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Surface-enhanced Raman scattering (SERS) allows for detection and identification of molecular vibrational
fingerprints in minute sample quantities. The SERS process can also be exploited for optical manipulation of
molecular vibrations. We present a quantum description of surface-enhanced resonant Raman scattering, in
analogy to hybrid cavity optomechanics, and compare the resonant situation with the off-resonant SERS. Our
model predicts the existence of a regime of coherent interaction between electronic and vibrational degrees
of freedom of a molecule, mediated by a plasmonic nanocavity. This coherent mechanism can be achieved
by parametrically tuning the frequency and intensity of the incident pumping laser and is related to the
optomechanical pumping of molecular vibrations. We find that vibrational pumping is able to selectively activate
a particular vibrational mode, thus providing a mechanism to control its population and drive plasmon-assisted
chemistry.

DOI: 10.1103/PhysRevA.100.043422

I. INTRODUCTION

Surface plasmon excitations in metallic particles are able to
squeeze and enhance electromagnetic fields down to the nano-
metric scale and thus dramatically enhance the interaction of
nearby molecules with the incident light. The plasmonic near-
field enhancement has been exploited in plasmon-enhanced
spectroscopies, particularly in surface-enhanced Raman spec-
troscopy (SERS) [1–13], which enables detection of minute
quantities of molecular samples. The improved design of
plasmonic cavities has allowed for spectroscopic investigation
of even single molecules that are placed into ultranarrow plas-
monic gaps [3,14]. Current experimental strategies have taken
advantage of the properties of plasmonic cavity modes that
allow reaching the plasmon-exciton strong-coupling regime
with single molecules [15], as well as intramolecular op-
tical mapping of single-molecule vibrations in SERS [14]
or in electroluminescence [16,17]. These results suggest the
possibility to push the use of plasmonic modes to further
actively control the quantum state of a single molecule and
thus influence its chemistry [18–24]. Recent theoretical and
experimental studies [25–29] have revealed that off-resonant
SERS can be understood as a quantum-optomechanical pro-
cess [25,26,30] where the single-plasmon mode (sustained
in a plasmonic cavity) of frequency ωpl plays the role of
the macroscopic optical cavity and the molecular vibration
of frequency � plays the role of the macroscopic oscillation
of the mirror. The description of such a process requires the
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development of concepts and methods beyond the standard
classical description of SERS [25–29].

In this work we address a quantum-mechanical theory
of surface-enhanced resonant Raman scattering (SERRS),
where an optical plasmonic mode supported by a metallic
nanostructure mediates a coherent laser excitation of a nearby
single molecule described as an electronic two-level system
(TLS), coupled to a vibrational mode. In SERRS this laser
excitation is assumed to be resonant with the electronic tran-
sition in the molecule. We discuss the similarities and differ-
ences between the SERRS Hamiltonian and the off-resonant
quantum-optomechanical Hamiltonian, which has been de-
scribed previously. To that end we adopt a range of optome-
chanical parameters available in typical resonant situations.
We then show that nontrivial phenomena emerge in SERRS
under intense laser illumination, when the nonlinearities of
the molecule can trigger the coherent coupling of molecu-
lar electronic and vibrational degrees of freedom [31–37].
We further exploit the analogy with quantum optomechanics
to propose a mechanism of on-demand frequency-selective
pumping of molecular vibrations [1,4,6,7,10] via the coherent
laser illumination. These phenomena may provide a means
to drive plasmon-enhanced vibrational spectroscopy to the
realm of single-molecule selective chemistry or engineering
of single-molecule optomechanical systems involving molec-
ular vibrations on demand.

II. SE(R)RS AS AN OPTOMECHANICAL PROCESS

Here we extend the analogy between optomechanics and
SERS and describe SERRS in the framework of cavity
quantum electrodynamics as a hybrid-optomechanical process
[38,39]. For further convenience, we now briefly describe and
compare the resonant and off-resonant scenarios.
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FIG. 1. Schematics of (a) the off-resonant SERS process in a plasmonic particle and a vibrating molecule and (b) the SERRS process,
both depicted with their corresponding level structure. (a) The plasmonic number states |npl〉 have equidistant energies h̄nplω

′
pl (vertical axis)

and vibrational fine structure for each |npl〉. The vibrational parabolas are displaced by npldom along the dimensionless normal coordinate
q depending on the number of plasmonic excitations. (b) The SERRS system consists of a plasmonic particle interacting with a molecule
described by an electronic (two-level) and vibrational (bosonic) degrees of freedom: The potential energy surfaces h̄Eg(q) and h̄Ee(q) for
the vibrations depend on the electronic states and are shifted with respect to the dimensionless normal coordinate q by a displacement d . The
plasmon mode is excited by coherent laser illumination of frequency ωL ≈ ωpl.

A. Off-resonant SERS

In off-resonant SERS all electronic transitions in the
molecule are far detuned from the frequency of the prob-
ing laser. The optomechanical Hamiltonian describing off-
resonant SERS reads [25–28]

Hom = Hpl + Hvib + Hpl-vib + Hpump, (1)

where

Hpl = h̄ωpla
†a, (2a)

Hvib = h̄�b†b, (2b)

Hpl-vib = −h̄goma†a(b† + b), (2c)

Hpump = h̄E[a exp(iωLt ) + a† exp(−iωLt )]. (2d)

Here operators a (a†) and b (b†) are the annihilation (cre-
ation) operators for plasmons and vibrations, respectively,
E is the pumping amplitude (with |E |2 proportional to the
laser intensity) that characterizes the interaction Hamiltonian
between the plasmon mode and the classical laser illumination
of frequency ωL, and gom is the optomechanical coupling
constant that can be connected to the Raman tensor of the
molecule [25–27] and to the plasmonic near field. The Raman
tensor contains the influence of the off-resonant electronic
transitions in the molecule that are not considered explicitly
in the Hamiltonian. The pumping term Hpump is considered in
the rotating-wave approximation (RWA) assuming that E does
not reach more than E ≈ 0.1ωpl.

In what follows it will be convenient to interpret the
optomechanical interaction as a displacement of the vibra-
tional mode by a dimensionless value npldom, dependent on
the number of excitations (plasmons) in the cavity npl. This
becomes apparent after rearranging the bare optomechanical
Hamiltonian Hbom = Hpl + Hvib + Hpl-vib into the form

Hbom = h̄
(
ωpl − �d2

oma†a
)
a†a

+ h̄�(b† + doma†a)(b + doma†a), (3)

with the dimensionless displacement dom = −gom/�. The
first line of Eq. (3) is the nonlinear Hamiltonian of the cavity

excitations (plasmons). In the limit of a weakly populated
cavity and dom � 1 we can neglect the small nonlinear term
−h̄�d2

oma†a†aa; we redefine the plasmon frequency as h̄ωpl −
�d2

om ≡ h̄ω′
pl and recover the linear plasmon Hamiltonian

h̄ω′
pla

†a so that

Hbom ≈ h̄ω′
pla

†a + h̄�(b† + doma†a)(b + doma†a). (4)

The second line in Eq. (3) has the sought form of a vibrational
mode displaced by an amount that depends on the number of
plasmonic excitations in the cavity a†a.

The level structure of the bare optomechanical Hamiltonian
Hbom [Eq. (4)] is visualized in Fig. 1(a). The large gray dashed
parabola illustrates an effective potential supporting the plas-
monic mode. The vibrational potential is represented by the
small parabolas that are displaced along the dimensionless
normal coordinate q by a magnitude npldom proportional to
the plasmonic number state |npl〉 [40,41]. The energies of the
plasmon Hamiltonian form an equidistant ladder, schemat-
ically drawn for the three lowest plasmon number states
|npl〉, and contain a fine structure of molecular vibrational
sublevels.

B. SERRS

We complete the previous picture of SERS by address-
ing the scenario where the frequency of the incident laser
approaches the molecular electronic resonance. To describe
SERRS we can consider the molecule as a TLS that interacts
with the vibrational modes via a polaronic coupling term
[38,42–46] and with the plasmonic cavity via the Jaynes-
Cummings coupling term [see Fig. 1(b)]. The molecular vi-
brations are modeled as bosons within the Born-Oppenheimer
approximation, where the effective harmonic vibrational po-
tential is given by the ground-state [Eg(q)] and the excited-
state [Ee(q)] potential energy surfaces (PESs) along a normal
vibrational coordinate q, respectively [47–50]. We consider
that the vibrational energies of the molecule h̄� are the same
for the ground and for the excited state.
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The Hamiltonian of the SERRS system H res
om, using the

rotating-wave approximation, can be expressed as [38,51–53]

H res
om = Hpl + Hmol + Hpump + Hpl-e, (5)

with

Hmol = h̄[Ee(d ) − Eg(0)]σ †σ

+ h̄�(b† + σed )(b + σed ), (6)

Hpl-e = h̄gaσ † + h̄g∗a†σ,

and Hpl and Hpump as defined in Eq. (2) above. Here the
operator σ (σ †) is the lowering (raising) operator of the TLS,
with σe = σ †σ the TLS number operator. The parameter d
is the dimensionless displacement between the minima of the
ground- and excited-state PESs, which is related to the Huang-
Rhys factor [43,45,47,48,53] S as S = d2 and is a measure
of the coupling between the molecular vibration and the
excitonic transition. The interaction of the localized plasmon
excitation and the molecular electronic levels is mediated by
the plasmon-exciton coupling constant g. More details about
the model Hamiltonian are given in Appendix A.

The level diagram describing the SERRS Hamiltonian H res
om

[Eq. (5)] is sketched in Fig. 1(b). Strikingly, both the off-
resonant Hamiltonian Hbom and the molecular Hamiltonian
in SERRS Hmol can be represented as a series of mutually
displaced harmonic vibrational PESs. The electronic states in
SERRS thus play the role of the plasmon number states in the
off-resonant case, an analogy which can be identified from the
comparison of the Hamiltonians in Eqs. (4) and (6).

In the limit of single-photon optomechanics [40,41,54],
where the plasmon Hilbert space is limited to the vacuum
state and the singly excited state, the molecular Hamiltonian
Hmol and Hbom become formally identical. However, as we
detail later, if the incident laser is strong, the nonlinear char-
acter of the excitonic TLS Hamiltonian [Eq. (6)] will lead
to novel physical phenomena that cannot be achieved in the
off-resonant SERS situation [Eq. (4)]. This perspective makes
it particularly attractive to study SERRS.

C. Dissipative processes in SE(R)RS

In realistic systems, excitations undergo decay, pumping,
and dephasing processes. Losses and thermal pumping are
considered in the dynamics of the system by solving the
master equation for the density matrix ρ with incoherent
damping introduced via the Lindblad-Kossakowski terms [55]
for the plasmon and the vibration

La[ρ] = −γa

2
(a†aρ + ρa†a − 2aρa†), (7)

Lb[ρ] = −(nvib
T + 1

)γb

2
(b†bρ + ρb†b − 2bρb†) (8)

and in the case of SERRS for the electronic TLS

Lσ [ρ] = −γσ

2
(σ †σρ + ρσ †σ − 2σρσ †), (9)

where γb is the vibrational, γa the plasmonic, and γσ the
electronic decay rate and nvib

T is the equilibrium thermal
population determined by the reservoir according to the

Bose-Einstein distribution

nvib
T = 1

exp
(

h̄�
kBT

)− 1
, (10)

with the Boltzmann constant kB and thermodynamic temper-
ature T . Furthermore, for finite temperatures we consider the
thermal pumping of the vibrations via

Lb† [ρ] = −nvib
T

γb

2
(bb†ρ + ρbb† − 2b†ρb). (11)

In most of the paper we consider the low-temperature limit
(T = 0 K) where the thermal populations can be neglected.
The effect of finite temperature on steady-state vibrational
populations is considered in Sec. VIII. We further include
in the model the pure dephasing of the molecular electronic
excitations in the form of the Lindblad term [33,55,56]

Lσz/2(ρ) = −γφ

4
({σzσz, ρ} − 2σzρσz ), (12)

with σz = σ †σ − σσ †. This description of pure dephasing is
valid in the plasmon-exciton weak-coupling regime consid-
ered below [57].

The decay of the state-of-the-art plasmonic cavities γa is
ultimately limited by the material properties of the metal
[34,58–61], reaching quality factors Q (Q = ωpl/γa) of up
to Q ≈ 50 (h̄γa ≈ 40 meV). However, the values of Q com-
monly achieved in plasmonic systems are usually smaller
(Q ≈ 1–20). For example, the leaky gap mode formed be-
tween a tip of a scanning tunneling microscope and a metal-
lic substrate often used for single-molecule spectroscopy
[14,16,17,62–64] can be strongly damped, h̄γa ∼ 102 meV,
and can thus be regarded as a low-Q plasmonic cavity.

On the other hand, a typical decay rate of molecular exci-
tations decoupled from the plasmonic cavity is much smaller
than that of plasmons (as small as h̄γσ ∼ 10−2 meV � γa).
The linewidth of the molecular resonance is thus mostly
limited by the pure dephasing γφ , which strongly scales
with temperature and is highly dependent on the environment
surrounding the molecule. It is thus possible to engineer con-
ditions (low-temperature vacuum experiment) under which
the pure dephasing becomes small and the linewidth of the
molecular electronic excitation decreases to less than 10 meV
and may even be limited only by the spontaneous decay.

D. Setting the SERRS regime

Let us consider a value of γa representing a leaky gap
plasmonic mode formed between a tip of a scanning tunneling
microscope and a metallic substrate as typically used for
single-molecule spectroscopy [14,16,62–64], for which h̄γa ∼
102 meV. We consider the bad-cavity limit (weak-coupling
regime) where the plasmon-exciton coupling g is small com-
pared to the plasmonic losses but large with respect to the
intrinsic decay γσ (γσ � g � γa). In the bad-cavity limit, the
molecular levels are only weakly perturbed by the presence of
the plasmon that boosts the decay of the molecular electronic
excitation via the Purcell effect and focuses the incident light
on the resonant molecule via the plasmonic near-field en-
hancement. The limit of the plasmon-exciton strong-coupling
regime, where the coupling between the plasmon and the
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TABLE I. Schematic diagram of the Hamiltonians used throughout the paper. The underlined Lindblad superoperators originate from
effective elimination of subsystems whose Hamiltonians and Lindblad superoperators appear in the boxes connected by the respective lines
(marking the approximations applied). The lower right box describes the same approximation applied to two situations: Only one vibrational
mode is included (top) and two vibrational modes are included (bottom).

Resonant optomechanical Hamiltonian

[Eq. (5)]

[Eq. (12)][Eq. (7)] [Eq. (8)] [Eq. (9)] [Eq. (11)]

[Eq. (17)]

[Eq. (22)]

[Eq. (16)]

[Eq. (2)]

[Eq. (18)] [Eq. (19)]

Sec. VII

Secs. IV-VI

Secs. IV-VI Appendixes D–F 

Appendixes D and E

Sec. V
Appendix G

Appendixes D and E

[Eq. (G1)]

[Eq. (G2)] [Eq. (G3)]

[Eq. (15)]

Assumption: small displacement
(approximately)

Assumption: weak plasmon-exciton coupling,
i.e., (approximately),

Considering two vibrational modes:

TLS dominates over the plasmonic losses, will be detailed
elsewhere.

In the bad-cavity limit, the parameters determining the
regime of the off-resonant optomechanical coupling dom, as
well as that defining the exciton-vibration coupling d in the
resonant model, describe formally the same physical phe-
nomena under weak-illumination conditions. This follows
from the formal similarity between Hbom [Eq. (4)] and Hmol

[Eq. (6)] established in Sec. II B. In off-resonant SERS, the
condition |dom�| > γa/2 sets the so-called optomechanical
strong coupling. In such situation the optomechanical non-
linearity −�d2

oma†a†aa becomes important and the system
becomes interesting for quantum applications. It has been
estimated that the optomechanical coupling can reach up to
dom ∼ 10−1 for some molecular species [25,26].

On the other hand, in SERRS, for relevant dye molecules
with electronic excitations in the visible, d ranges from d ∼
0.1 for rigid molecules (such as porphyrins [65]) up to values
of d ∼ 1 for soft organic molecules [43,66]. Surface-enhanced
resonant Raman scattering might thus offer relatively high
optomechanical coupling strengths even for a single organic
molecule. Moreover, under the conditions of small molecular
dephasing, the width of the excitonic resonance becomes
much smaller than that of the plasmon and SERRS may offer
the possibility to achieve large optomechanical coupling com-
pared to the relevant linewidth |d�| > �tot/2 + γφ/2 (strong
optomechanical coupling), with �tot = γσ + �eff and �eff the
width of the TLS due to the Purcell effect induced by the

plasmons that we discuss later. In off-resonant SERS it is
the cavity width γa which determines the regime of optome-
chanical coupling and achieving the condition |dom�| > γa/2
is more challenging.

In this work we consider a range of relatively large
coupling strength between the plasmon and the molecular
TLS (h̄g ≈ 9–50 meV), although still small enough to be
in the bad-cavity limit [15,36]. These selected values allow
us to explore different regimes of plasmon-assisted interac-
tion between molecular excitons and vibrations, as detailed
below. We also adopt h̄γa = 500 meV, h̄γσ = 0.02 meV,
h̄ωpl = 2 eV, and h̄ωeg = 2 eV as typical representative val-
ues of realistic molecules and plasmonic systems [36,53].
We assume vibrational frequencies ranging between h̄� =
10 and 50 meV, describing low-energy vibrations of typical
organic molecules. In particular, when discussing phenomena
emerging under weak laser illumination (as discussed below)
we adopt the values of h̄� = 50 meV and h̄γb = 2 meV
to describe the molecular vibration, whereas to address the
regime of strong laser illumination we choose h̄� = 10 meV
and h̄γb = 1 meV. This lower value of the vibrational fre-
quency allows us to access the nonlinear response of the
system even for realistic laser intensities that comply with
the rotating-wave approximation assumed in our model. With
the exception of Sec. VIII, throughout the paper we consider
zero ambient temperature T = 0 K.

In the following we describe the inelastic emission spec-
tra and the vibrational pumping in SERRS for (i) the
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FIG. 2. Inelastic emission spectra and vibrational populations of a SERRS process where the molecular exciton is weakly coupled to
the plasmon. (a) Normalized inelastic emission spectra se(ω)/se(ωeg) for different values of pure dephasing γφ (for the three top spectra
h̄γφ = 20 meV and for the bottom spectrum h̄γφ = 0 meV) and dimensionless displacement d (from top to bottom, d = 1, 0.5, 0.1, 0.1). The
spectra are vertically shifted for clarity. The blue-dashed line indicates the position of ωeg and the green dash-dotted line marks the excitation
frequency ωL. The vibrational frequency is h̄� = 50 meV. (b) Inelastic emission spectra as a function of detuning δ = ωeg − ωL of the incident
laser frequency ωL from the exciton frequency ωeg. The white dashed line marks the laser frequency in each emission spectrum. In (a) and
(b) we set h̄g ≈ 13 meV. (c) Incoherent population of the vibrational mode as a function of laser detuning δ for illumination amplitude h̄E =
1 × 10−2 meV and different values of plasmon-exciton coupling g. In the upper panel h̄g ≈ 13 meV and the molecule’s effective broadening
�eff , due to the Purcell effect, is similar to the linewidth of the vibrational Raman lines γb. In the lower panel h̄g = 50 meV and this larger value
of the plasmon-exciton coupling ensures �eff > γb. The red dashed line corresponds to the populations calculated analytically using Eq. (20)
and the black solid line to the numerical results.

linear-response regime (relatively weak laser illumination in
Secs. III and IV) and (ii) strong laser illumination where the
molecular levels are dressed by the intense laser field and
form a qualitatively new set of light-matter states (Secs. V and
VI). For convenience, in Table I we also include a diagram
summarizing the different approximations and models used
throughout the text.

III. PHOTON-EMISSION SPECTRA
IN THE LINEAR REGIME

We first discuss the spectral response and the physics of
hybrid-optomechanical vibrational pumping in SERRS sys-
tems in the limit of weak incident laser intensities, for which
the system can be treated within the linear-response theory
(hereafter referred to as weak illumination). In this regime we
limit the description to T = 0 K as the thermal effects would
mask the optomechanical pumping and damping processes
that are weak for the low laser intensities discussed here. We
relax this assumption later when we address the regime where
the system is pumped by an intense laser.

For convenience, we define the detuning parameters 
 =
ωpl − ωL and δ = ωeg − ωL [with the exciton frequency ωeg =
Ee(d ) − Eg(0)] and define the coherent amplitude of the plas-
mon annihilation operator induced by the incident monochro-
matic illumination αS = −E/(
 − iγa/2). The solution of
the dynamics of the hybrid optomechanical Hamiltonian and
the respective Lindblad terms with the parameters described
above, allow for calculating the steady-state emission spec-
trum se(ω) from the plasmonic cavity using the quantum
regression theorem (QRT)

se(ω) ∝ 2 Re
∫ ∞

0
〈〈a†(0)a(τ )〉〉dτ. (13)

In this spectrum we remove the elastic scattering contribution
and use the notation 〈〈O1O2〉〉 = 〈O1O2〉 − 〈O1〉〈O2〉, where
O1 and O2 are operators with 〈·〉 denoting the mean value, and

omit a frequency-dependent prefactor proportional to ω4 for
simplicity. More details about the specific implementation of
this expression can be found in Appendix B.

To illustrate the emission properties of typical molecules,
we plot in Fig. 2(a) the inelastic spectra in a SERRS system
[normalized to se(h̄ωeg) and vertically shifted], calculated for
weak illumination h̄E = 1 × 10−2 meV (roughly correspond-
ing [29] to a laser power density of W ≈ 1 × 10−4 μW/μm2)
from a monochromatic laser of frequency h̄ωL = 1.975 eV
(green dash-dotted line) and for exciton-plasmon coupling
h̄g ≈ 13 meV. The excitonic energy is h̄ωeg = 2 eV. We
calculate the spectra for two large values of d = 1, 0.5 (top
spectra) representing soft organic molecules and for a small
value of d = 0.1 of a rigid molecule (two bottom spec-
tra). We choose h̄γφ = 20 meV for the three top spectra to
demonstrate the effect of pure dephasing on the emission of
molecules interacting with a decoherence-inducing environ-
ment. In the bottom spectrum no dephasing is considered,
h̄γφ = 0 eV.

The bottom spectrum in Fig. 2(a), calculated for weak
exciton-vibration coupling d = 0.1 and considering no pure
dephasing (h̄γφ = 0 meV), features two sharp emission peaks.
The fluorescence peak appears at frequency ω = ωeg regard-
less of the incident laser frequency. The second peak, appear-
ing at ω = ωL − �, is the Raman-Stokes emission line. The
anti-Stokes line is not visible because the vibrations are not
thermally populated for T = 0 K. The Raman (SERRS) line
always appears at a constant detuning from the laser frequency
which facilitates its identification in the spectrum. When the
pure dephasing is increased, the fluorescence line starts to
broaden and also increases in absolute intensity [the latter is
not manifested in Fig. 2(a) due to normalization]. The SERRS
emission becomes hardly distinguishable on top of the strong
fluorescence background for d = 0.1. As d increases, the flu-
orescence background becomes asymmetrical and broadens
towards lower energies due to radiative transitions allowed by
the simultaneous exchange of energy between electronic and
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vibrational states (hot luminescence). This so-called vibra-
tional progression of the luminescence spectrum thus consists
of a series of broad peaks, each peak positioned at frequency
ωeg − n� (with n a positive integer), with its amplitude de-
termined by the overlap of the vibrational wave functions
in the electronic ground and excited states (Franck-Condon
factors) [40,41,47,48,54]. The Raman-Stokes lines appear on
top of the fluorescence peaks at frequencies ωL − n�. The
strength of the Raman lines is determined from a combination
of the Franck-Condon overlaps, as in the case of the hot
luminescence, and from the further enhancement due to the
proximity of the molecular electronic resonance that (i) en-
hances the interaction of the incident laser with the molecular
transition and (ii) boosts the efficiency of the Raman-Stokes
emission. The Raman peaks are also notably narrower than the
fluorescence peaks when dephasing is large (h̄γφ = 20 meV),
which facilitates their identification on top of the broad and
intense fluorescence background.

The difference between the physical origin of the SERRS
lines and the fluorescence lines becomes clearer if we plot
the emission spectra as a function of the laser detuning from
the exciton frequency δ = ωeg − ωL. The emission spectra are
shown in Fig. 2(b) for a rigid molecule (d = 0.1) and for no
dephasing, similar to the bottom spectrum in Fig. 2(a). The
molecule is pumped by an incident laser of amplitude h̄E =
1 × 10−2 meV and we consider an exciton-plasmon coupling
h̄g ≈ 13 meV. The incident laser frequency is marked in the
spectra as a white dashed line diagonally crossing the color
plot. The color plot with the spectra shows both the Raman-
Stokes peaks that appear red detuned from the incident-laser
frequency ωL by n� and the fluorescence peaks emerging at
the energy of the excitonic transition regardless of δ.

Furthermore, the emission shown in Fig. 2(b) is enhanced
when the exciton is resonantly pumped h̄δ = 0 eV or when the
frequency of the first-order Raman-Stokes line ω = ωL − �

corresponds to the bare excitonic resonance h̄δ = −h̄� =
−50 meV. When the laser frequency is tuned to the molecular
exciton (h̄δ = 0 eV), the incident laser coherently (coherent
population ncoh

σ = |〈σ 〉|2) and incoherently (incoherent pop-
ulation nincoh

σ = 〈σ †σ 〉 − |〈σ 〉|2) populates the electronic ex-
cited state. Thereafter, the molecule efficiently emits both the
Raman-Stokes (proportional to ncoh

σ ) and the hot luminescence
(proportional to nincoh

σ ) photons at ω = ωeg − �. On the other
hand, when h̄δ = −h̄� = −50 meV, the spectral position of
the first-order Raman-Stokes line coincides with the reso-
nance frequency of the molecular exciton. In this case, the
molecular fluorescence peaks, now appearing at the spectral
positions of the Raman-Stokes lines, are suppressed since the
off-resonance illumination does not efficiently populate the
excited electronic state and the emission peaks appear mainly
due to the SERRS mechanism. Both of these mechanisms
of SERRS enhancement are closely related to the process of
optomechanical vibrational pumping, described for the off-
resonant case [25–28]. We provide more details on the origin
and interpretation of SERRS and hot luminescence and the
enhancement mechanisms involved in Appendix C.

Finally we remark that the spectral map in Fig. 2(b) also
features lines appearing due to higher-order Raman scattering
and hot luminescence. These lines show much lower intensity
than the lines of lower orders, but they exhibit the same

mechanism of emission enhancement, as is apparent from the
spectral map.

IV. VIBRATIONAL PUMPING IN THE LINEAR REGIME

Inasmuch as the emission of Raman-Stokes photons is
accompanied by the creation of a vibrational quantum, the en-
hanced Raman-Stokes emission is reflected in the incoherent
steady-state vibrational population 〈b†b〉SS,in. To elucidate the
role of Raman-Stokes scattering in the process of vibrational
pumping in SERRS, we plot in Fig. 2(c) the vibrational pop-
ulation as a function of incident laser detuning for two values
of plasmon-exciton coupling. The upper panel corresponds to
h̄g = h̄

√
γbγa/6 ≈ 13 meV, for which the broadening of the

electronic resonance due to the plasmonic Purcell effect (see
also Appendix D)

�eff ≈ g2γa(
γa

2

)2 + (δ + �d2 − 
)2
≈ g2γa(

γa

2

)2 + (δ − 
)2
(14)

becomes comparable to the broadening of the vibrational line
γb, and in the lower panel we use h̄g = 50 meV, ensuring that
�eff > γb (with h̄�eff ≈ 20 meV). In the calculations we set
h̄E = 1 × 10−2 meV to make sure that we stay in the linear
regime. The numerically calculated values of 〈b†b〉SS,in (black
lines) are qualitatively similar in both cases. A set of peaks
is clearly observed which corresponds to the enhancement of
the Raman-Stokes emission for detunings of h̄δ = 0 eV, h̄δ =
−h̄� = −50 meV, and higher orders (δ = −n�, n > 1). The
effect of the larger plasmon-exciton coupling g is to broaden
the peaks and to smear off the population maxima associated
with enhancement of the higher-order Raman-Stokes emis-
sion (δ = −n�, n > 1).

To shed light on the mechanism of vibrational pumping in
SERRS, we derive the effective vibrational dynamics which
results from the elimination of the plasmon and the TLS
dynamics, following standard methods from the theory of
open quantum systems [55], in close analogy to the proce-
dure developed in hybrid quantum optomechanics [52] (see
the description of the procedure in Appendixes D and E).
Upon elimination of the plasmon, the effective reduced TLS
vibrational Hamiltonian Hred becomes

Hred = h̄δσ †σ − h̄ 1
2Eplσx + h̄�(b† + σed )(b + σed ), (15)

where Epl = −2gαS is the coherent pumping of the molecule
mediated by the plasmon and σx is the Pauli x operator.
Moreover, in the bad-cavity limit, the molecular excitonic
TLS is effectively broadened due to the plasmon via the
Purcell effect, formally added via a Lindblad superoperator

LPurcell[ρ] = −�eff

2
(σ †σρ + ρσ †σ − 2σρσ †). (16)

The total TLS decay rate thus becomes γσ → �tot =
�eff + γσ .

By further eliminating the TLS from the vibrational dy-
namics, assuming that the broadening of the electronic levels
�tot is larger than |d�| so that the Markovian approach
applies, we obtain an effective vibrational Hamiltonian that
includes the coherent pumping due to the TLS excited-state
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population

H eff
vib = h̄�b†b + h̄d�〈σe〉(b† + b), (17)

which is accompanied by the effective incoherent damping
�− and pumping �+ rates, which need to be added to the
intrinsic vibrational dissipation rate [described by the original
Lindblad term in Eq. (8)] via the (new) Lindblad terms

L−
eff [ρ] = −�−

2
(b†bρ + ρb†b − 2bρb†) (18)

for the effective damping and

L+
eff [ρ] = −�+

2
(bb†ρ + ρbb† − 2b†ρb) (19)

for the effective pumping. These rates are defined as
�− = 2(�d )2Re{S̃(�)} and �+ = 2(�d )2Re{S̃(−�)}, re-
spectively, where Re indicates the real part and S̃(s) =∫∞

0 〈〈σe(τ )σe(0)〉〉eisτ dτ is the spectral function corresponding
to the one-sided Fourier transform of the correlation function
of the TLS for a generic frequency s. The latter is calculated
for the TLS decoupled from the vibrations, but coupled with
the plasmon, which effectively broadens the TLS [details
about the analytical calculation of S̃(s), and thus �+ and �−,
are provided in Appendix E]. Finally, the incoherent steady-
state vibrational population induced by the effective pumping
of the vibrations via the TLS in this approximation becomes

〈b†b〉SS,in = �+
γb + �− − �+

≈ �+
γb

∝ Re{S̃(−�)}, (20)

where the last approximation originates from the fact that
under weak pumping γb � �− − �+. We note that in the
linear regime 〈b†b〉 ≈ 〈b†b〉SS,in. From Eq. (20) it follows that
the behavior of the spectral function S̃(−�; δ) as a function of
the incident laser frequency (i.e., δ) determines the conditions
for which the vibrational pumping occurs. In the linear regime
we can simplify the expression for Re{S̃(−�)}, in analogy
with the description of the off-resonant model [25–28] as

Re{S̃(−�)} = Re

{∫ ∞

0
〈〈σe(τ )σe(0)〉〉e−i�τ dτ

}

≈ |〈σ 〉|2Re

{∫ ∞

0
〈〈σ (τ )σ †(0)〉〉e−i(�−ωL )τ dτ

}

≈ |Epl|2
4[δ2 + (�tot/2)2]︸ ︷︷ ︸

S̃R
coh

�tot/2

(δ + �)2 + (�tot/2)2︸ ︷︷ ︸
S̃R

in

.

(21)

The two terms S̃R
coh ≈ |〈σ 〉|2 and S̃R

in ≈ Re{∫∞
0 〈〈σ (τ )σ †(0)〉〉

e−i(�−ωL )τ dτ } can then be interpreted as the efficiency of the
coherent driving (S̃R

coh resonant at δ = 0) and the efficiency
of the spontaneous Stokes-Raman emission (S̃R

in resonant at
δ = −�), respectively.

The effective vibrational dynamics and steady-state values
derived in this section are an accurate approximation to the
exact problem only if the decay rate �tot of the dressed TLS is
significantly larger than the intrinsic vibrational decay rate γb

and the exciton-vibration coupling is weak (moderate values
of d). Realistic situations in molecular spectroscopy might not
satisfy these conditions and in those situations it would be
necessary to adopt a numerical treatment to obtain accurate
results. Nevertheless, the properties of the TLS spectral func-
tion reveal the origin of the vibrational pumping even beyond
the limits of validity of the analytical model.

We plot the analytical result for the evolution of the vi-
brational populations as a function of detuning δ with a red
dotted line in Fig. 2(c). The analytical vibrational populations
share with their numerically calculated counterparts (black
lines) the same dominant peaks appearing for zero laser
detuning from the exciton frequency δ = 0 and for detuning
δ = −� when the frequency of the first-order Raman-Stokes
line coincides with the excitonic frequency. These two values
of the laser detuning also lead to an enhancement of the
Raman-Stokes emission [Fig. 2(b)], which is here the driving
mechanism of the optomechanical vibrational pumping.

Although the analytical model nicely describes the main
features of the fully numerically calculated vibrational popu-
lations, it cannot explain the presence of the weaker higher-
order peaks. This is due to the Markov approximation leading
to Eqs. (17)–(19) which treats the exciton-vibration interac-
tion perturbatively. In the full model, the vibrational pumping
mechanism is also present for the vibrational transitions re-
sponsible for higher-order Raman scattering and hot lumines-
cence. Moreover, in the case that h̄g ≈ 13 meV, the analytical
model overestimates the vibrational populations induced by
the optomechanical amplification for h̄δ = −h̄� = −50 meV,
since the effective broadening of the TLS, �tot = �eff + γσ ,
is similar to the vibrational broadening γb, and the Markov
approximation becomes less accurate. For h̄g = 50 meV the
effective broadening �tot > γb and the analytical model de-
scribes the low-order features of the vibrational populations
accurately.

V. PHOTON-EMISSION SPECTRA FOR
STRONG LASER INTENSITIES

Let us explore in the following the regime where the system
is illuminated by a strong-power incident laser, which induces
the nonlinear response of the molecule, and thus requires
a treatment beyond the standard optomechanical description
applicable to off-resonant SERS. To observe such nonlinear
effects already for realistic values of intensity of the resonant
laser illumination (and retaining the validity of the RWA) in
this section, we further consider values of vibrational frequen-
cies h̄� = 10 meV at the lower end of a typical vibrational
spectrum of an organic molecule.

A. Influence of laser intensity

The influence of the incident laser amplitude E is shown in
Figs. 3(a) and 3(b), where colormaps of the emission spectra
are displayed as a function of E . The incident laser frequency
is tuned to the TLS electronic transition, and we consider
the results for d = 0.2, which show the well-known Mol-
low triplet, a spectral structure resulting from the resonance
fluorescence (RF) of the dressed TLS [35,37,67–70]. The
Mollow triplet consists of a strong emission line centered at
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FIG. 3. (a) and (b) Emission spectra of the coupled plasmon as a
function of incident laser amplitude E for d = 0.2. The molecule is
coupled to the plasmonic cavity with (a) h̄g = 20 meV and (b) h̄g =
h̄
√

γbγa/6 ≈ 9 meV. The inset in (b) shows a detail of the peak
splitting due to the hybridization of the Mollow triplet side peak
and the Raman line. (c) and (d) Cuts of the spectral map shown in
(a) and (b) along the white dashed lines, corresponding to (c) h̄E =
65 meV and (d) h̄E ≈ 130 meV. (e) and (f) Emission spectra of the
molecule for increasing value of coupling d , setting h̄δ = 0 eV, and
for (e) h̄E ≈ 65 meV and h̄g = 20 meV or (f) h̄E ≈ 130 meV and
h̄g ≈ 9 meV.

the incident laser frequency and two side spectral peaks of
similar spectral width that shift away as the laser intensity
is increased [Figs. 3(a) and 3(b)]. At a specific pumping
amplitude E [white dashed lines in Figs. 3(a) and 3(b)], the
detuning of the Mollow triplet side peaks matches the vibra-
tional frequency ±� of the molecule and thus coherent effects
emerge due to the interaction between the electronic RF and
the vibrational Raman scattering. The visibility and nature of
these effects depend on the width of the RF lines, which is
dominated by the Purcell effect and hence on the coupling g.
We thus consider again the two representative situations of
interaction analyzed in this work: (i) h̄g = 20 meV, where the
electronic peak is spectrally broader than the vibrational line,
as the Purcell effect strongly broadens the former [Figs. 3(a)
and 3(c)], and (ii) h̄g ≈ 9 meV, a situation where the broad-

ening of the electronic peaks is approximately equal to the
vibrational broadening [Figs. 3(b) and 3(d)].

For clarity, the emission spectra for the selected values of
E that provide the matching (h̄E ≈ 65 meV for h̄g = 20 meV,
and h̄E ≈ 130 meV for h̄g ≈ 9 meV, roughly correspond-
ing to pumping power densities of the order of W ≈ 1 and
10 mW/μm2, respectively) are shown in Figs. 3(c) and 3(d),
respectively. When the RF peak is much broader than the
width of the Raman line [Fig. 3(c)], the interference results
in small but sharp features that might be detectable in exper-
imental spectra and are reminiscent of Fano resonances [71].
On the other hand, when the linewidth of the RF is similar to
the linewidth of the Raman lines, the two spectral lines exhibit
a clear anticrossing [inset in Fig. 3(b)] that results in a splitting
of the spectral features of each branch of the Mollow triplet
[Fig. 3(d)]. This splitting occurs as a result of the strong cou-
pling between the molecule’s electronic (TLS) and vibrational
degrees of freedom [38], as predicted in the context of light
emission from semiconductor quantum dots [72].

The onset of strong coupling between the electronic and vi-
brational degrees of freedom, and thus the clear line splitting,
can be understood with the help of a simplified Hamiltonian
of the system (see Appendix D). This Hamiltonian is a result
of an elimination of the plasmon cavity from the original
Hamiltonian. Disregarding for the moment the vibrational part
in Eq. (15), the simplified Hamiltonian HTLS becomes

HTLS = h̄ 1
2 (δσz − Eplσx + δ). (22)

Here Epl = −2gαS ∝ E again corresponds to the amplitude
of the plasmon-enhanced electric field. The Hamiltonian in
Eq. (22) can be diagonalized by a unitary transformation that
rotates the TLS Pauli matrices in the x-z plane (σx, σz →
σ ′

x, σ
′
z):

σz = δ

λTLS
σ ′

z + Epl

λTLS
σ ′

x,

σx = − Epl

λTLS
σ ′

z + δ

λTLS
σ ′

x.

Under those operations, the simplified Hamiltonian HTLS =
h̄λTLSσ

′
z + h̄ 1

2δ describes the dynamics of an effective elec-
tronic TLS dressed by the incident coherent illumination with
an effective frequency λTLS = (E2

pl + δ2)1/2. According to
this simplified Hamiltonian, the effective electronic frequency
λTLS can be tuned by either changing the intensity of the
incident laser (i.e., Epl ∝ E) or by detuning the incident laser
frequency δ. This dressed TLS interacts with the molecular
vibrations via the resonant Rabi interaction term [38]

h̄
1

2
�dσz(b† + b) → h̄

1

2
�d

Epl

λTLS
σ ′

x(b† + b)︸ ︷︷ ︸
Rabi term

+R (23)

(where R denotes residual polaronic coupling), which be-
comes resonant if λTLS ≈ �, the condition for the Mollow
side peaks to coincide with the spectral position of the SERRS
lines.
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On top of the effect of dressing the molecular levels, the
plasmonic cavity increases the effective damping rate �eff of
the TLS by means of the Purcell effect (causing the broad
peaks of the Mollow triplet). The condition to reach strong
coupling in this situation can be derived by relating the decay
rate of the molecular vibration and that of the dressed elec-
tronic transition with the exciton-vibration coupling strength:

�d
Epl

λTLS
� |3�tot/4 + γb/2|. (24)

This condition is at the origin of the strong coupling ob-
served in the peaks of Fig. 3(d) (h̄g ≈ 9 meV), but it is not
reached in the case presented in Fig. 3(c) (h̄g = 20 meV)
where Fano-type features appear as a sign of weak coupling.
When the strong coupling between the vibrational Raman
scattering and the RF pathways is reached, the peak split-
ting in the emission spectra in Fig. 3(d) can also be inter-
preted using the dressed-atom picture originally introduced
by Cohen-Tannoudji [73,74]. The dressed-atom picture allows
for interpreting the splitting of the Raman and resonance-
fluorescence peaks in terms of the coherent interaction among
molecular vibronic states, induced by the incident coherent
laser illumination. This approach shows that the final emission
peaks emerge from a coherent combination of both the RF-
type transitions and the Raman-type transitions, making the
two mechanisms inseparably connected. We elaborate on the
dressed-molecule picture assuming small d in Appendix F and
provide a more general result allowing large d in the next
subsection.

B. Influence of large vibrational displacement d

We have so far used a moderate value of the displacement
d = 0.1; however, in realistic molecules significant exciton-
vibration coupling can lead to larger values of d . In Figs. 3(e)
and 3(f) we show the evolution of the spectrum with d for
the same two values of the plasmon-TLS coupling, i.e., h̄g =
20 meV [Fig. 3(e)] and h̄g ≈ 9 meV [Fig. 3(f)]. For all the
values of d considered, the laser intensity is chosen such
that the RF lines match the position of the Raman lines. For
small values of d ≈ 0.1, the RF profile follows the behavior
described in Figs. 3(c) and 3(d). As d gradually increases,
the spectra start to exhibit additional features due to the
increasing importance of higher-order vibronic transitions.
When the RF line is significantly broader than the Raman
lines [Fig. 3(e)], an increase of the coupling d gradually in-
creases the spectral dip located at the frequency of the Stokes
and anti-Stokes emission. Additional weak spectral features
appear as d is increased at larger laser detuning. When the
linewidth of the Mollow side peaks is similar to the width
of the Raman lines [Fig. 3(f)], the splitting of the strongly
coupled hybrid lines becomes larger as d increases. For large
values of d , all of the spectra in Figs. 3(e) and 3(f) acquire
a more complex structure due to the generally complicated
coherent interaction between the molecular vibrational and
the electronic degrees of freedom, with the emergence of the
additional (weak) peaks originating from higher-order Raman
and resonance-fluorescence transitions.

VI. VIBRATIONAL PUMPING FOR STRONG
LASER INTENSITIES

In this section we extend the treatment of linear-response
SERRS introduced above to the case of strong incident
illumination, where nonlinear effects become important.
To that end, we invoke the effective vibrational Hamil-
tonian introduced in Eq. (17) together with the incoher-
ent damping �− = 2(�d )2Re{S̃(�)} and pumping �+ =
2(�d )2Re{S̃(−�)} rates in Eqs. (18) and (19), respectively.
As above, the spectral function S̃(s) is obtained from the
effective dynamics of the TLS, which is effectively broadened
by the plasmon via the Purcell effect. The hierarchy of approx-
imations considered in this section is schematically depicted
in Fig. 4(a). These effective rates are dependent on the spectral
function S̃(s) of the reservoir evaluated at frequencies � and
−�, respectively. Note that the analytical model is limited
to cases where the electron-vibration coupling �d is smaller
than the effective broadening �eff of the electronic resonance.
We thus perform full numerical calculations to obtain the
results (i.e., populations) spanning the full range of model pa-
rameters; however, we use the analytical model for qualitative
discussion.

The value of the spectral function S̃(s) at frequencies ±�

determines the strength of the effective vibrational pumping
(�+) or damping (�−), which modify the vibrational popula-
tions as can be seen from the first expression in Eq. (20). It is
therefore possible to achieve different regimes of interaction
with the vibrations which range from pumping to damping
by simply modifying the illumination conditions (laser inten-
sity and frequency detuning) that provoke a variation of the
shape of the spectral function. When the laser intensity is
large, the reservoir function S̃(s) reflects the structure of the
TLS dressed by the incident laser, and therefore it becomes
qualitatively different from the weak-illumination case.

In Fig. 4(b) the spectral function Re{S̃(s)}, for d = 0.2,
h̄E = 100 meV, and h̄g = 20 meV, is shown. The correlation
function peaks around the effective frequencies of the dressed
TLS (s = ±λTLS). When the incident laser is detuned from
the TLS transition (δ̃ = δ + d2� �= 0), the spectral function
changes symmetry. For δ̃ > 0 (red detuning marked with a red
dashed line) a regime of vibrational damping can be reached
[Re{S̃(�)} > Re{S̃(−�)}], whereas for δ̃ < 0 (blue detuning
marked with a blue dash-dotted line) a regime of vibrational
pumping [Re{S̃(�)} < Re{S̃(−�)}] is achieved. This effect is
more pronounced for a situation where S̃(±�) corresponds to
the maxima of S̃(s).

To illustrate the possibility to achieve a controlled exci-
tation of molecular vibrations on demand, we numerically
solve the full Hamiltonian of the system [Eq. (5)] and show
in Figs. 4(c) and 4(d) the steady-state vibrational population
〈b†b〉 for an electron-plasmon coupling of h̄g ≈ 9 meV and
two different values of the dimensionless displacement (d =
0.2 and 0.5). The vibrational pumping is nontrivially influ-
enced by both the detuning δ of the incident laser frequency
from the TLS transition frequency and by the incident laser
intensity (proportional to E2), so the optimal laser intensity
depends on the laser detuning δ. When the electron-vibration
coupling is large (d = 0.5), the population reaches multiple
intense local maxima. In this case, by adequately tuning the
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FIG. 4. (a) Schematic depiction of the hierarchy considered in
the theoretical model. The plasmons serve as an effective reservoir
and broaden the TLS via the Purcell effect (�eff denotes the ef-
fective decay of the TLS into the plasmonic reservoir, as marked
by the arrow). The broadened TLS then effectively influences the
incoherent dynamics of the vibrations via the effective vibrational
pumping and damping (�+ and �−, respectively, as indicated by
the arrows). (b) Real part of the spectral function (calculated from
the reduced Hamiltonian where the plasmonic cavity is eliminated)
Re{S̃(s)}, of the operator σe, for three different values of detuning
(δ̃ = δ + d2�) h̄δ̃ = 0 eV (black line), 10 meV (red dashed line), and
−10 meV (blue dash-dotted line), h̄E = 100 meV, and h̄g = 20 meV.
(c) and (d) Maps of vibrational population of a molecular vibration
(h̄� = 10 meV) as a function of detuning from the effective TLS
energy δ and of the incident laser amplitude E , for h̄g ≈ 9 meV,
with (c) d = 0.2 and (d) d = 0.5. The blue lines in (d) indicate the
condition λTLS = n�, with n an integer (only for δ < 0).

laser frequency, one can efficiently excite Franck-Condon
transitions involving a change of more than one vibrational
transition (higher-order processes). As expected, the popu-
lation maxima are found when the spectral position of the
side peaks of the electronic spectral function matches the
frequency of the higher-order vibrational transitions (λTLS ≈
n�, with n an integer), a condition traced by the blue lines in
Fig. 4(d) and displayed only for negative detuning δ.

VII. SELECTIVE VIBRATIONAL PUMPING

The potential to control the activation of molecular vi-
brations can be exploited in the selective excitation of dif-
ferent vibrational modes. Let us consider the coupling of a
plasmonic system with a molecule supporting two vibrations
at frequencies h̄�1 = 10 meV and h̄�2 = 17.5 meV, both
coupled to independent reservoir modes (baths) with h̄γvib, 1 =
h̄γvib, 2 = 1 meV, as schematically depicted in Fig. 5(a). We
simplify the description of the system and use the effective
Hamiltonian where the plasmonic degrees of freedom are
eliminated (see Appendix G). We assume that the vibrational
modes are coupled to the TLS via a polaronic coupling term
(d1 = d2 = 0.2) and do not consider the direct coupling be-
tween the two vibrational modes. However, this model Hamil-
tonian naturally couples the two vibrational modes indirectly
via the electronic TLS of the molecule. Our model thus par-
tially accounts for thermalization effects, without considering
the effect of the surrounding environment that may further
incoherently couple the vibrational modes.

The resulting vibrational populations 〈b†
i bi〉 are shown in

Fig. 5(b) as a function of the intensity and detuning of the
incoming laser. The colormap depicting the population of the
vibrational mode at frequency �1 is displayed together with
a dashed contour plot that shows the corresponding results
for the mode at �2. Each mode presents a clear maximum
for suitable illumination conditions. Noticeably, the maxima
are shifted with respect to each other in both frequency and
amplitude, so changing the illumination conditions serves to
pump more efficiently one mode or another. To highlight
the selectivity of the vibrational pumping mechanism, we
extract line cuts of Fig. 5(b) for constant laser pumping
h̄E = 100 meV [Fig. 5(c)] and for constant laser detuning
h̄δ = −9 meV [Fig. 5(d)]. As observed in Figs. 5(c) and
5(d), the conditions of intensity and detuning for maximum
population of one mode give a much weaker population of
the other mode (solid versus dashed line). This scheme of
interactions makes it possible to achieve selective vibrational
pumping by either tuning the laser frequency for a given
illumination intensity or modifying the laser intensity for a
fixed illumination frequency.

VIII. EFFECTS OF TEMPERATURE
ON VIBRATIONAL PUMPING

Practical SE(R)RS experiments are usually performed at a
finite temperature, a situation where the thermal populations
of the molecular vibrations can become considerable. We thus
study this effect in this section. We calculate the steady-state
vibrational populations for temperature of T = 77 K (liquid
nitrogen temperature) and T = 300 K (room temperature)
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FIG. 5. Selective vibrational pumping. (a) Schematic represen-
tation of an example of two independent vibrational modes of
frequencies �1 and �2, respectively, coupled with the electronic
degrees of freedom via the displacements d1 and d2 of their respective
PESs. The vibrational modes are assumed to interact independently
with their corresponding reservoirs 1 and 2. (b) Colormap of the
vibrational populations of two different vibrational modes present in
the same molecule, with frequencies h̄�1 = 10 meV (solid colors)
and h̄�2 = 17.5 meV (values expressed by dashed contour lines).
(c) and (d) Populations of the modes �1 (solid line) and �2 (dashed
line) extracted along the white dashed lines in (b). In (c) h̄E =
100 meV and δ is varied, whereas in (d) h̄δ = −9 meV and E is
varied.

for different detuning and intensity of the incident laser for
the same value of the parameters as in Figs. 4(c) and 4(d).
We assume that the electronic states of the molecule interact
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FIG. 6. Colormaps of steady-state vibrational population for
finite temperature: (a) and (b) T = 77 K and (c) and (d) T =
300 K. The maps are calculated assuming (a) and (c) weak electron-
vibration coupling d = 0.2 and (b) and (d) medium coupling strength
of d = 0.5. The other parameters are identical to the ones used in
Figs. 4(c) and 4(d).

with a single vibrational mode. The results of the vibrational
population as a function of laser detuning and intensity are
shown in Fig. 6 as two-dimensional colormaps.

For the liquid-nitrogen temperature (T = 77 K) the maps
of the vibrational population shown in Figs. 6(a) and 6(b)
for d = 0.2 and 0.5, respectively, are qualitatively similar to
the results obtained when considering T = 0 K. However,
we observe that the total vibrational populations reach larger
maximal values due to the thermal population, which for a
vibrational excitation of energy of 10 meV reaches, at T =
77 K, a value of n77K ≈ 0.3. Interestingly, for positive values
of detuning δ we observe vibrational populations smaller than
n77K, which is a result of the optomechanical cooling process
that is not observable for T = 0 K. For room temperature
(T = 300 K) the thermal population of the vibrational mode
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of energy of 10 meV reaches n300K ≈ 2, which is larger
than the optomechanically induced steady-state population
reached when thermal effects are disregarded. The map of
vibrational populations shown in Fig. 6(c) for small d = 0.2
and T = 300 K shows, as in the case of T = 77 K, that
the optomechanical process can lead to either an increase
or decrease of the steady-state vibrational population with
respect to the thermal equilibrium state. When the detuning
fulfills the condition of optomechanical vibrational pumping
(i.e., δ ≈ −λTLS) the population can reach values larger than
the thermal population, as in this case the optomechanical
pumping process enhances the effect of thermal population
pumping. Conversely, when the optomechanical damping pro-
cess is enhanced (δ ≈ λTLS) the steady-state vibrational pop-
ulation features cooling. These effects are more pronounced
in Fig. 6(d), where we consider T = 300 K and a stronger
electron-vibration coupling of d = 0.5 [notice the different
scale of the colormap in Figs. 6(a)–6(d)]. As pointed out, the
steady-state vibrational population is pumped above the value
determined by the thermal equilibrium for δ < 0. This effect
is resonantly enhanced whenever δ ≈ −nλTLS (n integer). On
the other hand, the system is cooled for the opposite detuning
(δ ≈ nλTLS).

We thus conclude that thermal effects become important
if the thermal vibrational population becomes comparable to
the steady-state population induced by the optomechanical
pumping or damping processes. Furthermore, when a finite
temperature is considered, it is possible to observe optome-
chanical vibrational cooling.

IX. CONCLUSION

In conclusion, we have used the formalism of quantum
cavity electrodynamics to discuss SERRS as a quantum-
optomechanical process. We showed the similarities and fun-
damental differences between the resonant and off-resonant
SERS processes. In the linear-response regime, the electronic
transition appearing in the SERRS plays a role analogous
to that of the plasmonic cavity in the off-resonant SERS;
however, the former offers generally larger values of optome-
chanical coupling and smaller values of the molecular-exciton
damping γσ + �eff , as compared to the plasmon broadening
γa. We described vibrational pumping in SERRS and identi-
fied its two principal mechanisms: the efficient pumping of
the molecule by a laser resonant with the molecular exciton
(optimized when h̄δ ≈ 0 eV) and the resonant enhancement
of the Raman-Stokes emission (δ ≈ −�).

For strong laser intensities, the nonlinear character of the
molecular electronic TLS introduces nontrivial effects associ-
ated with the dressing of the molecular levels by the intense
laser. We have shown that a strong exciton-vibration inter-
action appears when a side peak of the RF (Mollow triplet)
of a single molecule [69] is tuned to match the frequency of
vibrational Raman lines. The fingerprint of this interaction is
accessible in optical emission spectra through the presence
of interference features or peak splitting. Finally, the regime
of vibrational pumping achieved in SERRS can exploit the
spectral features of the molecular electronic resonance, which
are often narrower than the plasmonic resonances used in
off-resonant SERS. This allows the possibility for selective

pumping of different vibrational modes of the molecule. Se-
lective vibrational pumping can offer new ways to control
chemical reactivity of molecules [20] or to engineer vibra-
tional quantum states of experimental interest.

All the data of the results and procedures will be provided
after reasonable request.
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APPENDIX A: SYSTEM HAMILTONIAN

In this Appendix we describe the Hamiltonian used in the
main text to describe the resonant surface-enhanced Raman
scattering process [Eq. (5)], where we consider the coupling
between a plasmonic mode and the electronic and vibrational
levels of a molecule. When a monochromatic laser excites
the plasmonic mode coupled to the molecule, the system
Hamiltonian can be written in the form

H res
om = Hpl + Hmol + Hpump + Hpl-e, (A1)

with
Hpl = h̄ωpla

†a,

Hmol = h̄[Ee − Eg]σ †σ + h̄�(b† + σed )(b + σed ),

Hpump = h̄E[a exp(iωLt ) + a†exp(−iωLt )],

Hpl-e = h̄gaσ † + h̄g∗a†σ.

Here σ (σ †) are the lowering (raising) operators of the TLS
representing the electronic structure of the molecule (with
σ †σ = σe), b (b†) are the annihilation (creation) operators of
the vibrational mode, and a (a†) are the annihilation (cre-
ation) operators of the single bosonic mode representing the
plasmonic cavity. The constants appearing in the Hamiltonian
have the following meaning: g represents the coupling be-
tween the plasmon and the electronic TLS, ωpl is the plasmon
frequency, Eg and Ee are the energies of the ground and
excited electronic states of the molecule, respectively, � is the
vibrational frequency, and d introduces the electron-phonon
coupling. The monochromatic coherent laser illumination of
frequency ωL is coupled to the plasmonic mode via the
constant E (which we take as real), which is proportional to
the electric-field amplitude of the incident light.

The system Hamiltonian is formally split into the Hamil-
tonian describing the plasmonic mode as a bosonic oscil-
lator Hpl, the term describing the level structure of the
bare molecule Hmol, the coupling between the plasmon
and the molecule Hpl-e, and the pumping of the plasmon by
the classical laser field Hpump in the RWA, assuming that the
pumping amplitude E is sufficiently small compared to the
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plasmon frequency (E � 0.1ωpl). The molecular Hamiltonian
Hmol contains the energy splitting of the molecule’s electronic
levels, h̄[Ee − Eg]σ †σ , and the vibrational term which de-
pends on the electronic state, h̄�(b + σed )(b† + σed ). This
coupling is obtained from the Born-Oppenheimer approxi-
mation, which takes into account that the vibrational states
of the ground states have different equilibrium position than
the vibrations defined on the excited-state potential energy
surface. Due to this displacement d , the vibrational eigenstates
in the ground state are not orthogonal to the ones in the
excited state. Therefore, when the molecule is excited from
the ground electronic state to the excited electronic state, it
also simultaneously changes the vibrational state (according
to the Franck-Condon principle).

The coupling between the molecule and the plasmon is ex-
pressed in the RWA as Hpl-e = h̄gaσ † + h̄g∗a†σ . The RWA is
justified in situations where g � ωpl ≈ Ee − Eg. Importantly,
the RWA allows for further simplifying transformations of the
Hamiltonian.

To introduce incoherent effects we employ the approach
based on the solution of the quantum master equation for the
density matrix ρ,

∂ρ

∂t
= 1

ih̄

[
H res

om, ρ
]+ La[ρ] + Lσ [ρ] + Lb[ρ], (A2)

where the term in square brackets symbolizes the commutator
and the Lindblad terms Lc[ρ] introduce the incoherent damp-
ing. In particular, we use the Lindblad superoperators

Lσ [ρ] = −γσ

2
(σ †σρ + ρσ †σ − 2σρσ †), (A3)

La[ρ] = −γa

2
(a†aρ + ρa†a − 2aρa†), (A4)

Lb[ρ] = −(nvib
T + 1

)γb

2
(b†bρ + ρb†b − 2bρb†), (A5)

Lb† [ρ] = −nvib
T

γb

2
(bb†ρ + ρbb† − 2b†ρb), (A6)

where γσ is the electronic decay rate, γb the vibrational decay
rate, and γa the plasmonic decay rate.

To facilitate the numerical calculation, we apply a unitary
transformation H̃ res

om = UωL H res
omU †

ωL
− ih̄UωLU̇ †

ωL
with UωL =

exp(iσeωLt + ia†aωLt ) that transforms the Hamiltonian in
Eq. (A1) into the rotating frame (interaction picture). As a
consequence, the Lindblad terms remain unchanged, but the
Hamiltonian in Eq. (A1) is modified by simply replacing
(for brevity we keep the same notation for the transformed
operators as for the original operators throughout the text)

ωpl → 
 = ωpl − ωL, (A7)

Ee − Eg → δ = Ee − Eg − ωL, (A8)

E[a exp(iωLt ) + a†exp(−iωLt )] → E[a + a†]. (A9)

The resulting Hamiltonian is time independent, which fa-
cilitates the numerical solution. However, it includes the direct
pumping of the plasmon mode. In the numerical implementa-
tion, where we represent the plasmonic states by the number

states of the plasmon Hamiltonian Hpl, we would need a large
number of plasmon states to correctly describe the excitation
by a strong incident laser. We avoid this problem by redefining
the plasmon creation and annihilation operators

a → a + αS, a† → a† + α∗
S ,

where αS = −E/(
 − iγa/2). This particular choice of αS

allows us to define a new Hamiltonian H res,α
om [see also Eq. (1)],

H res,α
om = Hα

pl + Hα
mol + Hα

pump + Hα
pl-e, (A10)

with

Hα
pl = h̄
a†a,

Hα
mol = h̄δσ †σ + h̄�(b† + σed )(b + σed ),

Hα
pump = h̄gαSσ

† + h̄g∗α∗
Sσ,

Hα
pl-e = h̄gaσ † + h̄g∗a†σ.

The Lindblad terms appear unchanged provided the plasmon
operators are expressed in the shifted basis. The final form of
the master equation is thus

∂ρ

∂t
= 1

ih̄

[
H res,α

om , ρ
]+ La[ρ] + Lσ [ρ] + Lb[ρ], (A11)

where we have to keep in mind that we are working in the
interaction picture and in the displaced basis when we evaluate
the correlation functions and the operator mean values.

APPENDIX B: CALCULATION OF EMISSION SPECTRA

We calculate the emission spectra numerically from the
QRT [55] using the expression

se(ω) = 2 Re
∫ ∞

0
〈a†(0)a(τ )〉eiωτ dτ. (B1)

In order to solve the dynamics of the damped system we
need to solve the quantum master equation [Eq. (A11)] for
the density matrix ρ given by the Hamiltonian and by the
Lindblad terms. To that end, we rewrite the quantum master
equation in a form where the density matrix ρ appears as a
column vector (see, e.g., Ref. [75])

ρ =

⎡
⎢⎢⎣

ρ11 ρ12 · · ·
ρ21 ρ22 · · ·

...
...

. . .

⎤
⎥⎥⎦ → �ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ11

ρ21

...

ρ12

ρ22

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

In the equations, there often appear expressions where the
operators act on the density matrix from the right or from the
left (e.g., the term aρa†). In the technical implementation, the
expressions are transformed as

O1ρO2 → (
OT

2 ⊗ O1
)
�ρ. (B3)

Here ⊗ represents the Kronecker product, T denotes transpo-
sition, and O1 and O2 are generic operators. In practice, if
the dimension of the truncated Hilbert space is set to N =
Nvib × Npl × 2 [with Nvib (Npl) the maximal number of
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vibrational (plasmon) number states considered in the calcu-
lation], the vectorized density matrix will have a length of N2

and the matrix (OT
2 ⊗ O1) will be of dimension N2 × N2.

Equation (A11) becomes in this representation

�̇ρ = L (t )�ρ, (B4)

where the N2 × N2 square matrix L (t ) represents the Liou-
ville superoperator. In general, L (t ) can depend on time, but
in our model it is time independent. The steady-state density
matrix ρss is then obtained from the quantum master equation
(B4) as the eigenvector belonging to the zero eigenvalue of the
matrix L .

The two-time correlation function [Eq. (B1)] that defines
the spectrum is calculated using the quantum regression the-
orem. Utilizing Laplace transform techniques and with the
substitution of the Laplace parameter s → −iω,

se(ω) = 2 Re
∫ ∞

0
〈a†(0)a(τ )〉eiωτ dτ

= 2 Re

[
Tr

{
(I ⊗ a)

1

−i(ω − ωL) − L

× [{(a†)T ⊗ I}�ρss]
}]

. (B5)

The direct implementation of Eq. (B5) requires us to invert
the Liouvillian matrix L [time independent in the frame rotat-
ing with exp(−iωLt )] for each frequency of interest. However,
this procedure becomes inefficient for calculations of emis-
sion spectra. In such a case, and assuming that the Liouvillian
is represented by a diagonalizable matrix (which we verify
numerically; nondiagonalizable Liouvillians are nongeneric
and occur only at a zero-measure set of points [76]), it is often
more convenient to expand the time-dependent solution into
an exponential series with the exponents being the eigenvalues
of the Liouvillian superoperator [77].

The time-dependent solution of the density matrix [or of
the vector {(a†)T ⊗ I}�ρ since, according to the QRT, they obey
the same differential equation (A11)] is formally given by the
exponential of the Liouvillian as

�ρ(t ) = exp(L t )�ρ(0), (B6a)

[{(a†)T ⊗ I}�ρ](t ) = exp(L t )[{(a†)T ⊗ I}�ρ](0). (B6b)

Equivalently, the exponential can be expressed using the
eigenvalue decomposition of the Liouvillian L = SDS−1 as

exp(L t ) = S exp(Dt )S−1, (B7)

where the operator D is represented by a diagonal matrix so
that its exponentiation simply indicates exponentiation of the
matrix diagonal elements one by one. We can then write the
correlation function 〈a†(0)a(τ )〉 as

g(τ ) = 〈a†(0)a(τ )〉
= Tr{(I ⊗ a) exp(L τ )[{(a†)T ⊗ I}�ρ]}e−iωLτ

= Tr

⎧⎨
⎩([I ⊗ a]S)︸ ︷︷ ︸

A

exp(Dτ )︸ ︷︷ ︸
B

(S−1[{(a†)T ⊗ I}�ρ])︸ ︷︷ ︸
v

⎫⎬
⎭e−iωLτ ,

(B8)

where, for convenience, we have defined a full matrix A, a
diagonal matrix B containing the exponentiated eigenvalues,
and a vector v. Note that the explicit dependence on the laser
frequency ωL appears because we express the operators in the
interaction picture. The trace operator is defined in the original
representation where the density operator has the form of a
square matrix [the left-hand side in Eq. (B2)]. The matrix B
can be seen elementwise as Bii = δi j exp(dit ), where di are
the diagonal elements of the matrix D. The vector c = ABv is
therefore equal to the following exponential series:

cl =
N2∑

m=1

Almexp(dmt )vm. (B9)

The trace can be represented as a scalar product of the vector-
ized operator with vector νtr, where (νtr ) j = 1 for j = 1, n +
2, 2n + 3, . . . , n2 and 0 otherwise. The trace in Eq. (B8) above
becomes

Tr{c} =
N∑

l=1

c(l−1)N+l

=
N2∑

m=1

N∑
l=1

A(l−1)N+l,mvmexp(dmt )

=
N2∑

m=1

lmexp(dmt ), (B10)

with

lm =
N∑

l=1

A(l−1)N+l,mvm. (B11)

Finally, inserting this expression into Eq. (B1), we get

se(ω) = 2 Re
∫ ∞

0
g(t )exp(iωt )dt

= 2 Re
N2∑

m=1

−lm
(dm − iωL) + iω

. (B12)

Finally, we remark that the elastic component of light emis-
sion can be removed from the spectrum by disregarding the
term for which dm = 0 in Eq. (B12) [78].

APPENDIX C: ANALYTICAL DESCRIPTION OF SERRS,
RESONANCE FLUORESCENCE, AND HOT

LUMINESCENCE OF A SINGLE MOLECULE IN A
PLASMONIC CAVITY UNDER WEAK ILLUMINATION

AND WEAK ELECTRON-VIBRATION COUPLING (d � 1)

In this Appendix we derive simplified analytic expressions
that allow us to intuitively distinguish the physical origin
and the different enhancement factors contributing to Raman
sR

e , zero-phonon RF sRF
e , and hot luminescence sH

e spectra
as discussed in Sec. III. We derive the analytic expressions
for a simple situation in which the molecule features weak
electron-vibration coupling (d � 1), and we assume weak
incident laser pumping and weak plasmon-exciton coupling
(g � κ).

043422-14



QUANTUM DESCRIPTION OF SURFACE-ENHANCED … PHYSICAL REVIEW A 100, 043422 (2019)

The derivation presented below follows a general strategy
in which the (incoherent) emission spectrum of a coherently
pumped plasmonic cavity (interacting with a molecule)

se(ω) = 2 Re
∫ ∞

0
〈〈a†(0)a(τ )〉〉eiωτ dτ (C1)

can be approximately decomposed into contributions se(ω) ≈
sR

e (ω) + sRF
e (ω) + sH

e (ω). To that end, we assume that the
dynamics of the fluctuating part of the plasmon annihilation
operator δa(t ) = a(t ) − 〈a(t )〉SS, i.e., the operator governing
the inelastic light emission, can be likewise decomposed, as
we discuss below in more detail, into contributions related
to each respective process, i.e., Raman scattering, resonance
fluorescence (zero-phonon line), and hot luminescence, re-
spectively,

δa(t ) ≈ δaR(t ) + δaRF(t ) + δaH(t ) + · · · , (C2)

where the ellipsis denotes other terms. Next we assume that
the respective spectral response can be approximately ob-
tained as [substituting Eq. (C2) into Eq. (C1) and neglecting
the cross terms]

sR
e (ω) ≈ 2 Re

∫ ∞

0
〈δa†

R(0)δaR(τ )〉eiωτ dτ, (C3)

sRF
e (ω) ≈ 2 Re

∫ ∞

0
〈δa†

RF(0)δaRF(τ )〉eiωτ dτ, (C4)

sH
e (ω) ≈ 2 Re

∫ ∞

0
〈δa†

H(0)δaH(τ )〉eiωτ dτ. (C5)

It is important to stress that Eqs. (C3)–(C5) are approxi-
mations and such a decomposition of the plasmon emission
spectrum is not valid in general.

To obtain the decomposition of δa(t ), we start by writing
the formal solution to the time dependence of the plasmon
annihilation operator originating from the interaction of the
plasmon with the molecular exciton

δa(t ) ≈ −ig
∫ t

−∞
e(−iωpl−γa/2)(t−t ′ )σ (t ′)dt ′ + Tnoise, (C6)

where Tnoise denotes noise terms. This expression emerges
from the Heisenberg-Langevin equation for the plasmon oper-
ator δa that is consistent with the master equation used in this
paper, i.e.,

δȧ ≈ (−iωpl − γa/2)δa − igσ + T̃noise, (C7)

where T̃noise stands for other noise terms. Notice that noise
terms have to be considered in order to preserve the equal-
time commutator of the operator δa. Nevertheless, these noise
terms do not explicitly appear in our derivation and we men-
tion them here only for completeness and drop them in the
following.

To approximately evaluate the integral on the right-hand
side of Eq. (C6), we need to identify the respective contribu-
tions to the dynamics of σ giving rise to Raman scattering
(δσR), resonance fluorescence (δσRF), and hot luminescence
(δσH). To proceed we employ another adiabatic approxima-
tion and concentrate on the time evolution of the fluctuating

part of the operator δσ :

δσ = σ − 〈σ 〉SS. (C8)

With this definition, the operator σ †σ becomes

σ †σ = |〈σ 〉SS|2 + 〈σ 〉SSδσ
† + 〈σ †〉SSδσ + δσ †δσ, (C9)

and the commutation relations [δσ, δσ †] ≈ 1 and
[δσ, δσ †δσ ] ≈ δσ are approximately valid for weak
illumination intensities. With that, the Heisenberg equation
for the operator δσ approximately becomes

δσ̇ ≈ (−iωeg − �TLS)δσ − i�d〈σ 〉SS(b† + b)

− i�dδσ (b† + b) + · · · . (C10)

Here the total losses of the TLS are �TLS = �tot + γφ , with
�tot = �eff + γσ the total decay rate of the TLS, and the decay
into the plasmonic reservoir via the Purcell effect

�eff = g2γa(
γa

2

)2 + (δ − 
)2
, (C11)

as further discussed in Appendix D. Below we discuss more
details about the origin of Eq. (C10) and describe how sRF

e (ω),
sR

e (ω), and sH
e (ω) can be approximately obtained.

1. Resonance fluorescence sRF
e (ω)

To evaluate the contribution of δσ (t ) to RF, i.e., the
zero-phonon line, we consider that the fluctuating operator
follows the free-exciton Hamiltonian, is subject to intrinsic
excitonic decay γσ and pure dephasing γφ , and decays into
the plasmonic reservoir due to the Purcell effect. We consider
that δσ evolves independently of the vibrational excitations,
as given by the first term of Eq. (C10). In this approximation
we get

δaRF(t ) ≈ −ig
∫ t

−∞
e(−iωpl−γa/2)(t−t ′ )δσ̃RF(t ′)e−iωegt ′

dt ′,

(C12)

where we have defined the slowly varying operator δσ̃RF(t )
such that δσRF(t ) = δσ̃RF(t )e−iωegt and h̄ωeg = Ee − Eg. The
integral in Eq. (C12) can be solved analytically in the adia-
batic approximation

δaRF(t ) ≈ gδσ̃RF(t )e−iωegt

(ωeg − ωpl ) + i γa

2

. (C13)

The RF spectrum can thus be expressed as

sRF
e (ω) ≈ |g|2

(ωeg − ωpl )2 + (
γa

2

)2 2

× Re

{∫ ∞

0
〈δσ̃ †

RF(0)δσ̃RF(τ )〉e−iωegτ eiωτ dτ

}
.

(C14)

Finally, 〈δσ̃ †
RF(0)δσ̃RF(τ )〉e−iωegτ can be evaluated as

〈δσ †
RF(0)δσRF(τ )〉 ≈ 〈δσ †

RFδσRF〉SSe(−iωeg−�TLS/2)τ , (C15)

where 〈δσ †
RFδσRF〉SS ≈ 〈δσ †δσ 〉SS = 〈σ †σ 〉 − |〈σ 〉SS|2 = nincoh

σ

can be readily identified as the incoherent population of the
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exciton. The RF emission spectrum thus becomes

sRF
e ≈ |g|2

(ωeg − ωpl )2 + (
γa

2

)2

nincoh
σ �TLS

(ωeg − ω)2 + (
�TLS

2

)2 . (C16)

The RF spectrum under weak-illumination conditions thus
acquires a Lorentzian shape, with its amplitude proportional
to the incoherent population of the exciton. The emission is
enhanced by the presence of the plasmonic resonance.

2. Raman scattering sR
e (ω) and hot luminescence sH

e (ω)

To obtain the Raman and hot-luminescence spectra, we
consider the contribution to δσ (t ) that carries signatures
of the vibrational dynamics, i.e., explicitly dependent on
the time evolution of the operators b and b†. The operator
δσ is coupled to the vibrational modes via the Hamilto-
nian term �dσ †σ (b† + b), which can be decomposed using
Eq. (C9):

�dσ †σ (b† + b) = �d|〈σ 〉SS|2(b† + b)︸ ︷︷ ︸
constant pressure

+�d (〈σ 〉SSδσ
† + 〈σ †〉SSδσ )(b† + b)︸ ︷︷ ︸

Raman

+�dδσ †δσ (b† + b)︸ ︷︷ ︸
hot luminescence

. (C17)

The first term on the right-hand side of Eq. (C17) captures the
constant pressure on the vibrations due to the pumping and
we neglect it as (i) |〈σ 〉SS|2 is small for weak laser pumping
and (ii) it contributes only to a static displacement of the
vibrational mode. As we show in the following, the second
term on the right-hand side of Eq. (C17) is responsible for
Raman scattering and the third term is responsible for hot
luminescence.

a. Raman scattering

The contribution giving rise to Raman scattering δσR arises
from the commutator

[δσ,�d (〈σ 〉SSδσ
† + 〈σ †〉SSδσ )(b† + b)],

which results in the second line of Eq. (C10). Hence, δσR(t )
becomes

δσR(t ) ≈ −i〈σ̃ 〉SSe−iωLt�d
∫ t

−∞
e[−i(ωeg−ωL )−�TLS/2](t−t ′ )

× [b̃(t ′)e−i�t ′ + b̃†(t ′)ei�t ′
]dt ′, (C18)

with 〈σ̃ 〉SS [〈σ (t )〉SS = 〈σ̃ 〉SSe−iωLt ] the steady-state time-
independent coherent amplitude of σ induced by the pumping

(enhanced by the plasmon)

〈σ̃ 〉SS ≈ −igαS

i(ωeg − ωL) + �TLS
2

, (C19)

where αS = −iE
i(ωpl−ωL )+γa/2 gives the coherent amplitude of the

uncoupled plasmon under the laser illumination. In the deriva-
tion we have made use of [δσ, δσ †] ≈ 1, which is justified for
the weak illumination considered.

The operators of the vibrations have been written in the
interaction picture b(t ) = b̃(t )e−i�t , which allows us to apply
the Markov approximation to the slowly varying operators
and set b̃(t ′) → b̃(t ) [b̃†(t ′) → b̃†(t )] inside the integral. After
that, the integration can be performed analytically:

δσR(t ) ≈ −i〈σ̃ 〉SS�d
b̃(t )

i(ωeg − [ωL + �]) + �TLS
2

e−i(ωL+�)t

− i〈σ̃ 〉SS�d
b̃†(t )

i(ωeg − [ωL − �]) + �TLS
2

e−i(ωL−�)t .

(C20)

The result in Eq. (C20) can be substituted into Eq. (C6) to
finally yield the time dependence of the plasmon annihilation
operator expressed in terms of the vibrational operators:

δaR(t ) ≈ −g〈σ̃ 〉SS�d

{i(ωeg − [ωL + �]) + �TLS/2}{i(ωpl − [ωL + �]) + γa/2} b̃(t )e−i(ωL+�)t

+ −g〈σ̃ 〉SS�d

{i(ωeg − [ωL − �]) + �TLS/2}{i(ωpl − [ωL − �]) + γa/2} b̃†(t )e−i(ωL−�)t . (C21)

Equation (C21) finally yields the sought expressions for the Raman signal

sR
e (ω) = 2 Re

{∫ ∞

0
〈δa†

R(0)δaR(τ )〉eiωτ

}
dτ

≈ |g|2(�d )2|〈σ̃ 〉SS|2{
(ωeg − [ωL + �])2 + (

�TLS
2

)2}{
(ωpl − [ωL + �])2 + (

γa

2

)2}2 Re

{∫ ∞

0
〈b̃†(0)b̃(τ )〉e−i(ωL+�)τ eiωτ dτ

}

+ |g|2(�d )2|〈σ̃ 〉SS|2{
(ωeg − [ωL − �])2 + (

�TLS
2

)2}{
(ωpl − [ωL − �])2 + (

γa

2

)2}2 Re

{∫ ∞

0
〈b̃(0)b̃†(τ )〉e−i(ωL−�)τ eiωτ dτ

}
, (C22)

where we have considered only the terms containing the vibrational correlation functions 〈b̃†(0)b̃(τ )〉 and 〈b̃(0)b̃†(τ )〉 giving
rise to the anti-Stokes Raman line and the Stokes Raman line, respectively. The correlation functions can be readily evaluated
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considering that the vibrations are optomechanically damped or pumped, i.e., considering that they evolve according to Hvib

[Eq. (2)] and Lb[ρ] [Eq. (8)] together with L+
eff [ρ] and L−

eff [ρ] [Eqs. (18) and (19), respectively],

sR-aSt
e (ω) ≈ |g|2(�d )2|〈σ̃ 〉SS|2{

(ωeg − [ωL + �])2 + (
�TLS

2

)2}{
(ωpl − [ωL + �])2 + (

γa

2

)2} 〈b†b〉SS�om

[ωL + � − ω]2 + (
�om

2

)2 , (C23a)

sR-St
e (ω) ≈ |g|2(�d )2|〈σ̃ 〉SS|2{

(ωeg − [ωL − �])2 + (
�TLS

2

)2}{
(ωpl − [ωL − �])2 + (

γa

2

)2} (1 + 〈b†b〉SS)�om

[ωL − � − ω]2 + (
�om

2

)2 , (C23b)

with �om = γb + �− − �+. The final expressions for the Raman spectra clearly manifest the distinct enhancement mechanisms
involved in SERRS: coherent pumping of the molecule (contained as resonances of |〈σ̃ 〉SS|2 [Eq. (C19)] for ωL ≈ ωeg and
ωL ≈ ωpl), and enhanced generation of Raman photons mediated by (i) the excitonic resonance of the molecule (ωL ± � ≈ ωeg)
and (ii) the plasmonic resonance (ωL ± � ≈ ωpl).

b. Hot luminescence

An analytical expression for hot luminescence can be obtained in a similar way as for Raman scattering. By evaluating the
commutator [δσ,�dδσ †δσ (b† + b)] we obtain the third term of Eq. (C10), and hence

δσH(t ) ≈ −i�d
∫ t

−∞
e[i(ωeg−ωL )+�TLS/2](t ′−t )[δσ̃ (t ′)b̃(t ′)e−i(ωeg+�)t ′ + δσ̃ (t ′)b̃†(t ′)e−i(ωeg−�)t ′

]dt ′, (C24)

where we have used [δσ, δσ †δσ ] ≈ δσ and we have again expressed the operators under the integral in the form δσ (t )b†(t ) =
δσ̃ (t )b̃†(t )e−i(ωeg−�)t [δσ (t )b(t ) = δσ̃ (t )b̃(t )e−i(ωeg+�)t ], which allows us to apply the Markov approximation and extract
the slowly varying operators [δσ̃ (t )b̃(t ) and δσ̃ (t )b̃(t )] from the integral. After performing the integration in the adiabatic
approximation and substituting the result into Eq. (C6) we obtain

δaH(t ) ≈ −g�d

{i(ωeg − [ωeg + �]) + �TLS/2}{i(ωpl − [ωeg + �]) + γa/2}δσ̃ b̃(t )e−i(ωeg+�)t

+ −g�d

{i(ωeg − [ωeg − �]) + �TLS/2}{i(ωpl − [ωeg − �]) + γa/2}δσ̃ b̃†(t )e−i(ωeg−�)t . (C25)

We finally obtain the expression for the hot-luminescence spectrum

sH
e (ω) = 2 Re

{∫ ∞

0
〈δa†

H(0)δaH(τ )〉eiωτ

}
dτ

≈ |g|2(�d )2{
(ωeg − [ωeg + �])2 + (

�TLS
2

)2}{
(ωpl − [ωeg + �])2 + (

γa

2

)2}2 Re

{∫ ∞

0
〈δσ̃ †(0)b̃†(0)δσ̃ (τ )b̃(τ )〉e−i(ωeg+�)τ eiωτ dτ

}

+ |g|2(�d )2{
(ωeg − [ωeg − �])2 + (

�TLS
2

)2}{
(ωpl − [ωeg − �])2 + (

γa

2

)2}2 Re

{∫ ∞

0
〈δσ̃ †(0)b̃(0)δσ̃ (τ )b̃†(τ )〉e−i(ωL−�)τ eiωτ dτ

}
.

(C26)

To further simplify the expressions, we consider that the vibrations are only weakly correlated with the exciton. We
then further factorize the correlation functions into the excitonic part and the vibrational part [〈δσ̃ †(0)b̃†(0)δσ̃ (τ )b̃(τ )〉 ≈
〈δσ̃ †(0)δσ̃ (τ )〉〈b̃†(0)b̃(τ )〉 and 〈δσ̃ †(0)b̃(0)δσ̃ (τ )b̃†(τ )〉 ≈ 〈δσ̃ †(0)δσ̃ (τ )〉〈b̃(0)b̃†(τ )〉] and evaluate the respective correlation
functions.

To evaluate 〈δσ̃ †(0)δσ̃ (τ )〉 we assume that the operator δσ undergoes the same dynamics as δσRF, i.e., dynamics free of the
vibrational influence [see Eq. (C15)], and from that we obtain

〈δσ †(0)δσ (τ )〉 ≈ nincoh
σ e(−iωeg−�TLS/2)τ . (C27)

The vibrational correlation functions are identical to the ones discussed for Raman scattering in Subsection 2 a of this Appendix,
and thus we obtain

saH-aSt
e (ω) = |g|2(�d )2{

(ωeg − [ωeg + �])2 + (
�TLS

2

)2}{
(ωpl − [ωeg + �])2 + (

γa

2

)2} 〈b†b〉nincoh
σ (�om + �TLS)

(ωeg + � − ω)2 + (
�TLS+�om

2

)2 , (C28a)

sH-St
e (ω) = |g|2(�d )2{

(ωeg − [ωeg − �])2 + (
�TLS

2

)2}{
(ωpl − [ωeg − �])2 + (

γa

2

)2} (1 + 〈b†b〉)nincoh
σ (�om + �TLS)

(ωeg − � − ω)2 + (
�TLS+�om

2

)2 . (C28b)
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FIG. 7. Inelastic emission spectra calculated (a) numerically and
(b) analytically using Eqs. (C16), (C23b), and (C28b) as a function
of detuning δ = ωeg − ωL of the incident laser frequency ωL from
the exciton frequency ωeg. The white dashed line marks the laser
frequency in each emission spectrum. Both numerical and analytical
calculations show Raman-Stokes lines (at constant detuning from
ωL) and hot-luminescence lines (at constant detuning from ωeg).
In our calculations we set h̄g ≈ 13 meV, h̄γφ = 2 meV, h̄E = 1 ×
10−2 meV, d = 0.1, h̄� = 50 meV, h̄ωeg = h̄ωpl = 2 eV, h̄γσ = 2 ×
10−2 meV, h̄γa = 500 meV, and h̄�om ≈ h̄γb = 2 meV.

Equations (C28a) and (C28b) show that the hot lumi-
nescence spectrum has the form of a Lorenzian line of
width �om + �TLS and resonance frequencies ωeg + � and
ωeg − �, respectively, independently of the laser frequency
ωL. By varying ωL one can thus distinguish between hot-
luminescence and SERRS lines as hot-luminescence peaks
do not change their spectral position whereas Raman lines
appear at a constant detuning with respect to the laser fre-
quency. Furthermore, we show here [Eqs. (C28a) and (C28b)]
that the intensity of hot luminescence is proportional to the
incoherent population of the exciton nincoh

σ and is enhanced
due to the presence of (i) the plasmonic resonance and (ii) the
excitonic resonance itself. To demonstrate the applicability of
this analytical model, we compare in Fig. 7 inelastic emission
spectra numerically calculated (as a function of incident laser
frequency) with spectra obtained from the analytical expres-
sions above. The results are very satisfactory, capturing both
qualitatively and quantitatively most of the spectral features.

Finally, we note that the above theoretical treatment can
be extended in principle to situations where the electron-
vibration coupling (represented by a displacement parameter
d) is large, provided weak laser intensity is applied. In such a
situation it can be expected that the SERRS lines would be
enhanced when the Raman frequency would coincide with
not only the zero-phonon line of the exciton but also with
vibronic excitonic transitions. Nevertheless, such an extension
is beyond the scope of this Appendix.

APPENDIX D: EFFECTIVE TWO-LEVEL-SYSTEM
HAMILTONIAN UNDER COHERENT LASER

ILLUMINATION

We discuss in the following how to eliminate the plasmon
cavity to obtain a new effective Hamiltonian of the molecule.
We assume that the plasmonic cavity (after transforming out
the coherent displacement αS) acts as a fluctuating reservoir
that effectively damps the molecule via the Purcell effect.
To describe the effects of the reservoir, we use the standard
methods of the quantum noise approach [55] and eliminate

the plasmon under the assumption that the broadening of the
plasmon excitation is considerably larger than the coupling
strength between the plasmon and the electronic TLS. We
obtain the electronic decay of the molecule into the plasmonic
mode (the Purcell effect), assuming that the plasmon cavity
is unpopulated (after removing the coherent contributions as
described in Appendix A), expressed by the Lindblad term

Leff [ρ] = −�eff

2
(σ †σρ + ρσ †σ − 2σρσ †),

where

�eff = 2g2Re{Sa(δ)},
with

Sa(s) =
∫ ∞

0
〈a(τ )a†(0)〉eisτ dτ,

which, assuming that the plasmon obeys a dynamics unper-
turbed by the presence of the molecule, yields

�eff = g2γa(
γa

2

)2 + (δ − 
)2
. (D1)

We neglect the slight frequency shift of the TLS due to the
action of the cavity which is formally given by the imaginary
part of Sa(s). The Hamiltonian of the reduced system thus has
the form [Eq. (15)]

Hred = h̄δσ †σ − h̄ 1
2Eplσx + h̄�(b† + dσe )(b + dσe ), (D2)

where we defined Epl = −2gαS and σx is the Pauli x operator.
The Hamiltonian in Eq. (D2) [Eq. (15)], from which the

plasmon has been eliminated, can be recast into a form where
an effective electronic TLS dressed by the incident coherent
illumination interacts with the molecular vibrations via the
Rabi interaction term [38]. We first start by grouping the
terms that correspond to the TLS Hamiltonian under strong
laser illumination. In particular, we consider as the TLS
Hamiltonian the terms that are free of the vibrational operators
(do not contain the electron-vibration coupling, i.e., d = 0)

HTLS = h̄ 1
2δσz − h̄ 1

2Eplσx + h̄ 1
2δ, (D3)

where we used the fact that the operator σe = σ †σ can be
rewritten with the help of the standard Pauli z operator as
σe = 1

2 (σz + I ).
We first apply the following rotation in the space of the

standard Pauli operators σx, σy, and σz (with the primed op-
erators being the new Pauli operators and λTLS =

√
δ2 + E2

pl )
that diagonalizes Eq. (D3):

σz = δ

λTLS
σ ′

z + Epl

λTLS
σ ′

x,

σx = − Epl

λTLS
σ ′

z + δ

λTLS
σ ′

x. (D4)

The resulting Hamiltonian for the molecule after this transfor-
mation is (after dropping an irrelevant constant term):

Hred = h̄
1

2
λTLSσ

′
z + h̄�b†b + h̄

1

2
�d

(
δ

λTLS
σ ′

z + Epl

λTLS
σ ′

x

)

× (b† + b) + h̄
1

2
�d (b† + b) + O(d2), (D5)
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where the TLS Hamiltonian from Eq. (D3) corresponds to
the diagonal term h̄ 1

2λTLSσ
′
z . For completeness, we note that

σy has not been changed by the transformation and from
Eq. (D4) it follows that the original lowering operator [σ =
1
2 (σx − iσy)] transforms into the following form:

σ = 1

2

δ

λTLS
σ ′

x − 1

2

Epl

λTLS
σ ′

z − i
1

2
σy. (D6)

APPENDIX E: VIBRATIONAL PUMPING IN THE
QUANTUM-NOISE APPROXIMATION

The Hamiltonian in Eq. (D2) describes the dynamics of
the molecule after the plasmon is eliminated. We describe
here how it is also possible to eliminate the TLS degrees of
freedom to focus on the dynamics of the vibrations, under
the assumption that the plasmon-enhanced decay rate of the
TLS (�eff + γσ ) is much larger than the decay rate of the
vibrations γb and that the electron-phonon coupling is weak
(for example, d = 0.1 and h̄g = 50 meV). We therefore divide
the Hamiltonian in Eq. (D2) into the part representing the
system, the reservoir, and the system-reservoir interaction as

Hred = h̄δ̃σ †σ − h̄ 1
2Eplσx︸ ︷︷ ︸

reservoir

+ h̄d�(σe − 〈σe〉)(b† + b)︸ ︷︷ ︸
system reservoir

+ h̄d�〈σe〉(b† + b) + h̄�b†b︸ ︷︷ ︸
system

, (E1)

where 〈σe〉 is the steady-state average of the TLS excited-
state population calculated for the TLS decoupled from the

vibrations and δ̃ = δ + d2�. The elimination of the reser-
voir can be performed using the quantum noise approach
[52,55,79] to Eq. (E1), giving the Hamiltonian

H eff
vib = h̄�b†b + h̄d�〈σe〉(b† + b).

The effective damping of the vibrations (appearing aside
of the intrinsic damping γb) can be expressed via the Lindblad
superoperator [Eqs. (18) and (19)]

L−
eff [ρ] = −�−

2
(b†bρ + ρb†b − 2bρb†)

and the effective vibrational pumping via the superoperator

L+
eff [ρ] = −�+

2
(bb†ρ + ρbb† − 2b†ρb).

The damping and pumping rates that appear in the Lindblad
superoperators are given by

�− = 2(�d )2Re{S̃(�)} (E2)

and

�+ = 2(�d )2Re{S̃(−�)}, (E3)

respectively. Here S̃(s) = ∫∞
0 〈〈σe(τ )σe(0)〉〉eisτ dτ (with

σ †σ = σe) is the spectral function that comprises the
properties of the electronic TLS bath uncoupled from
the vibrations and broadened by the plasmon.

We show below that the analytical expression for the
spectral function Re{S̃(s)} can be expressed in the form

Re{S̃(s)}

= Re

{∫ ∞

0
〈〈σe(τ )σe(0)〉〉eisτ dτ

}

= E2
pl

�tot
2

(
δ̃2 + 2δ̃s + (

�tot
2

)2 + s2
)(
E2

pl + 8
(

�tot
2

)2 + 2s2
)

4
[
E2

pl + 2δ̃2 + 2
(

�tot
2

)2][
2δ̃2

{(
�tot

2

)2(
2E2

pl − 3s2
)+ E2

pls
2 + 4

(
�tot

2

)4 − s4
}+ {(

�tot
2

)2 + s2
}{(

�tot
2

)2(
4E2

pl + 5s2
)+ (

s2 − E2
pl

)2 + 4
(

�tot
2

)4}+ δ̃4
(
�tot

2 + s2
)] .

(E4)

Here �tot = �eff + γσ [see Eq. (D1) for definition of �eff ] and 〈〈σe(τ )σe(0)〉〉 = 〈σe(τ )σe(0)〉 − 〈σe〉〈σe〉 is the part of the
correlation function that corresponds to the fluctuations of the operators around the steady-state value. We generally define
the fluctuating correlation function as 〈〈O1(τ )O2(0)〉〉 = 〈O1(τ )O2(0)〉 − 〈O1〉〈O2〉.

We obtain the spectral function Re{S̃(s)} in Eq. (E4) following the procedure described in Refs. [52,79]. We start with the
Liouville equation describing the TLS dynamics after effective elimination of the plasmonic cavity. In the case of no electron-
phonon coupling, it contains the Hamiltonian

HTLS = h̄δ̃σe − h̄ 1
2Eplσx

together with the Lindblad term

Ltot[ρ] = −�tot

2
(σ †σρ + ρσ †σ − 2σρσ †). (E5)

We obtain the following equations of motion for the mean values of the operators:

d

dt

⎡
⎢⎣

〈σ 〉
〈σ †〉
〈σe〉

⎤
⎥⎦ =

⎡
⎢⎣

−iδ̃ − �tot
2 0 −iEpl

0 iδ̃ − �tot
2 iE∗

pl

−iE∗
pl/2 iEpl/2 −�tot

⎤
⎥⎦
⎡
⎢⎣

〈σ 〉
〈σ †〉
〈σe〉

⎤
⎥⎦+

⎡
⎢⎣

iEpl/2

−iE∗
pl/2

0

⎤
⎥⎦. (E6)
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According to the quantum regression theorem [55], the correlation functions 〈〈σ (τ )σe(0)〉〉, 〈〈σ †(τ )σe(0)〉〉, and 〈〈σe(τ )σe(0)〉〉
obey the same time evolution as 〈σ (τ )〉, 〈σ †(τ )〉, and 〈σe(τ )〉, respectively,

d

dt

⎡
⎢⎣

〈〈σ (τ )σe(0)〉〉
〈〈σ †(τ )σe(0)〉〉
〈〈σe(τ )σe(0)〉〉

⎤
⎥⎦ =

⎡
⎢⎣

−iδ̃ − �tot
2 0 −iEpl

0 iδ̃ − �tot
2 iE∗

pl

−iE∗
pl/2 iEpl/2 −�tot

⎤
⎥⎦
⎡
⎢⎣

〈〈σ (τ )σe(0)〉〉
〈〈σ †(τ )σe(0)〉〉
〈〈σe(τ )σe(0)〉〉

⎤
⎥⎦, (E7)

with the initial values

〈〈σ (0)σe(0)〉〉 = 〈σ 〉(1 − 〈σe〉),

〈〈σ †(0)σe(0)〉〉 = −〈σ †〉〈σe〉,
〈〈σe(0)σe(0)〉〉 = 〈σe〉(1 − 〈σe〉).

Here all the mean values are evaluated in the steady state.
The inhomogeneous part does not appear in Eq. (E7) because
of the conveniently chosen value of the correlation functions
when τ → ∞.

The direct solution of Eq. (E7) yields the result in Eq. (E4)
for Re{S̃(s)}, which in turn provides the analytical expressions
for the effective vibrational pumping �+ and damping �−. We
can then solve the effective vibrational dynamics

d

dt
〈b〉 = −i�〈b〉 − i�d〈σe〉 −

(
γb

2
+ �−

2
− �+

2

)
〈b〉,

(E8)

d

dt
〈b†b〉 = −i�d〈σe〉(〈b†〉 − 〈b〉)

− (γb + �− − �+)〈b†b〉 + �+, (E9)

from which we obtain the steady-state values

〈b〉 = − i�d〈σe〉
γb

2 + i�
, (E10)

〈b†b〉 = |〈b〉|2 + �+
γb + �− − �+

. (E11)

Equation (E11) shows two different sources of vibrational
pumping that are involved in the process. The first one, repre-
sented by the term |〈b〉|2, is the coherent pumping of the vibra-
tions due to the TLS. The second term 〈b†b〉SS,in = �+

γb+�−−�+
is due to the incoherent vibrational pumping induced by the
fluctuating part of the TLS quantum dynamics.

Under the considered conditions, the incoherent pumping
term dominates over the weak coherent pumping term so that
the shape of the correlation function Re{S̃(s)} governs the
population of the vibrations as indicated by Eqs. (E2) and
(E3). As we have demonstrated in Sec. VIII, cooling is also
possible [52,79].

APPENDIX F: SMALL VIBRATIONAL DISPLACEMENT d:
DRESSED-MOLECULE PICTURE

The regime where the linewidth of the RF peaks is com-
parable to the width of the Raman peaks is a limiting case
of Raman scattering in intense fields that has been studied in
the context of atomic physics [73,74,80,81]. To understand the
splitting of the lines that appear when the Mollow triplet side

peaks have the frequency of the Raman lines, it is useful to
rewrite the Hamiltonian into a form where the coupling among
vibrational states is explicitly present.

This Hamiltonian can be derived from the reduced
Hamiltonian Hred appearing in Eq. (15) by applying
the so-called small polaron transformation Hred → H ′

red =
Uσe HredU †

σe
, which is represented by the unitary matrix in the

form of a displacement operator Uσe = exp[dσe(b† − b)]. This
transformation has two effects on the Hamiltonian. First, the
vibrational term in Hred transforms as

h̄�(b† + σed )(b + σed ) → h̄�b†b, (F1)

and second, the pumping term of the TLS acquires an ad-
ditional factor that includes the vibrational operators (which
yield the well-known Franck-Condon factors)

h̄gαSσ
† + H.c. → h̄gαSσ

†exp[d (b† − b)] + H.c.

= −h̄
Epl

2
σ †exp[d (b† − b)] + H.c. (F2)

In this approach we assume that the influence of the plasmon
[given by Hpl and Hpl-e in Eq. (5)] is effectively included as an
enhancement of the incident laser field Epl. Furthermore, we
consider only the case where the splitting of the fluorescence
and Raman spectral peaks [see, e.g., Figs. 3(b), 3(d), and 3(f)]
is larger than their broadening (the so-called secular limit). In
such a case, the incoherent broadening does not influence the
peaks positions and therefore in the following we consider that
the system can be described only by the simplified Hermitian
Hamiltonian (we do not consider the Lindblad terms as we
are mainly interested in the nature of the transitions). We fur-
ther assume weak electron-phonon coupling in the molecule
and expand the exponential terms containing the vibrational
operators to the first order: exp[±d (b† − b)] ≈ I ± d (b† − b).
Finally, we reduce the system comprising the vibrations and
the TLS into an effective four-level system that consists of the
ground and excited electronic states considering zero or one
vibrational excitation for each electronic state. The diagram
of the resulting effective system is drawn in Figs. 8(a) and
8(b). By diagonalizing this 4 × 4 Hamiltonian we achieve a
new level structure of the system that, in the dressed-molecule
picture, provides the positions of the emission peaks [for a de-
tailed discussion of the dressed-molecule (atom) picture see,
e.g., Ref. [82]]. Below we briefly describe how the emission
spectra can be understood using this dressed-molecule picture.

In the dressed-molecule picture we consider the simplified
Hamiltonian, which can be formally defined in the basis
of states [|g,N , 0〉, |e,N − 1, 0〉, |g,N , 1〉, |e,N − 1, 1〉],
with e (g) labeling the electronic excited (ground) state,
N labeling the photon number state of the exciting field,
and 0 (1) labeling the number of vibrational excitations.
The exciting field is not quantized explicitly in the original
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FIG. 8. (a) and (b) Schematic representation of the energies of
the simplified model of a TLS molecule with one vibrational excited
state. In (b) the interaction terms of the simplified Hamiltonian
H ′

red, obtained after applying the small polaron transformation, are
graphically depicted.

Hamiltonian [Eq. (5)], where it is represented by the plasmon
coherent-state amplitude αS. We therefore assume that the
exciting field is a highly populated bosonic field which peaks
sharply around a (mean) occupation number Ñ yielding αS =√
ÑgPL-L, with gPL-L formally defined as a small coupling

constant (such that Ñ � 1) between the equivalent exciting
field and the molecule. Note that the formal definition of the
exciting field is not important for the following discussion
as by introducing the quantized exciting field we only aim
at mimicking the action of the semiclassical pumping term.
However, the number states |N 〉 of the exciting field are
convenient to discuss the dressing of the molecular excited
states in terms of the hybridization of the quantum-mechanical
states.

We further define the total number of excitations as n =
N + δie, with i = e, g and δi j the Kronecker delta. We con-
sider that the electronic levels, carrying the fine vibrational
structure, are dressed by the strong laser illumination. The
Hamiltonian can be expressed in the interaction picture of
the incident laser field which is exactly tuned to the elec-
tronic transition, h̄δ = 0 eV. In the basis [|g,N , 0〉, |e,N −
1, 0〉, |g,N , 1〉, |e,N − 1, 1〉] the Hamiltonian H ′

red can be
represented by the matrix

H′
red ≈ h̄

⎡
⎢⎢⎢⎣

0 −Epl/2 0 −dEpl/2

−Epl/2 0 dEpl/2 0

0 dEpl/2 � −Epl/2

−dEpl/2 0 −Epl/2 �

⎤
⎥⎥⎥⎦.

(F3)

For vanishing electron-phonon coupling d = 0, the Hamil-
tonian in Eq. (F3) reduces to the form describing a pair of
TLSs dressed by the incident laser illumination. The pro-
cess of dressing, i.e., diagonalization of the above Hamil-
tonian with d = 0, can be viewed as a mixing of the
electronic states with the high number states of the ex-
citing laser field giving rise to the basis of hybridized
states [|n−, 0〉, |n+, 0〉, |n−, 1〉, |n+, 1〉] where the first quan-
tum number n labels the total number of electronic plus laser
excitations and the second quantum number m belongs to
the vibrational states [see Fig. 9(a) for schematics of the
corresponding energy levels]. The hybrid states are defined as

|n±, m〉 ≡ (|g,N , m〉 ± |e,N − 1, m〉)/
√

2, with + labeling
the state with higher energy. In the new basis of such dressed
states, we can represent the Hamiltonian as

H′,dr
red ≈ h̄

⎡
⎢⎢⎢⎢⎢⎣

Epl/2 0 0 0

0 −Epl/2 0 0

0 0 � + Epl/2 0

0 0 0 � − Epl/2

⎤
⎥⎥⎥⎥⎥⎦

− h̄

⎡
⎢⎢⎢⎣

0 0 0 −dEpl/2

0 0 −dEpl/2 0

0 −dEpl/2 0 0

−dEpl/2 0 0 0

⎤
⎥⎥⎥⎦,

(F4)

For d = 0, the splitting of the states |n±〉 for the TLS in
each vibrational Fock state is |2gαS| = |Epl|. The two dressed
TLSs defined for each vibrational Fock state are mutually
shifted by the vibrational frequency � along the energy axis.
In the absence of electron-phonon coupling d , the RF emis-
sion (dominating in this case the inelastic emission) is given
purely by the transitions conserving the vibrational number
state and changing the total number of excitations n by one.
In particular, the central Mollow peak is given by transi-
tions between |(n + 1)+, 0(1)〉 → |n+, 0(1)〉 and |(n + 1)−,

0(1)〉 → |n−, 0(1)〉, while the side peaks contain transitions
|(n + 1)−, 0(1)〉 → |n+, 0(1)〉 (red detuned) and |(n + 1)+,

0(1)〉 → |n−, 0(1)〉 (blue detuned), respectively. The respec-
tive transitions and their corresponding emission peaks (the
Mollow triplet) are schematically marked in Fig. 9(a), where
the coloring and style of the spectral emission peaks (bottom)
correspond to the color and style of the respective arrows
marking the transitions (top).

If we switch on the electron-phonon interaction d , a mixing
between the levels belonging to the two vibrational Fock states
is introduced, simultaneously allowing additional transitions
yielding the Raman emission, i.e., changing the vibrational
Fock state. The details of the level mixing and the subse-
quent emission spectra depend on the particular choice of
pumping strength Epl in combination with the value of the
electron-phonon coupling d . In the following we consider a
particular case where the Mollow triplet side peaks overlap
with the Raman lines with the laser frequency exactly tuned
to the TLS energy splitting (h̄δ = 0 eV and |Epl| = �). Upon
diagonalization, the Hamiltonian in Eq. (F3) [Eq. (F4)] yields
the spectrum of energy levels

λ− = −1

2
(d − 1)�,

λ+ = 1

2
(d + 1)�,

λ3 = −1

2
(
√

d2 + 4 − 1)� ≈ −1

2

(
1 + d2

4

)
�,

λ4 = 1

2
(
√

d2 + 4 + 1)� ≈ 1

2

(
3 + d2

4

)
�, (F5)

043422-21



TOMÁŠ NEUMAN et al. PHYSICAL REVIEW A 100, 043422 (2019)

(d)(c)

(b)(a)

FIG. 9. Energy-level diagram in the dressed-molecule picture where the level structure of the effective four-level system describing the
molecule is repeated for each manifold containing n excitation quanta: (a) a situation where no electron-phonon interaction is present (d = 0)
and (b) a situation where all the interactions are present [the energies λi are defined in Eq. (F5)]. In (a) we further mark the transitions that
give rise to the Mollow triplet by colored (and dashed) arrows (connecting only m = 0 states, for simplicity) and use color code and dashing
to assign the transitions to the respective emission peaks in the schematically depicted spectrum below. The colored and numbered lines in
(b) represent all possible transitions that can contribute to the emission spectrum [as shown in (c) and (d)]. (c) and (d) Particular example of
an emission spectrum of a TLS in a plasmonic resonator obtained from the full model [Eq. (5)] using (c) two and (d) seven vibrational levels
(converged spectrum) in both the ground and the excited electronic states. The spectrum is calculated for d = 0.2, h̄� = 10 meV, h̄g ≈ 9 meV,
h̄E ≈ 130 meV, h̄γσ = 2 × 10−5 eV, h̄γb = 1 meV, h̄γa = 500 meV, h̄δ = 0 eV, h̄
 = 0 eV, and temperature T = 0 K. The colored lines
[calculated according to Eq. (F5)] represent the different transitions graphically depicted in (b) using the same color code.

where we used the assumption that d � 1 to perform the
Taylor expansion of the square root up to the first order.
The states having energy λ± are a coherent admixture of
states containing zero and one vibrational excitation |n−, 1〉
and |n+, 0〉, as discussed above, and the states of energy
λ3,4 can be identified [up to small O(d ) admixtures of other
states] with |n−, 0〉 and |n+, 1〉 whose energy is renormalized
due to the off-resonant electron-phonon coupling. This level
structure of the molecule does not explicitly contain the
quantized electromagnetic field of the incident laser. However,
in the dressed-molecule picture the molecular level structure
[Eq. (F5)] is periodically repeated for each manifold repre-
sented by a specific number of excitations n and thus appears
repeated along the energy axis displaced by integer values

of the laser frequency ωL, as schematically illustrated in
Fig. 9(b). In this picture, the emission events are represented
by transitions between manifolds that differ by one excitation
quantum of the electronic and effective photonic states, i.e.,
transitions between the manifolds containing n and n + 1
excitation quanta [represented by colored and numbered lines
in Fig. 9(b)].

The dressed-molecule picture above nicely allows us to
identify the spectral peaks which appear in the complex
photon-emission spectra obtained from the numerical cal-
culation of the complete Hamiltonian in Eq. (5) with its
corresponding Lindblad terms. Figure 9(c) shows such a
situation where two vibrational levels corresponding to the
ground vibrational state and the first excited vibrational state
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are considered. Nine main frequencies [colored and num-
bered lines in Fig. 9(c)] are identified in the spectrum which
nicely coincide with the nine transitions marked in the en-
ergy diagram of Fig. 9(b) [vertical lines marking λi − λ j ,
where i, j ∈ {+,−, 3, 4} and λi are defined in Eq. (F5)]. For
comparison, we show in Fig. 9(d) the results obtained using
a sufficiently large number of vibrations to achieve results
converged with respect to the size of the vibrational subspace.
In this case, more spectral features appear [we observe higher-
order transitions and further peak splitting when compared
with Fig. 9(c)]. Nonetheless, the simple model introduced in
this Appendix still explains very satisfactorily the spectral
positions of the strongest peaks.

APPENDIX G: DESCRIPTION OF THE SYSTEM
FOR TWO VIBRATIONAL MODES

We consider next a molecule with two vibrational modes.
To that end, we consider the plasmon as a bath (as described in
Appendix D), which allows writing the reduced Hamiltonian

describing the dynamics of the molecule

Hred,two = h̄δσe + h̄�1(b1
† + d1σe )(b1 + d1σe )

+ h̄�2(b2
† + d2σe )(b2 + d2σe ) + h̄ 1

2EPLσx, (G1)

where b1(2) (b†
1(2)) is the annihilation (creation) operator of

the vibrational mode 1 (2), �1(2) is the vibrational frequency
of the respective mode, and d1(2) is the displacement of the
respective excited PESs with respect to the ground-state ones.
According to Eq. (A2) we define two Lindblad superoperators
that effectively account for the Markovian damping of the two
vibrational modes

Lb1 [ρ] = −γb1

2
(b†

1b1ρ + ρb†
1b1 − 2b1ρb†

1), (G2)

Lb2 [ρ] = −γb2

2
(b†

2b2ρ + ρb†
2b2 − 2b2ρb†

2), (G3)

with γb1 (γb2 ) the respective decay rates of the vibrational
modes. In this model, losses of the electronic TLS are as-
sumed in the form given by Eq. (E5).
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