simplicity, the full structure is rotationally symmetric, even if the more complex 3-dimensional
aggregates with flat facets in Fig. 1c would require less symmetrical particles. The length of the
particles along the chain axis is L = 50 nm, their diameter along the orthogonal plane is also
D = 50 nm and the separation in the gaps is dgap = 1 nm. The rods are capped by a flat surface
of diameter D f , with the radius of the rounded edge redge =

D−D f

2 (see zoom of Fig. 1(d)).
We vary the diameter of these gap facets from D f = 0 nm to D f = 46 nm, where the former
corresponds to the limit situation of a sphere of diameter D = 50 nm (zoom in Fig. 1(b)). Plane
wave illumination at wavelength λ with the electric field of amplitude E polarized along the chain
axis is used to excite the strong longitudinal plasmonic resonance of the system. We then analyze
the optical response of the plasmonic chains in the far-field and in the near-field as a function
of the number of particles in the chain (Np) and the facet diameter (D f ). The gap distance
(dgap = 1 nm) is short enough that non-local effects would introduce some modification in the
exact resonance frequency and strength of the plasmonic modes, however previous studies have
shown that considering non-locality in calculations of gold systems is equivalent to assuming
a slightly shifted surface interface inside the metal by about 0.9 to 1.5 Å [44]. This effective
displacement of the interfaces creates an effective gap distance which is about 1.7-3 Å larger than
in the local treatment. To simplify the discussion of the properties of the chain modes and focus
on the dependence on the morphology, we develop all our study within the local description.

To analyze the near-field properties in the gaps, we calculate the near-field enhancement in the
central plane of all gaps, for a region corresponding to a circle of 25 nm of radius centred in the
chain axis (area inside the dashed circle in the zoom of Figs. 1(b) and 1(d)). We then evaluate two
different quantities. On the one hand we study the maximum near-field enhancement, |E/E0 |max ,
which corresponds to the maximum field enhancement produced in the gaps. On the other hand
we consider the average field enhancement, |E/E0 |avr , by averaging the near-fields calculated
in all the gaps of a particular chain. We use the Boundary Element Method (BEM) [45, 46]
optimized for cylindrically symmetric systems to solve the Maxwell’s equations. BEM is a
surface method, and thus only the boundary conditions at the surfaces need to be considered for
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Fig. 1. Scheme of aggregates of a) spheres and c) flat-faceted particles under plain wave
illumination with electric field ~E. The incoming illumination mainly excites longitudinal
plasmon modes in chains that extend along the polarization direction (chains delimited in
the scheme by thick blue or red lines). We thus focus on the optical response of chains
of b) spheres or d) flat-faceted particles. Zooms in b) and d) illustrate the dimensions of
the particles composing the chains. In both cases the particles are rotationally symmetric
with respect to the chain axis. We notice that the complex flat-faceted aggregates in c)
would require breaking the rotational symmetry to have more than 2 flat facets per particle.
The spheres (b) are defined by their diameter D = 50 nm. The flat-faceted particles (d)
are rods defined by 3 parameters, the length L (in the direction along the chain axis), the
diameter D (in the orthogonal direction) and the facet diameter D f . redge =

D−D f

2 is
the radius of the edges of the particles. We fix L = D = 50 nm and we vary D f from
D f = 0 nm, corresponding to a sphere, to D f = 46 nm, a cylindrical rod with almost
completely flat facets. In Figs. 4–6 the fields are evaluated in the central plane of the gaps,
in an area corresponding to a circle of radius 25 nm. We mark this region for one gap in the
insets of b) and d) as the region of the central red plane delimited by the dashed circular
line. e) Calculated extinction spectrum of a chain of Np = 10 spheres in blue and a chain
of 10 flat-faceted particles with D f = 46 nm in red for incident light with the electric
field polarized along the chain direction. All the structures considered in this study are
cylindrically symmetric.

solving the optical response (the Maxwell’s equations in the medium are automatically verified).

3. Far-field response

In order to show the strong impact that the faceting has in the optical response of the chains, Fig.
1(e)) shows the extinction cross section of chains formed by Np = 10 particles composed by
spheres (blue) and by D f = 46 nm flat-faceted particles (red). The presence of the flat facets
strongly influences the spectral position of the lowest-energy plasmon resonance by shifting it to
longer wavelengths.

For a more detailed analysis of the far-field response of the system, Fig. 2 shows the normalized
extinction cross-section for chains of different length, both considering spherical particles
(D f = 0 nm, Fig. 2(a)) as well as particles with the largest flat termination considered (D f = 46
nm, Fig. 2(b)). All the spectra show a dominant plasmonic peak (λ > 500 nm) associated with
the lowest-energy longitudinal chain plasmon (LCP) of dipolar character, which redshifts as the
number of particles increases. For spherical particles (Fig. 2(a)) the shift saturates for chains
with Np ∼ 10 particles, showing a maximum shift with respect to the resonance of a single
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Fig. 2. a),b) Waterfall plot of the normalized extinction cross-section calculated as a function
of wavelength for a chain of Au particles for a) D f = 0 nm (spheres) and b) rods with
D f = 46 nm facets for increasing number of particles Np = 1 − 16. Shorter chains are
plotted at the bottom. All the structures considered in this study are cylindrically symmetric,
and the different spectra are shifted vertically for clarity.

sphere that is relatively small [20,26–29]. In contrast, in the case of flat-terminated particles (Fig.
2(b)) the saturation of the redshift is less pronounced even for chains formed by up to Np ∼ 16
particles and the resonance wavelength of the LCP continues to increase with chain length. It
is thus possible to tune the response of flat-faceted particles over a much larger spectral range
than for spherical ones. Additionally, for flat-gap chains formed by Np & 10 particles, a higher
order longitudinal mode that redshifts with increasing Np is also excited at lower wavelengths
(λ ≈ 625 nm ).

Further insight into the strong influence of the gap morphology on the optical response can be
obtained by observing the evolution of the lowest-energy longitudinal chain plasmon resonance
(λLCP) with increasing number of particles in the chain, Np (Fig. 3(a), dots) and for different
sizes of the gap facet (D f = 46 nm, 34 nm, 24 nm, 14 nm, 0 nm top to bottom). For comparison,
Fig. 3(a) also shows the dipolar plasmon resonance of a rod of 50 nm diameter and increasing
length, capped by flat terminations with D f = 46 nm. The resonant shift of the LCP for small
chains is similar for all the facet morphologies. However, D f strongly affects how λLCP evolves
as the chain gets longer. The shift for the chain of spheres deviates from the general trend for
very small number of particles in the chain (Np ≈ 3), saturating for a smaller Np , and thus
the maximum shift with respect to the single particle resonance wavelength λSP ≈ 510 nm
remains comparatively small (λLCP − λSP ≈ 200 nm, bottom line in Fig. 3(a)). As the facet size
increases, the shift of the dipolar LCP reaches saturation for longer chains (upper lines in Fig.
3(a)) so that larger shifts are possible. In the case of D f = 46 nm we obtain λLCP − λSP ≈ 800
nm for Np = 16, a length still far from saturation. This behaviour can be connected with the
response of a rod dimer with flat gap terminations [41], where the narrow flat gap is seen as a
capacitor [47] whose capacitance becomes larger as the gap closes and eventually behaves as a
short-circuit. Thus, the chains for D f = 46 nm and very narrow gaps approach the behaviour of
a single "connected" rod of the same length, characterized by strong, and approximately linear,
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Fig. 3. a) Spectral position of the lowest-energy longitudinal chain plasmon (λLCP)
calculated as a function of the number of particles in the chain Np , for different diameters
D f of the flat facet forming the gaps (top to bottom, D f =46 nm, 34 nm, 24 nm, 14 nm,
0 nm). The different colours in the plot indicate the corresponding structure in the central
panel (recall that the particles are cylindrically symmetric). The calculated values (dots) are
fitted to an exponential function (solid lines). We also show the results for a rod of length
Np · L (an orange dashed line). c) Parameters of the exponential fit for each facet diameter
corresponding to the saturation wavelength λsat

LCP
(red, right axis) and the decay length

Ldec (blue, left axis). Dots are the calculated values while lines are a linear fit.

shifts [6, 48] (orange dashed line in Fig. 3(a)). We have verified that the similarity between the
single rod and the D f = 46 nm chain increases if the gap distance is decreased.

The redshift follows quite closely an exponential dependence with Np for all facets considered,
which generalizes the tendencies observed in previous work for spheres [20]. The solid lines in
Fig. 3(a) correspond to a fit of the calculated data (dots) using the function

λLCP = λsat
LCP − βe−Np /Ldec (1)

where λsat
LCP

is the saturation wavelength of the longitudinal chain plasmon and Ldec is the
decay length (measured in number of particles). The fit is very satisfactory in all cases.

In Fig. 3(b) we analyze the fitting parameters obtained from the calculations in Fig. 3(a)
as a function of the facet diameter D f . The red dots (right axis) show how the saturation
wavelength λsat

LCP
increases for larger facet size, going from λsat

LCP
= 705 nm for spheres, to

λsat
LCP

= 1760 nm for D f = 46 nm particles. The redshift with respect to the single particle
resonance (λsat

LCP
− λSP) is thus a factor of ∼ 6 larger for the large flat facets than for spheres.

A similar behaviour is observed for the decay length Ldec (blue dots and left axis in Fig. 3(b)),
which increases monotonously from Ldec = 3.5 particles for spheres to Ldec = 11.8 particles
for D f = 46 nm flat-faceted particles. Interestingly, the evolution of both λsat

LCP
and Ldec with

Np can be fitted very satisfactorily by a simple linear function (solid lines in Fig. 3(b)), which
makes it straightforward to determine the particular flatness D f and particle number Np to obtain
a resonance at a desired energy.

To understand the linear dependence of λsat
LCP

with D f we consider an infinite chain, ignoring
losses. Each unit cell of the resulting periodic structure can be modelled as a inductance L
characterizing the metallic particle and a capacitance C associated to the inter-particle gaps,
leading to a total impedance Z = iLω + 1

iωC
where ω is the (angular) frequency and i is the

imaginary unit [49–51]. The resonant frequency thus corresponds to ω∞res = 1√
LC

. Using the
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capacitance of two parallel plates of area A separated by the gap distance dgap , C = εA
dgap

, where
ε is the dielectric constant of the material between the plates, and substituting A by the facet area,

we get ω∞res =
(
Lεπ(D f /2)2/dgap

)−1/2
∝ 1/D f . Therefore, λsat

LCP
= λ∞res ∝ 1/ω∞res ∝ D f

reproducing the linear proportionality with D f found in Fig. 3(b). This simple model thus
exhibits the trends found for λsat

LCP
. Nonetheless, a full understanding would require more

complex models. For example, this simple equation wrongly predicts λsat
LCP

→ 0 for D f → 0,
which may be the consequence of neglecting the intrinsic capacitance of the metallic particles
and the contribution to the gap capacitance of the region outside the flat facets.

4. Near-field response
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Fig. 4. a),b) Waterfall plot of the maximum near-field enhancement at the gaps of a chain
of Au particles with a) D f = 0 nm and b) D f = 46 nm facets calculated as a function of
wavelength and number of particles Np = 2− 16. Shorter chains are plotted at the bottom. In
b) black dashed lines track the position of the LCP resonances while blue lines correspond
to the position of the TCPs. All the structures considered in this study are cylindrically
symmetric, and the different spectra are shifted vertically for clarity.

We analyze next the evolution of the maximum near-field enhancement |E/E0 |max at the gaps
with Np , obtained by evaluating the fields in the middle plane of the gaps as described in section
2, both for spherical particles (Fig. 4(a)) and for flat-terminated particles with D f = 46 nm
(Fig. 4(b)). For spherical particles we observe the same predominant lowerst-energy LCP mode
found in the far-field response, which redshifts with increasing Np until it saturates. |E/E0 |max

reaches values of the order of several hundreds for this resonance. For large Np , we also observe
a small narrow peak at a lower wavelength than the main maxima, which would correspond to a
higher order LCP. In contrast, chains formed by flat-faceted particles support two distinct sets
of modes, revealing the existence of non-radiative modes that were not present in the far-field
spectrum [41,52]. First, we can readily identify the strongly radiant LCP modes on the near-field
response (black dashed lines) because their spectral evolution is known from the analysis of
the extinction peaks in Fig. 2(b). On the other hand, a new set of modes emerges on the field
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Fig. 5. a) Maximum near-field enhancement |ELCP/E0 |max of the lowest-energy longitu-
dinal chain plasmon (LCP) calculated as a function of the number of particles in the chain
Np , for different diameters D f (bottom to top , D f = 46nm, 34nm, 24nm, 14nm, 0nm).
b) Average near-field enhancement |ELCP/E0 |avr of the lowest-energy longitudinal chain
plasmon (LCP) as a function of the number of particles in the chain Np , for the same
diameters D f as in Fig. 3. The different colours in the plot indicate the structure under study,
as given by the schematics in the central panel of the figure. All particles are cylindrically
symmetric.

enhancement spectra, as revealed by the maximum at wavelengths λ ≈ 650 nm and λ ≈ 850
nm (blue vertical lines). The resonant energy of these modes is not significantly affected by
changing the length of the chain and, consistently with previous work, we identify them as
transverse cavity plasmons TCPs, i.e. Fabry-Perot like cavity modes at the gap that appear at
energies strongly dependent on the facet diameter [52–54]. The resonant position of the LCPs
and the TCPs at the gap behave essentially independently, as marked in Fig. 4(b) with the blue
and black dashed lines, i.e. they do not show any clear sign of avoided crossing [41], although
mode hybridization can be achieved for other morphologies [55]. When the two modes are
simultaneously excited (spectral match), the enhancement produced by both of the resonances
lead to larger enhancement values.

For a more direct comparison of the effects of the morphology on the maximum field enhance-
ment, Fig. 5(a) shows |E/E0 |max at the wavelength of the dipolar (lowest-energy) LCP peak
(|ELCP/E0 |max ) as a function of Np , for the same values of D f considered earlier. As could be
expected, chains of spheres lead to the strongest enhancements of |ELCP/E0 |max ≈ 470, which
is found for chains of 6 spheres. Nevertheless, for Np & 6 spheres, |ELCP/E0 |max starts to drop
off due to the emergence of significant radiative losses [16, 56, 57]. Particles with small facets
follow the same trends as the spherical ones but the local fields are weaker, |ELCP/E0 |max ≈ 345
for Np = 4 and D f = 14 nm. Finally, short particle chains with larger flat facets exhibit compar-
atively small |ELCP/E0 |max , with some oscillations with increasing Np , due to the crossing of
the LCP and the TCPs. Afterwards the maximum enhancement increases continuously reaching
|ELCP/E0 |max ≈ 180 for the largest facets and longest chains.

Although chains of spheres produce larger maximum near-fields than flat-faceted particles,
the enhancement remains of the same order of magnitude. Furthermore, for specific applications
in spectroscopy and sensing, it is convenient to enhance the field over large areas. Notably, while
studies of single molecules placed at the optimal location are sensitive to the maximum near field,
large average fields are interesting for applications where a considerable number of molecules
are sensed or characterized simultaneously, or when the position of the molecules is not well
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controlled. Figure 5(b) shows the average field enhancement in the gaps for the LCP mode,
|ELCP/E0 |avr , as a function of the number of particles and D f . The average is calculated as
described in section 2. For Np . 5, |ELCP/E0 |avr generally grows as the chain gets longer.
The largest average enhancement is produced for particles with D f = 14 nm, whereas spheres
and particles with D f = 46 nm generate the weakest average fields for these short chains.
For long chains of spherical particles and particles with D f = 14 nm, |ELCP/E0 |avr again
diminishes as Np grows. In contrast, for particles with large facets (D f = 46 nm and D f = 34
nm) |ELCP/E0 |avr keeps growing significantly with increasing length up to Np ≈ 14 − 16.

As a consequence, spherical particles are found not to be optimal to maximize the average
field enhancement. To that end, particles with small but non-zero D f are preferred in short chains,
and so are particles with large facets in the case of long chains. We emphasize that, although the
dependence of the results in Fig. 5(b) on the chain length and on the facet diameter are relatively
complex, strong average fields can be obtained for all types of particle terminations.

We last notice that, depending on the experiment, it may be convenient to average over |E/E0 |
2

(for example for infrared absorption [58]) or over |E/E0 |
4 (for Raman spectroscopy [59]). We

thus analyze the averages of |ELCP/E0 |
2 and |ELCP/E0 |

4, calculated similarly to |ELCP/E0 |avr
(graph not shown). In the case of [( |ELCP/E0 |

2)avr ]1/2, short chains of faceted particles with
small facets (D f = 14 nm) produce the largest values. For long chains (Np = 16 particles), all
the faceted particles with D f ≥ 14 nm lead to similar [(|ELCP/E0 |

2)avr ]1/2. The results for
[( |ELCP/E0 |

4)avr ]1/4 are similar to those in Fig. 5(b) except that D f = 14 nm is optimal for a
number of particles of Np = 2 − 3. Notably, long chains characterized by large flat facets always
result in large average fields independently of how these fields are averaged.

5. Field localization

In any plasmonic structure it is important to understand how the distribution of field enhancements
associated to a plasmonic resonance around the structure is related with the actual localization
of the incident light. To that end, we analyze the field distribution near the gaps of the different
structures studied in the previous sections. In Figs. 6(a)–6(e) we plot the field enhancement
|E/E0 | in the central gap of a Np = 8 particle chain for the dipolar LCP and each facet diameter
studied. Particles with flat facets exhibit less intense near fields but distributed over a larger flat
area in contrast with the stronger localization and more intense fields of the gaps formed by
spherical particles, which agrees with the results of Fig. 5(a). The analysis of the field localization
can be made more quantitative by using the normalized mode area AN ,

AN =
1

π(D/2)2

∫
S

|E(~r) |2

|Emax |2
dS (2)

where |E(~r) |2 is the square modulus of the induced field at position ~r in the central plain of
the gap, |Emax |2 is the maximum of |E(~r) |2, and we normalize by the particles geometrical
cross-section π(D/2)2. The integral extends over the same 25 nm radius region as described in
section 2. We have verified that integrating over a circle of 50 nm radius does not significantly
affect the results.

AN gives a measure of the confinement of the near-fields in the gap. A value of AN = 0
would mean that the field is localized at a single point whereas a value AN = 1 is obtained
when the near-field is uniform across the particle cross-section and zero outside. Figure 6(f)
shows that AN monotonously increases as the facet diameter D f gets larger (red), evolving from
AN = 0.024 for spheres to AN = 0.83 for the larger D f . Two approximations are useful to
understand these results. According to previous quasi-static work [60] the near-field between two
spherical nanoparticles of diameter D separated by a gap dgap is confined to a circle of radius
≈

√
(D/2)dgap , giving AN ≈ 2dgap/D (to be compared to the value AN = 1.2dgap/D given

by the calculations). In the case of large facets, Figs. 6(a)–6(c) indicate that the near-field is
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Fig. 6. Near-field maps of the LCP mode calculated near the central gap of a chain formed
by Np = 8 particles with faceted diameter a) D f = 46 nm, b) D f = 34 nm, c) D f = 24 nm,
d) D f = 14 nm and e) D f = 0 nm. f) The dots and solid line show the LCP normalized
mode area AN as a function of facet diameter D f . The dashed line indicate the normalized
area D2

f
/D2 for each structure considered. All the structures considered in this study are

cylindrically symmetric.

approximately homogeneous at the gap region between the flat facets and much weaker outside.
This would correspond to AN = D2

f
/D2, which is represented in Fig. 6(f) by the black dashed

line. As we can see, the agreement between the normalized area obtained with this simple
expression and that obtained from the calculation is good for intermediate and large facets.

6. Discussion and conclusions

Our analysis has shown that the exact facet morphology plays a key role in determining the
optical response of plasmonic chains of particles separated by nanometric gaps, as those that
can be obtained by self-assembly. We argue that these results might have direct consequences
in more complex branched aggregates [14, 61], whose optical response can be dominated by
plasmonic modes supported by chain-like subunits.The description of the optical response of
aggregates as ensembles of linear chains is based on the validation of this concept for spherical
particles, and we expect it to be valid also in clusters formed by flat-faceted units, at least if
the different gaps are always formed between well-aligned flat facets. Furthermore, although
the inherent disorder found in self-assembled aggregates modifies to some extent the plasmonic
modes, the overall properties of the plasmonic response have been found to be quite robust with
respect to disorder in previous work [14, 32, 62, 63]. The experimental realization of such 2 or
3-dimensional aggregates would require particles with more than two flat facets. Multiple facets
often occur naturally when trying to synthesize spherical particles [64], and it appears possible
to modify the synthesis process to optimize the level of faceting for a given application. Notably,
cubes have already been synthesized [65].

The key result of this paper is the much larger tunability of the longitudinal chain plasmon
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(LCP) when using flat-capped cylindrical particles than when using spherical ones. Notably, all
the geometries studied in this paper exhibit a exponential redshift of the LCP as the chain gets
longer, with the decay length Ldec and the saturation wavelength λsat

LCP
increasing linearly as

the facets become larger. In particular, the resonant energy for the case of flat-capped cylindrical
particles extends from λSP ≈ 525 nm for a single particle to a saturation wavelength (as defined
in Eq.1) λsat

LCP
≈ 1760 nm, which covers the whole near-infrared biological window [33, 34]

and the corresponding decay length is Ldec = 11.8 particles. In comparison, λsat
LCP

≈ 705
nm and Ldec = 3.4 particles for spherical particles. Chains of flat-faceted particles are thus
a promising alternative in field enhanced spectroscopy and sensing, compared to other self-
assembled structures such as chains of rods [35].

Last, we found that flat-faceted particles exhibit near-field enhancements of the same order of
magnitude as spheres but distributed over a larger area at the gaps. This larger region of strong
enhancement can be used to accommodate more molecules and to facilitate the location of the
molecules for field-enhanced spectroscopies, as well as to induce coupling between molecules to
boost coherent interactions for quantum information applications. Chains of flat-faceted particles
thus seem suitable for experiments requiring optical tunability over a wide spectral range without
losing the strong near-field enhancements characteristic of chains of spherical particles.
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